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Introduction

Category theory has at least two important features. The first one is that it allows us to
structure our mathematical world. Many constructions that you encounter in your daily life
look structurally very similar, like products of sets, products of topological spaces, products
of modules, and then you might be delighted to learn that there is a notion of a product of
objects in a category and all the above examples are actually just instances of such products,
here in the category of sets, topological spaces, and modules, so you don’t have to reprove
all the properties products have, because they hold for every such construction. So category
theory helps you to recognize things as what they are.

It also allows you to express objects in a category by something that looks apparently
way larger. For instance, the Yoneda lemma describes a set of the form F (C) (where C is
an object of some category and F is a functor from that category to the category of sets)
as the set of natural transformations between another nice functor and F . This might look
like a bad deal, but in this set of natural transformations you can manipulate things and
this reinterpretation for instance gives you cohomology operations as morphisms between
the representing objects.

Another feature is that you can actually use category theory in order to build topological
spaces and to do homotopy theory. A central example is the nerve of a (small) category:
You view the objects of your category as points, every morphism gives a 1-simplex, a pair of
composable morphisms gives a 2-simplex, and so on. Then you build a topological space out
of this by associating a topological n-simplex to an n-simplex in the nerve, but you do some
nontrivial gluing, for instance, identity morphisms don’t really give you any information so
you shrink the associated edges. In the end you get a CW complex BC for every small
category C. Properties of categories and functors translate into properties of this space and
continuous maps between such spaces. For instance, a natural transformation between two
functors gives rise to a homotopy between the induced maps, and an equivalence of categories
gives a homotopy equivalence of the corresponding classifying spaces.

Classifying spaces of categories give rise to classifying spaces of groups but you can also
use them and related constructions to build the spaces of the algebraic K-theory spectrum
of a ring, you can give models for iterated based loop spaces and you can construct explicit
models of homotopy colimits and much more.

This book has two parts. The first one gives an introduction to category theory describing
its basic definitions and constructions, so this part focusses on the first feature of category
theory. The second part presents applications to homotopy theory. Here, ’homotopy theory’
does not mean any precisely confined area of algebraic topology but rather some collection
of topics that is heavily influenced by my research interests and my personal taste. An
emphasis is on simplicial methods, functor categories, on some concepts that are crucial
for algebraic K-theory, on models for iterated based loop spaces, and on applications to
homological algebra. The book also contains an account of functor homology and of homology
of small categories. These are two concepts that in my opinion deserve to be wider known by
working mathematicians, in particular, by working algebraic topologists. Many prominent
examples of homology theories can be expressed that way and even if you are not interested
in homology theories per se, you might stumble across a spectral sequence whose E2 term
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happens to consist of such homology groups – and then it might be helpful to recognize these
groups, because then you have other means of understanding and calculating them.

One thing that you might realize is that I love diagrams. If I see a proof that uses a
lengthy reformulation for showing that one thing (functor, natural transformation, etc.) is
the same as a second thing, then I usually don’t understand such a proof before I ’translate’ it
into a diagram that has to commute, so I usually end up drawing the corresponding diagram.
My hope is that this approach isn’t just helpful for me. So in a lot of places in this book you
will find proofs that more or less just consist of showing that a certain diagram commutes
by displaying the diagram and dissecting its parts. I also love examples and therefore there
are plenty of examples in the book. There are also some exercises. These are not meant to
be challenging, but they want to nudge you to actually learn how to work with the concepts
that are introduced and how to deal with examples. One danger in category theory is that
one learns the abstract theory, and then, if confronted with an example, one doesn’t really
know what to do. I hope that the examples and exercises help to avoid this.

My hope is that this book will bridge a gap: There are several very good accounts on
category theory, for instance, [Rie16, Bo94-1, Bo94-2, ML98, Sch70], and there are many
excellent sources on applications of categorical methods to topics such as algebraic K-theory
[Q73, Gr76, DGM13, W13], the theory of iterated loop spaces, models for categories of
spectra and many more, but in the latter texts it is assumed that the reader is familiar with
the relevant concepts from category theory and sometimes it can be difficult to collect the
necessary background. This is not a book on ∞-categories, but I cover quasi-categories,
joins, slices, cocartesian fibrations, and the category Θn and some other things related to
∞-categories, and these might help you with digesting Jacob Lurie’s books [Lu09, Lu∞]
and other sources. For an overview on quasi-categories and some of their applications I
recommend Moritz Groth’s survey [Gro20]. For a comparison between different models
of ∞-categories Julie Bergner’s book [B18] is an excellent source. My book is also not an
introduction to model categories, but if you want to dive deeper into some of the applications
and you decide to read the papers that I mention, then you will need them. There are very
good sources for learning about model categories, and in increasing level of complexity I
recommend [DwSp95, Ho99, Hi03], but of course also the original account [Q67].

In my opinion (many people would disagree), you should not learn category theory before
you have seen enough examples of categories in your mathematical life, so before you feel the
need for category theory. I assume that you have some background in algebra and algebraic
topology. In several places I will use concepts from homological algebra, and I recommend
Chuck Weibel’s book [W94] if you need background on that.

How you read this book heavily depends on your background and I therefore refrain from
giving a Leitfaden. If you know some basic category theory, you might jump ahead to the
applications, and if you then realize that for a specific topic you need to look things up, then
you can go back to the corresponding spot in the first part of the book. Similarly, some of
you might know what a simplicial object is. Then of course you should feel free to skip that
section.

I assume that the axiom of choice holds. I will not give an introduction to set theory
in this book. For diagram categories I will assume smallness in order to avoid technical
problems.
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Whenever you see a A ⊂ B that means a ∈ A ⇒ a ∈ B, so that’s what other people
might denote by A ⊆ B. By 2 I denote the end of a proof.

Acknowledgements: This book had a long gestation period. It all started with a lecture
course that I gave in Hamburg in the academic term of 2010/11. I thank Clemens Heine for
encouraging me to write the book and Inna Zakharevich who persuaded me to actually finish
it. I would like to thank the Isaac Newton Institute for Mathematical Sciences for support
and hospitality during the program Homotopy Harnessing Higher Structures, supported by
EPSRC grant number EP/R014604/1. I finished a first draft when I was in Cambridge in
2018. I was an associate member of the SCR of Churchill College Cambridge, and I am
grateful for the hospitality and the welcoming atmosphere in Churchill College. This really
helped me to transform a rough draft of the book into a final version.
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Part I

Category Theory





CHAPTER 1

Basic Notions in Category Theory

1.1. Definition of a Category and Examples

If you want to define a category, it is not enough to specify the objects that you want to
consider, you always have to say what kind of morphisms you want to allow.

Definition 1.1.1. A category C consists of

(1) A class of objects, ObC.
(2) For each pair of objects C1 and C2 of C, there is a set C(C1, C2). We call the elements

of C(C1, C2) the morphisms from C1 to C2 in C.
(3) For each triple C1, C2, and C3 of objects of C, there is a composition law

C(C1, C2)× C(C2, C3)→ C(C1, C3).

We denote the composition of a pair (f, g) of morphisms by g ◦ f .
(4) For every object C of C there is a morphism 1C , called the identity morphism on C.

The composition of morphisms is associative, that is, for morphisms f ∈ C(C1, C2), g ∈
C(C2, C3), and h ∈ C(C3, C4), we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

and identity morphisms do not change morphisms under composition, that is, for all f ∈
C(C1, C2),

1C2 ◦ f = f = f ◦ 1C1 .

We will soon see plenty of examples of categories. Despite the fact that for some categories
this notation is utterly misleading, it is common to denote morphisms as arrows. If f ∈
C(C1, C2), then we represent f as f : C1 → C2. As for functions, we call C1 = s(f) the
source (or domain) of f and C2 = t(f) the target (or codomain) of f for all f ∈ C(C1, C2).

The identity morphism 1C is uniquely determined by the object C: if both 1C and 1′C
are identity morphisms on C, then

1C = 1C ◦ 1′C = 1′C .
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One can visualize the unit and associativity conditions geometrically. Omitting the ob-
jects from the notation, the rule f ◦ 1 = f = 1 ◦ f can be expressed as two (glued) triangles,
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and the associativity constraint corresponds to a tetrahedron.
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g◦f

h◦g

(h◦g)◦f=h◦(g◦f)

These pictures are more than mere illustrations; this will become clear when we discuss
nerves and classifying spaces of small categories in 11.1 and 11.2.

Remark 1.1.2. Sometimes one does not require that the morphisms constitute a set,
but one would allow classes of morphisms as well. In such contexts, our definition would be
called a locally small category, that is, one in which for every pair of objects C1, C2, C(C1, C2)
is a set and not a class.

Remark 1.1.3. Some authors require that the sets of morphisms in a category are pair-
wise disjoint. If (C1, C2) is different from (C ′1, C

′
2), then C(C1, C2) ∩ C(C ′1, C ′2) = ∅. This is

related to the question of how you define a function: If X and Y are sets, then a function
can be viewed as a relation f ⊂ X × Y with the property that, for all x in X, there is a
unique y ∈ Y with (x, y) ∈ f , or you could say that a function is a triple (X, Y, f) with
f ⊂ X × Y with the same uniqueness assumption. In the latter definition, the domain and
target are part of the data. In the first definition, f could also be a function for some other
X ′ and Y ′.

Definition 1.1.4.
• A category C is small if the objects of C are a set (and not a proper class).
• A small category is finite if its set of objects is a finite set and every set of morphism

is finite.
• A category is discrete if the only morphisms that occur in it are identity morphisms.

In particular, you can take any class X and form the discrete category associated with X,
by declaring the elements of X to be the objects and by allowing only the identity morphisms
as morphisms. If X is a set, then this category is small.
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You are probably already familiar with several examples of categories.

Examples 1.1.5.
• Sets: The category of sets and functions of sets. Here, the objects form a proper class.
• Gr: The category of groups and group homomorphisms.
• Ab: The category of abelian groups and group homomorphisms.
• K-vect: Here, K is a field and K-vect is the category of K-vector spaces and K-linear

maps.
• R-mod: Here, R is an associative ring with unit and R-mod is the category of (left)
R-modules and R-linear maps.
• Top: The category of topological spaces and continuous maps.
• Top∗: The category of topological spaces with a chosen basepoint and continuous maps

preserving the basepoint.
• CW: The category of CW-complexes and cellular maps.
• Ch: The category of (unbounded) chain complexes of abelian groups together with

chain maps. Here, objects are families of abelian groups (Xi)i∈Z with boundary oper-
ators di : Xi → Xi−1

. . .
dn+2
//Xn+1

dn+1
//Xn

dn
//Xn−1

dn−1
// . . ..

The di are linear maps and satisfy di ◦ di+1 = 0 for all i ∈ Z. We denote such a chain
complex by (X∗, d). A chain map from (X∗, d) to (Y∗, d

′) is a family of linear maps
(fi : Xi → Yi)i∈Z such that fi ◦ di+1 = d′i ◦ fi+1 for all i ∈ Z, so the following diagram
commutes:

. . .
dn+2

// Xn+1

fn+1

��

dn+1
// Xn

fn
��

dn
// Xn−1

fn−1

��

dn−1
// . . .

. . .
d′n+2

// Yn+1

d′n+1
// Yn

d′n
// Yn−1

d′n−1
// . . .

We also consider the variant of the category of non-negatively graded chain com-
plexes, Ch≥0, where Xi = 0 for all negative indices i. An important variant is to allow
different ground rings than the integers, so we might consider chain complexes of R-
modules for some associative and unital ring R, and then, the boundary operators
and chain maps are required to be R-linear.

There are other examples of categories where you might find the morphisms slightly
non-standard.

Examples 1.1.6.
(1) Let Corr be the category of correspondences. Objects of this category are sets, and

the morphisms Corr(S, T ) between two sets S and T are the subsets of the product
S×T . If you have U ⊂ R×S and V ⊂ S×T , then U×V is a subset of R×S×S×T .
You can take the preimage of U ×V under the map j : R×S×T → R×S×S×T
that takes the identity on R and T and the diagonal map on S and then project
with p : R × S × T → R × T . This gives the composition. The identity morphism
on the set S is the diagonal subset

∆S = {(s, s)|s ∈ S} ⊂ S × S.
9



(2) Let X be a partially ordered set (poset, for short), that is, a nonempty set X
together with a binary relation ≤ on X that satisfies that x ≤ x for all x ∈ X
(reflexivity), that x ≤ y and y ≤ z implies x ≤ z (transitivity) and if x ≤ y and
y ≤ x, then x = y (antisymmetry).

We consider such a poset as a category, and by abuse of notation, we call this
category X. Its objects are the elements of X, and the set of morphisms X(x, y)
consists of exactly one element if x ≤ y. Otherwise, this set is empty.

(3) Quite often, we will view categories as diagrams. For instance, let [0] be the category
with one object and one morphism, the identity on that object.

Similarly, let [1] = {0, 1} be the category with two objects 0 and 1, coming with
their identity morphisms and one other morphism from 0 to 1. This corresponds to
the poset 0 < 1 viewed as a category: 0→ 1.

When we draw diagrams like that, we usually omit the identity morphisms and
we don’t draw composites in posets. For every poset [n] = 0 < 1 < . . . < n, we get
the corresponding category 0→ 1→ . . .→ n.

(4) Let X be a topological space and let U(X) denote its family of open subsets of
X. We can define a partial order on U(X) by declaring that U ≤ V if and only if
U ⊂ V .

(5) If C is an arbitrary category and if C is an object of C, then the endomorphisms of
C, C(C,C) form a monoid, that is, a set with a composition, that is associative and
possesses a unit. Thus, every category can be thought of as a ’monoid with many
objects’.

Conversely, if (M, ·, 1) is a monoid with composition · and unit 1, then we can
form the category, that has one object ∗ and has M as its set of endomorphisms.
We denote this category by CM .

There are several constructions that build new categories from old ones.

Definition 1.1.7.
• We will need the empty category. It has no object and hence no morphism.
• If we have two categories C and D, then we can build a third one by forming their

product C×D. As the notation suggests, the objects of C×D are pairs of objects (C,D),
with C an object of C and D an object of D. Morphisms are pairs of morphisms:

C × D((C1, D1), (C2, D2)) = C(C1, C2)×D(D1, D2),

and composition and identity morphisms are formed componentwise:

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1), 1(C,D) = (1C , 1D).

This is indeed a category.
• Given two categories C and D, we can also form their disjoint union, CtD. Its objects

consist of the disjoint union of the objects of C and D. One defines

(C t D)(X, Y ) :=


C(X, Y ), if X, Y are objects of C,
D(X, Y ), if X, Y are objects of D,
∅, otherwise.
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• If we want a limited amount of interaction between C and D, we can form the join of
C and D, denoted by C ∗D. The objects of C ∗D are the disjoint union of the objects
of C and the objects of D and as morphism we have

(C ∗ D)(X, Y ) =


C(X, Y ), if X and Y are objects of C,
D(X, Y ), if X and Y are objects of D,
{∗}, if X is an object of C and Y is an object of D,
∅, otherwise.

So the join is not symmetric: There are morphisms from C to D but not from D to C.
• Let C be an arbitrary category. Let Co be the category whose objects are the same as

the ones of C but where

Co(C,C ′) = C(C ′, C).

We denote by f o the morphism in Co(C,C ′) corresponding to f ∈ C(C ′, C).
The composition of f o ∈ Co(C,C ′) and go ∈ Co(C ′, C ′′) is defined as go ◦ f o :=

(f ◦ g)o. The category Co is called the dual category of C or the opposite category of
C.

If you consider the preceding example of the category CM from above, then the
dual (CM)o is the category associated with the opposite of the monoid M , M o. Here,
M o has the same underlying set as M , but the multiplication is reversed:

m ·o m′ := m′ ·m.

1.2. EI Categories and Groupoids

Definition 1.2.1. We call a morphism f ∈ C(C,C ′) in a category C an isomorphism if
there is a g ∈ C(C ′, C), such that g ◦ f = 1C and f ◦ g = 1C′ .

We denote g by f−1, because g is uniquely determined by f .

Definition 1.2.2.
• A category C is an EI category if every endomorphism of C is an isomorphism.
• A category C is a groupoid, if every morphism in C is an isomorphism.

Of course, every groupoid is an EI category. In any EI category, the endomorphisms of
an object form a group.

Examples 1.2.3.
• Consider the category I whose objects are the finite sets n = {1, . . . , n}, with n ≥ 0

and 0 = ∅. The morphisms in I are injective functions. Hence, the endomorphisms of
an object n constitute the symmetric group on n letters, Σn, and I is an EI category.
• Dually, let Ω be the category of finite sets and surjections, that is, Ω has the same

objects as I, but Ω(n,m) is the set of surjective functions from the set n to the set
m. Again, the endomorphisms of n consist of the permutations in Σn, and Ω is an EI
category.
• Let C be any category. Then one can build the associated category of isomorphisms

of C, Iso(C). This has the same objects as C, but we take

Iso(C)(C1, C2) = {f ∈ C(C1, C2)|f is an isomorphism}.
11



Hence, for all categories C, the category Iso(C) is a groupoid. We call the category
Iso(I) = Iso(Ω) the category of finite sets and bijections, Σ, that is, Σ has the same
objects as Ω but

Σ(n,m) =

{
Σn, if n = m,

∅, otherwise.

• If G is a group, then we denote by CG the category with one object ∗ and CG(∗, ∗) = G
with group multiplication as composition of maps. Then, CG is a groupoid. Hence
every group gives rise to a groupoid. Vice versa, a groupoid can be thought of as a
group with many objects.
• Let X be a topological space. The fundamental groupoid of X, Π(X), is the category

whose objects are the points of X, and Π(X)(x, y) is the set of homotopy classes of
paths from x to y:

Π(X)(x, y) = [[0, 1], 0, 1;X, x, y].

The endomorphisms Π(x, x) of x ∈ X constitute the fundamental group of X with
respect to the basepoint x, π1(X, x).
• Another important example of a groupoid is the translation category of a group. If G

is a discrete group, then we denote by EG the category whose objects are the elements
of the group and

EG(g, h) = {hg−1}, g hg−1

// h.

This category has the important feature that there is precisely one morphism from
one object to any other object, so every object has equal rights.

For the symmetric group on three letters, Σ3, the diagram of objects and (non-
identity) morphisms looks as follows:

id3
//

))

����

||

(123)oo

uu

�� ��

##

(12)

<< 55

//

))
""

(132)

cc
ii

oo

uu
{{

(13)

bb

OO EE

55

// (23)oo

ii

YY OO

;;

Here, we use cycle notation for permutations. Note that the upper-right triangle
depicts the translation category of the cyclic group of order three.

1.3. Epi- and Monomorphisms

Often, we will need morphisms with special properties. In the category of sets, one can use
elements in order to test whether a function is surjective or injective. In a general category,
we do not have a notion of elements, but we always have sets of morphisms. Epimorphisms
and monomorphisms are defined using morphisms as test objects. For the category of sets,
this is straightforward: if a function f : S → T is injective, then f(s1) = f(s2) implies that
s1 = s2. So, this is also true for morphisms h1, h2 : U → S. If f ◦ h1 = f ◦ h2, then h1 = h2.
A similar consideration applies to surjective functions.
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Definition 1.3.1. Let C be a category and f ∈ C(C1, C2). Then, f is an epimorphism if
for all objects D in C and all pairs of morphisms h1, h2 : C2 → D, the equation h1 ◦f = h2 ◦f
implies that h1 = h2.

Epimorphisms are therefore right-cancellable.

Exercise 1.3.2. Beware, epimorphisms might not be what you think they are. Consider
the category of commutative rings with unit and show that the unique morphism from the
integers into the rational numbers is an epimorphism.

Remark 1.3.3. Of course, every identity morphism is an epimorphism and the compo-
sition of two epimorphisms is an epimorphism. If g ◦ f is an epimorphism, then so is g,
because h1 ◦ g = h2 ◦ g implies that h1 ◦ g ◦ f = h2 ◦ g ◦ f , and by assumption, this yields
h1 = h2. Note that every isomorphism is an epimorphism.

Proposition 1.3.4. Epimorphisms in the category of sets and functions are precisely
the surjective functions.

Proof. Let f : X → Y be a surjective function of sets and let h1, h2 : Y → Z be functions
with h1 ◦ f = h2 ◦ f . Let y ∈ Y be an arbitrary element. Then, there is an x ∈ X with
f(x) = y. Hence

h1(y) = h1(f(x)) = h2(f(x)) = h2(y),

and thus, h1 = h2. Conversely, let f : X → Y be an epimorphism. Let Z = {z1, z2} with
z1 6= z2 and define h1 : Y → Z as h1(y) = z1 for all y ∈ Y and let h2 be the test function of
the image of f , that is, h2(y) = z1 if y is in the image of f and h2(y) = z2 if y lies outside
of the image of f . Then, h1 ◦ f = h2 ◦ f is the constant function with value z1, and hence,
h1 = h2 which implies that f is surjective. �

Similarly, one can prove that epimorphisms of topological spaces are surjective contin-
uous maps. It is more involved to show that epimorphisms of groups are surjective group
homomorphisms. See, for example, [Bo94-1, 1.8.5.d].

Dual to the notion of an epimorphism is the one of a monomorphism.

Definition 1.3.5. Let C be a category. A morphism f ∈ C(C1, C2) is a monomorphism
if f o ∈ Co(C2, C1) is an epimorphism.

So, monomorphisms are left-cancellable. For all objects D in C and all h1, h2 : D → C1,
the equation f ◦ h1 = f ◦ h2 implies that h1 = h2.

One can use morphism sets as test objects because the very definition of mono- and
epimorphisms gives the following criteria.

Proposition 1.3.6. A morphism f ∈ C(C1, C2) is a monomorphism if and only if for all
objects D in C, the induced map C(D, f) : C(D,C1) → C(D,C2) is an injective function of
sets.

Dually, a morphism f ∈ C(C1, C2) is an epimorphism if and only if for all objects D in
C, the induced map C(f,D) : C(C2, D)→ C(C1, D) is an injective function of sets.

Monomorphisms of sets are injective functions. Monomorphisms of commutative rings
with unit are injective ring homomorphisms: Let f : R1 → R2 be a monomorphism of
commutative rings with unit. Consider the polynomial ring in one variable over the integers,
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Z[X]. A morphism h : Z[X] → R1 determines and is determined by the element r = h(X)
of R1. For all r, s ∈ R1, we define h1 : Z[X] → R1 via h1(X) = r and h2 : Z[X] → R1 via
h2(X) = s. If f(r) = f(s), then f ◦ h1 = f ◦ h2, and thus, h1 = h2, which implies r = s, so
f is injective. The converse is easy to see.

There are categories where monomorphisms should be handled with care, that is, where
monomorphisms do not behave like injective maps. A standard example is the category
of divisible abelian groups (see Exercise 1.3.13). A topologically minded example is the
category of connected Hausdorff topological groups [HM13, A3.10].

Exercise 1.3.7. Show that, in the category of monoids, the inclusion of the additive
monoid of natural numbers into the integers is a monomorphism and an epimorphism.

Definition 1.3.8. A morphism r ∈ C(C1, C2) is called a retraction if there is an s ∈
C(C2, C1), such that r ◦ s = 1C2 . In this situation, s is called a section and C2 is a retract of
C1.

Proposition 1.3.9. Retractions are epimorphisms, and sections are monomorphisms.

Proof. We only prove the first claim; the second is dual. Let r be a retraction with
section s. If h1 ◦ r = h2 ◦ r, then h1 = h1 ◦ r ◦ s = h2 ◦ r ◦ s = h2. �

Remark 1.3.10. Be careful: the converse of the preceding statement is often wrong. For
instance, let C be the category of groups. Then, a surjective group homomorphism f does
not have a section in general. There is a section of the underlying function on sets, but this
section does not have to be a group homomorphism in general.

The example of the category of commutative rings with units shows that there are cat-
egories where morphisms f that are epimorphisms and monomorphisms do not have to be
isomorphisms: take f : Z → Q. It is a monomorphism because it is injective, and it is an
epimorphism but certainly not an isomorphism.

You might know the notions of projective and injective modules from homological algebra.
The following is the categorical analog of these properties.

Definition 1.3.11.
• An object P in a category C is called projective if for every epimorphism f : M → Q

in C and every p : P → Q, there is a ξ ∈ C(P,M) with f ◦ ξ = p:

P
ξ

~~

p

��

M
f
// Q

• Dually, an object I in a category C is called injective if for every monomorphism
f : U →M in C and every j : U → I, there is a ζ ∈ C(M, I) with ζ ◦ f = j:

I

U
f
//

j
>>

M

ζ

OO

Remark 1.3.12. We think of the morphism ξ as a lift of p to M and of the morphism ζ
as an extension of j to M . Note that uniqueness of the morphisms ξ and ζ is not required.
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In the category of sets, every object is injective and projective, assuming the axiom of
choice for projectivity. In the category of left R-modules for R an associative ring with unit,
projectivity and injectivity are precisely defined as in homological algebra. Examples of
projective modules are free modules or R-modules of the form Re, where e is an idempotent
element of R, that is, e2 = e. Injective Z-modules, that is, injective abelian groups, are
divisible abelian groups. These are abelian groups A, such that nA = A for all natural
numbers n 6= 0. Thus, Q and the discrete circle Q/Z are injective abelian groups.

Exercise 1.3.13. Show that in the category of divisible abelian groups, the canonical
projection map Q→ Q/Z is a monomorphism.

Projectivity and injectivity are preserved by passing to retracts.

Proposition 1.3.14. If P is a projective object of a category C and if i : U → P is a
monomorphism in C with a retraction r : P → U , then U is projective. Similarly, if i : J → I
is a monomorphism with retraction r : I → J and I is injective, then J is injective.

Proof. Let f : M → Q be an epimorphism. If U maps to Q via g, then P maps to Q
via g ◦r. Thus, there is a morphism ξ : P →M with f ◦ξ = g ◦r, and therefore, ξ ◦ i satisfies
f ◦ ξ ◦ i = g ◦ r ◦ i = g.

In the second case, if U maps to M via the monomorphism f and j : U → J , then
i ◦ j : U → I has an extension ζ : M → I with ζ ◦ f = i ◦ j, and hence, r ◦ ζ is the required
extension of j to M . �

We also get certain splitting properties for injective and projective objects.

Proposition 1.3.15. If q : Q→ P is an epimorphism and if P is projective, then q has
a section. Dually, if j : I → J is a monomorphism and I is injective, then j has a retraction.

Proof. We show the second claim and leave the first claim as an exercise. Consider the
diagram

I

I

1I
??

j
// J.

ζ

OO

By the injectivity of I, we get an extension of 1I to J , ζ, satisfying ζ ◦ j = 1I . Thus, ζ is a
retraction for j. �

1.4. Subcategories and Functors

Definition 1.4.1. Let C be a category. A subcategory D of C consists of a subcollection
of objects and morphisms of C, called the objects and morphisms of D, such that

• for all objects D1, D2 of D there is a set of morphisms D(D1, D2) ⊂ C(D1, D2);
• if f ∈ D(D1, D2), then D1, D2 are objects of D;
• for all objects D of D the identity morphism 1D is an element of D(D,D); and
• if f ∈ D(D1, D2), g ∈ D(D2, D3), then the composition of f and g in C satisfies
g ◦ f ∈ D(D1, D3).
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Hence, a subcategory of a category is a subcollection of objects and morphisms of the
category that is closed under composition, identity morphisms, and source and target. Note
that a subcategory again forms a category.

Definition 1.4.2. A subcategory D of C is called full, if for all objects D,D′ of D
D(D,D′) = C(D,D′).

The category of abelian groups is a full subcategory of the category of groups. However,
the category I of finite sets and injections is not a full subcategory of the category of finite
sets. We restricted the morphisms.

Definition 1.4.3. A functor F from a category C to a category D
• assigns to every object C of C an object F (C) of D.
• For each pair of objects C,C ′ of C, there is a function of sets

F : C(C,C ′)→ D(F (C), F (C ′)), f 7→ F (f).

• The following two axioms hold:

F (g ◦ f) = F (g) ◦ F (f) for all f ∈ C(C,C ′), g ∈ C(C ′, C ′′),

F (1C) = 1F (C)

for all objects C of C.

Like for morphisms, we use the arrow notation F : C → C ′ to indicate a functor.

Examples 1.4.4.
(1) The inclusion of a subcategory into its ambient category defines a functor.
(2) The identity map on objects and morphisms of a category C define the identity

functor

IdC : C → C.

(3) Let (−)ab : Gr→ Ab be the functor that assigns to a group G the factor group of G
with respect to its commutator subgroup: G/[G,G]. The resulting group is abelian,
and the functor is called the abelianization.

(4) Often, we will consider functors that forget part of some structure. These are called
forgetful functors. For instance, we can consider the underlying set U(X) of a
topological space X, and this gives rise to the forgetful functor

U : Top→ Sets.

Similarly, if K is a field, then every K-vector space V has an underlying abelian
group U(V ), and this gives rise to a forgetful functor

U : K-vect→ Ab.

Here, we used that continuous maps are in particular functions of sets and that
K-linear maps are morphisms of abelian groups.

You should come up with at least five more examples of such forgetful functors.
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(5) To a pair of topological spaces (X,A) and to a fixed n ∈ N0, you can assign the nth
singular homology group of (X,A), Hn(X,A). Then, this defines a functor from the
category of pairs of topological spaces to abelian groups.

(6) If you consider topological spaces with a chosen basepoint and if you assign to such
a space (X, x) its fundamental group with respect to the basepoint x, π1(X, x), then
this defines a functor from Top∗ to the category of groups

π1 : Top∗ → Gr.

(7) A functor F : [0]→ C corresponds to a choice of an object in C, namely F (0).
(8) A functor F : [1]→ C corresponds to the choice of two objects in C, F (0) and F (1),

and a morphism between them, F (0 < 1):

F (0)
F (0<1)

//F (1).

(9) Let E be the category with two objects 0 and 0′ and an isomorphism between them,
that is, a morphism f ∈ E(0, 0′) and a morphism g ∈ E(0′, 0), such that g ◦ f = 10

and f ◦ g = 10′ . Then, a functor F from E to any category C picks an isomorphism
in C between F (0) and F (0′). The category E is therefore often called the wandering
isomorphism.

(10) A functor F : [2]→ C corresponds to the choice of a composable pair of morphisms
in C, so F (0 < 2) = F (1 < 2) ◦ F (0 < 1).

F (0)
F (0<1)

//

F (0<2)
''

F (1)

F (1<2)

��

F (2)

(11) We can assign to a set S the free group generated by S, Fr(S). A function of sets
f : S → T induces a group homomorphism

Fr(f) : Fr(S)→ Fr(T )

and hence Fr is a functor from the category of Sets to the category of groups.
(12) Similarly, we can send a set S to the free abelian group generated by S, Fra(S).

This assignment is a functor as well.
(13) An innocent-looking but very important example of a functor is the (covariant)

morphism functor : For an arbitrary category C and any object C0 of C, we can
consider the map

C 7→ C(C0, C)

that sends an object C of C to the set of morphisms from C0 to C in C. This defines
a functor

C(C0,−) : C → Sets.

(14) Another important functor that is crucial for the discussion of limits and colimits
later is the constant functor. Consider two arbitrary non-empty categories C and D
and choose an object D of D. The constant functor from C to D with value D is

∆D : C → D, ∆D(C) = D, ∆D(f) = 1D

for all objects C in C and all f ∈ C(C1, C2).
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(15) Let M be a smooth manifold and let C(M) be the real vector space of all smooth
real-valued functions on M . We denote by Sm the category of smooth manifolds
and smooth maps. The assignment M 7→ C(M) defines a functor from the dual
category of Sm to the category of real vector spaces

C : Smo → R-vect.

(16) Let X be a topological space, and let C be an arbitrary category. As discussed
earlier, U(X) denotes the category of open subsets of X. Its objects are the open
subsets of X, and if U and V are objects of U(X), with U ⊂ V , then there is a
morphism iVU : U → V .

A presheaf F on X is a functor F : U(X)op → C.
Often, the morphisms F (iVU ) : F (V ) → F (U) are called restriction maps and

are denoted by resV,U . The property of F to being a functor is then equivalent
to requiring that resU,U = idU for all objects U of U(X), and for open subsets
U ⊂ V ⊂ W in X, it doesn’t matter whether you restrict from W to V and then
from V to U or you restrict directly from W to U :

resW,U = resV,U ◦ resW,V .

Typical examples of presheaves are sets of functions on a topological space X,
such as the continuous functions from X to the reals. If p : E → M is a smooth
vector bundle on a smooth manifold M , then setting F (U) to be the set of smooth
sections of p on the open subset U ⊂M defines a presheaf.

If C is a concrete category (see 5.1.12), then the elements of F (U) are called
sections of F on U , and F (X) are the global sections. Sometimes, these notions are
also used for general C.

Remark 1.4.5. If F : C → D is a functor, then of course you can collect all objects of the
form F (C) for objects C of C and all morphisms F (f) for f a morphism in C, but beware
that the image of a functor is no subcategory of D in general.

Take, for instance, C as the category that consists of two disjoint copies of the poset [1]:

C : C0
f
//C1 C ′0

f ′
//C ′1

and let D be the category [2]. Then, we can define a functor from C to D by declaring that
F (f) = (0 < 1), F (f ′) = (1 < 2). As f cannot be composed with f ′ in C, the composition
(0 < 2) is not in the image of C under F [Sch70, I.4.1.4].

Functors F : C → D are often called covariant functors, whereas functors F : Co → D are
called contravariant functors from C to D. Thus, these are assignments from the class of
objects in C to the class of objects in D, so that on the level of morphism sets, we get

F : C(C,C ′)→ D(F (C ′), F (C)),

with F (g ◦ f) = F (f) ◦ F (g) and F (1C) = 1F (C).
Singular cochains (or singular cohomology groups) define a contravariant functor from

the category of topological spaces to the category of cochain complexes (or graded abelian
groups).
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If you assign to a vector space its dual vector space, then for every K-linear map f : V →
W , you get a K-linear map f ∗ : W ∗ → V ∗, which is defined as ϕ 7→ ϕ ◦ f

V
f
//

ϕ◦f   

W

ϕ
��

K

This turns the process of building the dual of a vector space into a contravariant functor
from the category of K-vector spaces to itself.

Example 1.4.6. Contravariant functors from the fundamental groupoid of a space X,
Π(X), to the category of abelian groups, G : Π(X)o → Ab, are called (abelian) bundles of
groups on X or a system of local coefficients on X. This can be used to define homology
with local coefficients (see, for instance, [Ste43], [Wh78, Chapter VI], or [DK01, Chapter
5]).

For every point x ∈ X, we get an abelian group G(x), and for every homotopy class [w]
of a path from x to y, there is a group homomorphism G([w]) : G(y)→ G(x). Note that the
G([w])s are automatically isomorphisms with inverse G([w̄]), where w̄ is the time-reversed
path of w.

Exercise 1.4.7. Consider two groups G,G′ and the corresponding categories CG and CG′
with one object and morphisms G and G′. Show that functors F : CG → CG′ correspond to
group homomorphisms f : G→ G′.

Exercise 1.4.8. Let (S,≤) and (T,≤) be two posets. A morphism of posets is an order-
preserving function f : S → T , that is, if s1 ≤ s2 in S, then f(s1) ≤ f(s2) in T . Show that
functors from the category S to the category T are precisely morphisms of posets.

Let C be a category, and let C be an object in C. We can use the functors C(C,−) and
C(−, C) for testing whether C is projective or injective. The following criterion is a direct
consequence of the definitions, bearing in mind that epimorphisms in the category Sets are
precisely surjective functions.

Proposition 1.4.9.
• The object C is projective if and only if C(C,−) : C → Sets preserves epimorphisms.
• The object C is injective if and only if C(−, C) : Co → Sets sends monomorphisms to

epimorphisms.

Functors can be used to compare categories.

Definition 1.4.10.
• A functor F : C → D is an isomorphism of categories if there exists a functor G : D →
C with the properties F ◦G = IdD and G ◦ F = IdC.

In particular, F induces a bijection between the classes of objects of C and D and
on the morphism sets.
• A functor is full if the assignment

(1.4.1) F : C(C,C ′)→ D(F (C), F (C ′)), f 7→ F (f)

is surjective for all pairs of objects C,C ′ of C.
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• A functor is faithful if the assignment in (1.4.1) is injective for all pairs of objects
C,C ′ of C.
• A functor is fully faithful if the assignment in (1.4.1) is a bijection for all pairs of

objects C,C ′ of C.
• A functor F : C → D is essentially surjective if for all objects D of D, there is an

object C of C, such that F (C) is isomorphic to D.

Exercise 1.4.11. Let R be an associative ring with unit and denote by Rop the ring that
has the same underlying abelian group as R but whose multiplication is reversed. Show that
the categories of left R-modules and of right Rop-modules are isomorphic.

Exercise 1.4.12. Recall the join of categories from Definition 1.1.7. Show that there is
an isomorphism of categories between (C ∗ D)o and Do ∗ Co.

Prove that there is an isomorphism between the categories [0] ∗ [0] and [1]. Show that
[i] ∗ [j] is isomorphic to [i+ j + 1].

Exercise 1.4.13. Let F : C → D be a faithful functor. Show that F detects monomor-
phisms, that is, if F (f) is a monomorphism, then f is a monomorphism. Do full functors
detect epimorphisms?

Remark 1.4.14.
• Faithful functors can forget structure. For instance, the forgetful functor from groups

to sets is faithful.
• There are examples of functors that are fully faithful, but not isomorphisms of cate-

gories. The important point is that full faithfulness does not imply that the functor is
essentially surjective, and it does not rule out that the functor maps different objects
to the same image.
• If D is a subcategory of C, then there is an inclusion functor I : D → C. The category
D is a full subcategory of C if the inclusion functor is a full functor.

We can compose functors and we have identity functors, thus categories behave like
objects in a category. This can be made precise.

Definition 1.4.15. We denote by cat the category whose objects are all small categories
and whose morphisms between a category C and a category D are all functors from C to D.

Why do we restrict to small categories? We insisted on the morphisms between two
objects forming a set. Take, for instance, the category of sets. The functors from Sets to
itself contain the constant functors, so for each set, there is a constant functor, with that set
as its value. This would already be a proper class of functors.

For a small category, we can define a suitable notion of connectedness.

Definition 1.4.16. Let C be a small category. Two objects C1 and C2 are said to be
equivalent, if there is a morphism in C between C1 and C2. We consider the equivalence
relation generated by this relation. Thus, two objects C, C̃ are equivalent if there is a finite
zigzag of morphisms of C connecting C and C̃:
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C1

�� ��

C2

��
��

CN

��
��

C C ′1 . . . C̃

If every object of C is connected to any other object in C, that is, if there is just one such
equivalence class, then we call the category C connected.

1.5. Terminal and Initial Objects

Some categories possess special objects.

Definition 1.5.1.
• An object t of a category C is called terminal if there exists a unique morphism
fC : C → t in C from every object C of C to t.
• Dually, an object s is called initial if there exists a unique morphism fC : s→ C in C

from s to every object C of C.
• An object 0 is a zero object in C if it is terminal and initial.

Remark 1.5.2. If t is terminal, then the endomorphisms of t consist only of the identity
map of t, and dually, the set of endomorphisms of an initial object is {1s}.

A small category that possesses an initial or a terminal object is connected.
Terminal and initial objects are unique up to isomorphism. If C has a zero object 0, then

for all pairs of objects C,C ′ in C, there is the unique morphism

C
fC
//0

fC
′

//C ′.

This is often called the zero morphism and is denoted by 0: C → C ′.

Exercise 1.5.3.
• Show that any composite of a morphism with the zero morphism is zero.
• If f : C → C ′ is a monomorphism and if the composition f ◦ g is the zero morphism,

then g = 0.

Examples 1.5.4.
• In the category of sets Sets, the empty set is the initial object and any set with one

element is terminal. There is no zero object in Sets. This changes if we consider the
category of pointed sets, Sets∗. The objects of Sets∗ are sets with a chosen basepoint,
and morphisms are functions of sets that map the basepoint in the source to the
basepoint in the target. In this example, every set with one element is a zero object.
• Let R be an associative ring with unit. The category of left R-modules has a zero

object, and this is the zero module 0. For R = Z, we obtain that the trivial group is
a zero object in the category of abelian groups, Ab.
• This also applies to the category of groups: the trivial group is an initial object, and

it is also terminal.
• Let G be a group. In the translation category EG, every object is initial and terminal.
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Exercise 1.5.5. Let X be a partially ordered set. What does it say about the partial
order relation on X if X has a terminal or initial object? When does X possess a zero
object?

Exercise 1.5.6. Let C be an arbitrary category. Show that the join of C with [0], C ∗ [0],
has 0 as a terminal object and that [0] ∗ C has 0 as an initial object.

Definition 1.5.7. The category C ∗ [0] is the inductive cone with base C, and [0] ∗ C is
the projective cone with base C.
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CHAPTER 2

Natural Transformations and the Yoneda Lemma

2.1. Natural Transformations

A typical example of a natural transformation is the connecting homomorphism for sin-
gular homology. Consider, for instance, the nth singular homology group of a pair of spaces
(X,A). There is a connecting homomorphism

δ : Hn(X,A)→ Hn−1(A).

This morphism is natural for morphisms of pairs of topological spaces: if f : (X,A)→ (Y,B)
is a continuous map f : X → Y with f(A) ⊂ B, then the following diagram commutes:

Hn(X,A)

Hn(f)

��

δ
// Hn−1(A)

Hn−1(f |A)

��

Hn(Y,B)
δ
// Hn−1(B)

Thus, δ is a morphism between functors from the category of pairs of topological spaces
to the category of abelian groups, the functor (X,A) 7→ Hn(X,A) and the functor (X,A) 7→
Hn−1(A). The general definition is as follows:

Definition 2.1.1.
• Let F,G be two functors from C to C ′. A natural transformation η from F to G

consists of a class of morphisms ηC ∈ C ′(F (C), G(C)), the components of η, such that
for every morphism f ∈ C(C1, C2),

ηC2 ◦ F (f) = G(f) ◦ ηC1 ,

that is, the diagram

F (C1)

F (f)
��

ηC1
// G(C1)

G(f)
��

F (C2)
ηC2
// G(C2)

commutes.
• Two functors F,G : C → C ′ are naturally isomorphic if there is a natural transforma-

tion η from F to G, such that the components ηC ∈ C ′(F (C), G(C)) are isomorphisms
for all objects C of C.

Remark 2.1.2. If η is a natural isomorphism, then the morphisms (ηC)−1 assemble to a
natural transformation η−1, such that η−1 is again a natural isomorphism.
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Example 2.1.3. Two local coefficient systems G,G ′ : Π(X)o → Ab are isomorphic if there
is a natural isomorphism between them. If G is isomorphic to a constant local coefficient
system, then G is called simple.

Exercise 2.1.4. Let G and G′ be groups and let F, F ′ : CG → CG′ be two functors. When
do we have a natural transformation η : F ⇒ F ′?

We denote morphisms and functors by arrows. For natural transformations, it is common
to use⇒ as a symbol. If η is a natural transformation from F to G, then we write η : F ⇒ G
for that fact. If we want to encorporate the functors F and G into the picture, then we use
a 2-cell

C
F

%%

G

99�� η D

as the corresponding diagram. You can compose natural transformations. Let F,G, and H
be functors from C to D and let η : F ⇒ G, ν : G ⇒ H. Then the composition ν ◦1 η is a
natural transformation from F to H, with components (ν ◦1 η)C = νC ◦ ηC . This is often
called the vertical composition of two natural transformations :

C

F

!!�� η

>>

H

�� ν

G
// D = C

F

��

H

AA�� ν◦1η D.

We fix some notation for the composition of natural transformations and functors. If
η : F ⇒ G is a natural transformation between the functors F,G : C → C ′ and if H : C ′ → C ′′
is a functor, then we denote by H(η) : H ◦ F ⇒ H ◦ G the natural transformation with
components

H(η)C := H(ηC) : H(F (C))→ H(G(C)).

Similarly, for a functor K : C̃ → C, the natural transformation ηK : F ◦K ⇒ G ◦K is given
by

(ηK)C := ηK(C) : F (K(C))→ G(K(C)).

There is also the horizontal composition. Let C, D, and E be three categories and let
F,G : C → D and F ′, G′ : D → E be functors with natural transformations η : F ⇒ G and
ψ : F ′ ⇒ G′. Then η and ψ can be used to construct a natural transformation between the
composite functors F ′ ◦ F and G′ ◦G. To this end, consider an arbitrary object C of C and
the diagram

F ′(F (C))
ψF (C)

//

F ′(ηC)
��

G′(F (C))

G′(ηC)
��

F ′(G(C))
ψG(C)

// G′(G(C)).
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This diagram commutes because of the naturality of ψ applied to the morphism ηC . Define
the composition ψ ◦0 η as the composite. This is depicted as

C

F

!!

G

>>�� η D

F ′

!!

G′

>>�� ψ E = C

F ′◦F
""

G′◦G

>>�� ψ◦0η E .

We always have the identity natural transformation ID: F ⇒ F , whose components are
the identity on the objects F (C):

IDC = 1F (C).

There is an interchange law for the vertical and horizontal compositions. If there are
three categories involved and two triples of functors, then in the diagram

C

F

##�� η

<<

H

�� ν

G
// D

F ′

##�� η

;;

H′
�� ν

G′
// E

the horizontal composition of ν ′ ◦1 η
′ and ν ◦1 η agrees with the vertical composition of ν ′ ◦0 ν

and η′ ◦0 η:

(ν ′ ◦1 η
′) ◦0 (ν ◦1 η) = (ν ′ ◦0 ν) ◦1 (η′ ◦0 η),

(2.1.1) C
F

%%

H

99�� ν◦1η D
F ′

$$

H′

::�� ν
′◦1η

′ E = C

F ′◦F

���� η
′◦0η

BB

H′◦H

�� ν
′◦0ν

G′◦G
// E .

This should remind you of the interchange law for the multiplication in a double loop
space, ensuring, for instance, that the homotopy groups πn(X, x0) of a pointed topological
space (X, x0) are abelian for all n ≥ 2. In the following, we will not use the notation ◦0 and
◦1 and we hope that it is clear from the context what kind of composition is used.

Notation 2.1.5. Let C be a small category and let C ′ be an arbitrary category. Then,
the functors from C to C ′ form a category whose morphisms are the natural transformations.
We denote this category by Fun(C, C ′).

Remark 2.1.6. We can jazz up the example cat to something that is called a 2-category:
the objects of cat are all small categories, the morphisms between a small category C and a
small category D themselves form a category where the objects are the functors from C to
D and the morphisms are the natural transformations between such functors. We will say
more about higher categories in 9.5.

Examples 2.1.7.
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• Let U denote the forgetful functor from the category of abelian groups to the category
of groups. There is a natural transformation between the functors Fr and U ◦Fra from
the category Sets to the category Gr, η. This is given by the abelianization (−)ab. The
free abelian group generated by a set S, Fra(S) is isomorphic to the abelianization of
the free group generated by S, Fr(S)/[Fr(S),Fr(S)], and any function f : S → T of
sets renders the following diagram commutative:

Fr(S)

Fr(f)

��

ηS
// Fra(S)

Fra(f)

��

Fr(T )
ηT
// Fra(T )

• Let V be a K-vector space. There is a canonical map from V to its double dual

ιV : V → V ∗∗, v 7→ (ϕ 7→ ϕ(v)), v ∈ V, ϕ ∈ V ∗.
For any K-linear map f : V → W , we have ιW ◦ f = f ∗∗ ◦ ιV , and therefore, ι is
a natural transformation between the identity functor and the functor that sends a
vector space to its double dual and sends a K-linear f to f ∗∗.
• The category of presheaves on a topological space X with values in a category C forms

a functor category. Its objects are the presheaves on X and its morphisms are the
natural transformations, that is for two presheaves F and G on X a morphism from
F to G is a family of morphisms in C (fU : F (U)→ G(U))U∈U(X) which is compatible
with the restriction maps; that is,

F (V )

resUV
��

fV
// G(V )

resUV
��

F (U)
fU
// G(U)

commutes for all open subsets U ⊂ V of X. For instance, if X is a smooth manifold,
then the inclusion of the smooth real-valued functions into the continuous real-valued
functions is a morphism of presheaves.

For groups we know the notion of the center of a group. It consists of all elements in the
group that commute with all other elements. In category theory we can express centrality
as follows:

Definition 2.1.8. Let C be a small category. The center of C, Z(C), is the set of natural
transformations from the identity functor on C to itself.

Example 2.1.9. Consider the case of a category CG for a group G. A natural transfor-
mation η from IdCG to itself consists of a morphism η∗ from the only object of CG to itself;
hence, η∗ is an element of the group G, and we call this element gη. The naturality condition
then means that for all h ∈ G, the composition h ◦ η∗ = h · gη is equal to the composition
η∗ ◦ h = gη · h. Hence, the center of the category CG is the center of the group.

Exercise 2.1.10. Show that the center of a small category is always an abelian monoid.

Exercise 2.1.11. Prove that the center of the category of left R-modules for an asso-
ciative ring with unit is the center of the ring R. It helps to study ηR first!
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2.2. The Yoneda Lemma

The Yoneda lemma controls natural transformations from a representable functor to
another functor.

Definition 2.2.1. A functor F : C → Sets is representable if it is isomorphic to a mor-
phism functor, that is, there is an object C of C and a natural isomorphism

η : C(C,−)⇒ F.

In this case, the pair (C, η) is called a representation of F .

Of course, morphism functors C(C,−) are representable with the pair (C, ID) as a rep-
resentation.

Theorem 2.2.2. (Yoneda lemma) Let C be a category and let F be a functor from the
category C to the category Sets.

(1) For each object C of C, there is a bijection Y (F,C) between the set of all natural
transformations from C(C,−) to F , Nat(C(C,−), F ), and the set F (C).

(2) The bijections (YF )C := Y (F,C) are the components of a natural transformation
YF : Nat(C(−,−), F )⇒ F .

(3) If C is small, then the bijections (YC)F := Y (F,C) are the components of a natural
transformation from the functor

Nat(C(C,−),−) : Fun(C, Sets)→ Sets

to the functor εC : Fun(C, Sets)→ Sets that sends F to the set F (C).

Proof.
(1) Let η be such a natural transformation, then, in particular, for all objects C ′ of C,

there is a function

ηC′ : C(C,C ′)→ F (C ′).

One defines Y (F,C) as

Y (F,C)(η) := ηC(1C).

We have an evaluation map

C(C,C ′)× F (C)→ F (C ′)

that sends a pair (f, x) to F (f)(x). Fixing x ∈ F (C), this yields for f ∈ C(C,C ′)
τ(F,C)x,C′(f) := F (f)(x),

and if we vary f , we obtain a function

τ(F,C)x,C′ : C(C,C ′)→ F (C ′),

and we claim that this yields a natural transformation τ(F,C)x : C(C,−)⇒ F . For
a morphism g ∈ C(C ′, C ′′), we get for all f ∈ C(C,C ′)
F (g) ◦ τ(F,C)x,C′(f) = F (g)(F (f)(x)) = F (g ◦ f)(x)

= τ(F,C)x,C′′ ◦ C(C, g ◦ f) = τ(F,C)x,C′′ ◦ C(C, g)(f)
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and thus

F (g) ◦ τ(F,C)x,C′ = τ(F,C)x,C′′ ◦ C(C, g).

The maps Y (F,C) and τ(F,C) are inverses of each other. For any x ∈ F (C),
we have

Y (F,C)(τ(F,C)x) = τ(F,C)x,C(1C) = F (1C)(x) = 1F (C)(x) = x.

On the other hand, for every natural transformation η : C(C,−) ⇒ F and for
every f : C → C ′ in C, we get that

τ(F,C)Y (F,C)(η),C′(f) = τ(F,C)ηC(1C),C′(f) = F (f)(ηC(1C))

= ηC′(C(C, f)(1C)) = ηC′(f ◦ 1C) = ηC′(f).

(2) For the claim about the naturality in C, we consider the functor N : C → Sets, which
is defined on objects as

N(C) := Nat(C(C,−), F ).

For f : C → C ′, we set N(f) : Nat(C(C,−), F )→ Nat(C(C ′,−), F ) as

N(f)(η) := η ◦ C(f,−).

The natural transformation YF : N ⇒ F is defined as (YF )C := Y (F,C), and
the following straightforward calculations

(Y (F,C ′) ◦N(f))(η) = Y (F,C ′)(η ◦ C(f,−)) = (η ◦ C(f,−))(1C′) = ηC′(f)

and

(F (f) ◦ Y (F,C))(η) = F (f)(ηC(1C)) = ηC′ ◦ C(f,−)(1C) = ηC′(f)

yield the claim. We also get (YF )C′ ◦N(f) = F (f) ◦ (YF )C .
(3) If C is a small category, then the functors from C to the category of sets form a

category, Fun(C, Sets), with the natural transformations as morphisms. For a fixed
object C of C, we define a functor

Υ: Fun(C, Sets)→ Sets, Υ(F ) := Nat(C(C,−), F ).

Let G be an object of Fun(C, Sets), that is, a functor from C to the category of sets,
and let γ : F ⇒ G be a natural transformation. We define

Υ(γ) : Nat(C(C,−), F )→ Nat(C(C,−), G)

as Υ(γ)(η) := γ ◦ η.
We consider the evaluation functor at an object C in C, εC : Fun(C, Sets)→ Sets,

which sends a functor F : C → Sets to

εC(F ) := F (C)

and εC(γ) = γC .
We define YC : Υ⇒ εC as

(YC)F := Y (F,C).

Then, a calculation shows that (YC)G ◦Υ(γ) = εC(γ) ◦ (YC)F for any G as above.
�
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Remark 2.2.3. The Yoneda lemma is one of the most important tools in category theory
and its applications. You can express the set F (C) as a set of natural transformations, and
often, this is a means to control the functor F . You can also use it to control the objects in
C as follows:

For instance, a representation of a functor F , that is, a natural isomorphism η : C(C,−)⇒
F , is determined by F (C).

Corollary 2.2.4. Let C be an arbitrary category and let C,C ′ be two objects of C. Then,
there is a bijection between the set of natural transformations between the representable
functors C(C,−) and C(C ′,−) and the set of morphisms C(C ′, C).

This innocent-looking corollary has many applications. For instance, cohomology oper-
ations of singular cohomology can be described using this result. For that application, we
actually need a contravariant version of the Yoneda Lemma and its consequences.

First, we describe how different representations of a representable functor can be.

Lemma 2.2.5. If a functor F : C → Sets has two representations, η : C(C,−) ⇒ F and
τ : C(C ′,−)⇒ F , then C and C ′ are isomorphic in C.

Proof. We define f : C → C ′ as η−1
C′ (τC′(1C′)) and g ∈ C(C ′, C) as τ−1

C (ηC(1C)). We
have to check that f ◦ g = 1C′ and g ◦ f = 1C . We prove the first equality; the proof of the
second one is similar. The diagram

1C′ ∈ C(C ′, C ′)
τC′
//

(−)◦g
��

F (C ′)

F (g)

��

C(C,C ′)
ηC′

oo

(−)◦g
��

g ∈ C(C ′, C)
τC
// F (C) C(C,C) 3 1C

ηC
oo

commutes. As τC(g) = ηC(1C), we get that f ◦ g = η−1
C τC(g) = 1C . �

Exercise 2.2.6. Dualize the Yoneda lemma to the context of contravariant functors from
the category C to the category of sets.

The nth singular cohomology group of a space X with coefficients in an abelian group
A is isomorphic to the homotopy classes of maps from X to an Eilenberg-Mac Lane space of
type (A, n). The latter is a space denoted by K(A, n) of the homotopy type of a CW space,
such that

πiK(A, n) =

{
A, if i = n,

0, otherwise.

The K(A, n) are infinite loop spaces, and hence, the set of homotopy classes of maps
[X,K(A, n)] is actually an abelian group for all n ≥ 0 and

Hn(X;A) ∼= [X,K(A, n)]

is an isomorphism of abelian groups that is natural in the space X. Thus the functor X 7→
Hn(X;A) is representable. A cohomology operation ϕ(A,n),(B,m) : Hn(X;A) → Hm(X;B),
which is natural in X, can hence be identified with a natural transformation between the
functors X 7→ [X,K(A, n)] and X 7→ [X,K(B,m)], and these in turn are in bijection with
[K(A, n), K(B,m)] ∼= Hm(K(A, n);B). Here, we actually get an isomorphism of abelian
groups: we will later see versions of the Yoneda lemma in enriched settings (see 9.3 and

29



Proposition 2.4.5). As K(A, n) doesn’t have nontrivial cohomology groups below degree n
(due to the Hurewicz theorem), these operations are trivial for m < n. For A = B = Fp, a
prime field, the collection of all such cohomology operations constitutes the Steenrod algebra.

More generally, Brown’s representability theorem states that every generalized cohomol-
ogy theory can be represented by an Omega spectrum ([Ad74], [Sw75, chapter 9]).

By changing our point of view, we can use the Yoneda lemma to say something about
the assignment that sends an object C of a small category C to the representable functor
C(C,−). A morphism f ∈ C(C,C ′) induces C(f,−) : C(C ′,−)→ C(C,−), and hence, we get
a functor

Y : Co → Fun(C, Sets).

Theorem 2.2.7. (Yoneda embedding) The functor Y is fully faithful, and two mor-
phism functors C(C ′,−) and C(C,−) are isomorphic if and only if the objects C and C ′ are
isomorphic.

Proof. Corollary 2.2.4 ensures that the functor Y is fully faithful.
If C and C ′ are isomorphic, then there are morphisms f : C → C ′ and g : C ′ → C, such

that the precomposition with f and g induces a natural isomorphism between the functors
C(C ′,−) and C(C,−).

If we assume that the functors C(C ′,−) and C(C,−) are isomorphic, then there is a
natural isomorphism η : C(C,−)→ C(C ′,−), which corresponds to an element fη ∈ C(C ′, C)
by Corollary 2.2.4. The inverse of η, say τ , corresponds to an fτ ∈ C(C,C ′), and the Yoneda
lemma implies that fτ is inverse to fη. �

Morphisms in a category induce natural transformations of morphism functors. The
Yoneda lemma 2.2.2 relates properties of morphisms to the properties of the induced natural
transformation.

Lemma 2.2.8. Let f ∈ C(C1, C2) and let C(f,−) denote the induced natural transforma-
tion, with

C(f,−)C3 = C(f, C3) : C(C2, C3)→ C(C1, C3).

Then, C(f, C3) is a monomorphism for all objects C3 of C if and only if f is an epimorphism.
Dually, C(f, C3) is an epimorphism for all objects C3 of C if and only if f has a left inverse.

Note that the natural transformations from C(C2,−) to C(C1,−) are in bijection with
C(C1, C2) and under this bijection C(f,−) corresponds to f .

Proof. For every g ∈ C(C2, C3), C(f,−)C3(g) = g ◦ f . This shows the first claim. If
C(f,−)C3 is an epimorphism, then it is surjective, and thus, there is an h ∈ C(C2, C1) with
h◦f = 1C1 , thus f has a left inverse. Conversely, if f has a left inverse h and if g ∈ C(C1, C3)
is any morphism, then g is equal to C(f,−)(gh). �

2.3. Equivalences of Categories

Often, we would like to compare different categories. In topology, you have notions
of homeomorphisms and homotopy equivalences. Homeomorphisms correspond to actual
isomorphisms in the category of topological spaces, whereas homotopy equivalences are a
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weaker, but nonetheless very important method to compare spaces. The corresponding
notions in category theory are isomorphisms of categories and equivalences of categories.
We will see a direct connection to properties of topological spaces in Theorem 11.2.4.

Definition 2.3.1. A functor F from C to C ′ is called an equivalence of categories if there
is a functor G from C ′ to C, such that there is a natural isomorphism between the identity
functor on C ′ and F ◦G and one between G ◦ F and the identity functor on C.

Example 2.3.2. Let EG be the translation category of a discrete group G, as in Example
1.2.3. Then, EG is equivalent to the category [0] with one object and one identity morphism.
There is a unique functor P : EG → [0], sending every object to 0 and every morphism to the
identity morphism on 0. We define F : [0] → EG via F (0) = e, where e denotes the neutral
element in G, and we set F (10) = e. The composite P ◦ F is the identity functor on the
category [0], whereas the composite F ◦P sends any morphism h : g → hg in EG to e : e→ e.

We define η : F ◦ P ⇒ IdEG by setting

ηg : F ◦ P (g) = e→ g = IdEG(g)

to be the morphism g : e→ g in the translation category. As the diagram

ηg : F ◦ P (g) = e
g

//

F◦P (h)=e

��

g

Id(h)=h

��

ηhg : F ◦ P (hg) = e
hg

// hg

commutes for all h, g ∈ G and as EG is a groupoid, this defines a natural isomorphism.

Exercise 2.3.3. Show that the composition of two equivalences of categories is an equiv-
alence.

Prove that two auto-equivalences of a category C, F and F ′, do not have to be isomorphic
[Sch70, 16.2.3].

We will later see in Theorem 2.5.1 that functors that are essentially surjective, full, and
faithful are actually equivalences of categories.

2.4. Adjoint Pairs of Functors

The definition of adjoint functors goes back to Kan [K58a] and is one of the fundamental
concepts of category theory.

Definition 2.4.1. Let C and C ′ be categories. An adjunction between C and C ′ is a pair
of functors L : C → C ′, R : C ′ → C, such that for each pair of objects C of C and C ′ of C ′,
there is a bijection of sets

(2.4.1) ϕC,C′ : C ′(L(C), C ′) ∼= C(C,R(C ′)),

which is natural in C and C ′.
The functor L is then left adjoint to R, and R is right adjoint to L. We call (L,R) an

adjoint pair of functors.
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The naturality condidition on the bijections ϕC,C′ can be spelled out explicitly as follows:
For all morphisms f : C → D in C and g : C ′ → D′ in C ′, the diagram

C ′(L(D), C ′)
C′(Lf,C′)

//

ϕD,C′

��

C ′(L(C), C ′)
C′(L(C),g)

//

ϕC,C′

��

C ′(L(C), D′)

ϕC,D′

��

C(D,R(C ′))
C(f,R(C′))

// C(C,R(C ′))
C(C,R(g))

// C(C,R(D′))

commutes.

One often denotes adjunctions as C
L
//C ′

R
oo or as L : C //C ′ : R.oo

Examples 2.4.2. A prototypical example of an adjunction is a forgetful functor and
a ’free’ functor: if R = U is a forgetful functor and if a left adjoint of U exists, then
the defining property from (2.4.1) means that for each morphism from C to U(C ′) in the
underlying category, there is a unique corresponding morphism from L(C) to C ′, so, in this
sense, L(C) is the free object associated with C.

• For instance, let U be the functor that maps an abelian group A to the underlying
set of A and Fra is the functor that sends a set S to the free abelian group with basis
S,
⊕

S Z. Then Fra is left adjoint to U : for any function f from S to the underlying
set of an abelian group A, there is a unique morphism of abelian groups from Fra(S)
to A extending f that is determined by sending the basis element of the copy of Z in
component s ∈ S to f(s).
• Similarly, we can consider the forgetful functor from the category of Lie algebras over

a field K to the category Sets. For simplicity, assume that the characteristic of K
is not equal to 2 or 3. This forgetful functor has as a left adjoint the functor that
sends a set S to the free Lie algebra, LK(S), over K generated by the set S. An ad
hoc way to describe LK(S) is to consider the K-vector space generated by all iterated
formal Lie brackets on pairwise different elements of S, that is, expressions of the form
[s1, [[s2, s3], s4]], and then to divide out by the antisymmetry and Jacobi relation. If
you want to learn more about this, then Reutenauer’s book [Re93] is an excellent
source.

Exercise 2.4.3. Let U denote the forgetful functor from the category of topological
spaces to the category of sets. Does U have a left adjoint? What about a right adjoint?

Exercise 2.4.4. Fix an arbitrary commutative ring with unit, k, and a small category
C. Functors from C to the category of k-modules are called C-modules. Note that the set of
natural transformations between two C-modules carries the structure of a k-module.

For any object C of C, the functor C ′ 7→ k{C(C,C ′)} is a C-module. Prove the following
k-linear version of the Yoneda lemma by using the free-forgetful adjunction between the
category of Sets and the category of k-modules:

Proposition 2.4.5. For each object C of C and for every C-module F , there is an
isomorphism of k-modules YF,C between the k-module of all natural transformations from
k{C(C,−)} to F , Nat(k{C(C,−)}, F ), and the k-module F (C).

We can describe adjunctions in a different manner:
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Proposition 2.4.6. The following are equivalent:

(1) The functor L is left adjoint to R (and hence R is right adjoint to L).
(2) There are natural transformations η : Id ⇒ R ◦ L and ε : L ◦ R ⇒ Id with the

properties that

εL ◦ L(η) = IdL and R(ε) ◦ ηR = IdR;

hence, the diagrams

L(C)
L(η)
//

1L(C) %%

LRL(C)

εL(C)

��

L(C)

and R(C ′)
ηR(C′)
//

1R(C′) %%

RLR(C ′)

R(εLR(C′))

��

R(C ′)

commute for all objects C of C and C ′ of C ′.

The transformation η is called the unit of the adjunction and ε is the counit.

Proof. Given an adjunction, we obtain ηC as

ηC := ϕC,LC(1LC), εC′ := ϕ−1
RC′,C′(1RC′).

Here, 1LC ∈ C ′(LC,LC) and 1RC′ ∈ C(RC ′, RC ′). The naturality of the bijections ϕC,C′
guarantees that η and ε are indeed natural transformations. A calculation shows that they
satisfy the required properties.

Conversely, if η and ε are natural transformations satisfying

εL ◦ L(η) = IdL and R(ε) ◦ ηR = IdR,

and if f ∈ C ′(LC,C ′), then we define ϕC,C′(f) : C → RC ′ as

C
ηC
//RLC

R(f)
//RC ′.

By construction, ϕC,C′ is natural in C and C ′ and is a bijection. �

Remark 2.4.7. Proposition 2.4.6 allows us to make the isomorphism ϕC,C′ and its inverse
explicit. In the proof, we saw that ϕC,C′(f) = R(f)◦ηC . Conversely, if g ∈ C(C,R(C ′)), then
ϕ−1
C,C′(g) = εC′ ◦ L(g). Often, for instance, if R is a forgetful functor, then ϕC,C′(f) can be

thought of as a morphism that has less information than f , and one might denote ϕC,C′(f)
by f [ (thinking of the underlying category as being lower than the original one). Similarly,
ϕ−1
C,C′(g) might be denoted by g]. Note, however, that this usage is not at all standard. Some

authors actually use the reverse notation.

Exercise 2.4.8. Show that adjunctions can be composed. Let L : C //C ′ : Roo and
L′ : C ′ //C ′′ : R′oo be two adjunctions. Prove that L′L : C //C ′′ : RR′oo is an adjunction.
What are the unit and the counit of this adjunction?

Proposition 2.4.9. If (L,R) is an adjoint pair of functors, then each of the functors L
and R determines the other functor uniquely up to isomorphism.
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Proof. Assume that R has two left adjoints functors, L and L′. Then, for all objects
C of C and D of D, we have bijections

D(LC,D) ∼= C(C,RD) ∼= D(L′C,D)

that are natural in C and D. By Lemma 2.2.5, we get that LC ∼= LC ′, and this isomorphism
is also natural in C; hence, L and L′ are isomorphic as functors. The argument for L with
two right adjoints is similar. �

Exercise 2.4.10. Let F : C → D be a functor. Express the existence of a right adjoint
of F in terms of representability of functors.

The counit of an adjunction actually tells us about the properties of the right adjoint
functor.

Proposition 2.4.11. Let L : C //C ′ : Roo be an adjunction and let ε : LR ⇒ Id be its
counit. Then,

(1) The functor R is faithful if and only if the morphism εC′ : LR(C ′) → C ′ is an
epimorphism for all objects C ′ of C ′.

(2) The functorR is full if and only if for all objects C ′ of C ′, the morphism εC′ : LR(C ′)→
C ′ has a left inverse.

Hence, the functor R is fully faithful if and only if εC′ is an isomorphism for all objects C ′.
In this case, both ηR and Lη are natural isomorphisms.

Proof. The functor R gives a function on sets from C ′(C ′1, C ′2) to C(R(C ′1), R(C ′2)), and
we compose this map with ϕ−1

R(C′1),C2
to end up in C ′(LR(C ′1), C ′2):

C ′(C ′1, C ′2)→ C ′(LR(C ′1), C ′2).

This map is determined by its effect on 1C′1 , but then, we obtain εC′1 as its image. The Yoneda

lemma then implies that the map above is C ′(εC′1 , C
′
2). As ϕ−1

R(C′1),C2
is an isomorphism, R is

full (or faithful) if and only if C ′(εC′1 ,−) induces an epimorphism (or monomorphism). We
saw in Lemma 2.2.8 that this is the case if and only if C ′(εC′1 ,−) is a split monomorphism
(or an epimorphism).

The identities
R(εC) ◦ ηRC = 1RC , εLD ◦ L(ηD) = 1LD

hold for all objects C of C and D of D. If we assume (1) and (2), then εLD and εC are
isomorphisms, and hence, ηRC and LηD are isomorphisms as well. �

Exercise 2.4.12. Can one dualize Proposition 2.4.11 and obtain statements about the
unit and the properties of L?

How does one actually construct adjunctions? Sometimes you might be able to guess
what an adjoint should be on objects. The following concepts then allow you to construct
an actual adjunction from these partial data.

Definition 2.4.13. Let F : C → D be an arbitrary functor and let D be an object of D.
A reflection of D at F is a pair (GD, ηD), where

• GD is an object in C, and
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• ηD : D → F (GD) is a morphism in D,

with the property that for all objects C of C and for all g : D → F (C), there is a unique
f : GD → C, with

F (f) ◦ ηD = g.

D
ηD
//

g

��

F (GD)

F (f)zz

F (C).

As usual, the universal property ensures uniqueness. In the following, an isomorphism
between two reflections (GD, ηD) and (G′D, η

′
D) of D at F is a morphism f ∈ C(GD, G

′
D),

with F (f) ◦ ηD = η′D.

Lemma 2.4.14. Let F : C → D be an arbitrary functor and let D be an object of D.
Then, a reflection of D at F is unique up to unique isomorphism.

Proof. We assume that both (G′D, η
′
D) and (GD, ηD) are reflections of D at F . The

defining property then yields a unique f : GD → G′D with F (f) ◦ ηD = η′D, and vice versa,
there is a unique f ′ : G′D → GD, with the property that F (f ′) ◦ η′D = ηD. However, this also
implies

F (f ◦ f ′) ◦ η′D = F (f) ◦ F (f ′) ◦ η′D = η′D and F (f ′ ◦ f) ◦ ηD = F (f ′) ◦ F (f) ◦ ηD = ηD.

The uniqueness of f ′ ◦ f and f ◦ f ′ therefore ensures that

f ′ ◦ f = 1GD and f ′ ◦ f = 1G′D .

�

A reflection gives us an object GD, together with a structure morphism ηD : D → F (GD),
and this map is optimal in the above sense. If such a reflection exists for every object, then
we can actually glue these reflections together and get a functor.

Lemma 2.4.15. Let F : C → D be a functor and assume that for all objects D of D, there
is a reflection of D at F , and let (GD, ηD) denote our choice of a reflection of D at F .

Then there is a unique functor L : D → C, such that

• for all objects D of D: L(D) = GD, and
• the morphisms ηD : D → F (GD) yield a natural transformation η : Id⇒ FL.

Proof. Of course, we define L(D) := GD. Let h : D → D′ be a morphism in D and let
(GD, ηD), (GD′ , ηD′) be the reflections of D and D′, respectively, at F . Consider the solid
diagram

D
ηD
//

h

{{

ηD′◦h
��

F (GD)

F (f)yy

D′
ηD′
// F (GD′).

There is a unique f : GD → GD′ with

F (f) ◦ ηD = ηD′ ◦ h.
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We define L(h) as f and show now, that this assignment actually produces a functor. Note
that by construction, this ensures that the morphisms ηD are natural.

Let k : D′ → D′′ be another morphism in D and let g : GD′ → GD′′ be the uniquely
defined morphism that satisfies F (g) ◦ ηD′ = ηD′′ ◦ k. We get

F (L(k) ◦ L(h)) ◦ ηD = FL(k) ◦ FL(h) ◦ ηD,
because F is a functor. By definition

FL(h) ◦ ηD = F (f) ◦ ηD = ηD′ ◦ h,
so, in total, we get that the following diagram commutes:

D
h

{{

ηD
// F (GD)

F (f)yy

FL(D)

FL(h)yy

F (L(k)◦L(h))

mm

D′

k

~~

ηD′
// F (GD′)

F (g)yy

FL(D′)

FL(k)yy

D′′
ηD′′

// F (GD′′) FL(D′′)

in particular, F (L(k) ◦L(h)) ◦ ηD = ηD′′ ◦ k ◦ h. On the other hand, by construction, we get
that FL(k ◦ h) ◦ ηD = ηD′′ ◦ (k ◦ h), and thus, uniqueness implies

L(k ◦ h) = L(k) ◦ L(h).

We still have to show that L(1D) = 1L(D) holds. Consider the diagram

D

1D
��

ηD
// F (GD)

F (f)

��

D
ηD
// F (GD).

We get a unique f with the property that F (f) ◦ ηD = ηD ◦ 1D. But the identity on GD

satisfies the same equality, and hence, f = 1GD = 1L(D). �

We can now provide a criterion for testing when a functor is a left adjoint to a given
functor F . In particular, any functor constructed by Lemma 2.4.15 actually gives rise to a
left adjoint functor.

Proposition 2.4.16. A functor L : D → C is left adjoint to a functor F : C → D if and
only if there is a natural transformation η : Id⇒ F ◦L, such that for all objects D of D the
pair (L(D), ηD : D → FL(D)) is a reflection.

Proof. Assume the existence of η with the required properties. Then, we have to
construct a counit ε : FL ⇒ Id. By assumption, for every FC, we have the reflection
(LFC, ηFC : FC → FLFC). This ensures that there is a unique εC : LFC → C, with the
property that the diagram

FC
ηFC
//

1FC
��

FLFC

F (εC)zz

FC
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commutes. We have to show that the εC are actually natural in C. Let h : C → C ′ be a
morphism in C. As η is a natural transformation, the diagram

F (C)
ηF (C)

//

F (h)

��

1F (C)

&&

FLF (C)
F (εC)

//

FLF (h)

��

F (C)

F (h)

��

F (C ′)
ηF (C′)
// FLF (C ′)

F (εC′ )
// F (C ′)

commutes and we obtain

F (εC′ ◦LF (h)) ◦ ηFC = F (εC′) ◦FLF (h) ◦ ηFC = F (εC′) ◦ ηFC′ ◦F (h) = 1FC′ ◦F (h) = F (h).

On the other hand, as F is a functor and thanks to the property of εC , we also get

F (h ◦ εC) ◦ ηFC = F (h) ◦ F (εC) ◦ ηFC = F (h) ◦ 1FC = F (h).

The uniqueness of the morphisms involved therefore shows h ◦ εC = εC′ ◦ LF (h), and thus,
ε is natural. Similarly, as

F (εLD ◦ L(ηD)) ◦ ηD = F (εLD) ◦ FL(ηD) ◦ ηD = ηD = F (1LD) ◦ ηD,
the uniqueness of the morphisms involved shows that εLD ◦L(ηD) = 1LD. As ηFC ◦F (εC) =
1FC holds for all objects C of C by assumption, this shows that L is left adjoint to F by
Proposition 2.4.6.

Let us now assume that L is left adjoint to F and let ϕD,C : C(LD,C) ∼= D(D,FC) be
the binatural bijection of the adjunction. We claim that for all objects D of D, the pair
(LD,ϕD,LD(1LD)) is a reflection.

Let C be an arbitrary object of C and let k : D → FC be an arbitrary morphism in D.
As ϕD,C is a bijection, we can write k uniquely as k = ϕD,C(h) for a unique h : LD → C.
The naturality of ϕD,C implies that

C(LD,LD)
ϕD,LD

//

C(LD,h)
��

D(D,FL(D))

D(D,F (h))
��

C(LD,C)
ϕD,C

// D(D,FC)

commutes, so chasing 1LD through that diagram gives

1LD
� //

_

C(LD,h)

��

ϕD,LD(1LD)
_

F (h)

��

h � // ϕLD,C(h) = k = F (h) ◦ ϕD,LD(1LD).

Let h′ : LD → C be another morphism with the property that

F (h′) ◦ ϕD,LD(1LD) = k,

then we obtain with a similar diagram chase

ϕD,C(h′) = ϕD,C(C(LD, h′)(1LD)) = D(D,F (h′)(ϕD,LD(1LD)) = F (h′)(ϕD,LD(1LD)) = k,

and as ϕD,C is injective, this proves that h = h′. �
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Reflections are often used in order to understand subcategories:

Definition 2.4.17. Let C ′ be a subcategory of a category C and let I : C ′ → C denote
the inclusion functor. Then C ′ is called a reflective subcategory of C if the functor I has a
left adjoint L.

Remark 2.4.18.
• The functor I is always a faithful functor. Hence, Proposition 2.4.11 implies that the

counit εC′ : LI(C ′)→ C ′ is an epimorphism for all objects C ′ of C ′.
• If C ′ is a reflective subcategory of C ′, then for every object C of C, there is an object
L(C) of C ′, and there is a morphism ηC : C → IL(C), the unit of the adjunction,
which satisfies the properties of Definition 2.4.13.
• If a reflective subcategory C ′ of C is full, then by Proposition 2.4.11 we know that the

counit εC′ : LI(C ′) → C ′ is an isomorphism for all objects C ′ of C ′. Thus, L doesn’t
change the objects of C ′.

Example 2.4.19. The subcategory of abelian groups inside the category of groups is full.
The abelianization functor sends a group G to G/[G,G]. As

Gr(G,A) = Ab(G/[G,G], A)

for all abelian groups A, the abelianization functor is left adjoint to the inclusion functor
and Ab is a reflective subcategory of Gr.

Exercise 2.4.20. Let Abf be the subcategory of Ab of all finitely generated abelian
groups. Show that Abf cannot be reflective.

2.5. Equivalences of Categories via Adjoint Functors

We use reflections and adjunctions in order to describe equivalences of categories. In
particular, every equivalence of categories is given by an adjunction.

Theorem 2.5.1. Let F : C → D be an arbitrary functor. Then the following are equiva-
lent.

(1) The functor F possesses a left adjoint L, and the corresponding natural transfor-
mations ε : LF ⇒ Id and η : Id⇒ FL are natural isomorphisms.

(2) There is a functor L : D → C and two arbitrary natural isomorphisms Id ∼= FL and
LF ∼= Id.

(3) The functor F is fully faithful and essentially surjective.

Proof. The fact that (1) implies (2) is clear. If we assume (2), then there is an isomor-
phism from every object D of D to FLD, and therefore, with C = LD, we get that F is
essentially surjective.

The composite F ◦ L is naturally isomorphic to the identity. This implies that F ◦ L if
fully faithful; this in turn implies that L is faithful and F is full. Vice versa, the natural
isomorphism from L ◦ F to the identity functor yields that L ◦ F is fully faithful and hence
that L is full and F is faithful. Thus (2) implies (3).

Let us now assume that (3) holds. For every object D of D, we choose an object C of C
with D ∼= FC. We denote C by LD and fix an isomorphism ηD : D → FLD for every D. If
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C ′ is an arbitrary object of C and if g : D → FC ′ is a morphism in D, then the composite

FLD
η−1
D

//D
g

//FC ′

is of the form F (h) for a unique h : LD → C, because F is fully faithful by assumption. This
shows that the pair (LD, ηD) is a reflection of D at F and hence that L is a left adjoint to F
by Proposition 2.4.16. The morphisms ηD are isomorphisms by construction, and they are
natural by a similar argument, as in the proof of Lemma 2.4.15. The remaining properties
follow from Proposition 2.4.11. �

2.6. Skeleta of Categories

Definition 2.6.1.
• A category is called reduced if isomorphic objects are identical.
• A subcategory S of a category C is a skeleton if S is reduced and if the inclusion
S ↪→ C is an equivalence of categories.

Examples 2.6.2.
• Consider the category of finite sets and functions. It contains the full subcategory

whose objects are the sets of the form {1, . . . , n} for n ≥ 0. Here, we use the convention
that the empty set is encoded by n = 0. The inclusion functor is full and faithful. As
every finite set is in bijection with a standardized set of the form {1, . . . , n} as above,
the inclusion functor is also essentially surjective. Therefore, these finite sets build a
skeleton.
• A similar example is the category of finite-dimensional K-vector spaces. This has as

a skeleton the full subcategory of vector spaces of the form Kn for some finite natural
number n. Here, n = 0 encodes the zero vector space.

For reduced categories, it is easy to check whether we have an equivalence.

Lemma 2.6.3. Assume that C ′ and D′ are reduced categories, and let F : C ′ → D′ be a
functor. Then the following are equivalent:

(1) F is an isomorphism of categories.
(2) F is an equivalence of categories.

Proof. Of course, (1) implies (2). Assume that F is an equivalence of categories. Then
it is fully faithful and essentially surjective. Assume that there are objects C1 and C2 of C ′,
with F (C1) = F (C2) = D. As F is fully faithful, there are unique morphisms f : C1 → C2

and g : C2 → C1 with F (f) = 1D = F (g). We also get F (f◦g) = F (1C2) = F (1C1) = F (g◦f),
and again, by F being fully faithful, this ensures that f and g are inverse to each other, and
hence, C1 = C2. Thus F is bijective on objects. As it is also bijective on morphisms, F is
an isomorphism. �

Assuming the axiom of choice gives the following result:

Proposition 2.6.4. Every category C possesses a skeleton.

Proof. We declare two objects C1 and C2 of C to be equivalent if and only if they
are isomorphic. We choose a representative of every equivalence class and consider the full
subcategory C ′ of C consisting of these objects. Let I : C ′ → C be the inclusion functor.
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We define P : C → C ′ as follows: For every object C ′ of C ′ and every object C of C that is
isomorphic to C ′, we choose an isomorphism aC

′
C : C ′ → C, such that aC

′

C′ = 1C′ . Then, P

sends C to C ′, and an f ∈ C(C1, C2) is mapped to P (f) = (a
C′2
C2

)−1 ◦ f ◦ aC
′
1

C1
:

C ′1
P (f)

//

a
C′1
C1
��

C ′2

a
C′2
C2
��

C1
f
// C2.

�

Lemma 2.6.3 then yields the following fact:

Corollary 2.6.5. Two categories C and D are equivalent if and only if their skeleta are
isomorphic.
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CHAPTER 3

Colimits and Limits

Limit and colimit constructions appear in many areas of mathematics. You probably
know examples of colimits and limits. If you glue two topological spaces together, that is a
pushout. You might have met fiber products of spaces, for instance, in the disguise of the
preimage of a continuous map. The Hawaiian earring is an inverse limit. In algebra, you
have encountered products of groups or direct sums of abelian groups. Sometimes limits
or colimits do not exist. If you consider the category of fields, then this category does not
possess products. The underlying set of a product of fields had to be the product of the
underlying sets, but then the multiplication would have zero divisors.

3.1. Diagrams and Their Colimits

Let D be a small category and let C be an arbitrary category. A functor F : D → C
can be thought of as a diagram in C, with objects F (D) ∈ C for all objects D of D and
morphisms F (f) between F (D) and F (D′) for f : D → D′ in D. Recall that we denote by
Fun(D, C) the category of functors from D to C, with natural transformations as morphisms.

What should be the (co)limit of F if the diagram is as follows?

F (D1)

F (f51)

��

F (f21)
// F (D2)

F (f32)zz
F (D5)

F (f53)

>>
F (D4)

F (f14)
dd

F (D3)

F (f23)
::

Does it exist? If yes, how can we describe it?

Definition 3.1.1. We let
∆: C → Fun(D, C)

be the functor that assigns to an object C of C the constant diagram, that is, ∆(C)(D) = C
for all objects D of D, and an f ∈ D(D,D′) is sent to ∆(C)(f) = 1C .

If g is a morphism in C from C to C ′, then g induces a natural transformation of functors

∆g : ∆(C)⇒ ∆(C ′).

Definition 3.1.2. A colimit of a functor F : D → C consists of

• an object of C, denoted by colimDF , and
• a natural transformation

(3.1.1) τ : F ⇒ ∆(colimDF ).
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• The pair (colimDF, τ) is universal with respect to all natural transformations τ ′ : F ⇒
∆(C), that is, for all such τ ′, there is a unique morphism ξ : colimDF → C, such that
τ ′ = ∆(ξ) ◦ τ :

F
τ ′ +3

τ !)

∆(C).

∆(colimDF )
∆(ξ)

4<

Locally, this looks like the following picture:

F (D1)
τ ′D1

++

τD1

��

F (D2)

��

::

τ ′D2
//

τD2

**

C.

F (D3)

τ ′D3

22

τD3
// colimDF

ξ

77

F (D4)

dd
τD4

99

τ ′D4

FF

Thus, the colimit, colimDF , is an object of C that is ’as close to the diagram F as possible’
with respect to morphisms out of the diagram.

A natural transformation η from F to ∆(C) is often called a cone from F over C. A
colimit is then a cone, as in (3.1.1), and is sometimes called a limiting cone or a universal
cone [ML98, p. 67].

The usual abstract nonsense argument tells you that colimits are unique up to canonical
isomorphism, if they exist. If you have two colimits of the same diagram, then the universal
property ensures the existence of a unique morphism from one to the other and vice versa.
And again by uniqueness, the two compositions of those two morphisms have to be identity
morphisms because these also fit the bill.

The colimit over the empty category is defined to be the initial object of C, if this exists.

Exercise 3.1.3. Show that if G : D → C is another functor and if α : F ⇒ G is a natural
transformation, then α induces a morphism colimDα ∈ C(colimDF, colimDG). Prove that
this turns colimD into a functor from Fun(D, C) to C.

The universal property of the colimit can equivalently be described in terms of adjunc-
tions.

Proposition 3.1.4. If the colimit (colimDF, τ) exists for all functors F : D → C, then
the functor colimD : Fun(D, C)→ C is left adjoint to the diagonal functor ∆: C → Fun(D, C),
that is, there are natural isomorphisms

C(colimDF,C) ∼= Fun(D, C)(F,∆(C))

for all functors F and all object C of C.
Exercise 3.1.5. Let D be a small category that possesses a terminal object and let

F : D → C be a functor. What is the colimit of F over D?

42



Example 3.1.6. Consider the representable functor D(D,−) : D → Sets for some object
D of D. A useful fact is that

colimDD(D,−) ∼= {∗}.
This is easy to see using Proposition 3.1.4. Colimits exist in the category of Sets:

colimDF =
⊔

D object of D

F (D)/ ∼,

where we declare that an x ∈ F (D) is equivalent to a y ∈ F (D′) if there is a morphism
f ∈ D(D,D′), such that F (f)(x) = y. This relation is not symmetric, so one has to
consider the equivalence relation generated by this relation. As colimits exist, we can use
the adjunction described above and get a natural bijection

Fun(D, Sets)(D(D,−),∆(X)) ∼= Sets(colimDD(D,−), X)

for all sets X. The Yoneda lemma implies that

Fun(D, Sets)(D(D,−),∆(X)) ∼= ∆(X)(D) = X.

But X is also determined by all functions from a one-point set {∗} to X, thus

Sets(colimDD(D,−), X) ∼= ∆(X)(D) ∼= X ∼= Sets({∗}, X).

The uniqueness of representable functors (see Lemma 2.2.5) then gives the claim.

In the everyday life of a working mathematician, the following special forms of colimits
frequently show up:

3.1.1. Sequential Colimits. If D is the category given by the natural numbers con-
sidered as a poset

D = (0→ 1→ 2→ . . .)

then a colimit of any F : D → C is a sequential colimit.

Examples 3.1.7.
• If all structure maps F (i < j) are monomorphisms, then we might interpret the colimit

colimDF as the union of the F (i)s. Typical examples are increasing sequences of sets
or topological spaces

X0 ⊂ X1 ⊂ X2 ⊂ . . .

or increasing sequences of abelian groups, vector spaces, and other algebraic objects.
• An important class of examples is CW complexes. These are the colimits of their

skeleta.
• In stable homotopy theory, the stable homotopy groups of spheres are a central object

of study. Let Sn denote the unit sphere in Rn+1. As the smash product of spheres
satisfies S1 ∧ Sn ∼= Sn+1 we have stabilization maps

πn(Sm) = [Sn,Sm+1]∗ → [Sn+1,Sm+1]∗ = πn+1(Sm)

that send a homotopy class [f ] to the homotopy class of S1 ∧ f . Therefore, for every
m, we get a sequential colimit and as πn(Sm) = 0 for n < m, we can express πn(Sm) as
πk+m(Sm) in the nontrivial cases, with k ≥ 0, and get the kth stable homotopy group
of spheres as

πsk = colim(πk+m(Sm)→ πk+m+1(Sm+1)→ πk+m+2(Sm+2)→ . . .)
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The first groups are πs0 = Z, πs1 = Z/2Z generated by the stabilization of the Hopf
map η : S3 → S2, πs2 = Z/2Z, πs3 = Z/24Z, and so on.

3.1.2. Coproducts. If you build the colimit over a discrete diagram category, that is, a
small category D that has only identity morphisms, then the colimit of a functor F : D → C
is called the (categorical) sum or the (categorical) coproduct of the F (D) for D an object
of D, denoted by ⊔

D

F (D).

If you take as the category C the category Sets and if F : D → Sets is any functor from a
discrete category D to Sets, then the colimit is

colimDF =
⊔
D

F (D).

Similarly, the categorical sum in the category of topological spaces is given by the disjoint
union of spaces with the corresponding topology.

Every coproduct comes with canonical structure maps. By assumption, we have mor-
phisms τD : F (D)→

⊔
D F (D).

Definition 3.1.8. We denote these morphisms by iD and call iD the inclusion of F (D)
into

⊔
D F (D).

Definition 3.1.9. Let C be an object of C. For the binary coproduct of C with itself,
C t C, the universal property of the coproduct ensures the existence of a morphism

∇ : C t C → C

induced by the identity morphism on C. We call this map the fold map.

Note that for F (D1) = F (D2) = C, the composition of iD1 : F (D1)→ F (D1) t F (D2) =
C t C with the fold map ∇ is the identity morphism on C = F (D1).

Example 3.1.10. In the category of pointed topological spaces the pointed sum (also
known as the bouquet of spaces) is the coproduct; that is, for two pointed spaces (X, x0)
and (Y0, y0), their coproduct is given by

X ∨ Y = X × {y0} t {x0} × Y/ ∼,

where the point (x0, y0) in both summands is identified with the basepoint [(x0, y0)] of X∨Y .
For X = Y = S1 with basepoint 1 ∈ C we have a pinch-map from S1 to S1∨S1 by identifying
(−1, 0) and (1, 0), that is, by collapsing the embedded image of S0 in S1 to a point. If we
compose this with the fold map, we obtain a self-map of S1.

&%
'$

••
pinch−→

&%
'$&%
'$
• ∇−→

&%
'$
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By taking pinch maps S1 →
∨
k S1, using reversal of loops and fold maps

∨
k S1 → S1 for

k ≥ 1, we can produce self-maps of S1 of any desired degree. This generalizes to higher-
dimensional spheres.

Example 3.1.11. Let G1 and G2 be discrete groups. The coproduct of G1 and G2 in
the category of groups exists and is called the free product of G1 and G2. It is denoted by
G1 ∗ G2. Elements in G1 ∗ G2 are words w = w1 . . . wn of finite length where the wis are
elements of G1 or G2. A word w is equivalent to a word w′ if w and w′ are connected via a
finite chain of reduction moves. The only reduction rules are the omission of neutral elements
and the reduction of neighbors. If wi and wi+1 are elements of the same group, then you
can evaluate their product. The group structure is given by concatenation. The empty word
is the neutral element in G1 ∗ G2. For instance, the fundamental group of S1 ∨ S1 is Z ∗ Z,
which is the free group generated by two elements.

Exercise 3.1.12. Does the category of finite groups have coproducts?

In addition to the fold map, we have a symmetry property of coproducts. If σ is a bijection
of the underlying set of D, then σ induces a functor Gσ : D → D of discrete categories. By the
universal property of colimits, the coproducts

⊔
D F (D) and

⊔
D F ◦Gσ(D) are isomorphic.

For instance, this gives a natural isomorphism of binary coproducts

X t Y → Y tX
for any two objects X and Y of C as long as their coproduct exists.

Exercise 3.1.13. Let X be a partially ordered set viewed as a category and x and y be
elements of X. What is the coproduct of x and y? Does it always exist?

Exercise 3.1.14. Assume that C has an initial object ∅ and that binary coproducts
exist in C. Show that C

∐
∅ ∼= C ∼= ∅

∐
C for all objects C of C.

Definition 3.1.15. If D is a small discrete category and F : D → C is a constant functor
with value C, then the coproduct tDF (D) is called a copower and is denoted by D · C.

Example 3.1.16. If X is a finite set and if A is a commutative k-algebra for some
commutative ring with unit k, then X · A is nothing but the X-fold tensor power of A over
k:

X · A = A⊗kX .

For instance, if X = {1, . . . , n}, then

{1, . . . , n} · A = A⊗k . . .⊗k A︸ ︷︷ ︸
n

= A⊗kn.

The fold map ∇ : {1, . . . , n} · A→ A is given by the multiplication in A.

3.1.3. Pushouts. You get pushouts as colimits over a diagram category D of the form

D1 ← D0 → D2.

For instance, if A is a topological space, together with continuous maps f : A → X and

g : A→ Y , then the colimit over the diagram X A
g
//

f
oo Y is the union of X and Y along

the image of A in X and Y . For instance, you get the real projective plane RP 2 as the
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pushout of f : S1 → D2 and g : S1 → S1, where S1 denotes the unit 1-sphere, D2 is the unit
ball in R2, f is the inclusion, and g is a map of degree 2.

Pushouts of groups are given by amalgamated products. For a diagram of groups

G0
f
//

h
��

G1,

G2

the pushout is given by G1 ∗G0 G2, which is the quotient of the free product G1 ∗G2 by the
normal subgroup generated by words of the form f(g0)h(g0)−1 for g0 ∈ G0.

The Seifert-van Kampen theorem tells you how to calculate the fundamental group of a
nice union of two spaces X and Y (X, Y have to be path-connected and open in X ∪Y , and
X ∩ Y is nonempty and path-connected) as π1(X, z0) ∗π1(X∩Y,z0) π1(Y, z0) for z0 ∈ X ∩ Y .

3.1.4. Coequalizers. Another important class of examples is coequalizers. These are
colimits of diagrams of the form

F (D0)
α
//

β
//F (D1) .

Here, our category D is D0
g
//

f
//D1 , where f and g are the only nonidentity morphisms of

D. The corresponding colimit object is called the coequalizer of α = F (f) and β = F (g).

Remark 3.1.17. If

F (D0)
α
//

β
//F (D1)

ψ
//C

is a coequalizer diagram, then ψ is an epimorphism. For any two morphisms h1, h2 : C → C ′,
with h1 ◦ ψ = h2 ◦ ψ, the precomposition with β and α agrees, and therefore, the universal
property of the colimit guarantees that h1 = h2.

Consider the category of abelian groups, Ab, and fix an associative ring with unit R.
Let M be a right R-module and N be a left R-module. The tensor product M ⊗R N is the
coequalizer of

M ⊗R⊗N
ν⊗id

//

id⊗ν′
//M ⊗N.

Here, the unadorned tensor products are taken over the ring of integers, the map ν is given
by the structure map of the right R-module structure of M , and ν ′ is given by the left
R-module structure of N .

The cokernel of a homomorphism f is the coequalizer of the diagram A
f
//

0
//B in the

category Ab.
Usually, functors won’t preserve coequalizers, but sometimes, a coequalizer satisfies an

extra condition that forces this behavior.
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Definition 3.1.18. A coequalizer ξ : C1 → C in a category C of

(3.1.2) C0
α
//

β
//C1

is an absolute coequalizer of (3.1.2) if for any functor F : C → E , the diagram

F (C0)
F (α)

//

F (β)
//F (C1)

F (ξ)
//F (C)

identifies F (ξ) : F (C1)→ F (C) as the coequalizer of the image of the diagram (3.1.2) under
F .

This just defines a strong property; however, it is a priori not clear that such things
exist, but they do.

Definition 3.1.19. A diagram in a category C

(3.1.3) C0
α
//

β
//C1

ξ
//C

with the property that ξ ◦ α = ξ ◦ β is called split if there are morphisms s : C → C1 and
t : C1 → C0, such that

ξ ◦ s = 1C , α ◦ t = 1C1 and β ◦ t = s ◦ ξ.

C0
α

//

β
// C1

ξ
//

t

||

C

s

}}

Lemma 3.1.20. In a split diagram (3.1.3), the morphism ξ : C1 → C is the coequalizer
of α and β.

Proof. Assume that f ∈ C(C1, T ) for some object T of C and that f ◦α = f ◦β. Define
f̄ : C → T as f ◦ s. Then,

f̄ ◦ ξ = f ◦ s ◦ ξ = f ◦ β ◦ t = f ◦ α ◦ t = f,

and hence, f̄ extends f over ξ.
If we have any other g ∈ C(C, T ), with f = g ◦ ξ, then

f ◦ s = g ◦ ξ ◦ s = g

and thus, g = f̄ , which shows that f̄ is uniquely determined by its defining property. �

Definition 3.1.21. A split coequalizer is a coequalizer ξ : C1 → C of a split diagram, as
in (3.1.3).

Corollary 3.1.22. Split coequalizers are absolute coequalizers.

Proof. Split coequalizers are described in terms of morphisms and compositions of
morphisms. These data are preserved by any functor. �

47



Remark 3.1.23. Being a split coequalizer is something special. Note that, in particular,
two retractions are part of the data (ξ ◦ s = 1C and α ◦ t = 1C1). That alone is a strong
requirement. For instance, in the category of groups, you usually do not have a morphism
from a quotient G/N back to G unless G is a semi-direct product.

We will meet split coequalizers again when we consider algebras over monads in 6.1.

3.1.5. Limits. Limits are defined dually to colimits.

Definition 3.1.24. A limit of F : D → C is a pair consisting of

• an object of C, that we denote by limDF , and
• a natural transformation τ : ∆(limDF )⇒ F .
• The pair (limDF, τ) is universal with respect to all natural transformations τ ′ : ∆(C)⇒
F , that is, for all such τ ′, there is a unique morphism ξ : C → limDF , such that

τ ′ = τ ◦∆(ξ).

∆(C)
τ ′ +3

∆(ξ) !)

F

∆(limDF )

τ

6>

Thus, the limit of F , limDF , is an object of C that is ’as close to the diagram F as
possible’ with respect to morphisms into the diagram. The limit over the empty category is
the terminal object of the category, if this object exists.

3.1.6. Sequential Limits. The simplest kind of sequential limits are those limits in-
dexed over the natural numbers.

Let (Xn)n∈N0 be a family of sets with Xn+1 ⊂ Xn. Then, the limit of the system

. . . ⊂ Xn+1 ⊂ Xn ⊂ . . . ⊂ X1 ⊂ X0

is the intersection of the sets Xn.
Let p be a fixed prime. The inverse limit of the diagram

Z/pZ Z/p2Z
p1
oo
p2
oo Z/p3Z

p3
oo . . .

p4
oo

is the ring of p-adic integers, Zp. Here, the maps pi are the canonical projection maps. An
explicit model of the limit is

(3.1.4) {(x1, x2, x3, . . .) ∈
∏
n≥1

Z/pnZ | pi(xi) = xi−1 for all i ≥ 2}.

This carries a ring structure, where addition and multiplication are defined coordinatewise.

3.1.7. Products. Products are limits over a discrete category. If D is such a category,
then we denote the product of the F (D) by

∏
D F (D).

Definition 3.1.25.
• We call the structure maps τD′ :

∏
D F (D) → F (D′) the projection maps, and we

denote them by prD′ .
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• Bijections of the underlying set of the discrete category D yield a symmetry isomor-
phism on the corresponding products; in particular, for two objects X and Y in C
there is a natural symmetry isomorphism X × Y ∼= Y ×X.
• Dual to the fold map, there is a diagonal morphism δ : C →

∏
D C, induced by the

identity of C, and for C = F (D), we have prD ◦ δ = 1C .

Exercise 3.1.26. Dual to Exercise 3.1.13, what is a product of two elements in a partially
ordered set? Does it always exist?

Exercise 3.1.27. Dual to Exercise 3.1.14, show that C × ∗ ∼= C ∼= ∗ × C for all objects
C of C if binary products exist in C and if ∗ is a terminal object.

3.1.8. Pullbacks. Pullbacks are limits for diagrams of the form D1 → D0 ← D2.

3.1.9. Equalizers. Dual to the notion of coequalizers is the notion of equalizers, that
is, limits of diagrams

F (D0)
f
//

g
//F (D1).

Remark 3.1.28. As in Remark 3.1.17, we note that for every equalizer diagram

C
ϕ
//F (D0)

f
//

g
//F (D1),

the morphism ϕ : C → F (D1) is a monomorphism.

If M and N are left R-modules for a ring R, then the abelian group of R-module homo-
morphisms is the equalizer in the category Ab of the diagram

Hom(M,N)
f

//

g
//Hom(R⊗M,N) .

Here, Hom denotes the homomorphisms of abelian groups, f is the map that sends an
h : M → N to

R⊗M 1⊗h
//R⊗N νN

//N,

g is the composition

R⊗M νM
//M

h
//N,

and the maps νN , νM are the structure maps of the R-module structures of N and M .

Exercise 3.1.29. Describe the equalizer in Ab of a diagram A
f
//

0
//B .

Let X, Y be sets. What is the equalizer of the diagram X
f
//

g
//Y ?

Example 3.1.30. Let F be a presheaf on a space X, with values in Sets, so F assigns
to every open subset of X a set F (U), but we only require a compatibility condition with
respect to restrictions. In certain situations, we want that F is determined by compatible
local data. This can be expressed as an equalizer condition.
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The presheaf F is a sheaf if for every U ∈ U(X) and for every open covering (Ui)i∈I of
U , the following diagram is an equalizer:

F (U) //
∏

i∈I F (Ui) //
//
∏

i,j∈I F (Ui ∩ Uj).

Here, the first map is induced by the restriction maps resUiU , and the second pair of arrows
is induced by two sets of restriction maps. Ui ∩ Uj is a subset of Ui and of Uj.

Sheaves form a category as a full subcategory of the category of presheaves.
The examples we had before, continuous real-valued functions, smooth real-valued func-

tions, and smooth sections, were actually all examples of sheaves. For instance, a continuous
real-valued function is determined by its values on the open subsets of a covering as long as
the values on intersections are compatible.

A different example is the skyscraper sheaf on a point x ∈ X. We fix a set S and choose
a one-point set {∗}. One defines Fx(U) to be S if x ∈ U and let Fx(U) = {∗} otherwise. So
this is like a sheaf version of the Dirac distribution. What are the restriction maps? Why is
this a sheaf?

3.1.10. Fiber Products. An important class of examples of limits in the category of
sets, Sets, or the category of topological spaces, Top, is the fiber product. This is nothing
but the pullback of a diagram

X

p
��

Z
f
// Y.

A concrete model for this pullback in these categories is

Z ×Y X := {(z, x) ∈ Z ×X|f(z) = p(x)},

that is, we collect pairs of elements, that meet in Y . Often, we denote Z ×Y X as f ∗(p),
in order to stress the dependence of the fiber product on the maps involved. An important
special case of a fiber product is the case of an inclusion f : A ↪→ Y of a subset or a subspace.
Then the fiber product can be identified with the preimage of A under p.

Exercise 3.1.31. What is the natural transformation τ in the case of a fiber product?

Fiber products give examples of limits that are empty. Consider two embeddings of
topological spaces A ↪→ X and B ↪→ X whose images in X are disjoint. Then, the fiber
product A×X B is empty.

3.1.11. Kernel Pairs. Let f : A → B be a morphism in the category of sets. Then,
the pullback of

(3.1.5) A

f
��

A
f
// B

is the fiber product

A×B A = {(a1, a2) ∈ A× A, f(a1) = f(a2)}.
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It measures the extent of the noninjectivity of f . This concept makes sense in an arbitrary
category.

Definition 3.1.32. Let C be a category and f ∈ C(A,B). The kernel pair of f is the
pullback of the diagram

P
p1
//

p2

��

A

f
��

A
f
// B

if this pullback exists.

Remark 3.1.33.
• Pullbacks are unique up to unique isomorphism, but we will sometimes encounter

different models. Then, we will denote the above pullback by (P, p1, p2).
• Note that the morphisms p1, p2 described previously are automatically epimorphisms.

The identity of A gives rise to a unique morphism s : A → P , with p1 ◦ s = 1A and
p2 ◦ s = 1A, hence, s is a section for p1 and p2, and these morphisms are retractions
hence epimorphisms.

Kernel pairs help to detect monomorphisms.

Proposition 3.1.34. Given f ∈ C(A,B), the following are equivalent:

(1) The kernel pair of f exists and is (A, 1A, 1A).
(2) The kernel pair of f exists and is of the form (A, p, p).
(3) The morphism f is a monomorphism.

Proof. Of course, (1) implies (2). Assuming (2), let g, h ∈ C(C,A) with f ◦ g = f ◦ h.
Then, g and h induce a unique morphism ξ : C → A, with f = p ◦ ξ = g, thus (3) holds.

If f is a monomorphism, then, by definition, (A, 1A, 1A) is a kernel pair of f . �

Exercise 3.1.35. Dualize the notion of kernel pairs to define cokernel pairs. Do they
detect epimorphisms?

3.2. Existence of Colimits and Limits

It is not always true that colimits and/or limits exist. If they do exist, then this deserves
an extra name.

Definition 3.2.1.
• A category C is called complete if for all small categories D and for all functors
F : D → C, the limit limDF exists. Similarly, if the colimit exists for all small D and
for all functors F : D → C, then C is called cocomplete.
• A category C is bicomplete if it is complete and cocomplete.
• If limits exist for all finite categories D and all functors F : D → C, then C is finitely

complete. The dual notion for colimits is called finitely cocomplete.

If a category is finitely complete, then a terminal object exists, and dually, finitely co-
complete implies the existence of an initial object.

The categories Ab and Sets are examples of complete and cocomplete categories. The
category of fields is not complete as it does not possess products.
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The description of the p-adic integers as a limit as in (3.1.4) is typical, as we will see
now.

Theorem 3.2.2. A category C is complete if and only if C has products and equalizers.
Dually, C is cocomplete, if and only if C has coproducts and coequalizers.

Proof. We show the first claim and leave the dual second one as an exercise.
If C is complete, then it has products and equalizers. Assume that C has products and

equalizers, and let F : D → C a small diagram. Then, all the morphisms in D constitute a
set, and we also have a set of objects Ob(D) of D. Therefore, by assumption, the products
X =

∏
D∈Ob(D) F (D) and Y :=

∏
f∈D(D,D′) F (D) exist, and these products have canonical

projection morphisms

πD′ : X =

 ∏
D∈Ob(D)

F (D)

→ F (D′)

for objects D of D, and

πf : Y =

 ∏
f∈D(D,D′)

F (D)

→ F (D′),

which is given by the projection to the coordinate corresponding to f , followed by the
morphism F (f).

As before, we denote the source of a morphism f : D → D′ by s(f) = D and the target
by t(f) = D′.

We construct two morphisms ϕ, ψ : X → Y . A morphism into a product is determined
by a family of morphisms into the coordinates. We define

πf ◦ ϕ = πt(f) : X → F (t(f)), πf ◦ ψ = F (f) ◦ πs(f) : X → F (s(f))→ F (t(f)).

If τ ′ is a natural transformation τ ′ : ∆(C) ⇒ F , then τ ′ induces a morphism T : C → X,
with πD ◦ T = τ ′D. We can control the effect of T , and it holds that

ϕ ◦ T = ψ ◦ T,
because

πt(f) ◦ T = F (f) ◦ πs(f) ◦ T.
This translates to

τ ′t(f) = F (f)τ ′s(f),

and this is precisely the naturality condition of τ ′. We consider the equalizer

E
τ
//X

ϕ
//

ψ
//Y.

This equalizer satisfies the universal property of the limit, limDF . �

Remark 3.2.3. In Theorem 3.2.2, we assumed that all products (coproducts) exist.
If binary products (coproducts) and equalizers (coequalizers) exist, then all finite limits
(colimits) exist.

If you do not like equalizers, then you can replace equalizers by pullbacks.
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Lemma 3.2.4. Equalizers exist if binary products and pullbacks exist. Coequalizers exist
if binary coproducts and pushouts exist.

Proof. Again, we only show the first claim and leave the second one as an exercise in
dualization.

We want to show that the equalizer E
τ
//X

f
//

g
//Y exists. Consider the diagram

Y

δY
��

X
δX
// X ×X f×g

// Y × Y,

where the δs are the diagonal morphisms. By assumption, the products X ×X and Y × Y
exist, as well as the pullback of the above diagram:

P
%Y

//

%X
��

Y

δY
��

X
δX
// X ×X f×g

// Y × Y.

Then, I claim that the pair (P, %X) has the universal property of the equalizer. If C is an
arbitrary object with a morphism α : C → X, with f ◦α = g ◦α, then we take the morphism
α from C to X and the morphism f ◦ α from C to Y . These morphisms are compatible
because

(f × g) ◦ δX ◦ α = (f ◦ α, g ◦ α) = (f ◦ α, f ◦ α) = δY ◦ (f ◦ α),

and thus, there is a unique morphism ξ from C to P , with %X ◦ ξ = α. �

3.3. Colimits and Limits in Functor Categories

The (co)completeness of a category C ensures the (co)completeness of all functor cate-
gories of the form Fun(D, C), where D is an arbitrary small category. If E is a small category
and if F : E → Fun(D, C) is an E-diagram in the functor category, then F corresponds to a
functor F̃ : E × D → C. If we fix an object D of D, we obtain a functor F̃ (−, D) : E → C.

Proposition 3.3.1. Let E be a small category and F : E → Fun(D, C) be an E-diagram
in Fun(D, C). Assume that for all objects D of D, the diagram F̃ (−, D) : E → C possesses
a (co)limit. Then, the (co)limit of F exists. In particular, if C is complete or cocomplete,
then so is Fun(D, C) for all small D.

We will show that one can actually compute (co)limits of diagrams in functor categories
’pointwise’.

Proof. We prove the statement for limits; the case of colimits is dual.
Every morphism ϕ : D → D′ induces a natural transformation F̃ (−, ϕ) : F̃ (−, D) ⇒

F̃ (−, D′).
By assumption, the limit limE F̃ (−, D) of F̃ (−, D) : E → C exists. We denote the natural

transformation from ∆(limE F̃ (−, D)) to F̃ (−, D) by τD. By the universal property of a
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limit, a morphism ϕ : D → D′ induces a morphism F̃ (−, ϕ) : limE F̃ (−, D)→ limE F̃ (−, D′).
The natural transformation τD depends naturally on D, so that the diagram

limE F̃ (−, D)

limE F̃ (−,ϕ)
��

τDE
// F̃ (E,D)

F̃ (E,ϕ)
��

limE F̃ (−, D′)
τD
′

E
// F̃ (E,D′)

commutes.
If ψ ∈ D(D′, D′′), then

τD
′′

E ◦ limE F̃ (−, ψ) ◦ limE F̃ (−, ϕ) =F̃ (E,ψ) ◦ τD′E ◦ limE F̃ (−, ϕ)

=F̃ (E,ψ ◦ ϕ) ◦ τDE = τD
′′

E ◦ limE F̃ (−, ψ ◦ ϕ).

Hence, limE F̃ (−, ψ ◦ϕ) = limE F̃ (−, ψ)◦ limE F̃ (−, ϕ). Similarly, we see that limE F̃ (−, 1D) is
the identity morphism on the limit object; thus, limE F̃ (−,−) is a functor from D to C. �

Corollary 3.3.2. Let F,G ∈ Fun(D, C) and assume that C has pullbacks. Then, a
natural transformation η : F ⇒ G is a monomorphism in Fun(D, C) if and only if every
component ηD : F (D)→ G(D) is a monomorphism in C.

Proof. We can test the property of being a monomorphism by using kernel pairs (see
Definition 3.1.32). If pullbacks exist, then so do kernel pairs. As pullbacks are computed
pointwise, the result follows from Proposition 3.1.34. �

3.4. Adjoint Functors and Colimits and Limits

Let D be a small category and let F : D → C be a functor. Assume that F has a colimit
(colimD, τD : F (D) → colimDF ) in C. If H : C → E is any functor, then we always get
morphisms

H(τD) : H(F (D))→ H(colimDF ).

But in general, these morphisms will not have any universal property. If they do, then this
is a particular property of the functor H.

Definition 3.4.1.
• A functor H : C → E preserves colimits if for all functors F : D → C from a small

category D for which the colimit (colimDF, τD : F (D) → colimDF ) of F exists, the
pair (H(colimDF ), H(τD) : H(F (D))→ H(colimDF )) is the colimit of H ◦ F .
• Dually, a functor H : C → E preserves limits if for all functors F : D → C from a

small category D for which the limit (limDF, τD : limDF → F (D)) of F exists, the
pair (H(limDF ), H(τD) : H(limDF )→ H(F (D))) is the limit of H ◦ F .

Note that we require the structure maps H(τD) to be the limiting cocone or cone. It
does not suffice to have abstract isomorphisms in E between H(colimDF ) and colimDH ◦ F
or between H(limDF ) and limDH ◦ F .

Limits and colimits are compatible with the fitting half of an adjoint pair of functors.

Theorem 3.4.2. If C ′
L
//C

R
oo is an adjoint pair of functors, then the functor L preserves

colimits and R preserves limits.
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Proof. Let τ ′ : ∆(D) ⇒ R ◦ F . The morphisms τ ′D′ : D → RF (D′) correspond to the
morphisms ϕ−1

D,F (D′)(τ
′
D′) = σD′ : LD → F (D′) under the natural bijections of the adjunction.

If f : D1 → D2 is a morphism in D, then naturality implies that σD2 = F (f)◦σD1 . Therefore,
there is a unique ξ : LD → limDF , such that for all objects D of D, we have the equality
τD ◦ ξ = σD:

LD

ξ ##

σD
// F (D).

limDF

τD

::

Hence, globally, we get τ ◦∆(ξ) = σ. The morphism ξ corresponds to a morphism ξ̃ : D →
R(limDF ) under the adjunction. By the naturality of the bijections on morphism sets, we
obtain that

R(τD) ◦ ξ̃ = τ ′D, for all objects D of D,
and hence, also,

R(τ) ◦∆(ξ̃) = τ ′.

The case of left adjoint functors and colimits is dual to the one above. �

Examples 3.4.3.
• Forgetful functors preserve products if there is a corresponding left adjoint functor, and

dually, free functors preserve coproducts. Hence, without knowing any specifics about
Lie algebras, you know that the n-fold coproduct of a free Lie algebra generated by a
1-dimensional vector space is the free Lie algebra on an n-dimensional vector space.
Similarly, the underlying set of the product of groups is the product of the underlying
sets of the groups.
• Left adjoint functors preserve initial objects and right adjoints preserve terminal ob-

jects.
• If Frn denotes the free group on n generators and G ∗G′ denotes the coproduct of the

groups G and G′, then we obtain

∗ni=1Fr1
∼= Frn.

3.5. Exchange Rules for Colimits and Limits

Assume that we have a functor F : D × D′ → C, where D and D′ are small and C is
complete and cocomplete. For a fixed object D of D, we obtain a functor F (D,−) : D′ → C,
and similarly, any object D′ of D′ gives rise to a functor F (−, D′) : D → C. We can form
partial (co)limits and obtain functors

colimDF : D′ → C, colimD′ : D → C
and

limDF : D′ → C, limD′ : D → C.
Chasing universal properties gives the following immediate result:

Proposition 3.5.1. There are canonical isomorphisms

colimD′colimDF ∼= colimDcolimD′F ∼= colimD×D′F
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and

limD′ limDF ∼= limDlimD′F ∼= limD×D′F.

The situation is more involved if you try to interchange a limit with a colimit.

Lemma 3.5.2. Let F be as above. Then, there is a canonical interchange morphism in C

χ : colimD′ limDF → limDcolimD′F.

Proof. For fixed objects D and D′, there is a morphism in C

limDF (−, D′)→ F (D,D′),

and this can be composed with the canonical morphism

F (D,D′)→ colimD′F (D,−).

This yields a morphism

ψD′ : limDF (−, D′)→ limDcolimD′F

for every object D′ of D′. For every f ∈ D′(D′, D̃′), we get

ψD̃′ ◦ limDF (−, f) = ψD′ ,

and hence, we get χ as the unique induced morphism

χ : colimD′ limDF → limDcolimD′F.

�

The morphism χ won’t be an isomorphism in general.

Examples 3.5.3.
• If D and D′ are empty, then colimD′ limDF is the initial object, whereas limDcolimD′F

is the terminal object and χ is the only possible morphism.
• If D is the discrete category with objects {1, 2} and D′ is also discrete with objects
{3, 4} and we take the category of sets as the target category and F : D ×D′ → Sets
be a functor, then

χ : (F (1, 3)× F (2, 3)) t (F (1, 4)× F (2, 4))→ (F (1, 3) t F (1, 4))× (F (2, 3) t F (2, 4))

will, in general, not be a bijection.

Exercise 3.5.4. Find a concrete counterexample for the example that we just discussed.

Definition 3.5.5. A small category D is filtered if it is not empty and if

• for every pair of objects D1, D2 of D, there is an object D of D and morphisms
f : D1 → D and g : D2 → D, and
• for every pair of morphisms f1, f2 : D1 → D2, there is a morphism h : D2 → D, with
h ◦ f1 = h ◦ f2.

Theorem 3.5.6. Let D and D′ be nonempty and small. Assume that D is finite, D′ is
filtered, and F : D ×D′ → Sets. Then, χ is an isomorphism.
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Proof. In the category Sets, we have explicit model for limits and colimits. For a fixed
object D, we have

colimD′F (D,−) =
⊔

D′∈Ob(D′)

F (D,D′)/ ∼,

where ∼ identifies elements that can be compared via morphisms of the kind F (D, f) for
f in D′. As D′ is filtered, a finite collection of elements xD′i ∈ F (D,D′i), 1 ≤ i ≤ n can
be compared in a common F (D,D′), and we can decide whether they are equivalent in the
colimit by passing to some F (D, D̃′) for some object D̃′ of D′.

As D is finite, this yields an isomorphism limDcolimD′F → colimD′ limDF . An element
in the limit of the colimit consists of a finite tuple of elements in the colimit that satisfies
the coherence condition coming from D. Every such tuple is equivalent to a coherent tuple,
where the elements in the colimit come from a component labelled by a common object
D̃′: (xD1,D̃′

, . . . , xDN ,D̃′). This is an element in limDF (−, D̃′) and therefore in colimD′ limDF ,
where no further identification takes place in the colimit. �
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CHAPTER 4

Kan Extensions

Kan extensions take a given functor and extend it to a different category. There are two
ways of doing that, via colimits and via limits. These extensions don’t have to exist, and
even if they exist, they might not have nice properties. But in controlled situations, they are
extremely useful and they are actually ubiquitous. If you want to learn more about them,
then you could consult [Bo94-1, §3.7], [ML98, Chapter X], [Rie14, Chapter 1] or [Du70]
in the enriched context.

4.1. Left Kan Extensions

Important constructions that can be carried out with the help of colimits are left Kan
extensions.

Definition 4.1.1. Let G : C → D and F : C → E be functors. The left Kan extension of
F along G is a pair (K,α), where

• K : D → E is a functor, and
• α : F ⇒ K ◦G is a natural transformation.

C F
//

G

��

α

��

E

D
K

JJ

• This pair (K,α) has the universal property that for all pairs (H, β), where H : D → E
is a functor and β : F ⇒ H ◦G is a natural transformation, there is a unique natural
transformation γ : K ⇒ H with the property that γG ◦ α = β.

C F
//

G

��

β

��

α
��

E

γ
��

D
K

HH

H

QQ

Of course, it is not clear in general whether left Kan extensions exist. If they do, then
one can extend the functor F to the category D. But, beware, it is not true, in general,
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that K ◦G coincides with F . However, the natural transformation α compares the two. In
certain situations, we can ensure that α is a natural isomorphism (see 4.1.10, for example).

Remark 4.1.2. You might ask yourself why these extensions are called left Kan exten-
sions. Assume that the categories C and D are small. We abbreviate the functor category
Fun(D, E) by ED. We can consider the functor

EC(F, (−) ◦G) : ED → Sets

that sends a functor H ∈ ED to the set of natural transformations from F to H ◦ G. Any
pair (H, β) with H : D → E and β : F ⇒ H ◦G corresponds to a natural transformation

β : ED(H,−)⇒ EC(F, (−) ◦G)

via the Yoneda lemma. The universal property of the left Kan extension (K,α) of F along
G translates to the fact that α induces a natural isomorphism

α : ED(K,−)⇒ EC(F, (−) ◦G).

Here, K is on the left in ED(K,−). For the dual notion of right Kan extensions, one gets a
contravariant representable functor.

Before we start to investigate statements about the existence of left Kan extensions, we
construct an auxiliary category.

Definition 4.1.3. Let G : C → D be a functor and let D be an object of D. The
category G ↓ D has as objects pairs (C, h), where C is an object of C and h ∈ D(G(C), D).
A morphism f : (C, h)→ (C ′, h′) is a morphism f ∈ C(C,C ′), such that h′ ◦G(f) = h:

G(C)
G(f)

//

h ""

G(C ′)

h′{{

D.

This category is a special case of a comma category, and you will learn more about those
in 5.1.

Theorem 4.1.4. Let G : C → D and F : C → E be functors. Assume that the category
C is small and that E is cocomplete. Then, the left Kan extension of F along G exists.

For the next proof, we closely follow [Bo94-1, Theorem 3.7.2].

Proof.
• First of all, we will construct the value of the left Kan extension on objects. The

category G ↓ D is small because we assume that C is small.
There is a canonical functor U : G ↓ D → C, sending a pair (C, h) to C. The

cocompleteness of E ensures that the colimit colimG↓D(F ◦ U) exists with structure
maps

τD(C,h) : F (C) = F ◦ U(C, h)→ colimG↓DF ◦ U.
We define K(D) as colimG↓D(F ◦ U), and this determines the left Kan extension on
objects.
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• If f : D → D′ is a morphism in D, then we have to define what K(f) should be. If
(C, h) is an object of G ↓ D, then the pair (C, f ◦ h) is an object of G ↓ D′, because
f ◦h ∈ D(G(C), D′). In addition, we know that for morphisms g : (C ′, h′)→ (C, h) in
G ↓ D, we get that g is a morphism g : (C ′, f ◦ h′)→ (C, f ◦ h) in G ↓ D′:

G(C ′)
G(g)

//

h′
##

G(C)

h
{{

D

f
��

D′.

Therefore, we get a uniquely determined morphism

K(f) : KD = colimG↓D(F ◦ U)→ colimG↓D′(F ◦ U) = KD′,

such that
Kf ◦ τD(C,h) = τD

′

(C′,f◦h).

The uniqueness of K(f) ensures that K respects the composition of morphisms and
that K(1D) = 1K(D) for all objects D of D.
• In order to define the natural transformation α : F ⇒ K ◦G, we set

αC = τ
G(C)
(C,1G(C))

: F (C) = U(F (C, 1G(C)))→ colimG↓G(C)F ◦ U = K(G(C)).

As we have to check the naturality of αC , we consider a morphism h ∈ C(C,C ′) and
the diagram

F (C) = F ◦ U(C, 1G(C))

F (h)

��

αC=τ
G(C)
(C,1G(C))

//

τ
G(C′)
(C,G(h))

**

colimG↓G(C)(F ◦ U) = K(G(C))

K(G(h))

��

F (C ′) = F ◦ U(C ′, 1G(C′))
αC′=τ

G(C′)
(C′,1G(C′))

// colimG↓G(C′)(F ◦ U) = K(G(C ′)).

For the morphism G(h), we obtain by construction that K(G(h))◦τG(C)
(C,1G(C))

= τ
G(C′)
(C,G(h)).

As 1G(C′) ◦G(h) = G(h), the morphism h : (C,G(h))→ (C ′, 1G(C′)) is a morphism in
G ↓ G(C ′), and we get

τ
G(C′)
(C′,1G(C′))

◦ F (h) = τ
G(C′)
(C′,1G(C′))

◦ (F ◦ U)(h) = τ
G(C′)
(C,G(h))

so the preceding diagram commutes.
• Let H : D → E be a functor, together with a natural transformation β : F ⇒ H ◦ G.

We have to establish the existence of a natural transformation γ : K ⇒ H, such that
γG ◦ α = β. Fix an object D of D and an object (C, h) of G ↓ D. We obtain the
composition

F ◦ U(C, h) = F (C)
βC
//(H ◦G)(C)

H(h)
//H(D),
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because h : G(C) → D. Again, you should check that the composition is natural for
morphisms in G ↓ D, and thus, we obtain a unique factorization

(4.1.1) γD : K(D) = colimG↓D(F ◦ U)→ H(D), γD ◦ τD(C,h) = H(h) ◦ βC .

If f : D → D′ is a morphism in D, then (4.1.1) yields

H(f) ◦ γD ◦ τD(C,h) = H(f) ◦H(h) ◦ βC = H(f ◦ h) ◦ βC ,
which in turn agrees with

γD′ ◦ τD
′

(C,f◦h) = γD′ ◦K(f) ◦ τD(C,h),

thanks to (4.1.1), and thus, we obtain

H(f) ◦ γD = γD′ ◦K(f).

• It remains to show that γG ◦ α = β holds. As αC = τ
G(C)
(C,1G(C))

for all C, the claim

follows from (4.1.1), because for all C,

γG(C) ◦ τG(C)
(C,1G(C))

= H(1G(C)) ◦ βC = βC .

�

Definition 4.1.5. A functor F : C → E has a pointwise left Kan extension along G : C →
D if, for all objects D of D, the colimit

colimG↓D(F ◦ U)

exists. This colimit is then the value of the left Kan extension of F along G, and we denote
it by LKEG(F )(D).

Beware that this is not the standard definition of pointwise left Kan extension. We will
reconcile this later in Theorem 4.3.3.

Example 4.1.6. Let C = Fin be a small skeleton of the category of finite sets, let D be
the category of sets, Sets, and let I be the canonical inclusion functor of the subcategory Fin
into the category Sets. If E is an arbitrary cocomplete category, then Theorem 4.1.4 ensures,
that you can extend any functor F : Fin → E as a left Kan extension to the category Sets,
and you actually have an explicit formula for doing it.

Fin� _

I
��

F
// E

Sets
K

==

The following example is a special case of a Day convolution product, which we will
describe in detail in Definition 9.8.1.

Example 4.1.7. Let Σ be the category of finite sets of the type n = {1, . . . , n} for
n ∈ N0, with the convention that 0 = ∅. We consider bijections as morphisms. There is a
functor t : Σ× Σ→ Σ that is given by the disjoint union of sets with n tm = n + m. Let
X, Y : Σ→ Sets be functors. Then, we can consider the functor

X × Y : Σ× Σ→ Sets, (n,m) 7→ X(n)× Y (m),
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with the natural behavior on morphisms. The left Kan extension of X × Y along t is then
given as the functor that sends an object n to⊔

p+q=n

Σn ×Σp×Σq X(p)× Y (q).

Here, Σn ×Σp×Σq X(p) × Y (q) is the quotient of Σn × X(p) × Y (q) by the equivalence
relation that declares an element (σ ◦ (τp, τq), (x, y)) to be equivalent to (σ, (τp(x), τq(y)) for
all σ ∈ Σn, τi ∈ Σi, x ∈ X(p) and y ∈ Y (q).

Exercise 4.1.8. Check the details of the preceding example. Let U : Σ → Sets be the
functor that sends 0 to a one-point set and all other objects to the empty set. Can you
describe this functor as a representable functor? What is the left Kan extension of U × Y
along t for an arbitrary Y : Σ→ Sets?

Exercise 4.1.9. Let G be a finite group and let H be a subgroup of G. Consider
the inclusion of the category CH with one object and morphisms H into the category CG,
i : CH → CG. A functor F : CH → Ab is nothing but a Z[H]-module. M = F (∗) carries a
linear H-action. What is the left Kan extension of a given F along i?

Although we cannot expect K ◦ G = F to hold, quite often, we can at least control the
values of K. As a sample result in this direction, we mention the following.

Lemma 4.1.10. If C is a small category, E is a cocomplete category and G : C → D
is a fully faithful functor. Then, for all functors F : C → E , the natural transformation
α : F ⇒ K ◦G is a natural isomorphism.

Proof. We first show that the object (C, 1G(C)) is terminal in the category G ↓ G(C).
Let (C ′, h) be an arbitrary object of G ↓ G(C), that is, h : G(C ′) → G(C). As G is a full
functor, we know that h is of the form G(f) for an f : C ′ → C in C. This f gives rise to
a morphism from (C ′, h) to (C, 1G(C)) in G ↓ G(C). If f ′ : (C ′, h) → (C, 1G(C)) is another
morphisms in G ↓ G(C), then we obtain

G(f) = 1G(C) ◦G(f) = h = 1G(C) ◦G(f ′) = G(f ′),

and the faithfulness of G implies that f = f ′. Colimits over a diagram that possesses a
terminal object agree with the value of the functor on this very terminal object (see Exercise
3.1.5). Therefore, we get

K(G(C)) = colimG↓G(C)(F ◦ U) ∼= F ◦ U(C, 1G(C)) = F (C).

�

If both categories C and D are small, then left Kan extensions can be interpreted via left
adjoint functors. If G : C → D is a functor between small categories, then the precomposition
with G yields a functor between the functor category Fun(D, E) and Fun(C, E).

C
G∗F

��

G
// D

F
��

E
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If F is an object of Fun(D, E), then G∗(F ) = F ◦ G is an object of Fun(C, E). If E is a
cocomplete category, then we know that Kan extensions exists. These give rise to a map
from Fun(C, E) to Fun(D, E), and we get the following:

Theorem 4.1.11. For small categories C, D and G : C → D and a cocomplete category
E the functor,

G∗ : Fun(D, E)→ Fun(C, E)

has a left adjoint, and this adjoint is given by the left Kan extension.

Proof. If (K,α) is a left Kan extension of F along G, then (K,α) is a reflection of G∗.
�

Example 4.1.12. Assume that f : X → Y is a continuous map between topological
spaces and F is a presheaf on Y . One could try to pull F back via f by defining f−1F(U) =
F(f(U)), but, of course, f(U) doesn’t have to be open, so instead, one defines the inverse
image presheaf as the left Kan extension

(4.1.2) f−1F(U) = colimf(U)⊂V open F(V ).

Even if F was a sheaf, f−1F might not be one, so for sheaves, f−1F is defined as the
sheafification of (4.1.2).

Left Kan extensions have many applications. We will discuss them later again, for in-
stance, when we define the Day convolution product (see Definition 9.8.1) in nice functor
categories.

4.2. Right Kan Extensions

The definition of right Kan extensions is, of course, dual to the one for left Kan extensions,
but what does ’dual’ mean?

Definition 4.2.1. Let G : C → D and F : C → E be functors. The right Kan extension
of F along G is a pair (K,α), where

• K : D → E is a functor, and
• α : K ◦G⇒ F is a natural transformation.

C F
//

G

��

E
α

KS

D
K

JJ

• This pair (K,α) has the universal property that for all pairs (H, β), where H : D → E
is a functor and β : H ◦G⇒ F is a natural transformation, there is a unique natural
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transformation γ : H ⇒ K, with the property that β = α ◦ γG.

C F
//

G

��

E

α

KS

β

KS

D

K

??

H

QQ

γ
KS

The results for left Kan extensions dualize. Instead of G ↓ D, one uses the category D ↓
G, whose objects are pairs (C, h), with C an objects of C and h ∈ D(D,G(C)). Morphisms
in (G ↓ D)((C, h), (C ′, h′)) are morphisms f ∈ C(C,C ′), with G(f) ◦ h = h′.

Theorem 4.2.2.
• If C is small and E is complete, then right Kan extensions of F along G, RKEG(F ),

exist, and for all objects D of D, we get

RKEG(F )(D) = limD↓GF ◦ U.

• We call a right Kan extension pointwise, if the above limit exists for all objects D of
D.
• If C is small, E is complete, and G is fully faithful, then for all F : C → E , the natural

transformation α : K ◦G⇒ F is a natural isomorphism.

Exercise 4.2.3. As in Exercise 4.1.9 let H be a subgroup of a group G. Identify the
right Kan extension of an H-module F : CH → Ab along i : CH → CG.

The preceding exercise can be generalized as follows:

Exercise 4.2.4. Let C and D be two small categories and let E be a bicomplete category.
Let G : C → D be a functor. Show that the restriction functor G∗ = (−) ◦ G : Fun(D, E) →
Fun(C, E) has a left, and a right adjoint.

There is a plethora of notation for the preceding adjoints, for instance, G! and G!.

4.3. Functors Preserving Kan Extensions

Consider a diagram

C F
//

G   

E H
// F

D.

If the left Kan extension of F along G exists, then we could be lucky, and the composition
with H gives a left Kan extension of H ◦ F along G.
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Definition 4.3.1. The functor H preserves the left Kan extension (K,α) of F along G
if (H ◦K,Hα) is a left Kan extension of H ◦ F along G.

C F
//

G ��

E H
// F

D
K

OO

HK

>>

Proposition 4.3.2. Let G : C → D be a functor between small categories. Left adjoint
functors L : E → F preserve left Kan extensions of functors F : D → E .

Proof. Let L : E → F be left adjoint to a functor R : F → E . Then, we obtain an
induced adjunction

nat(L ◦K, J) ∼= nat(K,RJ)

for every J ∈ Fun(D,F). We have to check that LK is left adjoint to the precomposition
functor G∗. By Theorem 4.1.11, we know that K is left adjoint to G∗, and hence, we get

nat(L ◦K, J) ∼= nat(K,RJ)
∼= nat(F,RJG)
∼= nat(LF, JG),

and this shows the claim. The natural transformation α : F ⇒ KG maps to Lα : LF ⇒
LKG. If we consider J = LK and if we start with the identity natural transformation
ID: LK ⇒ LK, then the chain of bijections described previously transforms ID precisely to
Lα, proving the universality of Lα. �

Theorem 4.3.3. Let C and D be small. A right Kan extension of F : C → E is pointwise
if and only if it is preserved by all representable functors E(E,−) : E → Sets.

Proof. If for all objects D of D, we get that the right Kan extension is given by
limD↓GF ◦ U , then

E(E, limD↓GF ◦ U) ∼= limD↓GE(E,F ◦ U),

and hence, E(E,−) preserves the right Kan extension.
For the converse, assume that (K,α) is a right Kan extension of F along G, such that

(E(E,K(−)), E(E,α)) is a right Kan extension of (E(E,F (−)) along G. The Yoneda lemma
gives that

Fun(D, Sets)(D(D,−), E(E,K(−))) ∼= E(E,K(D))

for all objects D of D. The adjunction property of right Kan extensions dual to Theorem
4.1.11 implies

Fun(D, Sets)(D(D,−), E(E,K(−))) ∼= Fun(C, Sets)(D(D,G(−)), E(E,F (−))).

We claim that the latter is in bijection with the set of natural transformations

Fun(D ↓ G, E)(∆(E), F ◦ U).
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Consider τ : ∆(E) ⇒ F ◦ U . Then, τ has components τ(C,h) : E → F (C) for all objects
(C, h) of D ↓ G. Naturality of τ means that the diagram

F (C)

F (f)

��

E

τ(C,h)
<<

τ(C′,F (f)◦h) ""

F (C ′)

commutes for all f ∈ C(C,C ′).
On the other hand, a natural transformation

ξ : D(D,G(−))⇒ E(E,F (−))

has components ξC : D(D,G(C))⇒ E(E,F (C)), such that the diagram

D(D,G(C))
ξC

//

D(D,G(f))

��

E(E,F (C))

E(E,F (f))

��

D(D,G(C ′))
ξC′

// E(E,F (C ′))

commutes for all f ∈ C(C,C ′). The claimed bijection is given by an exponential map, where
we send τ(C,h) to ξC(h) and vice versa.

Hence, we get a bijection

E(E,K(D)) ∼= Fun(D ↓ G, E)(∆(E), F ◦ U),

and therefore K(D) is isomorphic to the limit limD↓GF ◦ U . �

Remark 4.3.4. The dual statement is also true, but in that case, we have to consider
the representable functors E(−, E) which transform colimits to limits in Setso.

4.4. Ends

Before I start with the definitions, let us consider an example. Let D be a small category
and let F,G : D → C be two functors from D to some category C. We all know what natural
transformations from F to G are, but can we describe them in terms of a limit construction?
Assume that ϕ is such a natural transformation, then for every object D of D, we have a
morphism in C

ϕD ∈ C(F (D), G(D)),

and for every morphism f ∈ C(D,D′), the naturality condition on ϕ says that

G(f) ◦ ϕD = ϕD′ ◦ F (f).

Take the set of natural transformations from F to G, nat(F,G). There are evaluation maps
εD : nat(F,G) → C(F (D), G(D)) for every object D of D. Then, the naturality condition
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can be rephrased by saying that the diagram

nat(F,G)
εD

//

εD′ ((

C(F (D), G(D))
C(F (D),G(f))

))

C(F (D′), G(D′))
C(F (f),G(D′))

// C(F (D), G(D′))

commutes.
Ends are a generalization of this example. We will see that the set of natural transfor-

mations from F to G is an end.

Definition 4.4.1. Let D and E be categories. Assume that H1 : Do × D → E and
H2 : Do ×D → E are functors, and let

τD : H1(D,D)→ H2(D,D)

be a family (indexed over the objects of D) of morphisms τD ∈ E(H1(D,D), H2(D,D)).
Then, (τD)D is called a dinatural transformation if for all morphisms f ∈ D(D,D′), the
diagram

H1(D′, D)
H1(f,D)

//

H1(D′,f)

��

H1(D,D)

τD

%%

H1(D′, D′)

τD′

%%

H2(D,D)

H2(D,f)

��

H2(D′, D′)
H2(f,D′)

// H2(D,D′)

commutes.

Remark 4.4.2. You should think about the word dinatural as standing for natural on
the diagonal and not for natural in two arguments, because τD is defined only when both
arguments of the His agree.

Let us consider some examples of such functors and of dinatural transformations.

Examples 4.4.3.
• An important example of a functor H : Do×D → E is a natural evaluation map. Fix

a K-vector space W , and denote by L(V,W ) the vector space of K-linear maps from
V to W . Consider the functor

L(−,W )⊗ Id→ vecto × vect→ vect, (V1, V2) 7→ L(V1,W )⊗ V2.

A dinatural transformation from this functor to the constant functor on W , κW ,
consists of a family of linear maps

τV : L(V,W )⊗ V → W,

which transform naturally in V .
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• Let V and W be K-vector spaces, and denote by Iso(V,W ) the vector space of K-linear
isomorphisms from V to W . Then,

Iso : vecto × vect→ vect

is a functor, and Iso(V, V ) is the group of automorphisms of V . For instance, if K =
R, we can consider the orientation preserving automorphisms of V , Aut+(V ). The
inclusion of Aut+(V ) into Aut(V ) is then a τV where τ is a dinatural transformation.
• In fact, the preceding example generalizes to any category. For two objects C1 and
C2 of a category C, we can always consider the set of isomorphisms from C1 to C2,
Iso(C1, C2), and Aut(C1) = Iso(C1, C1), the group of automorphisms of the object
C1. If this group has interesting subgroups that transform naturally in C1, then the
inclusion of such a subgroup into Aut(C1) gives rise to a dinatural transformation.
• Last but not least, we fix an object E of E and consider the constant functor on E,
κE, as a functor

κE : Do ×D → E .

Ends are universal with respect to constant bifunctors.

Definition 4.4.4. Let H : Do×D → E be a functor. An end of H is a pair (E, τ), where
E is an object of E and τ is a dinatural transformation from κE to H, with the property
that for all other objects E ′ of E with a dinatural transformation ν from κE′ to H, there is
a unique ξ ∈ E(E ′, E), such that νD = τD ◦ ξ for all D.

(4.4.1) E ′

∃!ξ

��

νD
//

νD′

��

H(D,D)
H(D,f)

&&

H(D,D′)

E
τD′
//

τD

CC

H(D′, D′)
H(f,D′)

88

Example 4.4.5. Let D be a small category, let E be an arbitrary category, and assume
F and G are functors from D to E . We consider

E(F (−), G(−)) : Do ×D → Sets

as a functor. An end of this functor is a set X, together with a universal dinatural transfor-
mation

εD : X → E(F (D), G(D))

for all objects D of D, which satisfies the coherence condition, as illustrated in the diagram
(4.4.1). It is clear that the set of all natural transformations satisfies this condition: If X ′

is another set with a dinatural transformation ν from κX′ to E(F (−), G(−)), then for every
element x ∈ X ′, νD(x) is actually a natural transformation because of the naturality of ν,
but then, we obtain a function f : X ′ → X = nat(F,G), with f(x)D = νD(x).

As a special case, we obtain that the abelian group of R-module homomorphism between
two left R-modules M and N is an end.

As always, coends are dual to ends. Natural transformations are the morphisms in the
functor category Fun(D, E). Dual to this, coends generalize tensor products.
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Definition 4.4.6. A coend of a functor H : Do × D → E is a pair (E, τ), where E is
an object of E and τ is a dinatural transformation from H to the constant functor κE, such
that for every object E ′ of E , with a dinatural transformation ν from H to κE′ , there is a
morphism f ∈ E(E,E ′), such that f ◦ τD = νD for all objects D of D.

Example 4.4.7. Let D be a small category and let F : Do → k-mod and G : D → k-mod
be functors. Here, k is an arbitrary commutative ring with unit, and k-mod denotes the
category of k-modules and k-linear maps. Then, we can build the tensor product of F and
G as

F ⊗D G :=
⊕
D

F (D)⊗k G(D)/ ∼,

where the sum is indexed by all objects D of D and where we divide out by the k-submodule
of
⊕

D F (D)⊗k G(D) generated by

(4.4.2) F (f)(x)⊗ y − x⊗G(f)(y), x ∈ F (D′), y ∈ G(D), f ∈ D(D,D′).

We claim that F ⊗DG, together with the dinatural transformation τ that sends F (D)⊗k
G(D) to the class of the summand in F ⊗DG, is the coend of the functor F ⊗kG : Do×D →
k-mod that sends (D1, D2) to F (D1) ⊗k G(D2) and (f, g) ∈ D(D1, D2) × D(D3, D4) to
F (f)⊗k G(g).

By construction, τ is dinatural. If ν is another dinatural transformation from F to some
other k-module M , then M receives a map νD from all the F (D)⊗kG(D). The dinaturality
of ν then guarantees that these maps are compatible, and thus the submodule corresponding
to (4.4.2) is in the kernel of the map

⊕
D νD and thus we get the desired map from M to

F ⊗D G.
As a special case, we get the tensor product of two R-modules M and N by considering

D = CR, F (∗) = M and G(∗) = N .

You will find other instances of the tensor product of functors later, when we learn
about symmetric monoidal categories (Definition 15.1.1) and about geometric realizations of
simplicial sets (see Remark 10.6.2). These tensor products are crucial for functor homology,
and we will meet them again in full generality in Section 15.1.

4.5. Coends as Colimits and Ends as Limits

We want to clarify the question of when ends and coends exist. To this end, we will
express ends as limits. The case of coends is dual.

The following definition is an important variant of the morphism category:

Definition 4.5.1. Let D be a category. The twisted arrow category of D, Dτ , has as
objects the morphisms of D. A morphism in Dτ from f : D1 → D2 to g : D3 → D4 is a
pair of morphisms (h1, h2) of D, such that h1 ∈ D(D3, D1) and h2 ∈ D(D2, D4), with the
property that g = h2 ◦ f ◦ h1:

D1
f
// D2

h2

��

D3
g
//

h1

OO

D4.
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Definition 4.5.2. Let D be a category. We define the functor χ : Dτ → Do × D as
χ(f) = (s(f), t(f)) and χ(h1, h2) = (ho1, h2). Here, s(f) denotes the source of f and t(f)
denotes its target.

With the help of these auxiliary data, we can express an end of a functor H as a limit.

Proposition 4.5.3. Let D and E be categories and H : Do × D → E be a functor. An
end of H is isomorphic to the limit of H ◦ χ over D. In particular, if E is complete and D is
small, then ends always exist.

Proof. Given a dinatural transformation ν from κE to H, with components νD : E →
H(D,D), we define a natural transformation τ : ∆(E)⇒ H◦χ for every object f ∈ D(D,D′)
of Dτ as τf = H(D, f) ◦ νD = H(f,D′) ◦ νD′ :

H(D′, D′)
H(f,D′)

''

E
τf

//

νD′
::

νD
$$

H(D,D′).

H(D,D)
H(D,f)

77

We have to check that τ is natural, that is, H ◦χ(α, β)◦ τf = τg for α : D̃ → D, β : D̃′ → D′,
such that

D

f
��

D̃
α

oo

g
��

D′
β
// D̃′

commutes. Consider the diagram

H(D,D)

H(α,D) &&

H(D,f)
// H(D,D′)

H(α,D′)

&&

H◦χ(α,β)

rr

E

νD
;;

νD̃ ##

H(D̃,D)
H(D̃,f)

// H(D̃,D′)

H(D̃,β)
xx

H(D̃, D̃)
H(D̃,g)

//

H(D̃,α)
88

H(D̃, D̃′).

The left rhombus commutes and actually defines τα. The top parallelogram commutes be-
cause H is a functor and the bottom one commutes because g = β ◦ f ◦ α. The right wing
describes the definition of H ◦ χ(α, β). Therefore, the whole diagram commutes, giving

τg = H(D̃, g) ◦ νD̃ = H ◦ χ(α, β) ◦H(D, f) ◦ νD = H ◦ χ(α, β) ◦ τf .

Conversely, given τ : ∆(E) ⇒ H ◦ χ, we can evaluate τ on identity morphisms to get
νD := τ1D . As (1D, f) is a morphism from 1D to f and as (f, 1D′) is a morphism from 1D′ to
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f in Dτ , the binaturality of ν follows from the commutativity of

H(D,D)
H(D,f)=H◦χ(1D,f)

''

E
τf

//

νD=τ1D
::

νD′=τ1D′ $$

H(D,D′).

H(D′, D′)
H(f,D′)=H◦χ(f,1D′ )

77

�

4.6. Calculus Notation

It is a tradition to denote ends and coends by integrals. If you consider the examples,
then the heuristics behind that is that you integrate over the diagram category D and get an
object E in the target category, where the contribution of D is subsumed into E. Another
reason for this notation is that it helps to guess correct statements about ends and coends
– there is, for instance, a Fubini theorem for ends and coends.

Notation 4.6.1. Let D and E be categories and let H : Do × D → E be a functor. We
denote

• by
∫
DH the end of the functor H; and

• by
∫ D

H the coend of the functor H.

Remark 4.6.2. This notation is the traditional one. Jacob Lurie uses exactly the oppo-
site notation in [Lu09].

With Proposition 3.5.1 and Proposition 4.5.3 we obtain the following result.

Proposition 4.6.3. (Fubini theorem for ends) Let H : (D × D′)o × (D × D′) → E be
a functor. If the ends

∫
DH(D,D′1, D,D

′
2) exist for all objects D′1, D

′
2 of D′ and if the ends∫

D′ H(D1, D
′, D2, D

′) exist for all objects D1 and D2 of D, then∫
D

∫
D′
H(D,D′, D,D′) ∼=

∫
D′

∫
D
H(D,D′, D,D′) ∼=

∫
D×D′

H(D,D′, D,D′),

and if one of them exists, then the others do as well.
2

There is a dual version for coends.

4.7. “All Concepts are Kan Extensions”

This slogan is taken from [ML98, X.7]. We will explain how to express (co)limits, the
Yoneda lemma and adjoint functors in terms of Kan extensions. As these are the main
building blocks of category theory, this justifies the slogan.

Proposition 4.7.1. Colimits (and limits) are special cases of left (and right) Kan ex-
tensions.
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Proof. We prove the case of colimits. Consider the terminal category [0]. A left Kan
extension of a functor F : C → E from a small category C to the unique functor G : C → [0]
is a functor K : [0]→ E , together with a natural transformation α : F ⇒ K ◦G. The functor
K is nothing but a choice of an object in E , say E. Precomposition with G just gives the
constant functor

K ◦G = ∆(E) : C → E ,
and α : F ⇒ ∆(E) is a cone. The universality of (K,α) then implies that any other cone
receives a map from K ◦G = ∆(E). Thus, E is the colimit of F : C → E . �

Proposition 4.7.2. The Yoneda lemma follows from the existence of right Kan exten-
sions for functors F : C → Sets for small C.

Proof. The category of sets is complete; hence, Kan extensions can be determined
pointwise. We consider the identity functor IdC : C → C. The right Kan extension of F along
IdC is F , with α = ID. In particular

(4.7.1) F (C) = RKEIdC(F )(C).

On the other hand, we obtain

RKEId(F )(C) = limC↓IdF ◦ U.

The category C ↓ IdC has objects (C ′, h), where C ′ is an object of C and h ∈ C(C,C ′); thus,
C ↓ IdC is isomorphic to the category of morphisms h in C, with source C and F ◦ U(h) =
F (C ′). Thus, the functor F ◦U : C ↓ IdC → E is an assignment ηC′ : C(C,C ′)→ F (C ′), such
that F (f) ◦ ηC′ = ηC′′ for all f ∈ C(C ′, C ′′). These ηC′s are the components of a natural
transformation η ∈ nat(C(C,−), F ), which is the limit limC↓IdF ◦ U . Hence, using (4.7.1),
we get

F (C) ∼= nat(C(C,−), F ).

�

Adjoint functors can be expressed as Kan extensions as follows:

Proposition 4.7.3. Let L : C → E and R : E → C be functors.

(1) Assume that (L,R) is an adjoint pair of functors with unit η : IdC ⇒ RL and counit
ε : LR ⇒ IdE . Then, (R, η) is a left Kan extension of IdC along L and is preserved
by L, and (L, ε) is a right Kan extension of IdE along R and is preserved by R.

(2) Conversely, if the left Kan extension (K,α) of IdC along L exists, then K is a right
adjoint for L, and α = η is the unit of the adjunction. If the right Kan extension
(K ′, α′) of IdE along R exists, then K ′ is left adjoint to R, with counit ε = α′.

Proof. We first show (1). Assume first that L has a right adjoint R and that η : IdC ⇒
RL and ε : LR ⇒ IdE are the unit and counit of the adjunction, respectively. Assume that
H : C → C is a functor with a natural transformation β : IdC ⇒ HL.

• We need a natural transformation ξ : R⇒ H and define it as the composite

ξ : R = IdC ◦R
βR +3HLR

H(ε)
+3H.
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• We claim that ξ is unique, with ξL ◦ η = β, so let ζ : R ⇒ H be another natural
transformation with ζL ◦ η = β.

Then, the diagram

R
ξ

�	

IDR

��

βR

�&

ηR

x�
RLR

R(ε)
��

ζLR +3 HLR

H(ε)
��

R
ζ +3 H

commutes, identifying ξ with ζ.
Thus, (R, η) is a left Kan extension of IdC along L.

• In order to show that (LR,Lη) is a left Kan extension of L along L, we consider a
functor J : E → E , together with γ : L⇒ JL.

For τ : LR⇒ J , we take

τ : LR
γR +3JLR

J(ε)
+3J.

As the diagram

L
γ +3

L(η)
��

JL

JLη
��

LRL
γRL +3 JLRL

J(εL)
+3 JL

commutes, we obtain τL ◦ L(η) = γ.
The uniqueness of τ is shown as previously.

For (2), assume that the left Kan extension (K,α) of IdC along L exists and is preserved
by L. Then, α : IdC ⇒ RL and Lα : L⇒ LRL. We set η := α.

• Consider the functor IdE , together with the natural transformation β = IDL. As
(LK,Lη) is a left Kan extension, there is a unique ε : LR⇒ IdE , such that εL◦L(η) =
IDL.

C L
//

L

��

E

E

LK

⇒ε

??

IdE

OO

It remains to show that K(ε) ◦ ηK is also the identity transformation.
The left Kan extension property of (K, η) ensures that the functor K : E → C,

together with β : IdC ⇒ KL, β := (KεL) ◦ ηKL ◦ η, gives rise to a unique natural
transformation τ : K ⇒ K, with τL ◦ η = β.
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The commutativity of the diagram

IdC
η +3

η

��

KL

ηKL
��

KL
IDKL

"*
KLη

��

KLKL

K(εL)
��

KLKL
K(εL)

+3 KL

ensures that β = η and hence that τ = IDK . The uniqueness of τ then implies that
IDK = K(ε) ◦ ηK .

�
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CHAPTER 5

Comma Categories and the Grothendieck Construction

In this chapter, we introduce the notion of comma categories and related concepts. We
present a criterion based on comma categories that tells us when colimits can be determined
via simplified diagram categories. We briefly mention sifted colimits and their characteri-
zation. The Yoneda lemma expressens values of a functor with the help of representable
functors. There is a dual statement, the Co-Yoneda lemma, that is related to the concept of
density.

Grothendieck constructions play an important role in applications in homotopy theory
and in other areas of mathematics. We define them and discuss some examples.

5.1. Comma Categories: Definition and Special Cases

Definition 5.1.1. Given two functors C F
//D EG
oo , the comma category (F,G) has

as objects triples (C, f, E), where C is an object of C, E is an object of E , and f ∈
D(F (C), G(E)).

A morphism in (F,G) from (C1, f1, E1) to (C2, f2, E2) consists of a pair of morphisms
g ∈ C(C1, C2) and h ∈ E(E1, E2), such that G(h) ◦ f1 = f2 ◦ F (g):

(5.1.1) F (C1)
f1
//

F (g)

��

G(E1)

G(h)

��

F (C2)
f2
// G(E2).

The composition of morphisms in (F,G) is induced by the composition of morphisms in C
and E .

You only allow objects of C and E as objects in the comma category that talk to each
other in D via a morphism. But note that C and E are not quite on equal footing. The
morphisms always have to run from some F (C) to some G(E).

There are canonical functors pC : (F,G)→ C and pE : (F,G)→ E , given by projecting to
the first and last component:

pC(C, f, E) = C, pC(g, h) = g; pE(C, f, E) = E, pE(g, h) = h.

Lemma 5.1.2. There is a natural transformation τ : F ◦ pC ⇒ G ◦ pE .

(F,G)
pC

//

pE

��

C

F

��

τ
{�

E
G

// D
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Proof. Define τ(C,f,E) as f . The compatibility condition in (5.1.1) ensures that this
indeed defines a natural transformation. �

Exercise 5.1.3. Consider the partially ordered set [1] = 0 < 1. Show that

(F,G) //

��

Fun([1],D)

p

��

C × E F×G
// D ×D

is a pullback diagram. Here, Fun([1],D) is the category of functors from [1] to D and p
collects the values of such a functor on 0 and 1 and forgets the morphism.

This is a mapping object interpolating between F and G. If C and E are the category [0]
and if F = G, then you get a categorical model of a based loop space.

Example 5.1.4. If C = D = E and if both functors are the identity functors, then
the objects of (IdC, IdC) are morphisms in C and the morphisms between two morphisms
f1 : C1 → C2 and f ′ : C ′1 → C ′2 are pairs of morphisms (g, h) in C that render the diagram

C1

f1

��

g
// C ′1

f2

��

C2
h
// C ′2

commutative. This gives the category of morphisms of C, Fun([1], C), as a special case of a
comma category.

We saw an example of a comma category already in Definition 4.1.3, when we constructed
Kan extensions.

Definition 5.1.5. Let F : C → D be a functor and let D be an object of D. The comma
category F ↓ D is (F, κD : [0]→ D), where κD sends 0 to D.

Hence objects of F ↓ D are pairs (C, f), where C is an object of C and f ∈ D(F (C), D).
A morphism from (C, f) to (C ′, f ′) in F ↓ D is a morphism g : C → C ′ in C, such that
f ′ ◦ F (g) = f .

F (C)

f ""

F (g)
// F (C ′)

f ′{{

D.

Dually, we can define the comma category D ↓ F in such a way that the morphisms start
in D and end in images of F , that is, D ↓ F = (κD : [0]→ D, F : C → D).

Other important special cases are over and under categories (define one functor to be
the identity and the other one to be a functor from the category with one object and one
morphism).

Definition 5.1.6. Let C be a category and let C be an object on C.
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• The category of objects over C in C has as objects morphisms f ∈ C(C ′, C), and a
morphism from f ∈ C(C ′, C) to f ′ ∈ C(C ′′, C) is a morphism g ∈ C(C ′, C ′′), such that
f ′ ◦ g = f :

C ′
g

//

f   

C ′′

f ′}}

C.

We denote this category by C ↓ C.
• The category of objects under C has as objects morphisms f ∈ C(C,C ′), and a mor-

phism from f ∈ C(C,C ′) to f ′ ∈ C(C,C ′′) is a morphism g ∈ C(C ′, C ′′), such that
g ◦ f = f ′:

C
f

!!

f ′

~~

C ′ g
// C ′′.

We denote this category by C ↓ C.

Note that we can describe the morphism sets in C ↓ C and in C ↓ C as pullbacks.
Morphisms in C ↓ C from f : C ′ → C to g : C ′′ → C are elements in the pullback of

{f}

��

C(C ′, C ′′)
C(C′,g)

// C(C ′, C),

and morphisms in C ↓ C from f : C → C ′ to g : C → C ′′ are elements in the pullback of

{g}

��

C(C ′, C ′′)
C(f,C′′)

// C(C,C ′′).

Similarly, for a fixed morphism ξ ∈ C(C1, C2), the category of objects under C1 and over
C2 has as objects pairs of morphisms (f, g) with f ∈ C(C1, C) and g ∈ C(C,C2), such that
g ◦ f = ξ, and a morphism from (f, g) to (f ′, g′) is a morphism h ∈ C(C,C ′), such that
h ◦ f = f ′ and g′ ◦ h = g:

C1

f

~~

f ′

!!

C
h

//

g
  

C ′

g′}}

C2.

We use the notation C1 ↓ C ↓ C2 for this category, suppressing ξ from the notation. Such
categories feature prominently in the concept of André-Quillen (co)homology [Q70]. If k
is a commutative ring and B is a commutative k-algebra, then a commutative k-algebra A
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is an object of the category of commutative k-algebras over B, if there is a morphism of
k-algebras f : A→ B, that is, if A is augmented over B. As k is initial, A is also an object
of the category of commutative k-algebras under k and over B (so ξ is the unit map of B).
A commutative k-algebra C is an object of the category of commutative k-algebras under A
if and only if C is a commutative A-algebra.

Remark 5.1.7. It is common to call categories of the form C ↓ C (or C ↓ C) slice
categories (coslice categories).

Exercise 5.1.8. Show that C ↓ C has the identity of C (which we identify with C) as
a terminal object and C ↓ C has the identity of C as initial object. If C1 = C2 = C and
ξ = 1C , then C ↓ C ↓ C has the pair (1C , 1C) as a zero object.

If C has a terminal object ∗, then C ↓ ∗ is isomorphic to C and ∗ ↓ C consists of objects in
C with a chosen map from ∗. For instance, the category of pointed topological spaces, Top∗,
is the category of topological spaces with a chosen basepoint, and this choice is nothing but
a map from a one-point space to a space. Morphisms are continuous maps preserving the
basepoint.

Exercise 5.1.9. In the category of small categories, [0] is a terminal object, thus, cat ↓
[0] ∼= cat. Let C and D be two categories, then show that their join C → D has a functor to
[0] ∗ [0] ∼= [1]. Prove that the join gives rise to a functor

cat× cat→ cat ↓ [1].

Example 5.1.10. Consider the category of sets and fix a non-empty set S. An object
in the category Sets ↓ S is a set X, together with a function fX : X → S, and morphisms
in Sets ↓ S are functions that preserve the anchor map to S. This category is nothing
but the category of S-graded sets : The preimage f−1(s) of an element s ∈ S is the s-
component of X, Xs. We can write X =

⊔
s∈S Xs, and morphisms in the category preserve

these decompositions, that is, a g : X → Y for an object fY : Y → S of Sets ↓ S satisfies
g(Xs) ⊂ Ys. Note that the anchor maps do not have to be surjective, so some of the
summands in X =

⊔
s∈S Xs might be empty.

5.1.1. The Categories F\C. Given a functor F : C → Sets we can build a category
F\C out of F , C and the values of F .

Definition 5.1.11. For a given F , we let F\C be the category whose objects are pairs
(C, x), with C an object of C and x ∈ F (C). A morphism from (C, x) to (C ′, x′) is an
f ∈ C(C,C ′), with F (f)(x) = x′.

There is a forgetful functor ρ : F\C → C that omits the element x.
We will see later that for certain functors F the functor ρ gives rise to a covering map

on the level of classifying spaces (see Theorem 11.5.5).
There are variants of this construction. Note that in the previous definition F (C) is a

set, and this was a crucial ingredient, because we require an equality between F (f)(x) and
x′. We can change the target category into any category that has a notion of elements.

Definition 5.1.12. A category D together with a faithful functor U : D → Sets is called
concrete.
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Note that there could be several faithful functors from a given category to the category
of sets, but in our examples, it should be clear which functor we mean. If D is an object
of D, then U(D) is a set, and hence, we can talk about the elements of U(D). By abuse of
language, we might also call them the elements of D.

There are many examples of concrete categories: every category that has objects that
are sets with some extra structure and whose morphisms are functions respecting that extra
structure is concrete. So, for instance, the categories of groups, of topological spaces, of
R-modules for a fixed ring R, and of k-algebras for a fixed commutative ring with unit k
are examples of concrete categories. In all of these cases, we can use the obvious forgetful
functor to the category of sets as the functor U .

If C is a category with a functor F : C → D and (D, U) is a concrete category, then F\C
is short for (U ◦ F )\C.

5.1.2. Category of Cones. Let F : D → C be a functor. If D were small and we
wanted to build the limit of F over D, then we would consider objects C of C, together
with compatible maps into the system (F (D))D∈Ob(D). The corresponding category is an
important slice category and features prominently in the work of Joyal [Jo-c∞] and Lurie
[Lu09, Lu∞]. Note that for the join of two categories E ∗ D, there are inclusion functors

E iE
//E ∗ D D.iD

oo

We can consider functors G : E ∗ D → C that restrict to a given functor on E or D. For
simplicity, we assume that all categories that are involved are small.

Proposition 5.1.13. Let F : D → C be a functor. Denote by FunF (E ∗ D, C) the set of
functors G : E ∗ D → C with G ◦ iD = F . Then, there is a category C/F , such that

Fun(E , C/F ) ∼= FunF (E ∗ D, C).
Dually, given a functor H : E → C, there is a category CH/, such that

Fun(E , CH/) ∼= FunH(E ∗ D, C),
where FunH(E ∗ D, C) denotes the set of functors G : E ∗ D → C that restrict to H under iE .

Proof. We prove the first case. Assume that G is a functor G : E ∗D → C that extends
F : D → C. Then, there are values G(E) in C for all objects E of E , and morphisms
f ∈ E(E1, E2) induce morphisms G(f) ∈ C(G(E1), G(E2)) as usual. The extra datum
comes from the fact that for every object E of E and for every object D of D, there is a
singleton morphism set {∗} = (E ∗ D)(E,D), and therefore, we obtain induced morphism
G(E)→ G(D). But as G extends F on D, the latter term is G(D) = F (D). For a fixed E,
we obtain such a morphism G(E) → F (D) for every object D of D, and for any morphism
h ∈ D(D1, D2), the composite h ◦ ∗ is ∗; thus, we obtain a morphism from every G(E) to
the diagram (F (D))D∈Ob(D).

Therefore, the category C/F has all cones (G(E) → F (D))D∈Ob(D) as objects and mor-
phisms of cones as morphisms. �

Remark 5.1.14. Proposition 5.1.13 can and should be read as the fact that for a fixed
small category D, the functor (−)∗D : cat→ D ↓ cat has a right adjoint. Dually, the functor
E ∗ (−) : cat→ E ↓ cat also has a right adjoint.

André Joyal calls C/F the lower slice of C by F and CH/ the upper slice of C by H.
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You have already seen a special case of these categories in Definition 1.5.7 where we
considered the case where one of the categories is [0]. Functors G : [0] ∗ D → C extending a
given F : D → C choose an object G(0) of C and build the cone to the values F (D). Dually,
functors G : D ∗ [0] → C extending a given H : D → C also choose an object G(0) of C and
build the cocone of all morphisms F (D)→ G(0).

5.2. Changing Diagrams for Colimits

Often, it can be quite tricky to explicitly determine a colimit or limit of a functor.
Sometimes, it is easier to identify the colimit or limit of a modified diagram category. If
φ : D′ → D is a functor between small categories, then the precomposition with φ is a functor

φ∗ : Fun(D, C)→ Fun(D′, C)
for every category C. We will use the categories D ↓ φ in order to calculate colimits over D
via colimits over D′ for nice-enough φs. The idea is that D′ captures enough of information
about D via φ.

If the colimits colimDF and colimD′φ
∗(F ) exist, then φ induces a morphism

Φ: colimD′φ
∗(F )→ colimDF

as follows. We need to define morphisms F (φ(D′))→ colimDF for all objects D′ of D′ that
define a cone. Let τ ′ : φ∗(F )⇒ ∆(colimD′φ

∗(F )) and τ : F ⇒ ∆(colimDF ) be the cones for
F ◦φ and F . Then, Φ is defined as the unique morphism with Φ ◦ τ ′D′ = τφ(D′) for all objects
D′ of D′:

F (φ(D′))
τ ′
D′
//

τφ(D′) ''

colimD′φ
∗(F )

Φ
��

colimDF.

Definition 5.2.1. A functor φ : D′ → D is called cofinal (or terminal) if for all objects
D of D, the category D ↓ φ is not empty and connected.

Example 5.2.2. The name terminal functor comes from the example where t is a ter-
minal object in D, and φ : {t} → D is the inclusion functor of the category {t}, with object
t and only 1t as morphism into D. This inclusion functor is terminal, and we already know
from Exercise 3.1.5 that colimDF ∼= F (t) if D possesses a terminal object.

Example 5.2.3. If (X,≤) is a linearly ordered set viewed as a category and if Y is a
subset of X, then the inclusion Y → X is a cofinal functor, if and only if Y is a cofinal
subset of X; that is, for all x in X, there is a y in Y , with x ≤ y. That’s the reason for the
name cofinal functor. For instance, every infinite subset of the natural numbers is cofinal.

Exercise 5.2.4. Let H be a subgroup of a finite group G. A functor F : CG → k-mod
is a G-representation M = F (∗). Determine colimCGF . When is the inclusion functor
φ : CH → CG cofinal?

Theorem 5.2.5. If the functor φ is cofinal, then the morphism

Φ: colimD′φ
∗(F )→ colimDF

is an isomorphism.
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Proof. We define morphisms ψD : F (D) → colimD′φ
∗(F ) by choosing an object D′ of

D′ and a morphism fD : D → φ(D′) for every D. This is possible because D ↓ φ is not empty.
If D = φ(D′) for an object D′ of D′, then we choose fD = 1φ(D′). We set ψD := τ ′D′ ◦ F (fD):

F (D)

ψD &&

F (fD)
// F (φ(D′))

τ ′
D′ww

colimD′φ
∗(F ).

If D = φ(D′) for some object D′ of D′, then we obtain

(5.2.1) ψφ(D′) = τ ′D′ .

As the category D ↓ φ is connected for every object D of D, the choice of fD does not
matter. Assume that f̃D : D → φ(D̃′) is another morphism, then as D ↓ φ is connected, we
know that there is a finite zigzag of morphisms between φ(D′) and φ(D̃′), indicated by the
dashed line in the following diagram:

F (φ(D′))
τ ′
D′

''

F (D)

F (fD)
99

F (f̃D) %%

colimD′φ
∗(F ).

F (φ(D̃′))

τ ′
D̃′

77

Therefore, τ ′D′ ◦ F (fD) = τ ′
D̃′
◦ F (f̃D).

The family of morphisms ψD are components of a natural transformation

ψ : F ⇒ ∆(colimD′φ
∗(F )),

and hence, we get an induced morphism

Ψ: colimDF → colimD′φ
∗(F )).

We claim that Ψ is inverse to Φ. Note that by the definition of Ψ, we have that Ψ◦τD = ψD
and

Φ ◦ ψD = τφ(D′) ◦ F (fD) = τD,

where the latter equality follows from the naturality of τ . Hence, the following diagram is
commutative:

F (D)
τD
//

τD

��

ψD

&&

colimDF

Ψ
��

colimD′φ
∗(F )

Φ
��

colimDF,

and we get Φ ◦Ψ ◦ τD = τD; hence, Φ ◦Ψ = 1colimDF .
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As Φ satisfies Φ ◦ τ ′D′ = τφ(D′), we obtain with the help of (5.2.1)

Ψ ◦ Φ ◦ τ ′D′ = Ψ ◦ τφ(D′) = ψφ(D′) = τ ′D′

thus Ψ ◦ Φ = 1colimD′φ
∗(F ). �

Remark 5.2.6. You could and should ask whether the condition of being cofinal for a
functor is the best one can get, and the answer is yes. If φ : D′ → D is a functor between
small categories, such that for all functors F : D → C with cocomplete C, the canonical
morphism Φ: colimD′φ

∗(F ) → colimDF is an isomorphism, then φ is cofinal. It suffices to
take C = Sets. We’ve seen in Example 3.1.6 that colimDD(D,−) is a one-point set, thus
by assumption, colimD′D(D,φ(−)) is also a one-point set. But in the category of sets, the
explicit formula for a colimit is

colimD′D(D,φ(−)) =
⊔

D′ an object of D′
D(D,φ(D′))/ ∼,

where f ∈ D(D,φ(D′1)) is equivalent to g ∈ D(D,φ(D′2)) if and only if D′1 and D′2 are
connected via a zigzag of morphisms in D′ that relate f to g. If D ↓ φ were empty, then
the colimit would be empty. If D ↓ φ were not connected, then the colimit would consist of
more than one point.

5.3. Sifted Colimits

Interchanging limits and colimits can be difficult or impossible. Sifted colimits interact
well with finite products.

Definition 5.3.1.
(1) A small category D is called sifted if colimits of diagrams F : D → Sets commute

with finite products, that is, if E is a finite set viewed as a discrete category, then
for every F : D × E → Sets,

colimD

(∏
x∈E

F (−, x)

)
∼=
∏
x∈E

colimDF (−, x).

(2) Colimits of diagrams over sifted categories are called sifted colimits.

Gabriel and Ulmer [GU71] proved a recognition principle for sifted categories.

Proposition 5.3.2. A nonempty small category D is sifted if and only if the diagonal
functor ∆: D → D ×D is cofinal.

Proof. Assume that the diagonal functor is cofinal. It suffices to show that colimits
commute with binary products. Thus, we aim at a bijection

χ : colimD(F (−, 1)× F (−, 2)) ∼= (colimDF (−, 1))× (colimDF (−, 2)).

A direct inspection shows that

(5.3.1) (colimDF (−, 1))× (colimDF (−, 2)) ∼= colimD×D(F (−, 1)× F (−, 2)).

If the diagonal is cofinal, then by Theorem 5.2.5, we can reduce the latter to colimD(F (−, 1)×
(colimDF (−, 2)) ◦∆.

Conversely, if D is sifted, then Remark 5.2.6 combined with the bijection of (5.3.1) implies
that ∆ has to be terminal. �
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Examples 5.3.3.
(1) As we showed in Theorem 3.5.6 that filtered colimits commute with finite limits for

all functors to the category Sets, nonempty filtered categories are sifted.
(2) Split coequalizer diagrams are sifted categories. See [ARV10, Example 2.2] for a

proof. The splitting is crucial.
(3) Every small category with finite coproducts is sifted. Such a category is not empty

because it has an initial object, and for every object (D1, D2) of D ×D, the object
((D1, D2), (D1, D2) → (D1 tD2, D1 tD2)) is an object of (D1, D2) ↓ ∆. For mor-
phisms (f, g) : (D1, D2) → (D,D) and (u, v) : (D1, D2) → (D′, D′), we can connect
these two objects with

(D,D)

((

(D1, D2)

(f,g)
88

(u,v) &&

(D tD′, D tD′),

(D′, D′)

66

hence, (D1, D2) ↓ ∆ is connected for all (D1, D2).

Exercise 5.3.4. Dualize the concept of sifted categories and sifted colimits to cosifted
categories and cosifted limits.

We will later see in Proposition 10.12.14 that the opposite of the simplicial category, ∆o,
is sifted.

5.4. Density Results

In the category of sets, Sets, every set X can be expressed as the coproduct of its elements:
X ∼=

⊔
x∈X{x}, and an element x ∈ X corresponds to a morphism x : {∗} → X from the

one-point set to X. In this sense, we can describe every set in terms of the one-point set,
and the categorical concept axiomatizing this situation is density.

For a functor F : D → C, recall the definition of the comma category F ↓ C from
Definition 5.1.5. We use the projection functor U : F ↓ C → D given by U(D, f) = D.

Definition 5.4.1.
(1) Let D be a small category, C an arbitrary category and F : D → C a functor. The

functor F is dense if for all objects C of C, the natural transformation

ψCF : F ◦ U ⇒ ∆C , (ψCF )(D,f) = f

is universal in the sense that it induces an isomorphism

colimF↓CF ◦ U ∼= C.

(2) A small subcategory D of C is dense, if the inclusion functor D ↪→ C is dense.

So, if a functor F : D → C with D small is dense, then the pair (IdC, IDF ) is a pointwise
left Kan extension of F along F .

Examples 5.4.2.
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• As every set can be written as the disjoint union of its elements, any subcategory of
Sets with one point is dense in Sets.
• If R is an associative ring with unit, then the full subcategory consisting of the object
R is not dense in the category of R-modules. For instance, for R = Z, the object
Z ⊕ Z cannot be written as a colimit as in Definition 5.4.1. However, taking the full
subcategory with object R⊕R gives a dense subcategory of the category of R-modules.

One can check density with the help of the following criterion. We denote by Y F
C the

functor from C to SetsD
o

that sends an object C to the functor C(F (−), C), and a morphism
f ∈ C(C,C ′) is sent to the postcomposition with f . We can view Y F

C as a representable
functor that is twisted by F .

Theorem 5.4.3. Let D be a small category and let F : D → C be a functor. Then, F is
dense if and only if the functor

C
Y FC

//SetsD
o

is full and faithful.

Proof. We define two auxiliary functions for two arbitrary objects C and C ′ of C. First,
we consider ξ : C(C,C ′) → nat(F ◦ U,∆C′) that sends a morphism g : C → C ′ in C to the
natural transformation of functors from F ↓ C to Sets, given by postcomposition with g,
that is,

ξ(g)(D,f) = g ◦ f : F (D)→ C → C ′.

We also consider

ΘC
C′ : nat(F ◦ U,∆C′)→ nat(C((F (−), C), C(F (−), C ′))),

which maps a natural transformation ϕ : F ◦U ⇒ ∆C′ to the natural transformation ΘC
C′(ϕ),

with components ΘC
C′(ϕ)D that send a g : F (D)→ C to ϕ(D,g).

Note that ΘC
C′ is a bijection. A natural transformation ϕ : F ◦U ⇒ ∆C′ has components

ϕ(D,f) : F (D)→ C ′,

and for any h ∈ F ↓ C((D, f), (D′, f ′)), we have that

F (D)
ϕ(D,f)

""

F (h)

��

C ′

F (D′)

ϕ(D′,f ′)

<<

commutes. This is nothing but a natural transformation of functors from D to Sets from
C((F (−), C) to C(F (−), C ′). An explicit inverse of ΘC

C′ is given by sending a natural trans-
formation

α : C((F (−), C)⇒ C((F (−), C ′)

with components αD : C((F (D), C) → C((F (D), C ′) to the natural transformation τ with
components τ(D,f) := αD(f).
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We fit ξ and ΘC
C′ into a diagram

C(C,C ′)
(−)∗

//

ξ ''

nat(C((F (−), C), C(F (−), C ′))).

nat(F ◦ U,∆C′)
ΘC
C′

44

Here, the top map is taking a g ∈ C(C,C ′) to postcomposition with g. The diagram com-
mutes because

(ΘC
C′ ◦ ξ(g))(α)D = ξ(g)(D,αD) = g ◦ αD = g∗(α)D

for every α ∈ nat(C(F (−), C), C(F (−), C ′)).
As ΘC

C′ is a bijection, ξ is a bijection if and only if (−)∗ is a bijection, that is, if and only
if Y F

C is fully faithful. But ξ being bijective is equivalent to ψCF being universal. �

With the help of the density criterion, it is easy to see that Yoneda embeddings are dense
functors. Here, YD : D → SetsD

o

sends an object D of D to D(−, D) and Y D : Do → SetsD

sends D to D(D,−).

Corollary 5.4.4. Let D be a small category. Then, both the Yoneda functors YD and
Y D are dense.

Proof. We prove the claim for YD. The argument for Y D is dual.
We have to show that the functor

Y YD
SetsD

o : SetsD
o → SetsD

o

, F 7→ SetsD
o

(YD, F ) : Do → Sets

is fully faithful. The Yoneda lemma 2.2.2 yields that the bijection

SetsD
o

(YD(D′), F ) = nat(D(−, D′), F ) ∼= F (D′)

is natural in D′, and hence, the functor F is naturally isomorphic to the functor SetsD
o

(YD, F )
via Y YD

SetsD
o . As Y YD

SetsD
o is an isomorphism of categories, it is fully faithful. �

Remark 5.4.5. Thus, we get that every set-valued (co- or contravariant) functor from a
small category is a canonical colimit of representable functors.

Density helps us to recover objects from certain coends.

Proposition 5.4.6. Let D be a small category and let F : D → C be a functor. Assume
that all copowers C(F (D′), C) · F (D) exist. Then, F is dense if and only if every object C
is a coend ∫ D

C(F (D), C) · F (D),

such that the canonical morphism λ : C(F (D), C) · F (D) → C restricted to the component
of an f ∈ C(F (D), C) is λf = f : F (D)→ C.

Proof. The fact that C is such a coend with this particular λ is equivalent to the fact
that the components of the structure map λ restricted to⊔

C(F (D),C)

F (D)→ C
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are given by the natural evaluation map that sends F (D) via f ∈ C(F (D), C) to C and that
this family is universal and natural in D. This is nothing but the universality of the natural
transformation ψCF from Definition 5.4.1. �

Remark 5.4.7. Proposition 5.4.6 is a reason why density is sometimes called co-Yoneda
property. The Yoneda lemma identifies an object with the set of natural transformations
from a representable functor. Natural transformations are ends. Here, we express an object
as the coend involving a twisted version of a representable functor.

For representable functors, one gets the co-Yoneda lemma.

Theorem 5.4.8. (co-Yoneda lemma) Let D be a small category and let F : Do → Sets
be a functor. Then, there is a natural bijection∫ D

F (D) · D(D1, D) ∼= F (D1).

Proof. As the category Sets is cocomplete, the existence of the copowers and the coend
is clear. We show that there is an isomorphism of functors∫ D

F (D) · D(−, D) ∼= F.

Natural transformations from the above coend to a functor G : Do → Sets are families of
functions

ψD1
D : F (D) · D(D1, D)→ G(D1),

such that for all g : D1 → D2 and all h : D̃ → D, the diagrams

F (D) · D(D1, D)
ψ
D1
D

''

F (D) · D(D1, D̃)

1F (D)·D(D1,h)

OO

F (h)·1D(D1,D̃)
��

G(D1)

F (D̃) · D(D1, D̃)
ψ
D1
D̃

77

and F (D) · D(D2, D)
ψ
D2
D
//

1F (D)·D(g,D)

��

G(D2)

G(g)

��

F (D) · D(D1, D)
ψ
D1
D
// G(D1)

commute. In particular, every ψD is a natural transformation

ψD : F (D) · D(−, D)⇒ G.

By adjunction, we get

F (D)→
∫
D
Sets(D(D1, D), G(D1)) ∼= G(D).

Therefore, the set of natural transformations from
∫ D

F (D) · D(−, D) to G is isomorphic to
the set of natural transformations from F to G, hence∫ D

F (D) · D(−, D) ∼= F.

�
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We will see an enriched version of the co-Yoneda lemma later in Proposition 9.3.10.
There is a dual notion to density, and we mention it briefly.

Definition 5.4.9. Let D be a small category and let F : D → C be a functor. Then, F
is codense if for all objects C, the natural transformation

ψFC : ∆C ⇒ F ◦ U
is universal in the sense that it induces an isomorphism

C ∼= limC↓FF ◦ U.

Note that here, C ↓ F is the comma category with objects (D, f), with f : C → F (D)
and U(D, f) = D.

Exercise 5.4.10. Dualize Theorem 5.4.3. Is the dualization of 5.4.4 true?

5.5. The Grothendieck Construction

Recall from Definition 1.4.15 that cat denotes the category of all small categories.

Definition 5.5.1. Let C be a category and let F : C → cat be a functor. The Grothendieck
construction C

∫
F is the category whose objects are pairs (C,X), where C is an object of

C and X is an object of the category F (C). A morphism in C
∫
F from (C1, X1) to (C2, X2)

is a pair (f, g) of morphisms f ∈ C(C1, C2) and g ∈ F (C2)(F (f)(X1), X2).
If (f1, g1) ∈ (C

∫
F )((C1, X1), (C2, X2)) and (f2, g2) ∈ (C

∫
F )((C2, X2), (C3, X3)), then

the composition of these two morphisms is given by (f2 ◦ f1, g2 ◦ (F (f2)(g1))):

F (f2 ◦ f1)(X1)

g2◦(F (f2)(g1)
**

F (f2)(g1)
// F (f2)(X2)

g2

��

X3.

Remark 5.5.2.
• As the composition of morphisms in C

∫
F in the first component is just the compo-

sition of morphism in C, we get a projection functor U : C
∫
F → C.

• If τ : F ⇒ G is a natural transformation of functors F,G : C → cat, then τ induces
a functor C

∫
τ : C

∫
F → C

∫
G. On objects, C

∫
τ sends (C,X) to (C, τC(X)). For

f ∈ C(C,C ′) and g ∈ F (C ′)(F (f)(X), X ′), we keep f ∈ C(C,C ′). Then we need
a morphism from G(f)(τC(X)) to τC′(X

′). But G(f)(τC(X)) = τC′F (f)(X), and
therefore, we take τC′(g) as the second component, so τ(f, g) = (f, τC′(g)):

G(f)(τC(X)) = τC′F (f)(X)
τC′ (g)

// τC′(X
′).

There are several other notations in use for the Grothendieck construction, for instance,∫
C F or F o C. We avoid them because the first one clashes with the notation for ends and

the second one would clash with other notation that we will use later. The symbol F o C
has its origin in the example in the next exercise.

Exercise 5.5.3. Let N and H be groups, and assume that we have a homomorphism
ϕ : H → Aut(N). Consider the associated categories CH and CN with one object ∗.
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(1) Show that there is a functor F : CH → cat with F (∗) = CN .
(2) Prove that the Grothendieck construction CH

∫
F is the category CNoϕH , where

N oϕ H denotes the (external) semidirect product of the groups N and H.

Let C be a small category. The Grothendieck construction C
∫
F associated with a functor

F : C → cat has the following universal property [T79, 1.3.1], describing functors out of the
categories that are in the image of F .

Proposition 5.5.4. Let C and D be small categories. The set of all functors G : C
∫
F →

D is in bijection with the following data:

• For every object C of C, there is a functor GC : F (C)→ D.
• For every morphism f ∈ C(C1, C2), there is a natural transformation

Gf : GC1 ⇒ GC2 ,

such that G1C = IDGC and such that G− respects composition, that is, for f ∈
C(C1, C2), g ∈ C(C2, C3) the natural transformations Gg◦f and Gg ◦Gf are equal.

Proof. Given a functor G : C
∫
F → D, we get the functor GC by setting GC(X) =

G(C,X) for X an object of F (C), and by defining GC(g) as G(1C , g) for g ∈ F (C)(X, Y ).
The natural transformation Gf is given by (Gf )X = G(f, 1X).

Conversely, given the data, we can define a functor G : C
∫
F → D by setting G(C,X) :=

GC(X) on objects, and a morphism (f, g) in (C
∫
F )((C1, X1), (C2, X2)) is sent to

G(f, g) : G(C1, X1) = GC1(X1)
Gf (X1)

//GC2(X1)
GC2

(g)
//GC2(X2) = G(C2, X2).

�

Remark 5.5.5. For the definition of a Grothendieck construction, it is not necessary
to have a functor on the nose, but one can loosen the assumptions and consider op-lax
2-functors, as mentioned in Remark 9.6.5. See Thomason’s thesis [T77] for the full story.
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CHAPTER 6

Monads and Comonads

6.1. Monads

Let C be a category. We can consider the endofunctors of C, T : C → C. We can compose
such functors, and the identity functor on C, IdC, is a unit for this composition. We are
interested in endofunctors T that possess a multiplicative structure.

In the following, we will often omit composition signs of functors in order to ease notation.

Definition 6.1.1. A monad in a category C consists of an endofunctor T : C → C,
together with two natural transformations, η : Id ⇒ T and µ : T ◦ T ⇒ T , such that the
following diagrams commute:

T 3 Tµ +3

µT
��

T 2

µ

��
T 2 µ +3 T

and Id ◦ T ηT +3 T 2

µ

��

T ◦ Id
Tηks

T.

For a monad T , the natural transformation η is called the unit of the monad and µ is
called the multiplication. In addition to the name monad, the notion of a triple is quite
common.

Definition 6.1.2. Let C be a category and let (T, µ, η) and (T ′, µ′, η′) be two monads
on C. A morphism of monads from T to T ′ is a natural transformation τ : T ⇒ T ′, which is
compatible with the structure maps: τ commutes with the unit, that is, τ ◦ η = η′, and the
diagram

T ◦ T
T ′(τ)◦τT

+3

µ

��

T ′ ◦ T ′

µ′

��
T

τ +3 T ′

commutes.

The identity functor on C is always a monad. You know nontrivial examples of monads
because every pair of adjoint functors gives rise to a monad. We will see later that the
converse is also true: every monad gives rise to an adjoint pair of functors.

Theorem 6.1.3. Let C
L
// D

R
oo be an adjoint pair of functors. Then, the endofunctor

T = R ◦ L : C → C is a monad. The transformation µ : RLRL ⇒ RL is given by RεL,
where ε is the counit of the adjunction and the transformation η : Id⇒ T is the unit of the
adjunction η : Id⇒ RL.
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Proof. We have to show that the diagrams

(6.1.1) RLRLRL
RLRεL +3

RεLRL
��

RLRL

RεL
��

RLRL
RεL +3 RL

and

(6.1.2) Id ◦RL ηRL +3 RLRL

RεL
��

RL ◦ Id
RLηks

RL

commute. In diagram (6.1.1) the outer copy of R and the inner copy of L are not involved,
that is, we can reduce the diagram to the relevant part and that is

LRLR
LRε +3

εLR
��

LR

ε
��

LR
ε +3 Id.

This diagram commutes because it consists of the two-fold application of the counit.
The commutativity of (6.1.2) can be shown by considering both triangular-shaped sub-

diagrams separately. For these diagrams. the claim follows, because for any adjunction the
identities ID = Rε ◦ ηR : R⇒ R and ID = εL ◦ Lη : L⇒ L hold. �

As we know plenty of examples of adjunctions, we get examples of monads.

Examples 6.1.4.
• We have the forgetful functor U from the category of groups to the category of sets,

and this has the free group functor, Fr, as a left adjoint. Hence, U ◦Fr is a monad on
the category Sets.
• Let k be a commutative ring with unit. The tensor algebra functor sends a k-module
M to the tensor algebra

T (M) =
⊕
i≥0

M⊗ki,

with M⊗k0 = k. We endow T (M) with the multiplication given by the concatenation
of tensors. This functor is left adjoint to the forgetful functor U ′ from associative
unital k-algebras to k-modules, and U ′ ◦ T is a monad.
• Similar to the above, let Sym(M) be the free unital associative and commutative

algebra on M :

Sym(M) =
⊕
i≥0

M⊗ki/Σi.

Here, we divide by the action of the symmetric group Σi on the i-fold tensor power of
M . For σ ∈ Σi and m1 ⊗ . . .⊗mi, the action is given by

σ.(m1 ⊗ . . .⊗mi) = mσ−1(1) ⊗ . . .⊗mσ−1(i).
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The composite with the forgetful functor from commutative unital algebras to k-
modules, U , is a monad

U ◦ Sym: k-mod→ k-mod.

There is a morphism of monads from U ′ ◦ T to U ◦ Sym that is induced by the
projection maps M⊗ki →M⊗ki/Σi.
• The loop-suspension adjunction is crucial in algebraic topology. The suspension func-

tor
Σ: cg∗ → cg∗, X 7→ S1 ∧X

is left adjoint to the based loop functor

Ω: Top∗ → Top∗, X 7→ kTop∗(S
1, X).

Here, cg is the category of compactly generated weak Hausdorff spaces, which we will
discuss in detail in 8.5. Similarly, for n > 1, we can consider the adjunction of the
n-fold suspension

Σn : cg∗ → cg∗, X 7→ Sn ∧X
and the n-fold based loop functor

Ωn : Top∗ → Top∗, X 7→ kTop∗(S
n, X).

Exercise 6.1.5. Let P be a partially ordered set viewed as a category. What is a monad
on P?

Exercise 6.1.6. Consider the assignment that sends a set to its power set. Is this a
monad?

6.2. Algebras over Monads

Adjoint pairs of functors give rise to monads and we will now show the converse: For
every monad T there are (at least) two pairs of adjoint functors that can be associated with
T . We consider one of it here and another one later (Corollary 6.3.6).

Definition 6.2.1. Let T : C → C be a monad with multiplication µ and unit η. We call
an object C of C a T -algebra, if there is a morphism ξ : TC → C, such that the following
diagrams commute:

T 2C
T (ξ)

//

µC
��

TC

ξ
��

TC
ξ
// C

and C
ηC
//

1C !!

TC

ξ
��

C.

The morphism ξ is often called the structure map of the T -algebra C, and we often denote
a T -algebra by (C, ξ). The left diagram is an associativity condition, whereas the right one
poses a condition on the unit. A morphism of T -algebras is a morphism in C respecting the
structure maps. We use T -algC to denote the category of T -algebras in C.

Remark 6.2.2. A monad T is an endofunctor that is a monoid. The defining diagrams
of a T -algebra then mean that the monoid T acts on C, so one could equally well call a
T -algebra a left T -module.

Examples 6.2.3.
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• Let Fr : Sets → Gr be the functor that assigns to a set S the free group generated
by the set S. Then every group G is an algebra of the monad T := U ◦ Fr. Here,
U again denotes the forgetful functor from the category of groups to the category of
sets. The morphism ξ : UFr(G) → G takes a formal word in the elements of G and
considers it as a word in G. This example is prototypical for monads that arise from
a free-forgetful adjunction.
• Let (−)+ : Sets → Sets be the monad that sends a set X to X+ := X t {+}. This

defines a monad on Sets. An algebra for this monad is a set X, together with a
function f : X+ → X, but the unit condition of the algebra structure implies that
f does not move the points in X, so the only datum is the value f(+) ∈ X. Thus
(−)+-algebras are based sets.
• Based loop spaces ΩnX for n ≥ 1 are algebras over the monad ΩnΣn.
• If T is a monad, then for every object C of C, the object TC is a T -algebra. The

structure map T (T (C)) → T (C) is given by µC , and the unit is induced by the unit
of the monad. Such algebras are called free T -algebras. In the example described
previously, for every set S, T (S) is the underlying set of the free group generated by
S.

Exercise 6.2.4. Let C
L
// D

R
oo be an adjoint pair of functors and let T = RL be the

corresponding monad. Is RD always a T -algebra for all objects D of D?

Theorem 6.2.5. Let (T, µ, η) be a monad in C. Then, there is an adjoint pair of functors

C
L
// T -algC.

R
oo

Here, R maps a T -algebra (C, ξ) to the object C of C, and L sends an object C of C to the
free T -algebra (TC, µC). The corresponding monad of this adjunction is precisely the monad
T we started with.

Remark 6.2.6. The adjunction described in Theorem 6.2.5 is called the Eilenberg-Moore
adjunction of the monad T . We will see another one later.

Proof. If we apply the composite RL to an object C of C, then we obtain

RLC = R(TC, ξ : T (TC) = (T 2)(C)
µC

//TC ) = TC,

and the unit is given by ηC : C → RLC = TC. Conversely, we get that LR(C, ξ) = L(C) =
(TC, µC), and the structure map ξ : TC → C is, by definition, a morphism of T -algebras

ξ : (TC, µC)→ (C, ξ).

Thus, the morphism ε(C,ξ) : LR(C, ξ) → (C, ξ) is given by this morphism of T -algebras. If
f : (C, ξ)→ (C ′, ξ′) is an arbitrary morphism of T -algebras, then f has to satisfy

ξ′ ◦ T (f) = f ◦ ξ,

and this is exactly the naturality condition for ε(C,ξ). The composite TC
TηC
//TTC

µC
//TC

and the morphism C
ηC
//TC

ξ
//C are the identity on TC and C because of the unit

condition for the monad T and the unit condition for the T -algebra (C, ξ). �
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We denote the forgetful functor from the category of T -algebras in C to C again by U .
Note that U does not change the morphisms, but only forgets a coherence property, so we
obtain the following:

Proposition 6.2.7. The forgetful functor U = U : T -algC → C is faithful. 2

Examples 6.2.8.
• If R is an associative ring with unit, then the functor R⊗(−) : Ab→ Ab is a monad in

the category of abelian groups. An R⊗ (−)-algebra is a left R-module. The forgetful
functor U takes an R-module M to its underlying abelian group.
• Similarly, for every group G, the functor

G× (−) : Sets→ Sets

is a monad on the category Sets, and G×(−)-algebras are G-sets, that is, sets with an
action of the group G. In this example, the forgetful functor just forgets the G-action.

If T is a monad on C and C is a T -algebra, then the associativity condition on the
structure map ξ : T (C)→ C implies that ξ fits into a diagram

(6.2.1) T (T (C))
µC

//

T (ξ)
//T (C)

ξ
//C.

Here, T (T (C)) is a T -algebra via µT (C), and T (C) has µC as structure map. Actually, more
is true.

Proposition 6.2.9. Let T be a monad on C and let C be a T -algebra with structure
map ξ : T (C) → C. Then, the diagram (6.2.1) is a coequalizer diagram in the category of
T -algebras. Applying the forgetful functor from T -algebras to C turns this diagram into a
split coequalizer diagram in C.

Proof. All morphisms involved in the diagram are morphisms of T -algebras. If f is a
morphism of T -algebras from (T (C), µC) to (D, τ), with the property that f ◦µC = f ◦T (ξ),
then we precompose f with the unit of C, ηC : C → T (C).

T (T (C))
µC

//

T (ξ)
// T (C)

ξ
//

f
��

C

f◦ηC||

D

We have to show that this is a T -algebra morphism, that is, τ ◦ T (f ◦ ηC) = f ◦ ηC ◦ ξ.
As f is a morphism of T -algebras, we have

(τ ◦ T (f)) ◦ T (ηC) = (f ◦ µC) ◦ T (ηC) = f,

and as f satisfies the condition that f ◦ µC = f ◦ T (ξ), we also get

f = (f ◦ µC) ◦ ηT (C) = (f ◦ T (ξ)) ◦ ηT (C) = f ◦ ηC ◦ ξ,
and this proves the claim.

In the category C, we set s = ηC and t = ηT (C). The unit conditions yield µC ◦ t = 1T (C)

and ξ ◦s = 1C . As units are natural, we also obtain T (ξ)◦ t = s◦ξ, and thus, the coequalizer
diagram turns into a split coequalizer diagram in C.
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By Proposition 6.2.7 the forgetful functor is faithful; this shows that the extension of f
as f ◦ ηC was unique. �

Remark 6.2.10. For the splitting in the proof it was crucial that we worked in the
underlying category, because the unit maps ηC and ηT (C) are, in general, no maps of T -
algebras. For instance, if A is an associative unital k-algebra, then ηA : A→

⊕
i≥0A

⊗ki sends
A to the (i = 1)-part of the tensor algebra. This map is neither unital nor multiplicative.

We now want to study the situation where we have morphisms between different kinds
of algebras over monads. Later, we will apply this to lifting left adjoint functors to the level
of algebras over monads.

Let (T, µ, η) and (T ′, µ′, η′) be two monads. We abbreviate the forgetful functors with U
and U ′ and the free functors with F and F ′. Assume that we have a functor R : C → D and
that it lifts to the level of algebras, that is, there is a functor

R̃ : T -algC → T′-algD,

with

(6.2.2) U ′ ◦ R̃ = R ◦ U.
In particular, every T -algebra (C, ξ) is sent to a T ′-algebra R̃(C, ξ). Consider the following
diagram:

T -algC

U
��

R̃
// T ′-algD

U ′

��

C
R

//

F

OO

D.
F ′

OO

We do not assume any other commutativity relations in this diagram.

Lemma 6.2.11. In the previous situation, there is a natural transformation

α : T ′ ◦R⇒ R ◦ T.
This α commutes with the unit of T and T ′ as follows:

(6.2.3) R
η′R +3

R(η)
��

T ′ ◦R

αu}
R ◦ T

There is also a compatibility with the multiplications in the monads T and T ′ in the sense
that

(6.2.4) T ′ ◦ T ′ ◦R
µ′R +3

T ′(α)
��

T ′ ◦R
α
��

T ′ ◦R ◦ T
αT

#+

R ◦ T
R(µ)

t|
R ◦ T ◦ T

commutes.

96



Proof. We define α as the following composition:

T ′R = U ′F ′R
U ′F ′R(η)

+3 U ′F ′RUF = U ′F ′U ′R̃F
U ′ε′

R̃F +3 U ′R̃F = RUF = RT.

The unit condition (6.2.3) is easy to see because of the commutativity of the diagram

R
η′R
//

R(η)
��

U ′F ′R = T ′R

U ′F ′Rη
��

RUF
η′RUF

// U ′F ′RUF = U ′F ′U ′R̃F

U ′ε′
R̃F

��

RUF = U ′R̃F.

For the compatibility with the monad multiplication, as in (6.2.4), we consider the dia-
gram

U ′F ′U ′F ′R
U ′ε′

F ′R +3

U ′F ′U ′F ′Rη
��

U ′F ′R

U ′F ′Rη
��

U ′F ′U ′F ′RUF = U ′F ′U ′F ′U ′R̃F
U ′ε′

F ′RUF +3

U ′F ′U ′ε′
R̃F ��

U ′F ′RUF = U ′F ′U ′R̃F

U ′ε′
R̃F��

U ′F ′RUF = U ′F ′U ′R̃F
U ′ε′

R̃F +3

U ′F ′RηUF
��

RUF = U ′R̃F

U ′F ′RUFUF = U ′F ′U ′R̃FUF
U ′ε′

R̃FUF +3 RUFUF = U ′R̃FUF.

RUεF

KS

The outer compositions give exactly the morphisms we are looking for. The horizontal maps
make the top two rectangles commute because of naturality; the only thing to check is that
the bottom square commutes. Because of the naturality of the transformation ε′, we know
that

U ′ε′
R̃F
◦ U ′F ′RUεF = RUεF ◦ U ′ε′R̃FUF .

Precomposition with the transformation U ′F ′RηUF gives the claim, because U ′F ′RUεF ◦
U ′F ′RηUF = Id. Hence, we get

(6.2.5) RUεF ◦ αUF = RUεF ◦ U ′ε′R̃FUF ◦ U
′F ′RηUF = U ′ε′

R̃F
.

�

Remark 6.2.12. In particular, if C = D and R is the identity functor, then for every
functor ĨdC : T -algC → T′-alg with U ′ ◦ ĨdC = U , we obtain a natural transformation α : T ′ ⇒
T . The conditions (6.2.3) and (6.2.4) ensure that α is a morphism of monads. In order to

abandon the awkward notation ĨdC, we use a neutral G : T -algC → T′-alg instead.

Example 6.2.13. Every unital associative and commutative k-algebra A is in particular
a unital associative k-algebra, so we get a forgetful functor G that takes the underlying unital
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associative algebra of a unital associative and commutative algebra. Let us denote by As
the monad U ′ ◦ T and by Com the monad U ◦ Sym. Then, there is a commutative diagram

Com-Alg
U

&&

G
// As-Alg.

U ′yy

k-mod
Sym

ff T
99

and the corresponding morphism of monads α : As → Com is the one discussed earlier,
induced by the projection maps that divide out by the symmetric group action. In the
language of monads, the map from commutative algebras to associative algebras is obtained
by precomposing the structure map with the projection map α : As→ Com.

Example 6.2.14. Let A be a unital associative k-algebra. Then A is a Lie algebra over
k using the commutator bracket

[−,−] : A⊗k A→ A, [a, b] := ab− ba for a, b ∈ A.
Therefore, there must be a morphism from the Lie monad to the associative monad As.

The examples are prototypical.

Lemma 6.2.15. Assume that (T, µ, η) and (T ′, µ′, η′) are monads on the category C and
that we have a functor G from the category of T -algebras to the category of T ′-algebras,
such that the diagram

T -algC

U
""

G
// T ′-algC

U ′
||

C
commutes. Then, there exists a morphism of monads αG from T ′ to T . Conversely, every
morphism of monads α : T ′ ⇒ T induces a functor Gα : T -algC → T′-algC, with U ′ ◦Gα = U .
The assignments G 7→ αG and α 7→ Gα are inverse to each other.

Proof. We established the first fact in Lemma 6.2.11. The inverse to the assignment
G 7→ αG sends a morphism α of monads to the functor Gα that maps a T -algebra (C, ξ)
to (C, ξ ◦ αC). By construction we have that U ′ ◦ Gα = U , and if f : (C, ξ) → (D, τ) is a
morphism of T -algebras, that is, τ ◦ T (f) = f ◦ ξ, then f is also a morphism of T ′-algebras
from (C, ξ ◦ αC) to (D, τ ◦ α), because the diagram

T ′(C)
T ′(f)

//

αC
��

T ′(D)

αD
��

T (C)
T (f)

//

ξ
��

T (D)

τ

��

C
f

// D

commutes.
Before we show that these assignments are inverse to each other, we describe G in more

detail. As U ′◦G = U , we obtain that G(C, ξ) has to be of the form (C, ρ) with ρ : T (C)→ C
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being the T -algebra structure of G(C, ξ). From the proof of Theorem 6.2.5 we know that we
can recover this structure map from the counit of the adjunction, and hence,

ρ = U ′(ε′(C,ρ)) = U ′(ε′G(C,ξ)).

We claim that ρ is always of the form Uε(C,ξ) ◦ αGC = ξ ◦ αGC . In the following diagram, we
heavily use the fact that U ′ ◦G = U :

U ′F ′U ′G(C, ξ)
U ′ε′

G(C,ξ)
// U ′G(C, ξ)

U ′F ′U(C, ξ) U(C, ξ)

U ′F ′UFU(C, ξ)

U ′F ′Uε(C,ξ)

OO

UFU(C, ξ)

Uε(C,ξ)

OO

U ′F ′U ′G(FU(C, ξ))
U ′ε′

G(FU(C,ξ))
// U ′G(FU(C, ξ)).

U ′Gε(C,ξ)

SS

U ′F ′U(C, ξ)

U ′F ′ηU(C,ξ)

OO

αGC

11

The pentagon commutes because of the naturality of the counit maps. The counit-unit
property of the adjunction renders the left half-moon commutative, the small triangle-shaped
square in the upper-right commutes because of the identification U ′G = U , and the lower
part of the diagram displays the definition of αC . Therefore,

(6.2.6) ρ = U ′(ε′G(C,ξ)) = Uε(C,ξ) ◦ αC = ξ ◦ αC .

We first show that αGα = α. For this, we note that with the preceding calculation, we get
that

Gα(TC, µC) = (TC, µC ◦ αTC),

and, following the notation of [BaWe05, Proof of Theorem 6.3], we define σC := µC ◦ αTC .
This is the T ′-algebra structure map of TC, and hence, σC : T ′TC → TC. As α is a natural
transformation, the diagram

T ′C
αC

//

T ′(ηC)
��

TC

T (ηC)
��

T ′TC
αTC

//

σC
::

TTC

µC

kk

commutes. Thus, we can express αC in terms of σC , as

(6.2.7) αC = µC ◦ T (ηC) ◦ αC = µC ◦ αTC ◦ T ′(ηC) = σC ◦ T ′(ηC).
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We can compare α and αGα via the diagram

T ′C
T ′(ηC)

$$

αGαC

��

αC

��

T ′TC
σGαC

//

αTC
��

TC

TC
T (ηC)

// TTC

µC
;;

and hence, the two maps agree for all C.
Conversely, given G, we know that G(C, ξ) = (C, ξ ◦ αC) but also GαG(C, ξ) = (C, ξ ◦

αGαC ) = (C, ξ ◦ αC), so both agree. �

6.3. Kleisli Category

In addition to the description of a monad in terms of the free-forgetful pair from 6.2.5
there is an alternative description of a monad in terms of its free algebras. We will actually
see that all the ways to express a given monad in terms of adjoint functors live between the
Kleisli adjunction and the Eilenberg-Moore adjunction.

Definition 6.3.1. Let (T, µ, η) be a monad on a category C. The Kleisli category of T ,
KT , has the objects of C as objects and a morphism f ∈ KT (C1, C2) is a morphism f in
C from C1 to T (C2). The identity morphism of an object C is the unit of the adjunction
ηC : C → T (C), and the composite of f ∈ KT (C1, C2) and g ∈ KT (C2, C3) is

C1
f
//T (C2)

T (g)
//T (T (C3))

µC3
//T (C3).

Exercise 6.3.2. Check the associativity of the composition and the unit axiom.

Example 6.3.3. The monad (−)+ : Sets → Sets that adds a disjoint point has as a
Kleisli category the category whose objects are sets, and an f ∈ K(−)+(X, Y ) is a function
f : X → Y+. Such a function is sometimes called a partial function. The interpretation is
that f is a function on all the points that are not sent to +. If you have a partial function,
that is, a function f̄ : A → Y for some A ⊂ X, then you can extend it to a morphism
f ∈ K(−)+(X, Y ) by declaring f(x) = + for all x ∈ X \ A.

Exercise 6.3.4. Work out what the Kleisli category is for the monad corresponding to
the free-forgetful pair, where the free functor takes a set X to the free monoid generated by
X.

Proposition 6.3.5. The category KT is equivalent to the full subcategory FT (C) of
T -algC, whose objects are the free T -algebras.

Proof. Define a functor G : KT → FT (C) by setting G(C) = (T (C), µC), and for
f : C1 → T (C2), a morphism in KT from C1 to C2, we set G(f) = µC2 ◦ T (f):

T (C1)
G(f)

//

T (f)
��

T (C2).

TT (C2)

µC2
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Then, G(f) is a morphism from (T (C1), µC1) to (T (C2), µC2) in FT (C), because in the fol-
lowing diagram, the two squares commute (because of the naturality and the associativity
of µ); hence, the following diagram commutes:

TT (C1)
µC1

//

TT (f)
��

T (C1)

T (f)
��

TTT (C2)
µTC2

//

TµC2

��

TT (C2)

µC2

��

TT (C2)
µC2

// T (C2),

and this shows, µC2 ◦ TG(f) = G(f) ◦ µC1 .
The assignment G is actually a functor. G applied to the identity morphism in the Kleisli

category is
G(ηC) = µC ◦ T (ηC) = 1T (C),

and the diagram

T (C1)

G(g◦f)=T (µC3
◦T (g)◦f)

��

T (f)
// TT (C2)

µC2
//

TT (g)

��

T (C2)

T (g)

��

TTT (C3)
µT (C3)

//

TµC3

��

TT (C3)

µC3

��

TT (C3)
µC3

// T (C3)

commutes for all f ∈ KT (C1, C2) and g ∈ KT (C2, C3), showing that G respects composition
in the Kleisli category.

By construction, G is essentially surjective, and hence, we have to show that G is fully
faithful.

Let α : (T (C1), µC1)→ (T (C2), µC2) be any morphism of T -algebras. As the diagram

T (C1)
TηC1

// TTC1

Th

��
µC1zz

T (C1)
h

$$

TTC2

µC2

��

T (C2)

commutes, we can write h as µC2 ◦ T (h ◦ ηC1) and h ◦ ηC1 ∈ KT (C1, C2).
Assume that f, g ∈ KT (C1, C2), with

G(f) = µC2 ◦ T (f) = µC2 ◦ T (g) = G(g).

But then, we also get that the precomposition with ηC1 yields the same morphism, but due
to the naturality of the unit of T , this is equal to f and g. �

This equivalence of category gives rise to the following adjunction:
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Corollary 6.3.6. The functor UT : KT → C that sends an object C of KT to UF (C) =
T (C) and an f ∈ KT (C1, C2) = C(C1, T (C2)) to µC2 ◦ T (f) has a left adjoint FT : C → KT ,
given by FT (C) = C and FT (f) = ηC2 ◦ f .

Remark 6.3.7. Note that this adjunction recovers the monad T . We have UT ◦FT (C) =
TC for all objects C of C, and the composite UT ◦ FT sends a morphism f ∈ C(C1, C2) to

TC1

T (f)
//TC2

TηC2
//TTC2

µC2
//TC2.

This is precisely T (f).
The adjunction (FT , UT ) is sometimes called the Kleisli adjunction of the monad.

In order to distinguish the Eilenberg-Moore adjunction from the Kleisli adjunction, we
now use (F T , UT ) for the Eilenberg-Moore adjoint functor pair. We already know that there
is a functor G : KT → FT (C), and as the free T -algebras are a full subcategory of T -algC, we
view G as a functor

G : KT → T -algC.

This is actually a map from an initial object to a terminal object.

Definition 6.3.8. Let (T, µ, η) be a fixed monad on a category C and let (L,R) be an
adjoint functor pair

C
L
//D,

R
oo

with unit η̃ : IdC ⇒ RL and counit ε̃ : LR⇒ IdD, such that (RL,Rε̃L, η̃) = (T, µ, η).
These adjunctions form a category, the category of adjunctions building T , in which a

morphism from C
L
//D

R
oo to C ′

L′
//D′

R′
oo is a functor H : D → D′, such that

HL = L′ and R′H = R.

D H
//

R

��

D′

R′��C
L

__
L′

??

Note that we do not demand that L′R is H.

Exercise 6.3.9. Prove that in the situation of Definition 6.3.8, H carries the adjoint of
a morphism f : C → R(D) = R′H(D) to the adjoint of this morphism in D′.

Theorem 6.3.10. Let (T, µ, η) be a monad. The Kleisli adjunction for T is initial in the
category of adjunctions giving T , and the Eilenberg-Moore adjunction is terminal.

Let us fix the notation before we start a sketch of proof. We have the Kleisli adjunction
(FT , UT ), and we call the unit ηT and the counit εT . For the Eilenberg-Moore adjunction,
we use superscripts, so (F T , UT ) with unit ηT and counit εT . We only sketch the proof of
Theorem 6.3.10. For a full proof, see, for instance, [Rie16, Proposition 5.2.12].
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Sketch of proof. Let (L,R) be an adjunction building T with unit η̃ : IdC ⇒ RL
and counit ε̃ : LR ⇒ IdD. We have to define unique functors A and Z, as in the following
diagram:

KT
A

//

UT

  

D

R

��

Z
// T -algC

UT

}}

C,

FT

``

FT

==

L

OO

with

RA = UT , U
TZ = R,AFT = L, and F TZ = L.

Let C be an object of KT . As A(C) has to satisfy A(C) = AFT (C) = L(C), we can only set
A(C) := L(C). For f ∈ KT (C1, C2) that is, f ∈ C(C1, T (C2)), we have to set A(f) as the
composite

L(C1)

L(f)
��

A(f)
// L(C2)

LT (C1) LRL(C1),

ε̃L(C2)

OO

because by Exercise 6.3.9, A has to send adjoints of morphisms to adjoints. This determines
A uniquely, and RA = UT is satisfied.

For Z, we have the relation UTZ = R, so we need a T -algebra structure map for Z(D)
for any object D of D′, that is, a morphism ξ : TZ(D)→ Z(D) compatible with the multi-
plication and the unit of T . But the structure map of a T -algebra can be read off the counit
of the Eilenberg-Moore adjunction as the morphism ξ : (TZ(D), µZ(D))→ (Z(D), ξ) (see the
Proof of Theorem 6.2.5). Thus, we have to set Z(D) := (R(D), R(ε̃D)), with

TR(D) = RLR(D)
R(ε̃D)

//R(D).

Also, for morphisms h ∈ D(D1, D2), we have no choice but to set

Z(h) = R(h) : (R(D1), R(ε̃D1))→ (R(D2), R(ε̃D2)).

Note that

Z(L(C)) = (RL(C), R(ε̃L(C))) = (T (C), µC) = F T (C).

�

Exercise 6.3.11. Show that A and Z given earlier are actually functors.

6.4. Lifting Left Adjoints

We present a diagrammatic proof of the existence of left adjoints here. There are other
versions available in the literature; see, for instance, [Bo94-2, §4.5] or [BaWe05, §3.7].

Assume that we have an adjunction

C
R
//D,

L
oo
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and let ν : Id⇒ RL denote the unit and π : LR→ Id the counit of the adjunction. Assume
further that R lifts to the level of algebras over monads

(6.4.1) T -algC

U
��

R̃
// T ′-algD

U ′

��

C
R

//

F

OO

D,

F ′

OO

that is, U ′ ◦ R̃ = RU . Again, we do not pose any other commutativity constraints in the
preceding diagram.

Our aim is to lift the left adjoint L to R to the level of algebras over monads. We want
a functor

L̃ : T ′-algD → T-algC,

such that the pair (L̃, R̃) is an adjoint functor pair.
If D is a free T ′-algebra, D = T ′(D′), then the adjunction properties dictate, that we

define L̃(D) as TLD′ because

T -algC(TLD
′, C) ∼= C(LD′, UC) ∼= D(D′, RUC) = D(D′, U ′R̃C) ∼= T ′-algD(T ′D′, R̃C).

If L̃ exists, then it has to preserve coequalizer. So, according to Proposition 6.2.9, we
have no choice but to define L̃(D) on a general T ′-algebra D as the coequalizer of the diagram

FLU ′F ′D
ψ1
//

ψ2

//FLD

for every T ′-algebra D. Here, the morphisms ψ1 and ψ2 are defined as follows. The mor-
phisms ψ1 = (ψ1)D is the composition

FLU ′F ′D

ψ1

��

FLU ′F ′νD
// FLU ′F ′RLD

FL(αLD)
��

FLRUFLD

FπUFLD
��

FLD FUFLD,εFLD
oo

whereas ψ2 = (ψ2)D is just FL(θD), where θD : T ′D → D is the T ′-algebra structure map of
D.

Theorem 6.4.1. Assume that (L,R) is an adjoint functor pair and that R has a lift
to the level of algebras over monads, as in (6.4.1). If the category of T -algebras in C is
cocomplete, then a left adjoint L̃ of the functor R̃ exists.

Proof. The cocompleteness assumption guarantees that we can define L̃ as explained
earlier. Our strategy is to show that the following diagram is a commutative diagram of
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equalizer diagrams in the category of sets.

(6.4.2) T -algC(L̃D,C) // T -algC(FLD,C)
ψ∗1

//

ψ∗2

// T -algC(FLU
′F ′D,C)

ϕ3

��

C(LD,UC)

ϕ2

OO

ϕ1

��

C(LU ′F ′D,UC)

ϕ4

��

D(D,RUC) D(U ′F ′D,RUC)

D(D,U ′R̃C)

α1

��

D(U ′F ′D,U ′R̃C)

T ′-algD(D, R̃C) // T ′-algD(F ′D, R̃C)
ξ∗1
//

ξ∗2

// T ′-algD(F ′U ′F ′D, R̃C).

α2

OO

The morphisms ξ1 and ξ2 are given by ε′F ′D and F ′(θD), respectively. The morphisms ϕi,
1 ≤ i ≤ 4 and αi, i = 1, 2, are the adjunction bijections. We just label them here for later
reference.

Naturality ensures that ψ∗2 and ξ∗2 render the diagram commutative. It remains to show
that ψ∗1 and ξ∗1 are compatible with the bijections coming from the adjunctions.

We pick an arbitrary h ∈ C(LD,UC) and show that

ϕ4 ◦ ϕ3(ψ∗1(ϕ2(h))) = α2 ◦ ξ∗1(α1(ϕ1(h))).

We spell out what these compositions amount to in the following diagram. Here, the left
vertical morphism is α2 ◦ ξ∗1(α1(ϕ1(h))), and the remaining U -shaped morphism depicts the
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composition ϕ4 ◦ ϕ3(ψ∗1(ϕ2(h))).

U ′F ′D

2○
η′
U′F ′D

��

U ′F ′νD

))

νU′F ′D
// RLU ′F ′D

RηLU′F ′D
// RUFLU ′F ′D

RUFLU ′F ′νD
��

1○ U ′F ′RLD

5○

3○

η′
U′F ′RLD

��

νU′F ′RLD
//

αLD

((

RLU ′F ′RLD
RηLU′F ′RLD

// RUFLU ′F ′RLD

RUFαLD

��

U ′F ′U ′F ′D

U ′ε′
F ′D
��

U ′F ′U ′F ′νD

))

RUFLD

4○
η′RUFLD
��

νRUFLD
// RLRUFLD

RηLRUFLD

((

U ′F ′D

U ′F ′νD
��

U ′F ′U ′F ′RLD
U ′F ′αLD

//

6○
U ′ε′

F ′RLDuu

U ′F ′RUFLD

7○ αRUFLD

++

RUFLRUFLD

RUFπUFLD
��

U ′F ′RLD

αLD
--

U ′F ′Rh
��

RUFUFLD

RUεFLD

��

U ′F ′RUC=U ′F ′U ′R̃C

αUC
--

U ′ε′
R̃C 9○��

8○ RUFLD

RUFh

��

U ′R̃C=RUC RUFUC
RUεC

oo

Diagram 1○ commutes because η′ is natural. In 2○, there is a sequence of units of
adjunctions, but the unit νD can be moved along the other two. The naturality of α ensures
that 3○ and 8○ commute. The unit condition for α, as in (6.2.3), implies that αRUFLD ◦
η′RUFLD is equal to R(ηUFLD), and this agrees with the composition in the top row of 4○.
Naturality ensures that 5○ and 6○ commute. As α satisfies the compatibility condition with
respect to the multipliction in the monads T and T ′, as in (6.2.4), we get that 7○ commutes.
We already showed in (6.2.11) that 9○ commutes.

Hence, in total, the diagram (6.4.2) is a commutative diagram of equalizers, and thus we
get a bijection

T -algC(L̃D,C) ∼= T ′-algD(D, R̃C).

This bijection is natural in D and C, and thus, we obtain the adjointness of L̃ and R̃. �

6.5. Colimits and Limits of Algebras over a Monad

Of course, you want to build limits and colimits in your favorite category of algebras over
a monad, whether these are differential graded Lie algebras or algebras associated with the
monad coming from the loop-suspension adjunction. The good news is, that the concrete
form of your monad does not matter. Limits of algebras over monads are easy to describe
and are nothing to worry about.

Theorem 6.5.1. Let T be a monad on a complete category C. Then, the category T -algC
is complete.

Proof. Let G : D → T -algC be a small diagram of T -algebras in C and let (L, (τD : L→
G(D))) be the limit of U ◦G : D → C. We claim that this limit carries a canonical T -algebra
structure and is the limit of G in the category of T -algebras.

106



Denote G(D) as (AD, ξD), with ξD : T (AD)→ AD, and recall that U(AD, ξD) = AD. We
have compatible morphisms

T (L)
T (τD)

//T (U(G(D)) = T (AD)
ξD
//AD

for all objects D of D, and hence, we get a unique morphism ξ : T (L)→ L, with

(6.5.1) τD ◦ ξ = ξD ◦ T (τD).

We have to show that ξ ◦ ηL = 1L and ξ ◦ µL = ξ ◦ T (ξ).
For the first property, we note that

τD ◦ ξ ◦ ηL = ξD ◦ T (τD) ◦ ηL,

and the naturality of η yields that this is equal to ξD ◦ T (ηF (D)) ◦ τD. As every F (D) is a
T -algebra, this reduces to τD, and hence, ξ ◦ ηL = 1L.

For the associativity, we consider the commutative cube:

TTL
µL

//

T (ξ)

xx

TT (τD)

��

TL

T (τD)

��

ξ

yy
TL

ξ
//

T (τD)

��

L

τD

��

TTG(D)

T (ξD)

yy

µG(D)
// TG(D)

ξD
zz

TG(D)
ξD

// G(D).

For τD ◦ ξ ◦ T (ξ) = τD ◦ ξ ◦ µL, you start with the dotted zigzag for τD ◦ ξ ◦ T (ξ). Sliding
down the front square gives ξD ◦ T (τD) ◦ T (ξ), and sliding down the square on the left-hand
side gives ξD ◦T (ξD) ◦TT (τD). Now, you can swop the sides in the bottom square to obtain
ξD ◦µG(D) ◦TT (τD). From here, you just move first up the back square to get ξD ◦T (τD)◦µL,
and finally, you walk up the right-hand square to end up at τD ◦ ξ ◦ µL.

Here, we have just used (6.5.1) and the fact that G(D) is a T -algebra.
It remains to show that (L, ξ) is the limit of G in the category of T -algebras, so we

assume that we have a T -algebra (B, ζ) and a compatible family of morphisms of T -algebras

νD : (B, ζ)→ (G(D), ξ).

We know that there is a unique morphism in C

φ : B = U(B, ζ)→ U(L, ξ) = L,

with τD ◦ φ = νD, and we claim that φ is a T -algebra morphism.
For all objects D of D, we have νD ◦ ζ = ξD ◦ T (νD), because every νD is a morphism of

T -algebras. This yields

τD ◦ φ ◦ ζ = νD ◦ ζ = ξD ◦ T (νD) = τD ◦ ξ ◦ T (φ),

and hence, φ ◦ ζ = ξ ◦ T (φ).
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As φ is unique with τD ◦ φ = νD and as the forgetful functor U : T -algC → C is faithful
by Proposition 6.2.7, φ is unique as a morphism of T -algebras with that property. �

It is easy to see that the analog of Theorem 6.5.1 for colimits is utterly wrong. For
instance, let k be a commutative ring with unit. The coproduct of two k-modules M and N
is their direct sum, M⊕N , whereas if M and N happen to be commutative k-algebras, then
their coproduct in the category of commutative k-algebras is the tensor product M ⊗k N ,
so you cannot just take the colimit in the underlying category in order to produce a colimit
on the level of algebras. Under rather restrictive conditions, there is a transfer result.

Lemma 6.5.2. Let T be a monad on C, let D be a small category, and let G : D → T -algC
be a functor, such that UG : D → C possesses a colimit. If T and T ◦T preserve this colimit,
then G has a colimit in T -algC which is preserved by U .

Proof. Let (colimDUG, τD : UG(D) → colimDUG) be the colimit of the underlying
diagram UG : D → C. Every G(D) is a T -algebra, so G(D) is of the form (UG(D), ξD),
with structure maps ξD : T (U(G(D))) → U(G(D)). The ξDs are components of a natural
transformation

ξ : T ◦ U ◦G⇒ U ◦G,

because for every f ∈ D(D1, D2), the morphism G(f) is an element of T -algC(G(D1), G(D2));
therefore, for all such f , the diagram

TUG(D1)
ξD1

//

TUG(f)

��

UG(D1)

UG(f)

��

TUG(D2)
ξD2

// UG(D2)

commutes.
By assumption, (T (colimDUG), T (τD) : TUG(D) → T (colimDUG)) is the colimit of

TUG. The morphisms τD ◦ ξD : TUG(D)→ colimDUG induce a unique morphism

Ξ: T (colimDUG) ∼= colimDTUG→ colimDUG,

with the property that

(6.5.2) τD ◦ ξD = Ξ ◦ T (τD).

We claim that ((colimDUG,Ξ), τD : (UG(D), ξD) → (colimDUG,Ξ)) is the colimit of G
in T -algC. By construction, U preserves the colimit ((colimDUG,Ξ), τD : (UG(D), ξD) →
(colimDUG,Ξ)).

We first show that Ξ defines a T -algebra structure on colimDUG.
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As the diagram

colimDUG
ηcolimDUG

// T (colimDUG)

Ξ
��

UG(D)

τD
88

ηUG(D)
// TUG(D)

T (τD)
55

ξD
��

colimDUG

UG(D)

τD
55

commutes, we get

Ξ ◦ ηcolimDUG ◦ τD = Ξ ◦ T (τD) ◦ ηUG(D) = τD,

and hence, Ξ ◦ ηcolimDUG = 1colimDUG, so Ξ is compatible with the unit of T .
For the associativity of Ξ, we use that by assumption, TT preserves colimDUG, so in

particular, it suffices to check any relation by precomposing with TT (τD) for all objects D
of D. Consider the solid part of the diagram

TTUG(D)
TTτD
//

T (ξD)

ww

µUG(D)

��

TT colimDUG

µcolimDUG

��

T (Ξ)

((

TUG(D)

ξD ''

TUG(D)
TτD

//

ξD
��

T colimDUG

Ξ
��

T colimDUG

Ξ
vv

UG(D)
τD

// colimDUG.

We want to show that the right dashed wing of the diagram commutes. The solid part
commutes, and this yields

Ξ ◦ µcolimDUG ◦ TT (τD) = Ξ ◦ T (τD)µUG(D) = τD ◦ ξD ◦ T (ξD).

By (6.5.2), we get that this is equal to Ξ ◦ T (τD) ◦ T (ξD) = Ξ ◦ T (τD ◦ ξD), and using (6.5.2)
again, this equals

Ξ ◦ T (Ξ ◦ T (τD)) = Ξ ◦ T (Ξ) ◦ TT (τD).

It remains to check that ((colimDUG,Ξ), τD : (UG(D), ξD) → (colimDUG,Ξ)) has the
universal property of the colimit of G, so assume that (σD : (UG(D), ξD) = G(D)→ (C, ζ))
is another cocone for G. Then, the σDs are also a cocone for UG(D) when viewed as
morphisms σD : UG(D)→ C, so we get a unique morphism ψ ∈ C(colimDUG,C), with

(6.5.3) ψ ◦ τD = σD.
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We claim that ψ is a morphism of T -algebras. As ζ is a morphism of T -algebras, we have
ζ ◦ T (σD) = σD ◦ ξD for all objects D of D.

TUG(D)
T (σD)

%%

T (τD)
//

ξD

��

T (colimDUG)

Ξ

��

T (ψ)

xx

T (C)

ζ

��

UG(D)
τD

//

σD

%%

colimDUG
ψ

ww
C

We want to show that the right front face commutes. By assumption, all other faces of the
triangular prism commute; thus,

ζ ◦ T (ψ) ◦ T (τD) = ζ ◦ T (σD) = σD ◦ ξD
= ψ ◦ τD ◦ ξD = ψ ◦ Ξ ◦ T (τD),

and hence, ζ ◦ T (ψ) = ψ ◦ Ξ. �

You know from Theorem 3.2.2 that a category is cocomplete if and only if it has coequal-
izers and coproducts. In the case of a category of algebras over a monad, we only have to
establish the existence of coequalizers.

Theorem 6.5.3. Let C be a cocomplete category and let T be a monad on C. Then, the
category of T -algebras in C, T -algC, is cocomplete if and only if it has coequalizers.

Proof. We have to show that the existence of coequalizers implies the existence of
coproducts. The proof has a conceptual part, where we actually construct coproducts.
Checking the properties of the coproduct is then rather dull, but necessary, so you are
cordially invited to skip that part.

The idea of the proof is to use the important property of algebras over a monad of being
expressible as the coequalizer of free objects. Let D be a small discrete category and let
(CD, ξD) be a D-diagram in T -algC. The free functor is a left adjoint functor, so it has to
preserve coproducts. Hence, we know that if coproducts of T -algebras in C exist, then

(T (
⊔
D

CD), µ⊔
D CD

) ∼=
⊔
D

(T (CD), µCD),

where the coproduct on the left-hand side denotes the coproduct in C (and we know that
this exists) whereas the coproduct on the right-hand side is the one that we want.

So, we have no choice, but to define the coproduct

(C, ξ) =
⊔
D

(CD, ξD)

as a coqualizer of a diagram

(T (
⊔
D(T (CD), µCD)), µ⊔

D(T (CD)))
α
//

β
//(T (
⊔
D CD), µ⊔

D CD
),
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with morphisms of T -algebras α and β that we will specify later.
As coproducts exist in C, we have the coproducts

⊔
D CD and

⊔
D T (CD) in C with

universal cocones

iCD : CD →
⊔
D

CD and iT (CD) : T (CD)→
⊔
D

T (CD).

The morphisms T (iCD) : T (CD)→ T (
⊔
D CD) are a cocone in C, and hence, there is a unique

morphism

θ :
⊔
D

T (CD)→ T (
⊔
D

CD)

in C, with

(6.5.4) θ ◦ iT (CD) = T (iCD).

We consider the two morphisms

α = (T (
⊔
D T (CD)), µ⊔

D T (CD))
T (θ)

//(T (T (
⊔
D CD)), µT (

⊔
D CD))

µ⊔D CD
//(T (
⊔
D CD), µ⊔

D CD
)

and
β = T (

⊔
D

ξD) : (T (
⊔
D

T (CD)), µ⊔
D T (CD))→ (T (

⊔
D

CD), µ⊔
D CD

).

We have to show that α and β are morphisms of T -algebras.
For α, consider the diagram

TTT (
⊔
D CD)

T (µ⊔D CD )

((

T (µ⊔D CD )

��

TT (
⊔
D TCD)

TT (θ)
66

µ⊔D TCD
��

TT (
⊔
D CD)

µ⊔D CD
��

T (
⊔
D TCD)

T (θ)

((

T (
⊔
D CD).

TT (
⊔
D CD)

µ⊔D CD 66

The right half of the diagram trivially commutes, and the left half commutes because of the
naturality of µ, and hence, so does the whole diagram. The naturality of µ also implies

µ⊔
D CD
◦ T (β) = µ⊔

D CD
◦ TT (

⊔
D

ξD)

= T (
⊔
D

ξD) ◦ µ⊔
D T (CD)

= β ◦ µ⊔
D T (CD),

and hence, β is a morphism of T -algebras as well.
So the coequalizer of α and β exists in T -algC:

(T (
⊔
D T (CD)), µ⊔

D T (CD))
α

//

β
//(T (
⊔
D CD), µ⊔

D CD
)

π
//(C, ξ).
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We claim that (C, ξ) is the coproduct of the (CD, ξD) in T -algC. So, we have to

(1) construct the morphisms σD : (CD, ξD)→ (C, ξ) for the universal cocone, and
(2) show that this coqualizer satisfies the universal property of the coproduct.

For (1), we consider the coqualizer diagram for (CD, ξD) in T -algC, together with the com-
position π ◦ T (iCD):

(TT (CD), µT (CD))
µCD

//

T (ξD)
// (T (CD), µCD)

π◦T (iCD )

��

ξD
// (CD, ξD).

(C, ξ)

By the coequalizer property of π, we know that

π ◦ µ⊔
D CD
◦ T (θ) = π ◦ T (

⊔
D

ξD).

The diagram

TT (CD)
µCD

//

T (iT (CD))

vv

TT (iCD )

��

T (CD)

T (iCD )

��

T (
⊔
D T (CD))

T (θ)
// TT (

⊔
D CD)

µ⊔D CD
// T (
⊔
D CD)

π

��

C

commutes by (6.5.4) and by the naturality of µ, and therefore,

π ◦ T (iCD) ◦ µCD = π ◦ µ⊔
D CD
◦ T (θ) ◦ T (iT (CD)) = π ◦ T (

⊔
D

ξD) ◦ T (iT (CD)),

but T (
⊔
D ξD) ◦ T (iT (CD)) is equal to T (iCD) ◦ T (ξD), and hence,

π ◦ T (iCD) ◦ µCD = π ◦ T (iCD) ◦ T (ξD).

The universal property of the coequalizer yields a unique morphism σD : (CD, ξD) → (C, ξ)
with

(6.5.5) σD ◦ ξD = π ◦ T (iCD).

For (2), we show that ((C, ξ), σD : (CD, ξD) → (C, ξ)) satisfies the universal property of the
coproduct.

Let γD : (CD, ξD)→ (A, ζ) be any cocone. We want to construct a unique γ ∈ T -algC((C, ξ), (A, ζ)),
with γ ◦ σD = γD. We first use the universal property of the coproducts in C.

The morphisms U(γD) = γD : CD → A form a cocone in C, and hence, there is a unique
ψ ∈ C(

⊔
D CD, A), with

(6.5.6) ψ ◦ iCD = γD.

Similarly, we get a unique ϕ ∈ C(
⊔
D T (CD), T (A)), with

(6.5.7) ϕ ◦ iT (CD) = T (γD).
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These two morphisms are related. The diagram⊔
D T (CD)

θ

''

T (CD)

iT (CD)
88

T (iCD )
//

T (γD)

��

iT (CD)

��

T (
⊔
D CD)

T (ψ)

��

⊔
D CD

ϕ
&&

T (A)

commutes, and therefore,

(6.5.8) T (ψ) ◦ θ = ϕ.

As the γDs are morphisms of T -algebras and by (6.5.6) and (6.5.7), we obtain that⊔
D T (CD)

⊔
D ξD

//
⊔
D CD

ψ

��

T (CD)

iT (CD)
77

ξD
//

iT (CD)

��

T (γD)

''

CD

iCD
88

γD

&&⊔
D T (CD)

ϕ
// T (A)

ζ
// A

is commutative, and this implies

(6.5.9) ζ ◦ ϕ = ψ ◦
⊔
D

ξD.

We collect all these relations to show that

(6.5.10) ζ ◦ T (ψ) ◦ µ⊔
D CD
◦ T (θ) = ζ ◦ T (ψ) ◦ T (

⊔
D

ξD).

The left-hand side is contained in the solid commutative part of the diagram

T (
⊔
D T (CD))

T (
⊔
D ξD)

��

T (θ)
// TT (

⊔
D CD)

µ⊔D CD
//

TT (ψ)

&&

T (
⊔
D CD)

T (ψ)

%%

TT (A)
µA

//

T (ζ)

��

T (A)

ζ

��

T (
⊔
D CD)

T (ψ)
// T (A)

ζ
// A.

Thus,

ζ ◦ T (ψ) ◦ µ⊔
D CD
◦ T (θ) = ζ ◦ T (ζ) ◦ TT (ψ) ◦ T (θ) = ζ ◦ T (ζ ◦ T (ψ) ◦ θ).
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With the relations (6.5.8) and (6.5.9), we have that

ζ ◦ T (ζ ◦ T (ψ) ◦ θ) =ζ ◦ T (ζ ◦ ϕ)

=ζ ◦ T (ψ ◦
⊔
D

ξD),

and this proves the relation (6.5.10), and hence, ζ ◦ T (ψ) coequalizes µ⊔
D CD

◦ T (θ) and
T (
⊔
D ξD). Therefore, by the universal property of the coequalizer, there is a unique mor-

phism γ : (C, ξ)→ (A, ζ), with

(6.5.11) γ ◦ π = ζ ◦ T (ψ).

It remains to show that γ is also unique, with the property that for all objects D of D,
γ ◦ σD = γD. So, we assume that there is another morphism f ∈ T -algC((C, ξ), (A, ζ)), with
the property that f ◦ σD = γD for all D. By (6.5.4), we know that

f ◦ π ◦ θ ◦ iT (CD) = f ◦ π ◦ T (iCD).

But by (6.5.5), the latter is

f ◦ σD ◦ ξD = γD ◦ ξD = ψ ◦ iCD ◦ ξD = ψ ◦
⊔
D

ξD ◦ iT (CD),

and therefore, we obtain that

f ◦ π ◦ θ = ψ ◦
⊔
D

ξD.

We embed T (−) applied to the preceding relation as the right part of the roof of the
following diagram:

T (
⊔
D CD)

T (
⊔
D ηD)

((

T (
⊔
D CD)

T (ψ)

%%

T (
⊔
D T (CD))

T (
⊔
D ξD)

66

T (
⊔
D ξD)

��

T (θ)
// TT (

⊔
D CD)

µ⊔D CD
��

T (π)
// T (C)

T (f)
//

ξ

��

T (A)

ζ

��

T (
⊔
D CD)

π

��

T (
⊔
D CD)

π
// C C

f
// A.

The left-hand triangles commute because ξD ◦ ηD = 1CD for all objects D of D. The left
square commutes because π is a morphism in a coequalizer diagram. The middle and right
squares commute because π and f are morphisms of T -algebras.

So, in total, we get f ◦ π = ζ ◦ T (ψ), but γ was unique with this property, so f = γ.
�
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6.6. Monadicity

We close with a criterion that helps you to decide whether a given category is equivalent
to a category of T -algebras for some monad T . There are several versions of such a result
in the literature ([BaWe05], [Bo94-2, 4.4]), and we present only one of them. The original
version is due to Beck [BaWe05, Theorem 3.14].

When does a functor ’look like’ a forgetful functor U : T -algC → C?
Definition 6.6.1. A functor R : D → C is monadic, if there exists a monad T on C and

an equivalence of categories Φ: D → T -algC such that U ◦ Φ is isomorphic to R.

T -algC

U
��

D

Φ
<<

R
// C

Barr and Beck called such functors tripleable. Beware that MacLane [ML98, VI.3]
reserves the term monadic only for functors for which Φ is an isomorphism.

Theorem 6.6.2. (Barr and Beck monadicity theorem). Let R : D → C be a functor.
Then, the following conditions are equivalent.

(1) The functor R is monadic.
(2)

• The functor R has a left adjoint F .
• A morphism f ∈ D(D1, D2) is an isomorphism if and only R(f) is an isomor-

phism.
• For any pair of morphisms,

(6.6.1) D1

f
//

g
//D2

in D for which R(D1)
R(f)

//

R(g)
//R(D2) has a split coequalizer in C, the co-

equalizer of f and g exists in D and is preserved by R.

Proof. If R is monadic, then we show that the forgetful functor U satisfies the conditions
from (2). The left adjoint is F . If f ∈ T -algC((C1, ξ1), (C2, ξ2)) and if U(f) is an isomorphism
in C: U(f) = f : C1 → C2, with inverse f−1 : C2 → C1, then f−1 is automatically a morphism
of monads. As f ◦ ξ1 = ξ2 ◦ T (f), we get

f ◦ ξ1 ◦ T (f−1) = ξ2 ◦ T (f) ◦ T (f−1) = ξ2 = f ◦ f−1 ◦ ξ2,

and as f is an isomorphism, this implies ξ1 ◦ T (f−1) = f−1 ◦ ξ2. So, it remains to show

the coequalizer property. Let (C1, ξ1)
f

//

g
//(C2, ξ2) be a coequalizer in T -algC, which

becomes split after the application of U , that is, there are morphisms s, σ, and π, such that

C1

f
//

g
//C2

π
//

σ

{{

C

s

��
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is a split coequalizer in C. Such split coequalizers are preserved by every functor, so in
particular, T and TT preserve it. Therefore, we can apply Lemma 6.5.2 and obtain that the
coequalizer of f and g exists in T -algC and is preserved by U .

Conversely, we assume that R satisfies the conditions from (2); in particular, we have a
left adjoint L of R and a monad T = RL. We define Ψ: D → T -algC as

Ψ(D) = (R(D), RεD : RLR(D)→ R(D)).

We claim that Ψ is an equivalence of categories, so we check that it is full, faithful, and
essentially surjective.

• Consider the functor Φ: KT → D, with Φ(C) = L(C) and Φ(f : C1 → T (C2)) =
εLC2 ◦ L(f). The composite Ψ ◦ Φ is equal to the functor G from Proposition 6.3.5
that identifies the Kleisli category KT with the full subcategory of T -algC of free
objects. Therefore, Ψ is full.
• As U ◦ Ψ = R, it is enough to show that R is faithful, and by Proposition 2.4.11, we

have to show that εD is an epimorphism for all objects D of D. To this end, consider
the diagram

LRLR(D)
LRεD

//

εLRD
//LR(D)

εD
//D.

If we apply the functor R to this diagram, then we obtain a split coequalizer diagram

RLRLR(D)
RLRεD

//

εRLRD
//RLR(D)

ηRLRD

|| RεD
//RD,

ηRD

{{

because ε is the counit of the adjunction (L,R). By assumption, we get a coequalizer
diagram

LRLR(D)
LRεD

//

εLRD
//LR(D)

π
//D̃.

By the universal property, there is a unique morphism h ∈ D(D̃,D) with h ◦ π =
εD. By assumption, R(D) is isomorphic to R(D̃) and R(π) is equal to R(εD) up to
isomorphism. But then, again up to an isomorphism, R(h) ◦ R(εD) is R(εD). Thus,
R(h) is an isomorphism, and by assumption, this implies that h is an isomorphism,
so εD is an epimorphism.
• Let (C, ξ) be an object of T -algC. Consider the diagram

LRL(C)
Lξ

//

εL(C)

//L(C).

Applying R(−) again gives a split coequalizer diagram by Proposition 6.2.9,

(6.6.2) RLRL(C)
RLξ

//

RεL(C)

//RL(C)
ξ
//C,
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and therefore, by assumption, we obtain a coequalizer diagram

LRL(C)
Lξ

//

εL(C)

//L(C)
π
//C̃,

such that R(C̃) is isomorphic to C, and up to isomorphism, ξ is R(π), as discussed ear-
lier. The splitting of (6.6.2) gives a section for R(π), and hence, for LR(π). Therefore,
LR(π) is an epimorphism.

As π◦L(ξ) = π◦εL(C) and as up to isomorphism, L(ξ) = LR(π) and εL(C) = εLR(C̃),

we obtain that up to an isomorphism, π ◦ L(π) = εC̃ ◦ LR(π), because the counit is
natural, that is, π ◦ εLR(C̃) = εC̃ ◦ LR(π).

As LR(π) is an epimorphism, this implies that εC̃ is equal to π up to an isomor-
phism. Therefore we get that R(εC̃) is equal to R(π) up to an isomorphism but that
in turn was equal to ξ up to an isomorphism. Therefore, there is an isomorphism

Ψ(C̃) = (R(C̃), R(εC̃)) ∼= (C, ξ),

and Ψ is essentially surjective.

�

6.7. Comonads

As usual, we do not spell out the dual notion of a monad, which is a comonad, in detail.

Definition 6.7.1. A comonad in a category D consists of an endofunctor G : D → D
together with two natural transformations, ε : G ⇒ Id and δ : G ⇒ G ◦ G, such that the
following diagrams commute:

G
δ +3

δ
��

GG

G(δ)
��

GG
δG +3 GGG

and G

δ
��

G GG
G(ε)
oo

εG
// G.

For a comonad G, the natural transformation ε is called the counit of the monad and δ
is called the comultiplication. Comonads on a category D form a category with the obvious
notion of morphisms.

Dual to 6.1.3, we can construct comonads from every pair of adjoint functors.

Theorem 6.7.2. Let C
L
// D

R
oo be an adjoint pair of functors. Then, the endofunctor

T = L ◦ R : D → D is a comonad on D. The transformation δ : LR ⇒ LRLR is given by
LηR, where η is the unit of the adjunction and the transformation ε : LR⇒ Id is the counit
of the adjunction.

Exercise 6.7.3. Prove the theorem.
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CHAPTER 7

Abelian Categories

If you want to do homological algebra, you need projective and injective resolutions of
objects, and for this, you need to be able to form kernels and cokernels of morphisms and
you need to be able to add and subtract morphisms.

7.1. Preadditive Categories

Definition 7.1.1. A preaddititve category is a category A, such that for every pair of
objects A1, A2, there is an abelian group of morphisms from A1 to A2 and the composition
of morphisms is a bilinear map.

A preadditive category with only one object is nothing but a ring. The endomorphisms of
that object are an abelian group, and the composition of morphisms defines the multiplicative
structure. Thus, a preadditive category can be thought of as a ring with many objects. A
group with many objects in this sense is a groupoid, so one might call a preadditive category
a ringoid.

Example 7.1.2. Let C be a category. Then, there is a preadditive category associated
with C which we denote by Z[C]. Its objects are the objects of C, and the morphisms are
given by Z[C](C1, C2) := Z{C(C1, C2)}, where Z{S} denotes the free abelian group generated
by a set S.

There are many other examples, such as the category of R-modules and R-linear maps for
any unital and associative ring R, in particular, the category of abelian groups, is preadditive.
The category of groups and group homomorphisms, Gr, however, is not preadditive.

Definition 7.1.3. Let A and A′ be preadditive categories. A functor F : A → A′ is
additive if for any two objects A1, A2 of A, the map F : A(A1, A2)→ A′(F (A1), F (A2)) is a
group homomorphism.

Exercise 7.1.4. Let Preadd denote the category of all small preadditive categories and
additive functors and let U denote the forgetful functor from Preadd to cat. Is Z[−] left
adjoint to U?

Recall from Definition 1.5.1 that a zero object is an object that is terminal and initial. If
a category C has a zero object, then for any two objects C1 and C2, there is a zero morphism,
0 ∈ C(C1, C2), which is the composition of the unique morphism from C1 to 0, followed by
the unique morphism from 0 to C2.

Remark 7.1.5. If A is a preadditive category and if A has a zero object, then for any
pair of objects A1, A2 of A the zero morphism 0: A1 → A2 is the zero of the abelian group
A(A1, A2), because the groups A(A1, 0) and A(0, A2) are trivial and the zero morphism is
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the composite of the two unique elements in these groups. Preadditive categories do not
have to possess a zero object, but they always have zero morphisms.

Definition 7.1.6. Assume that a category C has zero morphisms. Then, the kernel of
a morphism f ∈ C(C1, C2) is the equalizer of the morphisms f, 0: C1 → C2. Dually, the
cokernel of a morphism f ∈ C(C1, C2) is the coequalizer of the morphisms f, 0: C1 → C2.

Note that every kernel is a monomorphism because it is an equalizer (see Remark 3.1.28),
and every cokernel is an epimorphism (see Remark 3.1.17).

Remark 7.1.7. We defined kernels as equalizers and cokernels as coequalizers. In a
preadditive category A, actually all equalizers are kernels and all coequalizers are cokernels.
We show this for kernels. The universal property of an equalizer diagram

A
ϕ
//A1

f
//

g
//A2

is that for every morphism α : A′ → A1 with f ◦ α = g ◦ α, there is a unique morphism ξ
from A′ to A with ϕ ◦ ξ = α.

As A is preadditive, the condition f ◦ α = g ◦ α is equivalent to (f − g) ◦ α = 0 = 0 ◦ α.
Hence, the equalizer diagram is equivalent to the equalizer diagram

A
ϕ
//A1

f−g
//

0
//A2,

and therefore, every equalizer is a kernel.

Example 7.1.8. If C is not a preadditive category, then it is in general not true that every
monomorphism is a kernel. Consider for instance the category of groups, Gr. The trivial
group is a zero object of Gr. Monomorphisms are just injective group homomorphisms, so,
for instance, the inclusion of an arbitrary subgroup i : H ↪→ G is a monomorphism. However,
if

N
ϕ
//G

f
//

0
//G′

is a kernel, then N can be identified with N = {g ∈ G, f(g) = eG′}, and this is a normal
subgroup of G.

Exercise 7.1.9. Let C be a category with a zero object. What is the kernel of a monomor-
phism α : C1 → C2? What is the kernel of the zero map 0: C1 → C2?

In a preadditive category, initial and terminal objects have to agree if they exist.

Proposition 7.1.10. Let A be a preadditive category. Then, the following are equiva-
lent:

• There exists an initial object in A.
• There exists a terminal object in A.
• There exists a zero object in A.
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Proof. Of course, if we have a zero object, then we also have an initial and terminal
object. We show that the existence of an initial object guarantees the existence of a zero
object.

Let ∅ be an initial object of A. Then, the abelian group A(∅,∅) consists of a single
element, and hence, 1∅ is the zero element of the group A(∅,∅). Let A be any object of A.
Then, the abelian group A(A,∅) has at least a zero element. But for any f ∈ A(A,∅), we
get that f is equal to 1∅ ◦ f . As the composition of morphisms is bilinear, this implies that
f is the zero element of A(A,∅), and hence, ∅ is also terminal, and thus a zero object. �

In the category of abelian groups, the product of two abelian groups A and B, A × B,
is isomorphic to (your favorite model of) the direct sum of A and B, A⊕B. This is no bug
but a feature.

Proposition 7.1.11. Let A be a preadditive category and let A and B be two objects
of A. Then, the following are equivalent:

(1) The coproduct of A and B exists in A.
(2) The product of A and B exists in A.
(3) There exists an object M in A, together with morphisms in A

pA : M → A, pB : M → B, iA : A→M and iB : B →M,

such that

pA ◦ iA = 1A, pB ◦ iB = 1B, pA ◦ iB = 0, pB ◦ iA = 0 and iA ◦ pA + iB ◦ pB = 1M .

A

0

  

iA

��

1A

��

B

0

  

1B

%%iB
// M

pB
//

pA

��

B

A

In addition, under these equivalent conditions, we have that iA is a kernel of pB, iB is a
kernel of pA, and also pA is a cokernel of iB, and pB is a cokernel of iA.

Proof. We show that the existence of binary products is equivalent to the existence of
an object, as in (3). The proof of the other equivalence is dual to this proof.

Assume the product of A and B, A×B, exists. Then, we have projection maps pA : A×
B → A and pB : A×B → B, and morphisms into A×B from any other object are determined
by their composition with these projections. We define iA : A→ A×B as the morphism with
pA ◦ iA = 1A and pB ◦ iA = 0. Similarly, iB is determined by pB ◦ iB = 1B and pA ◦ iB = 0.
But then, we also get that

pA ◦ (iA ◦ pA + iB ◦ pB) = pA, pB ◦ (iA ◦ pA + iB ◦ pB) = pB,
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and hence, (iA ◦ pA + iB ◦ pB) is equal to the identity on A×B. So, (1) implies (3).
Conversely, assume that we have an object M as in (3). We show that M has the

universal property of a product. Thus, let f ∈ A(A′, A) and g ∈ A(A′, B) be any pair of
morphisms in A. We define ξ : A′ →M as

ξ = iA ◦ f + iB ◦ g.
Then, pA ◦ ξ is, by definition, equal to f , and pB ◦ ξ gives g.
If τ : A′ → M is any other morphism in A with the property that pA ◦ τ = f and

pB ◦ τ = g, then τ agrees with ξ because

τ =1M ◦ τ
=(iA ◦ pA + iB ◦ pB) ◦ τ
=iA ◦ f + iB ◦ g
=ξ.

Hence, (1) is equivalent to (3).
We still have to prove the claims about kernels and cokernels, and we show that the

kernel of the projection pB is iA. The proof of the fact that the kernel of pA is iB is similar,
and the proof about the identification of the cokernels is dual. The composition pB ◦ iA is
trivial. If any other morphism f : C →M satisfies that pB ◦f is trivial, then we can factor f
via iA using pA ◦ f , because pA ◦ iA ◦pA ◦ f = pA ◦ f and pB ◦ iA ◦pA ◦ f = 0. This determines
pA ◦ f as the unique morphism, with iA ◦ pA ◦ f = f . The uniqueness is ensured because iA
is a monomorphism. �

This result justifies the following definition:

Definition 7.1.12. Let A be a preadditive category. An object M , as in Proposition
7.1.11, is the biproduct of A and B in A.

7.2. Additive Categories

Definition 7.2.1. A preadditive category A is an additive category if it has binary
biproducts.

Lemma 7.2.2. For any functor F : A → B between additive categories, the following are
equivalent:

• The functor F is additive.
• The functor F preserves finite coproducts.
• The functor F preserves finite products.
• The functor F preserves binary biproducts.

Proof. If F is additive, then it preserves binary biproducts, because they are determined
by the morphisms iA, iB and pA, pB and their additive relations.

Preservation of finite coproducts or products implies the preservation of binary biprod-
ucts.

If F preserves binary biproducts, then we have to show that it preserves the terminal
object 0A (if that exists) in order for F to preserve finite products. As the target category
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B is preadditive, we have at least one element in B(B,F (0A)) for all objects B of B. As 0A
is terminal in A, the two morphisms p1 : 0A × 0A → 0A agree. �

Example 7.2.3. The category of R-modules and R-linear maps is additive. However,
the examples Z[C] discussed in Example 7.1.2 will, in general, just be preadditive.

Exercise 7.2.4. Show that Fun(D,A) is an additive category if D is small and if A is
additive.

7.3. Abelian Categories

Definition 7.3.1. A preadditive category is an abelian category if it satisfies the follow-
ing:

• There exists a zero object in A.
• The category A has finite biproducts.
• Every morphisms f ∈ A(A,B) has a cokernel and a kernel.
• Every monomorphism is a kernel, and every epimorphism is a cokernel.

Remark 7.3.2. Note that the existence of kernels and cokernels and the existence of
binary biproducts imply that A has all finite limits and colimits, because we can write an
equalizer of two morphisms f, g ∈ A(A,B) as the kernel of f −g, and dually, the coequalizer
of f and g is the cokernel of f − g. With 3.2.3 this ensures the existence of all finite limits
and colimits.

One actually does not have to assume that A is preadditive. This follows from the
remaining axioms. For a proof of this fact, see ,for instance, [Bo94-2, 1.6.4].

Proposition 7.3.3. Let A be an abelian category. A morphism f ∈ A(A,B) is an
isomorphism if and only if it is an epi- and a monomorphism.

Proof. Let f be a monomorphism and an epimorphism. Then, we can write f as the
kernel of a morphism g : B → C. In particular, g ◦ f = 0, but f is an epimorphism and
0 ◦ f = 0, and hence, g is the zero map. But every kernel of a zero map is an isomorphism
(see Exercise 7.1.9). �

Exercise 7.3.4. Let f ∈ A(A,B), where A is an abelian category. Prove that the
following are equivalent:

• The morphism f is a monomorphism.
• The kernel of f is the zero object.
• For all objects C of A and for all morphisms h : C → A, the triviality of the compo-

sition f ◦ h implies that h is the zero map.

Theorem 7.3.5. Let A be an abelian category and let f be a morphism. Then, we can
factor f as f = i ◦ p, where p is an epimorphism and i is a monomorphism. Here, i is the
kernel of the cokernel of f and p is the cokernel of the kernel of f .

Proof. The proof is a diagram chase with morphisms.
For f : A → B, we consider its kernel j : ker(f) → A and the cokernel of j, p : B →

coker(j). As f ◦ j = 0, we get a factorization of f through p, as f = i ◦ p. We have to show
that i is a monomorphism.
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In Exercise 7.3.4, you proved that it suffices to show that for any morphism h : C →
coker(j) with i ◦ h = 0, we obtain that h = 0.

If i ◦ h = 0, then i factors through the cokernel of h, say i = ξ ◦ π with π : coker(j) →
coker(h).

C

h
��

0
��

ker(f)
f

//

0
// A

p
//

f

��

coker(j)

i
{{

π

��

B coker(h)
ξ

oo

The composition π ◦ p is an epimorphism; hence, we can write it as a cokernel, so there is a
g : Z → A, with π ◦ p = coker(g). The composition f ◦ g is equal to

i ◦ p ◦ g = ξ ◦ π ◦ p ◦ g,

and this is trivial by the property of the cokernel. Therefore, we can factor g through the
kernel of f and can express it as g = j ◦ ζ.

For a last factorization, we see that p ◦ g = p ◦ j ◦ ζ, but p ◦ j = 0; hence, we can factor
p through the cokernel of g as s ◦ (π ◦ p). But p is an epimorphism, so this implies that
s ◦ π = 1coker(j) and hence, π is a monomorphism. As π is the cokernel of h by assumption,
we have π ◦ h = 0, but then h, was trivial to begin with. Therefore, i is a monomorphism.

C

h
��

ker(f)
j
// A

f
##

p
// coker(j)

i
��

π
// coker(h)

s

}}

ξ
xx

Z

g

<<

ζ

OO

B

�

In the category of abelian groups, we can take p to be the surjection onto the image of
f and i to be the inclusion of the image of f into the target abelian group.

Corollary 7.3.6. Let f be a monomorphism in an abelian category, then f is the kernel
of its cokernel. Dually, if f is an epimorphism, then it is the cokernel of its kernel.

Proof. Theorem 7.3.5 allows us to write f as i◦p. If f is a monomorphism, then so is p,
but then, p is an isomorphism, and hence, f is isomorphic to the kernel of its cokernel. Dually,
for an epimorphism f , we see that in the factorization, i has to be an isomorphism. �

For the concept of functor homology, the following fact is crucial.

Proposition 7.3.7. Let D be a small category and let A be abelian. Then, the functor
category Fun(D,A) is abelian.
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Proof. Colimits and limits in Fun(D,A) are built pointwise (see Proposition 3.3.1);
therefore, Fun(D,A) has a zero object, finite biproducts, kernels, and cokernels.

We know from Corollary 3.3.2 that f ∈ Fun(D,A)(F,G) is a monomorphism if and only
if for every object D of D, the component fD : F (D)→ G(D) is a monomorphism. For the
cokernel of f , g : G ⇒ H, we get that gD is the cokernel of fD for all objects D of D, and
hence, fD is the kernel of gD. Therefore, f is the kernel of g.

Identifying epimorphisms as cokernels is done by a dual argument. �
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CHAPTER 8

Symmetric Monoidal Categories

Often, categories have an extra structure that is given by a product-like structure. Typ-
ical examples are cartesian products of sets or tensor products of vector spaces.

8.1. Monoidal Categories

Definition 8.1.1. A strict monoidal category (C,⊗, e) is a category C, together with a
functor

⊗ : C × C → C
and an object e of C satisfying:

⊗ ◦ (⊗× Id) = ⊗ ◦ (Id×⊗) : C × C × C → C, ⊗ ◦ (e, Id) = ⊗ ◦ (Id, e) = Id,

where (e, Id) is the functor
(e, Id) : C → C × C

sending an object C of C to (e, C) and a morphism f ∈ C(C,C ′) to (1e, f). The functor
(Id, e) is defined similarly.

You can think of ⊗ as a strictly associative and unital product. We actually want equality
of functors in the preceding definition, and this implies, in particular that, for all objects
C1, C2, C3 of C, we get

C1 ⊗ (C2 ⊗ C3) = (C1 ⊗ C2)⊗ C3.

Also,
f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h

for all morphisms f, g, h in C.
If we unravel the condition that ⊗ is a functor, then for all objects C1, C2 of C, there is an

object C1 ⊗ C2 of C, and for the identity morphisms and for the composition of morphisms,
we obtain

1C1 ⊗ 1C2 = 1C1⊗C2 , (f
′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g).

In particular, for f : C1 → C ′1 and g : C2 → C ′2, we can rewrite f ⊗ g as

f ⊗ g = (f ⊗ 1C′2) ◦ (1C1 ⊗ g) = (1C′1 ⊗ g) ◦ (f ⊗ 1C2).

Examples 8.1.2.
• Let M be a monoid with unit 1M . Then, we can consider M as a discrete category,

with the elements of M as objects. This is a strict monoidal category if we use the
multiplication in M as ⊗, and use 1M as the unit.
• Let D be a small category and let C = Fun(D,D) be the category of endofunctors

of D. Then, C is a strict monoidal category, with the composition of functors as
multiplication and with the identity functor as a unit.
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Example 8.1.3. If we change perspective and we consider the category CM with one
object and with the monoid M as the set of endomorphisms, and if we assume that there is
a strict monoidal structure on CM , then we can deduce that the monoid is actually commu-
tative. This is the Eckmann-Hilton argument [EH6162, Theorem 5.4.2]. The proof is easy.
We have the monoid multiplication and the strict monoidal structure. Thus, M is a monoid
with respect to the multiplication in M and with respect to ⊗. Naturality of the monoidal
structure gives an interchange law:

(8.1.1) (m1 ⊗m2)(m3 ⊗m4) = (m1m3)⊗ (m2m4).

We first see that the unit of the monoid structure of M , 1M , agrees with the unit of the
monoidal structure, e:

1M = 1M1M = (e⊗ 1M)(1M ⊗ e) = (e1M)⊗ (e1M) = e⊗ e = e.

Inserting the unit in the two middle terms gives

m1m4 = (m1 ⊗ 1M)(1M ⊗m4) = m1 ⊗m4,

and thus, both monoid structures agree.
Placing the unit at the two outer spots yields

m2m3 = (1M ⊗m2)(m3 ⊗ 1M) = m3 ⊗m2 = m3m2,

and thus, we get the commutativity of the monoid structure.
Eckmann and Hilton used this result to show, for instance, that the fundamental group

of an H-space is commutative.

Many relevant examples do not satisfy the strict assumptions of Definition 8.1.1. In
the example of the tensor product of vector spaces, the associativity condition and unit
condition don’t hold on the nose but are satisfied up to canonical isomorphisms. You can
use this example as a blueprint for the definition of a monoidal category, where one considers
associativity and unit constraints up to coherent isomorphisms.

Definition 8.1.4. A monoidal category is a category C, together with a functor ⊗ : C ×
C → C, an object e of C, and natural isomorphisms α, λ, ρ as follows:

αC1,C2,C3 : C1 ⊗ (C2 ⊗ C3) ∼= (C1 ⊗ C2)⊗ C3, for all C1, C2, C3

λC : e⊗ C ∼= C, ρ : C ⊗ e ∼= C, for all C.

In addition we have three coherence conditions:

(1) The natural isomorphism α satisfies the pentagon axiom, that is, the diagram
(8.1.2)

(C1 ⊗ C2)⊗ (C3 ⊗ C4)
αC1⊗C2,C3,C4

// ((C1 ⊗ C2)⊗ C3)⊗ C4

(αC1,C2,C3
)⊗1C4

''

C1 ⊗ (C2 ⊗ (C3 ⊗ C4))

αC1,C2,C3⊗C4

77

1C1
⊗(αC2,C3,C4

)

++

(C1 ⊗ (C2 ⊗ C3))⊗ C4

C1 ⊗ ((C2 ⊗ C3)⊗ C4)

αC1,C2⊗C3,C4

33
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commutes for all objects C1, C2, C3, C4 of C.
(2) The natural isomorphisms λ and ρ satisfy a triangle axiom, that is, the diagram

C1 ⊗ (e⊗ C2)
α

//

1C1
⊗λC2 ''

(C1 ⊗ e)⊗ C2

ρC1
⊗1C2ww

C1 ⊗ C2

commutes for all objects C1, C2 of C.

The naturality conditions mean that the structural isomorphisms hold for all objects of
C and that they are compatible with all morphisms in C.

When monoidal categories were first introduced, longer lists of coherence conditions were
demanded to hold (see [ML63]). Kelly [K64] noted that the coherence conditions of Defi-
nition 8.1.4 suffice. In the following exercises, you can prove that yourself (or you can cheat
by consulting [K64]).

Exercise 8.1.5. Prove that the functors e ⊗ (−) : C → C and (−) ⊗ e : C → C are
equivalences of categories.

Exercise 8.1.6. Show that

(e⊗ C1)⊗ C2

αe,C1,C2
//

λC1
⊗1C2 ''

e⊗ (C1 ⊗ C2)

λC1⊗C2ww

C1 ⊗ C2

and

(C1 ⊗ C2)⊗ e
αC1,C2,e

//

%C1⊗C2 ''

C1 ⊗ (C2 ⊗ e)

1C1
⊗%C2ww

C1 ⊗ C2

commute for all C1, C2 in C.

Exercise 8.1.7. Use the preceding facts to prove that for e, the isomorphisms λ and ρ
agree:

λe = ρe : e⊗ e→ e.

Remark 8.1.8. A highly nontrivial result (see [ML98, VII.2] and [ML63]) is that the
conditions in Definition 8.1.4 ensure that every other meaningful coherence diagram com-
mutes.

We will see many examples of monoidal categories later and you have encountered some
already. For instance:

Proposition 8.1.9. If a category C possesses finite products and if ∗ denotes the ter-
minal object then (C,×, ∗) is a monoidal category. Dually, if a category C possesses finite
coproducts and if ∅ denotes the initial object, then (C,t,∅) is a monoidal category.

Proof. You showed the unit axioms in these cases in 3.1.26 and 3.1.14. The associativity
follows in a similar manner from the universal property of (co)products. �
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Examples 8.1.10.
• An instance of Proposition 8.1.9 is the category Sets, together with the usual product

of sets as the bifunctor ⊗ and with a one-point set as the unit object.
• A second monoidal structure on the category Sets, where we take the disjoint union

of sets as ⊗ and the empty set as a unit object.
• Both preceding monoidal structures on the category Sets also gives rise to a monoidal

structure on the category of topological spaces. For two spaces X and Y , their product
is a topological space with the product topology, and every topological space with just
one point serves as a unit object. Similarly, the disjoint union of X and Y , X t Y ,
carries a natural topology, and the empty topological space is a unit for this monoidal
structure.
• The category vectK of K-vector spaces, together with the direct sum of K-vector

spaces, is a monoidal category, where the zero vector space is the unit object. We
can also take the category vectK with the tensor product of K-vector spaces and the
vector space K as a unit object.
• Let Fin be the skeleton of the category of finite sets with objects n = {1, . . . , n} for
n ≥ 0, with 0 = ∅. As a monoidal structure, we can take

n⊕m := n + m

corresponding to the disjoint union of sets. Here, e = 0 is a unit. On the level of
morphisms, we get for f : n → n′ and g : m → m′ the induced f ⊕ g : n + m →
n′ + m′, by defining

(f ⊕ g)(i) =

{
f(i), for 1 ≤ i ≤ n,

n′ + g(i− n), for n < i ≤ n+m.

• For a commutative ring with unit k, we denote by Ch(k) the category of unbounded
chain complexes of k-modules. This has a monoidal structure given by the tensor
product of chain complexes. For two chain complexes C∗ and C ′∗, we define the chain
complex C∗ ⊗ C ′∗ as

(C∗ ⊗ C ′∗)n =
⊕
p+q=n

Cp ⊗k C ′q.

The differential on the tensor product, d⊗, is defined as

d⊗(c⊗ c′) = dC(c)⊗ c′ + (−1)pc⊗ dC′(c′)
if c ∈ Cp and c′ ∈ C ′q.

The unit of this symmetric monoidal structure is the zero sphere, S0(k). This is
the chain complex, which is trivial in all chain degrees but zero, and S0(k)0 = k. All
differentials in this chain complex are necessarily trivial.
• Let R be an associative ring with unit. Then, the category of R-bimodules is a

monoidal category. The tensor product of two R-bimodules M and N over R, M⊗RN ,
is again an R-bimodule, because we only used the right R-module structure on M and
the left R-module structure on N to form the tensor product.

Exercise 8.1.11. Consider the category Fin and prove that the assignment

n⊗m := nm
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also gives rise to a monoidal structure on Fin.

Every monoidal category (C,⊗, e) possesses a preferred functor to the category of sets.

Definition 8.1.12. The functor

C(e,−) : C → Sets

is called the underlying set functor.

Remark 8.1.13. Quite often, the functor C(e,−) actually deserves its name. For in-
stance, if we consider the category of k-modules for some commutative ring k with unit,
then

k-mod(k,−) : k-mod→ Sets

sends a k-module M to k-mod(k,M) ∼= M , but on the latter, we only consider the set M
and forget its module structure.

However, if we take the monoidal category of all small groupoids, with the product as the
monoidal structure, then a morphism from the groupoid with one object and the identity
morphism of that object to a groupoid G just picks out an object g of G, together with its
identity morphism, so the underlying set functor applied to G gives the objects of G with
trivial morphisms. Kelly [K82, p. 23] discusses a nice variety of examples.

Monoids are sets together with an associative and unital composition. This concept is
available in every monoidal category.

Definition 8.1.14. Let (C,⊗, e) be a monoidal category. A monoid in C is an object
M of C, together with a morphism µ ∈ C(M ⊗M,M) and a morphism η ∈ C(e,M), which
satisfy

•
µ ◦ (µ⊗ 1M) ◦ α = µ ◦ (1M ⊗ µ) :

M ⊗ (M ⊗M)
α

//

1M⊗µ

vv

(M ⊗M)⊗M
µ⊗1M

((

M ⊗M

µ

++

M ⊗M

µ

ssM

and
•

µ ◦ (η ⊗ 1M) = λ, µ ◦ (1M ⊗ η) = ρ :

e⊗M

λ
))

η⊗1M
// M ⊗M

µ

��

M ⊗ e1M⊗η
oo

%
uu

M

Examples 8.1.15.
• In every monoidal category (C,⊗, e), the unit e is a monoid.
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• Monoids are monoids in the monoidal category (Sets,×, {∗}).
• Monoids in the category of endofunctors are nothing but monads, and we just spent

a whole chapter, Chapter 6, discussing them.
• Let k be a commutative ring with unit. Monoids in the category of k-modules and
k-linear maps are k-algebras.
• A differential graded k-algebra A∗ is a monoid in (Ch(k),⊗,S0(k)). Hence, the multi-

plication morphism µ is a chain map and has components

µn :
⊕
p+q=n

Ap ⊗k Aq → An,

and we have a unit map η : S0(k)→ A∗; thus, η is trivial in all chain degrees but zero.
The fact that the multiplication is a morphism of chain complexes means that the
differential on A∗ satisfies the following Leibniz rule:

d⊗(a⊗ a′) = dA∗(a)⊗ a′ + (−1)pa⊗ dA∗(a′), a ∈ Ap, a′ ∈ Aq.

In particular, A0 is a k-algebra.
Fix a prime p. As a concrete example, one can consider the chain algebra A∗

over the integers, which is generated by a generator in degree one, e, with de = p
and the relation e4 = 0. Hence, e is not a cycle. As we do not require any graded
commutativity, e2 is not zero, and we obtain that

d(e2) = pe− pe = 0,

hence, e2 is a cycle and generates a nontrivial homology class. The homology ofA∗ is an
exterior algebra on a generator in degree two over Fp. This example features promi-
nently in Dugger and Shipley’s work on topologically equivalent differential graded
algebras that are not quasi-isomorphic [DS07].

Definition 8.1.16. Let (M1.µ1, η1), (M2, µ2, η2) be two monoids in a monoidal category
C. A morphism of monoids from M1 to M2 is an f ∈ C(M1,M2), such that

µ2 ◦ (f ⊗ f) = f ◦ µ1

and f ◦ η1 = η2.
Monoids in C, together with morphisms of monoids, form the category of monoids in C.

Definition 8.1.17. Dually, a comonoid C in a monoidal category (C,⊗, e) is an object
C of C, with a comultiplication map ∆, ∆ ∈ C(C,C⊗C), which is coassociative and counital,
that is, the comultiplication renders the diagram

C
∆

//

∆

��

C ⊗ C ∆⊗1C
// (C ⊗ C)⊗ C

C ⊗ C 1C⊗∆
// C ⊗ (C ⊗ C)

α
66

commutative, and there is a counit morphism εC : C → e with the property that

(εC ⊗ 1C) ◦∆ = λ−1 and (1C ⊗ εC) ◦∆ = %−1.
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An alternative way of expressing the axioms is that a comonoid is a monoid in the
opposite category of C. The unit of every monoidal category (C,⊗, e) is a comonoid, but
there are more interesting examples.

Example 8.1.18. A comonoid in the category of chain complexes over a commutative ring
k, Ch(k), is a differential graded coalgebra C∗. The counit is a chain map εC∗ : C∗ → S0(k);
in particular, εC∗ is trivial in all degrees but zero. The comultiplication has components

∆n : Cn →
⊕
p+q=n

Cp ⊗k Cq.

The degree-zero part of C∗, C0, is a coalgebra over k. Let c be an element of Cn. As for
ordinary coalgebras, the counit condition forces the diagonal to be of the form

∆(c) = c⊗ 1k + 1k ⊗ c+
∑
p+q=n

c(1)
p ⊗ c(2)

q ,

with c
(1)
p in degree p and c

(2)
q of degree q. As ∆ is a morphism of chain complexes, it has to

satisfy the co-Leibniz rule:

∆(dc) =
∑

dc(1)
p ⊗ c(2)

q + (−1)pc(1)
p ⊗ dc(2)

q .

Let X be a topological space and let α be a generator of the singular chains of degree n,
that is, a continuous map α : ∆n → X. The Alexander-Whitney map sends α to

AW(α) =
∑
p+q=n

vp(α)⊗ hq(α).

Here, vp(α) = ∂p+1 ◦ . . . ◦ ∂n(α) and hq(α) = ∂0 ◦ . . . ◦ ∂0(α). This induces a coalgebra
structure on the singular chain complex of a topological space X.

If we consider singular chains with coefficients in a field or if we happen to have flatness
on corresponding level of homology groups, then this coproduct on chain level passes to a
coproduct on the level of homology, and then, we get a comonoid structure in the category
of graded abelian groups.

Exercise 8.1.19. Formulate and prove the dual of the Eckmann-Hilton argument for
comonoids.

Definition 8.1.20. Let (C1,∆1, ε1) and (C2,∆2, ε2) be comonoids in a monoidal category
(C,⊗, e), then an f ∈ C(C1, C2) is a morphism of comonoids, if

(f ⊗ f) ◦∆1 = ∆2 ◦ f and ε2 ◦ f = ε1.

Comonoids in C, together with their morphisms, form a category.

Example 8.1.21. Let G be a group and let k be a commutative unital ring. The group
algebra, k[G], has as elements finite k-linear combinations of the group elements. Additively,
it is the free k-module generated by the set G, and hence, an element of k[G] is of the form∑n

i=1 λigi, with λi ∈ k and gi ∈ G.
We define a multiplication on k[G] by setting µ(g1 ⊗R g2) = g1g2, where the latter terms

means the multiplication of g1 and g2 in the group G. We can extend µ bilinearly to all of
k[G]. The neutral element e ∈ G defines the unit η : k → k[G] by 1k 7→ 1ke = e ∈ k[G].
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For instance, if we denote the cyclic group of order n, Cn, multiplicatively as

Cn = {1 = t0 = tn, t, . . . , tn−1},

then it is easy to see that Z[Cn] has nontrivial zero divisors: For instance, both the elements
1− t and 1 + t+ . . .+ tn−1 are nontrivial in Z[Cn] but

(1− t)(1 + t+ . . .+ tn−1) = 1 + t+ . . .+ tn−1 − (t+ . . .+ tn−1 + tn) = 0.

For general G, we can define a coalgebra structure on k[G] by defining ∆(g) as g⊗ g and
by extending this definition k-linearly to all of k[G].

8.2. Symmetric Monoidal Categories

In some of the earlier examples we actually had more structure present than we made
explicit. For instance, in the example of the category Fin, we have a natural isomorphism
from n + m = n ⊕m to m + n = m ⊕ n. In this case, the isomorphism is given by the
shuffle permutation χ : n + m→m + n,

χ(i) =

{
m+ i, if 1 ≤ i ≤ n,

i− n, if n < i ≤ n+m.

Definition 8.2.1. A symmetric monoidal category consists of a monoidal category
(C,⊗, e;α, λ, ρ), together with a natural isomorphism τ in C, with

τC1,C2 : C1 ⊗ C2
∼= C2 ⊗ C1

for all objects C1, C2 of C, such that τ satisfies the following conditions:

(1) For all objects C1, C2 of C, τC2,C1 ◦ τC1,C2 = 1C1⊗C2 .
(2) For all objects C of C, ρC = λC ◦ τC,e : C ⊗ e ∼= C.
(3) The natural isomorphism τ is compatible with α in the sense that for all objects

C1, C2, C3 of C, the following hexagon-diagram commutes:

(C1 ⊗ C2)⊗ C3

τC1⊗C2,C3
// C3 ⊗ (C1 ⊗ C2)

αC3,C1,C2

))

C1 ⊗ (C2 ⊗ C3)

αC1,C2,C3

55

1C1
⊗τC2,C3

))

(C3 ⊗ C1)⊗ C2.

C1 ⊗ (C3 ⊗ C2)
αC1,C3,C2

// (C1 ⊗ C3)⊗ C2

τC1,C3
⊗1C2

55

All examples in 8.1.10 except for the last one are actually symmetric monoidal categories.
In the example of unbounded chain complexes of k-modules, the isomorphism τ is given by

τC∗,C′∗ : C∗ ⊗k C ′∗ → C ′∗ ⊗k C∗, τC∗,C′∗(c⊗ c
′) = (−1)pqc′ ⊗ c

for c ∈ Cp and c′ ∈ C ′q.
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Remark 8.2.2. The definition of a (symmetric) monoidal category above, given in terms
of a monoidal product that satisfies certain conditions such as associativity in a coherent
way, has the advantage of being concrete, but for a generalization to higher category theory,
this description is not feasible. We will describe a different approach later in Section 11.8
and sketch its generalization to ∞-categories.

Example 8.2.3. The examples from Proposition 8.1.9 actually carry symmetric monoidal
structures coming from the product or coproduct. The natural symmetry isomorphisms
τC1,C2 : C1 × C2 → C2 × C1 and τC1,C2 : C1 t C2 → C2 t C1 stem from the symmetric group
Σ2.

Exercise 8.2.4. Show that on the category of unbounded chain complexes, the morphism
τC∗,C′∗ : C∗ ⊗ C ′∗ → C ′∗ ⊗ C∗, with τ(c⊗ c′) = (−1)pqc′ ⊗ c for c ∈ Cp, c′ ∈ C ′q, gives rise to a
symmetric monoidal structure. Why does τ(c⊗ c′) = c′ ⊗ c not work?

There is a strict version of a symmetric monoidal category.

Definition 8.2.5. A strict monoidal category (C,⊗, e) is a permutative category if there
is a natural isomorphism τ with

τC1,C2 : C1 ⊗ C2
∼= C2 ⊗ C1,

with
τC1,C2 ◦ τC2,C1 = 1C2⊗C1

for all objects C1, C2 of C, such that τ satisfies

τC1,C2⊗C3 = (1C2 ⊗ τC1,C3) ◦ (τC1,C2 ⊗ 1C3)

C1 ⊗ C2 ⊗ C3

τC1,C2⊗C3
//

τC1,C2
⊗1C3

((

C2 ⊗ C3 ⊗ C1

C2 ⊗ C1 ⊗ C3

1C2
⊗τC1,C3

66

and τC,e = 1C for all objects C of C.

The skeleton of the category of finite sets is actually a permutative category, and so are
many other small categories based on the category of finite sets, such as the category of finite
sets and injections, I, and the category of finite sets and bijections, Σ.

In a symmetric monoidal category, we can talk about commutative monoids and cocom-
mutative comonoids.

Definition 8.2.6. Let C be a symmetric monoidal category.

• A commutative monoid in C is a monoid M in C, such that

µ ◦ τM,M = µ.

Commutative monoids in C form a full subcategory of the category of monoids in C.
• A cocommutative comonoid in C is a comonoid C in C, such that τC,C ◦ ∆ = ∆.

Cocommutative comonoids in C form a full subcategory of the category of comonoids
in C.

Examples 8.2.7.
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• Of course, commutative monoids are commutative monoids in (Sets,×, {∗}).
• Commutative k-algebras are commutative monoids in the category of k-modules and
k-linear maps; for instance, the polynomial algebra k[X] is a commutative k-algebra.
• Commutative monoids in (Ch(k),⊗,S0(k)) are commutative differential graded alge-

bras. These are differential graded algebras A∗, such that

µ(a′ ⊗ a) = (−1)pqµ(a⊗ a′), for a ∈ Ap, a′ ∈ Aq.
For instance, for k = Z, we can consider the tensor product A∗ = Z[X2] ⊗Z ΛZ(X1)
of a polynomial algebra on a generator X2 in degree two and an exterior algebra on a
generator in degree one, with d(X2) = X1. As the differential has to obey the Leibniz
rule, this determines d on all of A∗. Note that, for instance,

d(X2X1) = d(X2)X1 +X2d(X1) = X2
1 + 0 = 0,

hence, X2X1 is a cycle. The only generator in degree four is X2
2 , and

d(X2
2 ) = X1X2 +X2X1 = 2X1X2,

and hence, we get H3(A∗) ∼= Z/2Z.
• Dually, cocommutative comonoids in the category of k-modules (here k is again a

commutative ring with unit) are cocommutative coalgebras.
We saw the example of a group algebra earlier. As τ ◦∆(g) = ∆(g), we obtain a

cocommutative coalgebra structure on k[G].

The last example is actually richer than it seems, because k[G] is not just a k-algebra
and a k-coalgebra, but both structures are compatible in the following sense.

Definition 8.2.8. Let C be a symmetric monoidal category and let H be an object of C.
Then, H is a bimonoid in C if it has a monoid structure (H,µ, η) and a comonoid structure
(H,∆, ε), such that ∆ and ε are morphisms of monoids.

Remark 8.2.9. Let us describe what the last conditions amount to. The comonoid
structure map ∆ is a morphism from H to H ⊗ H. We can endow H ⊗ H with a monoid
structure by using the twist of the symmetric monoidal structure τ and by using the following
composite as a multiplication:

H ⊗H ⊗H ⊗H
1H⊗τH,H⊗1H

//H ⊗H ⊗H ⊗H µ⊗µ
//H ⊗H.

The condition on ∆ to being a morphism of monoids then requires the following diagram to
commute:

H ⊗H µ
//

∆⊗∆
��

H

∆
��

H ⊗H ⊗H ⊗H
1H⊗τH,H⊗1H

// H ⊗H ⊗H ⊗H µ⊗µ
// H ⊗H

and a compatibility condition with respect to the unit of H; that is,

e
ηH

//

∼=
��

H

∆
��

e⊗ e ηH⊗ηH
// H ⊗H
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commutes.
The compatibility constraints for the counit ε are ε ◦ η = 1H and the commutativity of

H ⊗H µ
//

ε⊗ε
��

H

ε

��

e⊗ e
∼=

// e.

These conditions are equivalent to requiring that µ and η are morphisms of comonoids.

8.3. Monoidal Functors

If we consider functors between (symmetric) monoidal categories, then it is natural to
ask that they should respect the monoidal structures. There are several options as to what
extent the structures should be preserved.

Definition 8.3.1. Let (C,⊗, eC) and (D,2, eD) be two monoidal categories.

• A functor F : (C,⊗, eC) → (D,2, eD) is a lax monoidal functor if for each pair of
objects C1, C2 of C, there is a morphism

ϕC1,C2 : F (C1)2F (C2)→ F (C1 ⊗ C2)

in D, which is natural in C1 and C2, and there is a morphism

η : eD → F (eC)

in D.
These morphisms fit into commutative diagrams for all objects C1, C2, C3 and C:

F (C1)2(F (C2)2F (C3))
αD
//

1F (C1)2ϕC2,C3

��

(F (C1)2F (C2))2F (C3)

ϕC1,C2
21F (C3)

��

F (C1)2(F (C2 ⊗ C3))

ϕC1,C2⊗C3

��

(F (C1 ⊗ C2))2F (C3)

ϕC1⊗C2,C3

��

F (C1 ⊗ (C2 ⊗ C3))
F (αC)

// F ((C1 ⊗ C2)⊗ C3),

F (C)2e′
ρD
F (C)

//

1F (C)2η

��

F (C)

F (C)2F (e)
ϕC,e

// F (C ⊗ e),

F (ρCC)

OO
and e′2F (C)

λD
F (C)

//

η21F (C)

��

F (C)

F (e)2F (C)
ϕe,C

// F (e⊗ C).

F (λCC)

OO

• A lax monoidal functor F : C → D is strong monoidal if the structure morphisms ϕ
and η are natural isomorphisms.
• A lax monoidal functor F is strictly monoidal if ϕ and η are identities.

If the categories involved are symmetric monoidal, then one can impose an additional
symmetry condition.
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Definition 8.3.2. Let C and D be symmetric monoidal categories. A functor F : C → D
is lax symmetric monoidal if it is a lax monoidal functor, such that the diagrams

F (C1)2F (C2)
τD
F (C1),F (C2)

//

ϕC1,C2

��

F (C2)2F (C1)

ϕC2,C1

��

F (C1 ⊗ C2)
F (τCC1,C2

)
// F (C2 ⊗ C1)

commute for all objects C1, C2 of C. If these diagrams commute and F is strong (strictly)
monoidal, then F is called strong (strictly) symmetric monoidal.

Examples 8.3.3.
• The functor

Z{−} : Sets→ Ab

that sends a set S to the free abelian group generated by S, Z{S}, is a strong sym-
metric monoidal functor. There is a natural isomorphism

Z{S} ⊗ Z{T} → Z{S × T}

for all sets S and T , which sends a generator s⊗ t to the generator (s, t) ∈ Z{S×T}.
This natural isomorphism is compatible with the associativity and commutativity
isomorphisms. In addition, we have Z{∗} ∼= Z.
• The forgetful functor

U : (Ab,⊗,Z)→ (Sets,×, {∗})

is not strong monoidal.
• If we take the symmetric monoidal structure on Ab given by the product of groups,

then the forgetful functor to sets is strong symmetric monoidal because it has a left
adjoint, so it has to preserve products.

Often, one wants to replace a symmetric monoidal category by a permutative one or a
monoidal category by a strict monoidal one. This is possible with the following strictification
result:

Proposition 8.3.4.
(1) For every monoidal category (C,⊗, e), there is a strict monoidal category (Str(C),�, [])

and strong monoidal functors F : Str(C)→ C, G : C → Str(C), such that F ◦G = Id
and G ◦ F ∼= Id.

(2) If C is symmetric monoidal, then Str(C) is permutative and the functors involved
are strong symmetric monoidal.

Proof.
(1) The objects of Str(C) are words of finite length (C1, . . . , Cn), with n ≥ 0, such that

the Cis are objects of C. For n = 0, we have the empty word that we denote by [].
We define the morphisms in Str(C) with the help of the functor F . On objects, F
assigns to the object (C1, . . . , Cn) in Str(C) the object (. . . (C1 ⊗ C2)⊗ . . .)⊗ Cn of
C, and it sends the empty word [] to the unit e of C.
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The set of morphisms in Str(C) from a word (C1, . . . , Cn) to (C ′1, . . . , C
′
m) is

defined as

(8.3.1) Str(C)((C1, . . . , Cn), (C ′1, . . . , C
′
m)) := C(F ((C1, . . . , Cn)), F ((C ′1, . . . , C

′
m))).

By construction, Str(C) is a category.
In the following, we abbreviate (C1, . . . , Cn) as C. We define the monoidal

structure on Str(C) by concatenation of words; that is, on objects, we define

C � C ′ := (C,C ′) = (C1, . . . , Cn, C
′
1, . . . , C

′
m).

Concatenation with the empty word is a strict unit. For two morphisms f : C1 → C2

and g : C ′1 → C ′2, we define

f � g : C1 � C ′1 → C2 � C ′2

as the composite

F (C1 � C ′1)

f�g
��

F ((C1, C
′
1))

α
// F (C1)⊗ F (C ′1)

f⊗g
��

F (C2 � C ′2) F ((C2, C
′
2))

α
// F (C2)⊗ F (C ′2).

Here, α is the unique associativity isomorphism in C comparing the two ways of set-
ting parentheses. This definition is compatible with the composition of morphisms,
and the coherence theorem [ML98, VII.2] ensures that for three morphisms f, g, h
in Str(C), we have that

f � (g � h) = (f � g) � h.

With this structure, Str(C) is a strict monoidal category and F : Str(C) is a strong
monoidal functor with F [] = e.

We define G : C → Str(C) on objects by sending an object C of C to the word
of length one on C, (C), and by sending an f ∈ C(C,C ′) to f ∈ Str(C)((C), (C ′)).
This, in fact, defines a functor and we claim that G is strong monoidal. For any
two objects C,C ′ of C, we define the structure map

G(C) �G(C ′) = (C) � (C ′) = (C,C ′)→ G(C ⊗ C ′) = (C ⊗ C ′)

as the identity of C � C ′ (which corresponds to the identity of C ⊗ C ′ via (8.3.1)).
For the unit, note that

Str(C)([], (e)) = C(F [], F (e)) = C(e, e)

and we use the morphism [] → G(e) = (e) in Str(C), given by the identity on e.
Hence, G is, in fact, strong monoidal.

The composition F ◦ G is the identity functor. Evaluating G ◦ F on an object
(C1, . . . , Cn) of Str(C) gives the one-letter word (((. . . (C1 ⊗C2)⊗C3)⊗ . . .)⊗Cn).
The identity morphism on (((. . . (C1 ⊗ C2) ⊗ C3) ⊗ . . .) ⊗ Cn) is an isomorphism
between (F ◦G)(C1, . . . , Cn) and (C1, . . . , Cn) in Str(C).

(2) If C is a symmetric monoidal category, then the symmetry isomorphism

τC,C′ : C � C ′ → C ′ � C
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in Str(C � C ′, C ′ � C) = C(F ((C,C ′)), F ((C ′, C))) is defined as the composite

τC,C′ = α−1 ◦ τF (C),F (C′) ◦ α,
where α is again a uniquely determined associativity isomorphism. The fact that
τF (C),F (C′) satisfies compatibility conditions with respect to the unit and with respect
to the associativity isomorphisms in C ensures that τC,C′ satisfies the requirements
for a symmetry isomorphism in a permutative category. Both functors F and G are
compatible with these symmetry isomorphisms and are strong symmetric monoidal
functors in this case.

�

Remark 8.3.5. Fix a permutation σ ∈ Σn. In a permutative category C, the symmetry
isomorphism τ gives rise to a natural transformation from the n-fold tensor product ⊗n to
the composite functor on Cn that first uses the left action of Σn on Cn (by the permutation
of factors in the product) and then applies the functor ⊗n : Cn → C. We call this natural
transformation τσ. A product of permutations ξ and σ, ξ ◦ σ, is sent to τξσ. Therefore, for
every object C of a permutative category, there is a well-defined action of Σn on C⊗n. The
coherence axioms of a symmetric monoidal category ensure that the same is true for any
symmetric monoidal category.

Note that there is a right Σn-action on the translation category EΣn .

Lemma 8.3.6. [May74, §4] For every permutative category C and every n ≥ 0, there is
a Σn-equivariant functor

τn : EΣn × Cn → C
that sends an object (σ;C1, . . . , Cn) to Cσ−1(1) ⊗ . . .⊗ Cσ−1(n) and a morphism (ξσ−1 : σ →
ξ; f1, . . . , fn) with fi ∈ C(Ci, C ′i), to the composition

τξσ−1 ◦ (fσ−1(1) ⊗ . . .⊗ fσ−1(n)) : Cσ−1(1) ⊗ . . .⊗ Cσ−1(n) → C ′ξ−1(1) ⊗ . . .⊗ C ′ξ−1(n).

Proof. For proving that τn is a functor, it suffices to observe that for permutations
ξ, σ ∈ Σn and morphisms gi ∈ C(C ′i, C ′′i ), it is true that

(gξ−1(1) ⊗ . . .⊗ gξ−1(n)) ◦ τξσ−1 = τξσ−1 ◦ (gσ−1(1) ⊗ . . .⊗ gσ−1(n)).

This shows that τn respects the composition of morphisms. It respects identity morphisms,
and we have that

τn(σξ, Cξ−1(1), . . . , Cξ−1(n)) = τ(σ,C1, . . . , Cn).

�

Dual to the concept of monoidal functors is the following notion:

Definition 8.3.7. Let (C,⊗, eC) and (D,2, eD) be two monoidal categories.

• A functor F : (C,⊗, eC) → (D,2, eD) is a lax comonoidal functor if for each pair of
objects C1, C2 of C, there is a morphism

ψC1,C2 : F (C1 ⊗ C2)→ F (C1)2F (C2)

in D, which is natural in C1 and C2, and there is a morphism

ε : F (eC)→ eD
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in D.
These morphisms satisfy coherence conditions dual to the ones in Definition 8.3.1.

• A lax comonoidal functor F : C → D is strong comonoidal, if the structure morphisms
ψ and ε are natural isomorphisms.
• A lax comonoidal functor F is strictly comonoidal, if ψ and ε are identities.
• If C and D are symmetric monoidal categories, then a functor F : C → D is lax

symmetric comonoidal if it is a lax monoidal functor, such that the diagram

F (C1 ⊗ C2)
F (τCC1,C2

)
//

ψC1,C2

��

F (C2 ⊗ C1)

ψC2,C1

��

F (C1)2F (C2)
τD
F (C1),F (C2)

// F (C2)2F (C1)

commutes for all objects C1, C2 of C.
If these diagrams commute and if F is strong (strictly) comonoidal, then F is

called strong (strictly) symmetric comonoidal.

Note that a strong monoidal functor is automatically strong comonoidal and vice versa.
If you want that natural transformations between lax (symmetric) monoidal functor

preserve structures, then the following condition is needed:

Definition 8.3.8. Let F and G be two lax (symmetric) monoidal functors with structure
maps ϕ and ψ. A natural transformation γ : F ⇒ G is monoidal if the diagrams

eD
ηG

##

ηF

{{

F (eC)
γeC

// G(eC),

and F (C1)2F (C2)
ϕC1,C2

//

γC1
2γC2

��

F (C1 ⊗ C2)

γC1⊗C2

��

G(C1)2G(C2)
ψC1,C2

// G(C1 ⊗ C2)

commute for all objects C1, C2 of C.

8.4. Closed Symmetric Monoidal Categories

Definition 8.4.1. A symmetric monoidal category C is called closed if for all objects C
of C, the functor (−)⊗ C possesses a right adjoint. We denote the right adjoint by (−)C .

Making explicit what the adjunction property means gives us natural bijections

C(A⊗ C,B) ∼= C(A,BC)

for all objects A,B,C in C. In particular, for A = BC , we obtain evaluation morphisms

ev: BC ⊗ C → B.

Exercise 8.4.2. Use the defining adjunction to show that for every object C of C, there is
a canonical isomorphism from Ce to C if C is closed symmetric monoidal. For later reference,
we call this isomorphism iC , that is, iC : Ce ∼= C.

Exercise 8.4.3. What is a suitable notion of a functor between closed symmetric monoidal
categories that preserves the structure?

Examples 8.4.4.
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• An example of a closed symmetric category is, of course, the category Sets, with the
cartesian product of sets as the symmetric monoidal structure. Then, for sets S and
T , the object ST consists of the set of functions from T to S. The bijection

Sets(U × T, S) ∼= Sets(U, ST )

is then the usual exponential law

SU×T ∼= (ST )U ,

with the explicit bijection sending a g : U × T → S to the map u 7→ (t 7→ g(u, t)) for
all u ∈ U and t ∈ T .
• Let k be a commutative ring with unit. Then, the category of (left) k-modules is

a closed symmetric monoidal category. We take the tensor product over k as the
symmetric monoidal structure. The set of morphisms in this category carries a k-
module structure, and the right adjoint to the functor (−) ⊗M : k-mod → k-mod is
the functor k-mod(M,−).
• Let k be a commutative ring with unit. Consider the category Ch(k) of unbounded

chain complexes of k-modules. We saw that this category carries a symmetric monoidal
structure with the tensor product of chain complexes as monoidal product. For two
chain complexes C∗ and C ′∗, we define the chain complex HOM(C∗, C

′
∗) as

HOM(C∗, C
′
∗)n =

∏
`∈Z

k-mod(C`, C
′
`+n);

that is, the nth chain group consists of Z–indexed families of k-linear maps f` : C` →
C ′`+n. The differential, ∂, on HOM(C∗, C

′
∗) is determined by (∂f)` = dC′ ◦ f` −

(−1)nf`−1 ◦ dC .
An element in HOM(C∗, C

′
∗)0 consists of a family of k-linear maps f` : C` → C ′` for

` ∈ Z. If this family constitutes a zero cycle, that is, if ∂f = 0, then this is equivalent
to the condition that dC′ ◦ f` = f`−1 ◦ dC for all `, and this means that the family
(f`)`∈Z is a chain map.
• Pedicchio and Solimini showed [PS86, 2.4] that there is a unique closed symmetric

monoidal structure on the category Top. You are aware that there are rather scary
topological spaces out there, so it might not come as a surprise that this symmetric
monoidal structure does not have the properties that you would like to have. For
instance, the space of continuous maps carries the so-called pointwise topology and
not the compact open topology in that structure. We will discuss an alternative, the
k-topology and compactly generated spaces, in Section 8.5 below.

The first example was special, because there, the monoidal structure was given by the
categorical product.

Definition 8.4.5. A category C is cartesian closed if it has finite products and if the
symmetric monoidal structure (C,×, ∗) is closed.

The category Sets is cartesian closed, as we saw earlier. Let G be a group and let GSets be
the category whose objects are sets with a left G-action and whose morphisms are equivariant
maps, that is,

GSets(S, T ) = {f ∈ Sets(S, T )|f(g.s) = g.f(s), for all g ∈ G, s ∈ S}.
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This category is also cartesian closed. The product of sets induces a product on the category
of G-sets for two G-sets S and T , we define the G-set ST as Sets(T, S), where the G-action
is given by

(g.f)(t) = g.f(g−1.t)

for g ∈ G, f ∈ Sets(T, S), and t ∈ T .
Let (C,⊗, e, τ) be a symmetric monoidal category. An important class of objects in C

comprises those objects C that have an inverse with respect to ⊗, that is, for which there is
an object C ′ of C, such that

C ⊗ C ′ ∼= e.

Definition 8.4.6. The Picard groupoid of C, Picard(C), is the category whose objects
are the invertible objects of C and whose morphisms are isomorphisms between invertible
objects.

Note that Picard(C) is again a symmetric monoidal category, with the structure inherited
from C.

Example 8.4.7. Let k be a commutative ring with unit, then the category of k-modules,
k-mod, is symmetric monoidal. The objects of Picard(k-mod) are invertible modules, that
is, k-modules M such that there is a k-module N with M ⊗k N ∼= k. Then, M is finitely
generated projective of rank one, and the inverse of M is isomorphic to the dual of M ,
N ∼= k-mod(M,k). In fact, the last property is true in any closed symmetric monoidal
category [HoPS97, Proposition A.2.8].

Remark 8.4.8. Assume that C is a closed symmetric monoidal category. If the isomor-
phism classes of objects of Picard(C) form a set, then one can build the Picard group of C,
Pic(C), which is the group whose elements are the isomorphism classes of objects, and the
multiplication is given by

[C1]⊗ [C2] := [C1 ⊗ C2].

This multiplication is well-defined and has [e] as a neutral element, and the inverse of [C] is
[C]−1 = [eC ].

8.5. Compactly Generated Spaces

We will give a brief introduction to the compactly generated topology and to the k-
ification of spaces. These notions will allow us to define decent mapping spaces and well-
behaved products, so that the categories of compactly generated spaces and the category of
k-spaces carry closed symmetric monoidal structures. You know, for instance, that a product
of two CW complexes won’t be a CW complex in general, unless one of the factors is locally
compact. Steenrod [Ste67] introduced the notion of compactly generated spaces, but he
insisted on a full Hausdorff condition. Later, McCord [McCo69] introduced a slightly milder
version with a weak Hausdorff condition and rather nice behavior. Vogt’s approach [V71]
axiomatizes the process of building convenient categories of topological spaces. Overviews
can be found in [May99] and in Riehl’s excellent summary [Rie14]. We mostly follow tom
Dieck’s book [tD08, 7.9] for proofs of useful facts about k-spaces and weak Hausdorff spaces.

We do not use the French convention; in our world, compact subspaces are not assumed
to be Hausdorff.
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Definition 8.5.1.
• Let (X, T ) be a topological space and A ⊂ X be a subspace. We call A compactly

closed, or k-closed, if for all compact Hausdorff spaces K and every continuous map
f : K → X, the preimage f−1(A) is closed in K.
• A subset O ⊂ X is k-open if for all compact Hausdorff spaces K and every continuous

map f : K → X, the preimage f−1(O) is open in K.
• The space X is a k-space if every compactly closed subspace A of X is closed.

We can force a space to become a k-space.

Definition 8.5.2. Let X be a topological space. The k-ification of X, kX, has the same
underlying set as X, but we define a subset A ⊂ X to be closed if and only if it is compactly
closed.

Remark 8.5.3. Note that any open (closed) subset of X is automatically k-open (k-
closed), and hence, the topology consisting of the k-open subsets of X is finer than the
topology T of X. Therefore, the identity map ι : kX → X is continuous. If f : K → X is a
map from a compact Hausdorff space to X, then the map f is continuous when considered
as a map to kX. If g : X → Y is a continuous map, then the same map is continous as a
map from kX to kY ; in fact, the assignment k(−) is a functor from Top to Top, and it is
idempotent.

Definition 8.5.4. We denote by k-Top the full subcategory of Top consisting of k-spaces.

The k-ification is a functor k : Top→ k-Top. We also have an inclusion functor i : k-Top→
Top.

Lemma 8.5.5. The inclusion functor is left adjoint to the functor k; that is, k-Top is a
reflective subcategory of Top.

Proof. The identity map ι : kY → Y is continuous, and for every map of k-spaces
f : X → kY , we define ad(f) : iX → Y as ι ◦ f . If X is a k-space, Y is any topological
space, and g : X → Y is continous, then kg : X = kX → kY is continuous. This shows that
the assignment f 7→ ad(f) is surjective. Composing with ι is injective, and hence, we get a
binatural bijection. �

We also obtain that continuity of maps out of k-spaces can be tested with the help of
compact Hausdorff spaces.

Lemma 8.5.6. The following are equivalent:

• A space X is a k-space.
• A map of sets g : X → Y is continuous if and only if its precomposition g ◦ f : K → Y

is continuous for every continuous map f : K → X from a compact Hausdorff space
into X.

Proof. Let X be a k-space and let O ⊂ Y be an open subset. It suffices to show that
g−1(O) is k-open in X. Take a continuous test map f : K → X with K compact Hausdorff,
such that g ◦ f is continuous. Then, f−1(g−1(O)) is open, and hence, g−1(O) is k-open.

In order to show that X is a k-space, it suffices to show that the identity map X → kX
is continuous, because then, X = kX as topological spaces. By assumption, this map
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is continuous if and only if the precomposition with an arbitrary test map f : K → X
is continuous. An open subset of kX is precisely a k-open subset, and thus, the claim
follows. �

One defines a symmetric monoidal product (−)×k (−) on k-Top by setting

(8.5.1) X ×k Y := k(X × Y ),

where X × Y is the product set of X and Y with the product topology.
Similarly, one can define arbitrary products. Let (Xj)j∈J be a family of k-spaces. Then

we define their product as k(
∏

j∈J Xj). The following result tells us that this is justified.

Lemma 8.5.7. The space k(
∏

j∈J Xj), together with the projection maps %j : k(
∏

j∈J Xj)→
k(Xj) = Xj, is the product of the k-spaces Xj in the category k-Top.

Proof. As i is left adjoint to k, the set of morphisms k-Top(Y, k(
∏

j∈J Xj)) is in binatural

bijection with Top(iY,
∏

j∈J Xj). Using the universal property of the product in Top, we get
that

Top(iY,
∏
j∈J

Xj) ∼=
∏
j∈J

Top(iY,Xj),

and using adjunction again, the claim follows. �

We cite the following result from [tD08]:

Theorem 8.5.8. ([tD08, 7.9.12]) The product in Top of a k-space with a locally compact
space Hausdorff space is a k-space.

Definition 8.5.9. A topological space X is weak Hausdorff if for all continuous maps
f : K → X, with K a compact Hausdorff space, the image f(K) is closed in X.

Of course, Hausdorff spaces are weak Hausdorff. A point is compact, and hence, points
are closed in every weak Hausdorff space. Thus the weak Hausdorff condition implies T1.
As for Hausdorff spaces, one can characterize the weak Hausdorff condition via the diagonal
∆X ⊂ X ×X.

Lemma 8.5.10. [tD08, Proposition 7.9.14] A k-space X is weak Hausdorff if and only
if ∆X ⊂ X ×k X is closed.

The weak Hausdorff condition allows for an internal description of compactly closed
subsets.

Lemma 8.5.11. Let X be a weak Hausdorff space. A subset A ⊂ X is k-closed if and
only if for all compact Hausdorff subsets K ⊂ X, the intersection A ∩K is closed in K.

Proof. If K ⊂ X is a compact Hausdorff subset of X, then the inclusion map K ↪→ X
is among the maps that test k-closedness; hence, if A is k-closed, then A∩K is closed in K.

Let f : L → X be a continuous map from a compact Hausdorff space L and let A ⊂ X
be a subset of X, such that A∩K is closed in K for all compact Hausdorff K ⊂ X. As X is
a weak Hausdorff space, the image f(L) is closed in X, and hence, it is a compact Hausdorff
subspace of X, and by assumption, A ∩ f(L) is closed. But then, f−1(A) = f−1(A ∩ f(L))
is closed in L. �

Remark 8.5.12. Note that the weak Hausdorff condition is preserved under k-ification.

145



Definition 8.5.13. A topological spaceX is compactly generated, if it is a weak Hausdorff
k-space. We denote the category of compactly generated spaces by cg.

We can now define an internal hom-object in k-Top. Let Top(X, Y ) denote the set of
continuous maps from X to Y with the compact-open topology. For any continuous map
f : k(X × Y )→ Z, there is a map of sets ψ(f) : X → kTop(Y, Z).

Lemma 8.5.14. If X and Y are k-spaces and if f : k(X × Y ) → Z is continuous, then
ψ(f) is continuous.

Proof. We first show a reduction to the case, where X is Hausdorff and compact:
Let g : K → X be an arbitrary continuous map from a compact Hausdorff space K to X.
Thanks to Lemma 8.5.6, we have to show that ψ(f) ◦ g is continuous. But the composite

K
g
//X

ψ(f)
//kTop(Y, Z) is the adjoint of k(K × Y )

g×1Y
//k(X × Y )

f
//Z . So, if we show

the claim for X = K, then we are done. Thus without loss of generality, we can assume that
X is compact and Hausdorff. By Theorem 8.5.8 for such X, we obtain X ×k Y = X × Y
and the adjoint ψ(f) : X → Top(Y, Z) is continuous. As X is now assumed to be Hausdorff
and compact, this also implies that ψ(f) : X → kTop(Y, Z) is continuous. �

The underlying set of kTop(X, Y ) is the set of continuous maps from X to Y . Hence,
on point-set level, we have evaluation maps evX,Y : kTop(X, Y )×kX → Y that are given by
sending a pair (g, x) to g(x).

Lemma 8.5.15. For every k-space X, the evaluation map

evX,Y : kTop(X, Y )×k X → Y

is continuous.

Proof. Let f : K → kTop(X, Y ) ×k X be a continuous map, where K is a compact
Hausdorff space. We have to show that evX,Y ◦ f is continuous. The test map f has two
continuous components, f = (f1, f2), where f1 : K → kTop(X, Y ) and f2 : K → X. The map
f1 is continuous if and only if the composite f ′1 := ι◦f1 : K → Top(X, Y ) is continuous. This
map is in turn continuous if and only if its adjoint map ad(f ′1) : K×X → Y is also continuous,
and – by two-fold use of the exponential law for usual mapping spaces – the continuity of
the latter is equivalent to the continuity of the adjoint map ϕ1 : X → Top(K,Y ). But as X
is a k-space, we can test continuity of ϕ1 via test maps from compact Hausdorff spaces by
8.5.6. Let h : L → X be a continuous map and let L be a compact Hausdorff space. Then,
ϕ1 ◦ h : L→ Top(K,Y ) is the adjoint morphism to Top(h, Y ) ◦ f ′1, and this is a composition
of continuous maps.

The composite evX,Y ◦ f is equal to

ad(f ′1) ◦ (1K , f2) : K → K ×X → Y,

and we showed that this map is a composition of continuous maps. �

We can now show the crucial ingredient for the fact that the space of morphisms kTop(X, Y )
is an internal hom-object in k-Top that turns the symmetric monoidal product (−) ×k (−)
on k-Top into a closed structure.
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Theorem 8.5.16. For k-spaces X, Y , and Z, there is a natural homeomorphism

kTop(X, kTop(Y, Z)) ∼= kTop(X ×k Y, Z).

Proof. First, we note that the usual exponential bijection gives a bijection

φ : Top(X, kTop(Y, Z))→ kTop(X ×k Y, Z) :ψ

for all k-spaces X, Y , and Z, because we have seen in Lemma 8.5.14 that for every continuous
f , ψ(f) is continuous. For every g ∈ kTop(X, kTop(Y, Z)), we can express φ(g) as the
composition

(8.5.2) X ×k Y
g×k1Y

//kTop(Y, Z)×k Y
evY,Z

//Z.

Thus, φ(g) is a composition of continuous maps and hence is continuous.
As φ and ψ are inverse to each other, it remains to show that both maps are continuous.
We first determine what φ(φ) is. By (8.5.2), we know that we can rewrite φ(φ) as

φ(φ) = evX×kY,Z ◦ (φ×k 1X×kY ).

The diagram

kTop(X, kTop(Y, Z))×k X ×k Y
φ×k1X×kY

��

evX,kTop(Y,Z)×k1Y
// kTop(Y, Z)×k Y

evY,Z

��

kTop(X ×k Y, Z)×k X ×k Y
evX×kY,Z

// Z

is commutative, and therefore, φ(φ) is equal to

evY,Z ◦ (evX,kTop(Y,Z) ×k 1Y ).

The latter is continuous, and thus, so is φ = ψ(φ(φ)).
We know from (8.5.2) that φ(ψ) is equal to evX,kTop(Y,Z) ◦ (ψ ×k 1X), but checking what

this composite does tells us that it sends a pair (f, x) with f ∈ kTop(X ×k Y, Z) and an
x ∈ X to f(x,−) ∈ kTop(Y, Z). This agrees with the composite

ψ(evX×kY,Z) : kTop(X ×k Y, Z)×k X → kTop(Y, Z).

This shows that φ(ψ) – and hence ψ – is the image of the continuous map evX×kY,Z under
ψ and thus continuous. �

Remark 8.5.17. Theorem 8.5.16 implies that the category of k-spaces is closed symmetric
monoidal. For two spaces X, Y in cg, their k-product X×k Y is again in cg because X×Y is
in cg and k-ification preserves the weak Hausdorff condition. One also gets that kTop(X, Y )
is in cg if X and Y are [tD08, Proposition 7.9.21] and that cg is a closed symmetric monoidal
category.
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8.6. Braided Monoidal Categories

In the definition of a symmetric monoidal category (Definition 8.2.1), we required that the
natural isomorphism τ with τC1,C2 : C1⊗C2 → C2⊗C1 squares to the identity: τC1,C2◦τC2,C1 =
1C2⊗C1 for all objects C1, C2. But, sometimes, we might consider symmetries that are not of
this form. Think of a braid on two strands:

If you concatenate another copy of that braid to it, then this doesn’t untwist, but you get a
double twist:

Still, twisting is an isomorphism in this situation because you can untwist using the over-
crossing, with the right strand being on top

and then you can pull the strands straight to get two parallel strands.
We only give a rather terse account of braided monoidal categories. For more background,

see [ML98, XI.1], [K95] and [JoSt93].

Definition 8.6.1. A braided monoidal category is a monoidal category (C,⊗, e), together
with a binatural isomorphism

βC1,C2 : C1 ⊗ C2 → C2 ⊗ C1,

for all objects C1, C2 of C, that satisfies the hexagon axiom; that is, the two hexagon diagrams

C1 ⊗ (C2 ⊗ C3)
βC1,C2⊗C3

// (C2 ⊗ C3)⊗ C1
α−1
C2,C3,C1

))

(C1 ⊗ C2)⊗ C3

α−1
C1,C2,C3

55

βC1,C2
⊗1C3 ))

C2 ⊗ (C3 ⊗ C1)

(C2 ⊗ C1)⊗ C3

α−1
C2,C1,C3

// C2 ⊗ (C1 ⊗ C3)

1C2
⊗βC1,C3

55
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and

(C1 ⊗ C2)⊗ C3

βC1⊗C2,C3
// C3 ⊗ (C1 ⊗ C2)

αC3,C1,C2

))

C1 ⊗ (C2 ⊗ C3)

αC1,C2,C3

55

1C1
⊗βC2,C3 ))

(C3 ⊗ C1)⊗ C2

C1 ⊗ (C3 ⊗ C2)
αC1,C3,C2

// (C1 ⊗ C3)⊗ C2

βC1,C3
⊗1C2

55

commute for all objects C1, C2, and C3 of C.
We call β the braiding of the braided monoidal structure.

Remark 8.6.2.
• Note that if β is a braiding, then β−1 can also be used as a braiding.
• If we started with a strict monoidal structure, that is, if the αs are identities, then

the hexagon axioms simplify to the conditions that

βC1,C2⊗C3 = (1C2 ⊗ βC1,C3) ◦ (βC1,C2 ⊗ 1C3) and βC1⊗C2,C3 = (βC1,C3 ⊗ 1C2) ◦ (1C1 ⊗ βC2,C3).
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The unit e in the monoidal structure of C is compatible with the braiding in the following
sense:

Lemma 8.6.3. For all objects C of C, we have %C = λC ◦ βC,e

C ⊗ e
βC,e

//

%C
��

e⊗ C

λC
zz

C

and dually λC = %C ◦ βe,C .
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Proof. For the proof, we expand the first hexagon diagram, inserting unit isomorphisms.
We start with two objects C and C ′ of C:

C ⊗ (e⊗ C ′)
1C⊗λC′
��

βC,e⊗C′
// (e⊗ C ′)⊗ C

λC′⊗1C
��

α−1
e,C′,C

((

(C ⊗ e)⊗ C ′

α−1
C,e,C′

66

%C⊗1C′
//

βC,e⊗1C′ ((

C ⊗ C ′
βC,C′

// C ′ ⊗ C e⊗ (C ′ ⊗ C).
λC′⊗C

oo

(e⊗ C)⊗ C ′
λC⊗1C′

OO

α−1
e,C,C′

// e⊗ (C ⊗ C ′)

λC⊗C′
hh

1e⊗βC,C′

66

The triangle at the bottom left commutes because the remainder of the diagram is commu-
tative and consists of isomorphisms. Using C ′ = e and postcomposing with % gives the first
claim. Using the second hexagonal diagram gives the second claim. �

Remark 8.6.4. In addition, the preceding lemma implies βe,C = β−1
C,e because

%C ◦ βe,C ◦ βC,e = λC ◦ βC,e = %C .

In the braid group on three strands we see the following relation:

'

Its categorical analog holds.

Proposition 8.6.5. For all objects C1, C2, C3 in C, the following diagram commutes:

(C2 ⊗ C1)⊗ C3

α−1
C2,C1,C3

��

(C1 ⊗ C2)⊗ C3

βC1,C2
⊗1C3

oo
α−1
C1,C2,C3

// C1 ⊗ (C2 ⊗ C3)

1C1
⊗βC2,C3

��

C2 ⊗ (C1 ⊗ C3)

1C2
⊗βC1,C3

��

C1 ⊗ (C3 ⊗ C2)

αC2,C1,C3

��

C2 ⊗ (C3 ⊗ C1)

αC2,C1,C3

��

(C1 ⊗ C3)⊗ C2

βC1,C3
⊗1C2

��

(C2 ⊗ C3)⊗ C1

βC2,C3
⊗1C1

��

(C3 ⊗ C1)⊗ C2

α−1
C3,C1,C2
��

(C3 ⊗ C2)⊗ C1
α−1
C3,C2,C1

// C3 ⊗ (C2 ⊗ C1) C3 ⊗ (C1 ⊗ C2).
1C3
⊗βC1,C2

oo
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In particular, if C is a strict monoidal category, then we get the categorical Yang-Baxter
equation:

(1C3 ⊗βC1,C2) ◦ (βC1,C3 ⊗ 1C2) ◦ (1C1 ⊗βC2,C3) = (βC2,C3 ⊗ 1C1) ◦ (1C2 ⊗βC1,C3) ◦ (βC1,C2 ⊗ 1C3).

Proof. We note that the preceding diagram can be glued together from two hexagonal
diagrams and a square.

(C2 ⊗ C1)⊗ C3

α−1
C2,C1,C3

��

βC2⊗C1,C3

��

(C1 ⊗ C2)⊗ C3

βC1,C2
⊗1C3

oo

βC1⊗C2,C3

))

α−1
C1,C2,C3

// C1 ⊗ (C2 ⊗ C3)

1C1
⊗βC2,C3

��

C2 ⊗ (C1 ⊗ C3)

1C2
⊗βC1,C3

��

C1 ⊗ (C3 ⊗ C2)

αC2,C1,C3

��

C2 ⊗ (C3 ⊗ C1)

αC2,C1,C3

��

(C1 ⊗ C3)⊗ C2

βC1,C3
⊗1C2

��

(C2 ⊗ C3)⊗ C1

βC2,C3
⊗1C1

��

(C3 ⊗ C1)⊗ C2

α−1
C3,C1,C2
��

(C3 ⊗ C2)⊗ C1
α−1
C3,C2,C1

// C3 ⊗ (C2 ⊗ C1) C3 ⊗ (C1 ⊗ C2)
1C3
⊗βC1,C2

oo

The hexagons are precisely the ones from the hexagon axiom, and the square commutes
because of the naturality of β. �

Example 8.6.6. The collection of braid groups, Brn, n ≥ 0, gives rise to a braided
monoidal category B, whose underlying category is a groupoid. The objects of B are the
natural numbers, including zero and

B(n,m) =

{
Brn, if n = m,

∅, if n 6= m.

Here, we follow the convention that Br0 = Br1 is the trivial group. We define the monoidal
structure on B via n ⊕m = n + m, which corresponds to the disjoint union of sets. The
object 0 is a strict unit and (B,⊕,0) is a strict monoidal category. For the braiding

βn,m : n⊕m→m⊕ n

we use the braid that moves the first n strands to the spots m+ 1, . . . ,m+n and moves the
last m strands to the spots 1, . . . ,m, where the last m strands move over the first n strands.

Remark 8.6.7. Similar to the Σn-action on C⊗n for every object C of a symmetric
monoidal category (see Remark 8.3.5), any object C in a braided monoidal category gives
rise to an object C⊗n with a Brn-action [ML98, XI.5, Theorem 2].

Example 8.6.8. One can combine the category B with the category of order-preserving
injections, such that morphisms from n to m are braided injections from n to m. This
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category features prominently in [ScSo16], and we will come back to it later (see 14.6.6), as
it helps to model two-fold based loop spaces.

Some bialgebras H possess a universal R-matrix and are called braided bialgebras. A
universal R-matrix is an invertible element R ∈ H ⊗H that satisfies

τ ◦∆(h) = R∆(h)R−1, (∆⊗ 1H)(R) = R13R23, and (1H ⊗∆)(R) = R13R12.

Here, the elements R13, R23, R13, and R12 live in H⊗H⊗H, and they are stretched versions
of R; for instance, if R =

∑
i h

1
i ⊗ h2

i , then

R13 =
∑
i

h1
i ⊗ 1⊗ h2

i .

Example 8.6.9. Let H be a bialgebra. Then, the category of H-modules is a braided
monoidal category if and only if H is braided. See [K95, XIII] for details.
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CHAPTER 9

Enriched Categories

In general, we require that for any pair of objects in a category, there is a set of morphisms
from one object to the other. You know several examples, where morphism sets carry more
structure, for instance, if A and B are abelian groups, then the set of homomorphisms
Ab(A,B) is itself an abelian group. In other examples, we do not just take the set of
morphisms and observe that it has extra structure but we also consider morphism objects in
a category different from sets. We have seen the example of the chain complex HOM(C∗, C

′
∗),

where chain maps correspond to the zero cycles in HOM(C∗, C
′
∗). This was already mentioned

as an example of a closed symmetric monoidal category. The concept of enriched categories
allows for hom-objects in a general closed symmetric monoidal category. Good accounts on
enriched category theory are [K82, Day70b, Day70a], [Rie14, I.3], [Du70] and [Bo94-2,
Chapter 6]. In contrast to [Lu09], we only study enrichments in closed symmetric monoidal
categories.

9.1. Basic Notions

Definition 9.1.1. Let (V ,�, e) be a closed symmetric monoidal category. A category
enriched in V or a V-category C consists of a class of objects, and for all pairs of objects
C1, C2, there is an object in V , C(C1, C2). There is a composition morphism in V for all
objects C1, C2, C3 of C

m : C(C1, C2)� C(C2, C3)→ C(C1, C3),

and there is a unit morphism in V , ηC : e → C(C,C) for each object C of C. These mor-
phisms satisfy a unit condition and an associativity condition. We require that the following
diagrams commute for all objects C1, C2, C3, C4 of C:

C(C1, C2)� e
1C(C1,C2)�ηC2

��

%C(C1,C2)
// C(C1, C2) e� C(C1, C2)

λC(C1,C2)
oo

ηC1
�1C(C1,C2)

��

C(C1, C2)� C(C2, C2)

m
44

C(C1, C1)� C(C1, C2)

m

jj
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and

(C(C1, C2)� C(C2, C3))� C(C3, C4)
α−1
C(C1,C2),C(C2,C3),C(C3,C4)

//

m�1C(C3,C4)

��

C(C1, C2)� (C(C2, C3)� C(C3, C4))

1C(C1,C2)�m
��

C(C1, C3)� C(C3, C4)

m
**

C(C1, C2)� C(C2, C4)

m
tt

C(C1, C4).

Examples 9.1.2.
• Every category (in our sense) is a category enriched in the closed symmetric monoidal

category of sets.
• We learned in Definition 7.1.1 that a preaddititve category is a category enriched in

the category of abelian groups. For every pair of objects C1, C2, there is an abelian
group of morphisms from C1 to C2, and the composition of morphisms is a bilinear
map.
• Every closed symmetric monoidal category V is enriched in itself. In order to easy

readability, we will write V(V1, V2) for V V1
2 in this chapter.

• The category of complex vector spaces VC from [BDR04] has as objects the natural
numbers, including zero, and

VC(n,m) =

{
∅, if n 6= m,

U(n), for n = m.

Here, U(n) is the unitary group with its natural topology. Composition is induced by
matrix multiplication, and this is a continuous map. The unit maps ηn : {∗} → U(n)
send the one-point space to the unit matrix in U(n). Hence, VC is enriched in k-Top.

Definition 9.1.3. Let (V ,�, e) be a closed symmetric monoidal cocomplete category
and let D be a small category. The standard enrichment of D in V is

D(D1, D2) =
⊔

D(D1,D2)

e.

Note that the assumption that V is closed ensures that the coproduct distributes over
the �-product in V .

We saw an example of this construction already in Example 7.1.2. If we consider the
closed symmetric monoidal category of abelian groups (Ab,⊗,Z), then the construction
Z[C] is a special case of the definition given earlier. For the category k-mod, you obtain
k{D(D1, D2)} as the standard enriched morphism object.

Definition 9.1.4. Let C and C ′ be two V-enriched categories. A V-functor F : C → C ′
assigns to every object C of C an object F (C) of C ′, and for every pair of objects C1, C2 of
C, it induces a morphism in V

F = FC1,C2 : C(C1, C2)→ C ′(F (C1), F (C2)),
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such that these morphisms are compatible with the composition morphisms m of C and m′

of C ′ and the unit morphisms η of C and η′ of C ′, that is, the diagram

C(C1, C2)� C(C2, C3)

F�F
��

m
// C(C1, C3)

F
��

C ′(F (C1), F (C2))� C ′(F (C2), F (C3))
m′
// C ′(F (C1), F (C3))

commutes for all objects C1, C2, C3 of C and

C(C,C)

F

��

e

ηC
88

η′
F (C) &&

C ′(F (C), F (C))

commutes for all objects C of C.

Remark 9.1.5. Assume that F : C → V is a V-functor. In this case, we can combine the
structure morphism

F = FC1,C2 : C(C1, C2)→ V(F (C1), F (C2)),

with the evaluation map, ev, coming from the closed structure in V in order to obtain a
morphism, which we call ev by slight abuse of notation.

(9.1.1) ev : C(C1, C2)� F (C1)
F�1F (C1)

//V(F (C1), F (C2))� F (C1)
ev
//F (C2).

Example 9.1.6. Assume that C and C ′ are preadditive categories, that is, C and C ′ are
enriched in abelian groups. An Ab-functor F : C → C ′ is nothing but an additive functor.
The abelian group C(C1, C2) has an underlying set, and an Ab-functor induces a functor
C → C ′. The fact that F induces a homomorphism F : C(C1, C2) → C ′(F (C1), F (C2)) is
precisely the condition of additivity, as in 7.1.3.

Exercise 9.1.7. Take a small category D with the standard enrichment, as in Definition
9.1.3, in a closed symmetric monoidal cocomplete category V , and show that V-functors
correspond to ordinary functors.

Example 9.1.8. Let C be a V-enriched category and let C be an object of C. The
assignment C ′ 7→ C(C,C ′) defines a V-functor

C(C,−) : C → V .
Let C1 and C2 be two objects of C. We define the morphism in V

C(C,−)C1,C2 : C(C1, C2)→ V(C(C,C1), C(C,C2))

as the adjoint of the composition morphism

m : C(C,C1)� C(C1, C2)→ C(C,C2)).

Dually, we can form the contravariant morphism functor

C(−, C) : Co → V ,
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with

C(−, C)C1,C2 : C(C1, C2)→ V(C(C2, C), C(C1, C))

as the adjoint of

m : C(C1, C2)� C(C2, C)→ C(C1, C)).

Definition 9.1.9. Let F,G : C → C ′ be two V-functors. A V-natural transformation
ξ : F ⇒ G consists of morphisms in V

ξC : e→ C ′(F (C), G(C))

for every object C of C. These morphisms satisfy a naturality condition. For all objects
C1, C2 of C, the following diagram commutes:
(9.1.2)

C(C1, C2) e� C(C1, C2)
λ

∼=
oo

ξC1
�G

++

C(C1, C2)� e

% ∼=

OO

F�ξC2

**

C ′(F (C1), G(C1))� C ′(G(C1), G(C2))

m′

��

C ′(F (C1), F (C2))� C ′(F (C2), G(C2))
m′

// C ′(F (C1), G(C2)),

that is,

m′ ◦ (ξC1 �G) ◦ λ−1 = m′ ◦ (F � ξC2) ◦ %−1.

Remark 9.1.10. If F,G : C → V are two V-functors and ξ : F ⇒ G is a V-natural
transformation, then the morphisms ξC : e→ V(F (C), G(C)) are adjoint to morphisms from
e� F (C) to G(C), and we identify them with morphisms

ξ′ : F (C)→ G(C).

Using these adjoint structure maps, we can rewrite condition (9.1.2) in the familiar form by
demanding that

C(C1, C2)
F

//

G
��

V(F (C1), F (C2))

V(1F (C1),ξ
′
C2

)

��

V(G(C1), G(C2))
V(ξ′C1

,1G(C2))
// V(F (C1), G(C2))

commutes for all objects C1 and C2 of C.

Remark 9.1.11. If we fix a symmetric monoidal category V , then the collection of small
V-enriched categories, catV , forms a 2-category, whose 1-morphisms are V-functors and whose
2-morphisms are V-natural transformations.

Exercise 9.1.12. Let F : V → W be a lax symmetric monoidal functor between closed
symmetric monoidal categories and let C be a V-enriched category. Use F to define a W-
enrichment on C.
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9.2. Underlying Category of an Enriched Category

Consider the category of unbounded chain complexes over a commutative ring k, with
its internal morphism object HOM(−,−) and the tensor product of chain complexes as
part of the monoidal structure. Chain maps f : C∗ → C ′∗ between two chain complexes C∗
and C ′∗ correspond to zero cycles in HOM(C∗, C

′
∗), and these, in turn, correspond to chain

maps from the chain complex S0(k) (which is k in chain degree zero and zero elsewhere)
to HOM(C∗, C

′
∗). So, one can recover the ordinary category of chain complexes from the

enriched one.
This can be done in general.

Definition 9.2.1. Let C be a category enriched in a closed symmetric monoidal category
V . The underlying category of C, C0, has as objects the objects of C and

C0(C1, C2) = V(e, C(C1, C2)).

Theorem 9.2.2. The underlying category of an enriched category is a category.

Proof. We define the identity morphism 1C as ηC : e → V(e, C(C,C)) and the compo-
sition of morphisms f ∈ V(e, C(C1, C2)) and g ∈ V(e, C(C2, C3)), g ◦ f as

e ∼= e� e f�g
//C(C1, C2)� C(C2, C3)

m
//C(C1, C3),

hence, we have to show that

(1) g ◦ 1C2 = g,
(2) 1C2 ◦ f = f , and
(3) h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f, g as above and h ∈ V(e, C(C3, C4)).

For (1), note that the diagram

e ∼= e� e 1e�g
//

g
))

e� C(C2, C3)

λC(C2,C3)

��

ηC2
�1C(C2,C3)

// C(C2, C2)� C(C2, C3)

m
tt

C(C2, C3)

commutes because of the unit condition on ηC2 and λC(C2,C3) in any V-enriched category. The
proof of (2) is dual, using the condition for η and %.
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For (3), observe that the hat of the diagram

e
%e

}}

λe

!!

e� e
%e�e

uu

e� e
λe�e

))

(e� e)� e
α−1
e,e,e

//

(f�g)�h
��

e� (e� e)

f�(g�h)

��

(C(C1, C2)� C(C2, C3))� C(C3, C4)
α−1
C(C1,C2),C(C2,C3),C(C3,C4)

//

m�1C(C3,C4)

��

C(C1, C2)� (C(C2, C3)� C(C3, C4))

1C(C1,C2)�m
��

C(C1, C3)� C(C3, C4)

m
++

C(C1, C2)� C(C2, C4)

m
ss

C(C1, C4)

commutes because of the unit condition in a monoidal category. The middle square com-
mutes because of the naturality of α, and the bottom pentagon commutes because of the
associativity condition of m in a V-enriched category. �

Exercise 9.2.3. Give an alternative proof of Theorem 9.2.2 by showing that the functor
V(e,−) : V → Sets is lax symmetric monoidal and by using Exercise 9.1.12.

Corollary 9.2.4. Let f ∈ C0(C1, C2). Then, f induces a morphism in V ,

C(1C , f) = f∗ : C(C,C1)→ C(C,C2).

This assignment satisfies (1C)∗ = 1C(C,C1) and (g ◦ f)∗ = g∗ ◦ f∗ for every g ∈ C0(C2, C3).

Proof. We define C(1C , f) = f∗ as

C(C,C1) ∼= C(C,C1)� e
1C(C,C1)�f

//C(C,C1)� C(C1, C2)
m

//C(C,C2) .

It is straightforward to check the properties. �

Remark 9.2.5. Similarly, f ∈ C0(C1, C2) induces a map C(f, 1C) = f ∗ : C(C2, C) →
C(C1, C) with (g ◦ f)∗ = f ∗ ◦ g∗ and (1C)∗ = 1C(C,C1).

Proposition 9.2.6. If V is a closed symmetric monoidal category, which we view as a
self-enriched category, then the underlying category of V is isomorphic to V itself.

Proof. For two objects V1, V2 of V , the adjunction

(9.2.1) V(e,V(V1, V2)) ∼= V(e� V1, V2) ∼= V(V1, V2)

tells us that we get a bijection between the morphism set of the underlying category of V
and V . For f ∈ V(e,V(V1, V2)), we denote its adjoint in V(V1, V2) by φ(f).

We have to show that the composition of morphisms is compatible with these bijections
and that the morphisms ηV : e → V(V, V ) correspond to the identity morphism 1V on the
object V in the category V under the adjunction in (9.2.1). For the latter, the adjoint of ηV
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is λV : e � V ∼= V and the evaluation map is adjoint to 1V(V,V ); hence, under the bijection
from (9.2.1), φ(ηV ) is 1V .

As m is adjoint to

V(V1, V2)� V(V2, V3)� V1

��

1V(V1,V2)�τV(V2,V3),V1
// V(V1, V2)� V1 � V(V2, V3)

ev�1V(V2,V3)

��

V3 V(V2, V3)� V2
ev

oo V2 � V(V2, V3),
τV2,V(V2,V3)
oo

the adjunction maps the composition to

V1

(λe�V1
)◦λV1

// e� e� V1

f�g�1V1
// V(V1, V2)� V(V2, V3)� V1

1V(V1,V2)�τV(V2,V3),V1

��

V(V1, V2)� V1 � V(V2, V3)

ev�1V(V2,V3)

��

V3 V(V2, V3)� V2
ev

oo V2 � V(V2, V3).
τV2,V(V2,V3)
oo

The following diagram

V1

λV1
��

e� V1

f�1V1
��

λe�V1
// e� e� V1

f�1e�V1
��

f�g�1V1

**

V(V1, V2)� V1
%V(V1,V2)�V1

))

ev

��

V(V1, V2)� e� V1

1V(V1,V2)�τe,V1

��

V(V1, V2)� V(V2, V3)� V1

1V(V1,V2)�τV(V2,V3),V1

��

V2

λV2

��

V(V1, V2)� V1 � e

ev�1e
��

1V(V1,V2)�V1
�g

**

e� V2

g�1V2

��

V2 � e
1V2
�g

**

τV2,e
oo V(V1, V2)� V1 � V(V2, V3)

ev�1V(V2,V3)

��

V(V2, V3)� V2

ev

��

V2 � V(V2, V3)
τV2,V(V2,V3)

oo

V3

commutes, and therefore, φ(g) ◦ φ(f) on the left-hand side of the diagram is the same as
φ(m(f � g)) on the right-hand side. Hence, (9.2.1) is compatible with compositions. �

9.3. Enriched Yoneda Lemma

We first prove a set version of a V-enriched variant of the Yoneda lemma.
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Proposition 9.3.1. Let C be an object of the V-enriched category C and let F : C → V
be a V-functor. Then, there is a bijection between the set of V-natural transformations from
the functor C(C,−) to F and the underlying set of F (C), V(e, F (C)).

Proof. Let ξ be a V-natural transformation with components

ξC′ : C(C,C ′)→ F (C ′).

We send ξ to the morphism

fξ : e
ηC
//C(C,C)

ξC
//F (C).

Conversely, given f ∈ V(e, F (C)), we define ξfC′ as

C(C,C ′) F
// V(F (C), F (C ′))

V(f,1F (C′))
// V(e, F (C ′))

iF (C′)
// F (C ′),

where iF (C′) : V(e, F (C ′)) → F (C ′) is the isomorphism that uses the closed monoidal struc-
ture in V (see Exercise 8.4.2).

We have to show that ξfC′ is V-natural in C ′ and that the two maps are inverse to each
other. The V-naturality follows from the binaturality of C(−,−).

If we start with f ∈ V(e, F (C)), then fξfC
is

e
ηC
//C(C,C)

F
//V(F (C), F (C))

V(f,1F (C))
//V(e, F (C))

iF (C)
//F (C).

But F ◦ ηC = ηF (C) and the latter is adjoint to the isomorphism e� F (C) ∼= F (C). Hence,
f ∗ ◦ ηF (C) = V(f, 1F (C)) ◦ ηF (C) is adjoint to the morphism

f ◦ λ = f ◦ % : e� e→ F (C),

and the application of i cancels the first unit isomorphism, and thus, fξfC
= f .

Conversely, given ξ, we have to check that ξfξ = ξ. We can fit ξfξ = iF (C′)◦V(fξ, 1F (C′))◦F
into the following commutative diagram:

C(C,C ′) F
//

C(C,−)
��

V(F (C), F (C ′))

V(ξC ,1F (C′))=ξ
∗
C

��

V(fξ,1F (C′))=f
∗
ξ

rr

V(C(C,C), C(C,C ′))
V(1C(C,C),ξC′

)=(ξC′ )∗
//

V(ηC ,1C(C,C′))=η
∗
C

��

V(C(C,C), F (C ′))

V(ηC ,1F (C′))=η
∗
C

��

V(e, C(C,C ′))
iC(C,C′)

��

V(1e,ξC′ )=(ξC′ )∗
// V(e, F (C ′))

iF (C′)
��

C(C,C ′)
ξC′

// F (C ′)

As C(C,−) : C(C,C ′)→ V(C(C,C), C(C,C ′)) is adjoint to m, the composite V(ηC , 1C(C,C′)) ◦
C(C,−) is adjoint to e�C(C,C ′) ∼= C(C,C ′) and postcomposing with i corresponds to getting
rid of this unit isomorphism; hence, the composition downward on the left-hand side of the
diagram is the identity. �
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Of course, we want to improve this version of an enriched Yoneda lemma to an isomor-
phism in V .

Definition 9.3.2. Let C and C ′ be enriched over V . The category C � C ′ has as objects
pairs (C,C ′), where C is an object of C, and C ′ is an object of C ′. We set

(C � C ′)((C1, C
′
1), (C2, C

′
2)) := C(C1, C2)� C ′(C ′1, C ′2).

The composition morphism m� is defined as (m�m′) ◦ (2, 3), where (2, 3) ∈ Σ4 denotes
the permutation that switches the second and third �-factors in

C(C1, C2)� C ′(C ′1, C ′2)� C(C2, C3)� C ′(C ′2, C ′3)

for objects C1, C2, C3 of C and C ′1, C
′
2, C

′
3 of C ′. Here, m and m′ are the composition mor-

phisms of C and C ′.

With this definition, C � C ′ is again a V-category.

Exercise 9.3.3. Let V be a symmetric monoidal category. Show that the category of
small V-categories and V-functors, catV , is a symmetric monoidal category, with � : catV ×
catV → catV from Definition 9.3.2 as monoidal structure.

We extend the notion of dinatural families and ends to the enriched context.

Definition 9.3.4. Let C be a V-category, let V be an object of V , and let G : Co�C → V
be a V-functor. A family of morphisms (∂C ∈ V(V,G(C,C)))C over all objects C in C is a
V-dinatural family if for all objects C and C ′ of C, the diagram

V
∂C

//

∂C′
��

G(C,C)

γC,C′

��

G(C ′, C ′)
βC′,C

// V(C(C,C ′), G(C,C ′))

commutes.

Here, βC′,C is adjoint to the evaluation map

G(C ′, C ′)� C(C,C ′)→ G(C,C ′)

using the contravariant component of G, and dually, γC,C′ is adjoint to

G(C,C)� C(C,C ′)→ G(C,C ′)

and uses the covariant component of G.
We want to replace the set of V-natural transformations in the weak enriched Yoneda

lemma with an object in V . We do this by forming ends in V .

Definition 9.3.5. Let C be a V-category, let G : Co � C → V be a V-functor and let
(∂C ∈ V(V,G(C,C)))C be a V-dinatural family. Then, (∂C)C is a V-end of G if for all V-
dinatural families (µC ∈ V(V ′, G(C,C)))C , there is a unique f ∈ V(V ′, V ), with µC = ∂C ◦ f
for all C.

Using the notation introduced in 4.6, we denote the object V by
∫
C G(C,C), and then,

∂C′ :
∫
C G(C,C) → G(C ′, C ′). The usual disclaimer applies. Enriched ends do not have to

exist. As before, they do exist if V is complete.
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Proposition 9.3.6. (Enriched Yoneda lemma) Assume that V is a closed symmetric
monoidal complete category and that C is a V-enriched category. Let F : C → V be a
V-functor and let C be an object of C. Then, F (C) is isomorphic to the V-end∫

C
V(C(C,C ′), F (C ′)).

Proof. Let νC′ : F (C)→ V(C(C,C ′), F (C ′)) be the adjoint of

F : C(C,C ′)→ V(F (C), F (C ′)),

and assume that (µC′ : V → V(C(C,C ′), F (C ′)))C′ is an arbitrary V-dinatural family. The
adjoint of µC′ is

µ′C′ : C(C,C ′)→ V(V, F (C ′)).

This family is a natural transformation from C(C,−) to V(V, F (−)), and hence, the set
version of the enriched Yoneda lemma 9.3.1 ensures the existence of a unique morphism
f ∈ V(V, F (C)), such that we can write µ′C′ as the composite

C(C,C ′) F
//V(F (C), F (C ′))

V(f,1F (C′))
//V(V, F (C ′))

As F : C(C,C ′)→ V(F (C), F (C ′)) is adjoint to νC′ , this implies that νC′ ◦ f = µC′ . �

If A is a preadditive category and if A is an object of A, then Proposition 9.3.6 has the
following form:

Corollary 9.3.7. The natural transformations from the representable functor A(A,−)
to an additive functor F : A → Ab form an abelian group and are isomorphic to F (A).

There is also a multilinear variant of the additive Yoneda lemma. I used a version of this
in [Ri03].

Proposition 9.3.8. Let A1, . . . , An be objects of a preadditive category A and let
F : An → Ab be a functor that is additive in every component. Then, the natural transfor-
mations from the functor (B1, . . . , Bn) 7→ C(A1, B1)⊗ . . .⊗ C(An, Bn) to F form an abelian
group, and this group is isomorphic to F (A1, . . . , An).

Proof. We define a morphism Y (F, (A1, . . . , An)) by sending a natural transformation

η : C(A1,−)⊗ . . .⊗ C(An,−)⇒ F

to η(A1,...,An)(1A1 ⊗ . . . ⊗ 1An) ∈ F (A1, . . . , An). For any a ∈ F (A1, . . . , An) and every f1 ⊗
. . .⊗ fn ∈ Ab(A1, B1)⊗ . . .⊗ Ab(An, Bn), we set

τ(F,A1, . . . , An)a(f1 ⊗ . . .⊗ fn) := F (f1, . . . , fn)(a) ∈ F (B1, . . . , Bn).

As F is multi-additive, this assignment is well-defined. One shows, as in the proof of the ’clas-
sical’ Yoneda lemma (Theorem 2.2.2), that Y (F, (A1, . . . , An)) is inverse to τ(F,A1, . . . , An).

�
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9.3.1. Enriched Co-Yoneda Lemma. The enriched Yoneda lemma is a statement
about ends involving a representable functor. The enriched co-Yoneda lemma is concerned
with enriched coends involving a representable functor.

Exercise 9.3.9. Dualize the definition of a V-end to a V-coend.

Proposition 9.3.10. (co-Yoneda lemma) Let D be a small category enriched in V . If V
has all small colimits, then for every V-functor F : Do → V , the V-coend

∫ D
F (D)�D(D1, D)

exists, and there is a natural isomorphism in V :(∫ D
F (D)�D(D1, D)

)
∼= F (D1).

Proof. The existence of the V-coend is clear, and the remainder of the proof is just an
enriched analog of the proof of Theorem 5.4.8. �

9.4. Cotensored and Tensored Categories

In applications one usually encounters tensors and cotensors of enriched categories.

Definition 9.4.1. Let (V ,�, e) be a closed symmetric monoidal category and let C be
a category enriched in V . Let C be an object of C, and let V be an object of V .

• The tensor of C with V exists if there is an object C ⊗ V of C, together with isomor-
phisms in V

C(C ⊗ V,C ′) ∼= V(V, C(C,C ′))
that are natural in C ′.
• The cotensor of C ′ with V exists if there is an object (C ′)V of C, together with

isomorphisms in V
C(C, (C ′)V ) ∼= V(V, C(C,C ′))

that are natural in C.
• The category C is tensored in V if the tensor of C with V exists for all objects C of C

and V of V .
• The category C is cotensored in V if the cotensor of C with V exists for all objects C

of C and V of V .

Example 9.4.2. If V is a closed symmetric monoidal category, then V is tensored and
cotensored over itself.

Example 9.4.3. Let D be a small category and let (C,⊗, eC) be a closed symmetric
monoidal category. Then, the category Fun(D, C) is tensored and cotensored over C. For a
functor F : D → C and an object C of C, we define the tensor of F with C as

(F ⊗ C)(D) = F (D)⊗ C
and the cotensor as

(FC)(D) = F (D)C ,

where F (D)C is the internal morphism object of C and F (D) in C.

If C is (co)tensored over V , then there are some canonical rules for calculating iterated
tensors and cotensors.
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Proposition 9.4.4. Assume that C is tensored over V . Then

(1) C ⊗ e ∼= C for all objects C of C.
(2) For all objects V1, V2 of V and for all objects C of C,

(9.4.1) (C ⊗ V1)⊗ V2
∼= C ⊗ (V1 � V2) ∼= C ⊗ (V2 � V1) ∼= (C ⊗ V2)⊗ V1.

Proof. The first claim follows because for all objects C ′ of C, we have

C(C ⊗ e, C ′) ∼= V(e, C(C,C ′)),
but we saw already in Exercise 8.4.2 that V(e, C(C,C ′)) ∼= C(C,C ′); hence, C ⊗ e ∼= C.

We will only show the first isomorphism in (2); the others follow from the symmetric
monoidal structure of V . Again, we consider an arbitrary object C ′ of C and obtain

C((C ⊗ V1)⊗ V2, C
′) ∼= V(V2, C(C ⊗ V1, C

′))

∼= V(V2,V(V1, C(C,C ′)))
∼= V(V1 � V2, C(C,C ′))
∼= C(C ⊗ (V1 � V2), C ′).

Here, the first, second and last isomorphisms are given by the defining isomorphisms of
tensors as in Definition 9.4.1 and the third isomorphism uses that V is closed symmetric
monoidal. Hence, (C ⊗ V1)⊗ V2

∼= C ⊗ (V1 � V2). �

Exercise 9.4.5. Formulate and prove the dual rules for calculating iterated cotensors.

Proposition 9.4.6. If C is tensored over V , then (−)⊗V : C → C is a V-functor. Dually,
if C is cotensored over V , then (−)V : C → C is a V-functor.

Proof. Note that there is an isomorphism in V ,

C(C1 ⊗ C(C1, C2), C2) ∼= V(C(C1, C2), C(C1, C2)),

and therefore, we get a bijection on the underlying sets of morphisms:

C0(C1 ⊗ C(C1, C2), C2) ∼= V(e,V(C(C1, C2), C(C1, C2))) ∼= V(C(C1, C2), C(C1, C2)).

Let ε denote the morphism in C0(C1⊗C(C1, C2), C2) that corresponds to 1C(C1,C2) under the
isomorphism. We consider the following composition of morphisms in V :

e
ηC2⊗V

// C(C2 ⊗ V,C2 ⊗ V )
(ε⊗1V )∗

// C((C1 ⊗ C(C1, C2))⊗ V,C2 ⊗ V )

∼=
��

C((C1 ⊗ V )⊗ C(C1, C2), C2 ⊗ V )

∼=
��

V(C(C1, C2), C(C1 ⊗ V,C2 ⊗ V )).

The first isomorphism uses the associativity property of tensors from Proposition 9.4.4, and
the second isomorphism is the defining isomorphism of tensors.

The compositon corresponds to a morphism in V from C(C1, C2) to C(C1 ⊗ V,C2 ⊗ V ),
which turns (−)⊗ V into a V functor.
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The proof for (−)V : C → C being a V-functor is dual and uses the isomorphism C(CV
2 , C

V
2 ) ∼=

V(V, C(CV
2 , C2)). �

Example 9.4.7. If C is a category that has small coproducts, then C is tensored over the
category of sets, Sets. For an object C of C and any set X, we define

C ⊗X :=
⊔
x∈X

C,

so C ⊗X is the X-copower of C in C.
Dually, if C is a category with small products, then it is cotensored over Sets with

CX :=
∏
x∈X

C,

so CX is the X-power of C in C.

9.5. Categories Enriched in Categories

The category of all small categories, cat, is closed symmetric monoidal, with the product
of categories as monoidal structure, and it is bicomplete. What does it mean for a category
C to be enriched in cat? By definition, we get for all pairs of objects C1, C2 of C, a category
of morphism C(C1, C2). We think of an object f of C(C1, C2) as a morphism from C1 to C2.
For two such objects f and g, we have morphisms in the category C(C1, C2) from f to g.

It is common to call the objects of C(C1, C2) 1-morphisms and to call the morphisms in
C(C1, C2) 2-morphisms. We will draw them as 2-cells

C1

f

&&

g

88�� φ C2

if φ ∈ C(C1, C2)(f, g).
The fact that C(C1, C2) is a category ensures that we have a strictly associative composi-

tion of morphisms. If φ : f ⇒ g and φ′ : g ⇒ h, then the composition is φ′ ◦ φ : f ⇒ h,
and we have strict associativity of threefold compositions, and the identity morphisms
1f ∈ C(C1, C2)(f, f) acts as a strict unit.

The composition rules in enriched categories ensure that the composition

C(C1, C2)× C(C2, C3)→ C(C1, C3)

is strictly associative and unital.

Definition 9.5.1. A strict 2-category is a category C enriched in cat.

We saw an example of such a category in Remark 2.1.6 when we studied cat. Let C and C ′
be two objects of cat, that is, two small categories. Then, there is a category of morphisms
from C to C ′ whose objects are functors from C to C ′ and whose morphisms are natural
transformations between such functors. As we have the interchange laws for the vertical and
horizontal compositions of natural transformations, as in (2.1.1), this establishes cat as a
category enriched in cat, that is, a strict 2-category.
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Example 9.5.2. Let (C,⊗, e) be a strict monoidal category (recall Definition 8.1.1).
There is an associated strict 2-category ΣC with a single object ∗, whose 1-morphisms are
the objects of C and whose 2-morphisms are the morphisms of C. Conversely, if D is a strict
2-category with one object, then D gives rise to a strict monoidal category.

Remark 9.5.3. Every strict 2-category can be viewed as a category enriched in simplicial
sets (see Definition 10.2.1). You will learn about the nerve of a small category in Definition
11.1.1. This is a simplicial set, and the assignment of sending a small category to its nerve is
strong symmetric monoidal, so an enrichment in cat gives rise to an enrichment in simplicial
sets.

9.6. Bicategories

For many purposes, such a level of strictness, as in a strict 2-category, is too much to
ask for. The notion of bicategories goes back to Bénabou [Ben67]. In bicategories, several
equalities in the definition of a strict 2-category are replaced by natural isomorphisms.

Definition 9.6.1. [Ben67] A bicategory B consists of the following:

• A class of objects of B.
• For each pair of objects B1, B2 of B, there is a category B(B1, B2). As in the setting of

strict 2-categories, it is common to call the objects of B 0-cells the objects of B(B1, B2)
1-cells and the morphisms in B(B1, B2) 2-cells.
• For each triple of objects B1, B2, B3 of B, there is a composition functor

cB1,B2,B3 : B(B1, B2)× B(B2, B3)→ B(B1, B3).

• For each object B of B, there is an object IB of B(B,B), called the identity arrow
of B. Its identity morphism 1IB in the category B(B,B) is denoted by iB and is
called the identity 2-cell of B. We will identify IB with the corresponding functor
IB : [0]→ B(B,B).
• For every quadruple of objects B1, B2, B3, B4 of B, there is a natural isomorphism
αB1,B2,B3,B4 between the functors

cB1,B2,B4 ◦ (Id× cB2,B3,B4) and cB1,B3,B4 ◦ (cB1,B2,B3 × Id).

We call α the associativity isomorphism.
• For each pair of objects B1, B2 of B, there are two natural isomorphisms λB1,B2 and
%B1,B2 , where λB1,B2 is a natural isomorphism between the functors cB1,B1,B2 ◦(IB1×Id)
and the canonical isomorphism of categories [0] × B(B1, B2) ∼= B(B1, B2). Analo-
gously, % is a natural isomorphism between cB1,B2,B2 ◦ (Id× IB2) and the isomorphism
B(B1, B2)× [0] ∼= B(B1, B2).

These natural isomorphisms have to satisfy the following coherence axioms:
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• The associativity isomorphisms are coherent, so that the diagram of natural transfor-
mations

(9.6.1) B(B1,B5)

B(B1,B3)×(B3,B5)

αB1,B2,B3,B5
αB1,B3,B4,B5

OO

B(B1,B3)×(B3,B4)×(B4,B5)

66

��

B(B1,B2)×(B2,B3)×(B3,B5)

hh

��

B(B1,B2)×(B2,B3)×(B3,B4)×(B4,B5)

66hh

ID×αB2,B3,B4,B5
αB1,B2,B3,B4

×ID

��

B(B1,B4)×B(B4,B5)

00

B(B1,B2)×(B2,B4)×(B4,B5)oo // B(B1,B2)×B(B2,B5)

αB1,B2,B4,B5

nn

commutes for all Bi. Here, the α on the right-hand side denotes the outer 2-cell of
the diagram.
• The natural isomorphisms λ and % are compatible with α, so that the diagram of

2-cells commutes for all Bi:

(9.6.2) B(B1, B3)

B(B1, B2)× B(B2, B3)

c
44

α B(B1, B2)× B(B2, B3).

c
jj

B(B1, B2)× B(B2, B2)× B(B2, B3)

Id×c
44

c×Id
jj

B(B1, B2)× [0]× B(B2, B3)

Id×IB2
×Id

OO

∼=
��

B(B1, B2)× B(B2, B3)

ID×λ%×ID

If you don’t like diagram (9.6.1) because of its outer 2-cell, then you can draw the diagram
on a cube.

Let Xi,i+1 be an object of B(Bi, Bi+1). If we abbreviate c(Bi, Bi+1, Bi+2)(Xi,i+1, XXi+1,i+2
)

with Xi+1,i+2 ◦Xi,i+1 and if we suppress the objects at 1 and α, then one can express (9.6.1)
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as a pentagon axiom.

X4,5 ◦ (X3,4 ◦ (X2,3 ◦X1,2))
1◦α +3

α

��

X4,5 ◦ ((X3,4 ◦X2,3) ◦X1,2)

α

��
(X4,5 ◦X3,4) ◦ (X2,3 ◦X1,2)

α

'/

(X4,5 ◦ (X3,4 ◦X2,3)) ◦X1,2

α◦1

ow
((X4,5 ◦X3,4) ◦X2,3) ◦X1,2

Similarly, (9.6.2) can be expressed as a triangle axiom.

Examples 9.6.2.
• If B is a bicategory with a single object ∗, then the category of morphisms, B(∗, ∗),

forms a monoidal category (recall Definition 8.1.4). For two objects C1, C2 of the cat-
egory B(∗, ∗) set C1⊗C2 := C2 ◦C1. In these examples, the coherence condition from
(9.6.1) reduces to the usual pentagon coherence condition for monoidal categories and
(9.6.2) corresponds to the triangle condition for the coherence between the associativ-
ity isomorphism and the left and right units. Conversely, if C is a monoidal category,
then it gives rise to a one-object bicategory, which one often denotes by ΣC.
• Every 2-category is a bicategory, where the αs, %s and λs are identities.
• Let Bim be the bicategory that associates with two ringsR1, R2 the category Bim(R1, R2),

whose objects are the R1-R2 bimodules and whose morphisms are the morphisms of
R1-R2-bimodules.

Exercise 9.6.3. Let C be a category that has pullbacks. Show that the category of spans
in C forms a bicategory.

Definition 9.6.4. A morphism (F, ϕ) of bicategories from a bicategory B to a bicategory
B′ consists of the following:

• An assignment B 7→ F (B) on the level of objects.
• A family of functors

F (B1, B2) : B(B1, B2)→ B′(F (B1), F (B2)).

• For every object B of B, there is a morphism in B′(F (B), F (B)) (that is, a 2-cell):

ϕ : IF (B) ⇒ F (IB).

• For every triple of objectsB1, B2, B3 of B, there is a natural transformation ϕ(B1, B2, B3) : c◦
(F (B1, B2)× F (B2, B3))⇒ F (B1, B3) ◦ c:

B(B1, B2)× B(B2, B3)
c

//

F (B1,B2)×F (B2,B3)

��

B(B1, B3)

F (B1,B3)

��

ϕ(B1,B2,B3)

B′(F (B1), F (B2))× B′(F (B2), F (B3))
c

// B′(F (B1), F (B3)).
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These functors and natural transformations have to satisfy the following properties:

(1) For any object (X1,2, X2,3, X3,4) of B(B1, B2)×B(B2, B3)×B(B3, B4), the diagram

F (B3,B4)(X3,4)◦(F (B2,B3)(X2,3)◦F (B1,B2)(X1,2))
α
//

1◦ϕ(B1,B2,B3)(X1,2,X2,3)

��

(F (B3,B4)(X3,4)◦F (B2,B3)(X2,3))◦F (B1,B2)(X1,2)

ϕ(B2,B3,B4)(X2,3,X3,4)◦1
��

F (B3,B4)(X3,4)◦F (B1,B3)(X2,3◦X1,2)

ϕ(B1,B3,B4)(X2,3◦X1,2,X3,4)

��

F (B2,B4)(X3,4◦X2,3)◦F (B1,B2)(X1,2)

ϕ(B1,B2,B4)(X1,2,X3,4◦X2,3)

��

F (B1,B4)(X3,4◦(X2,3◦X1,2))
F (B1,B4)(α)

// F (B1,B4)((X3,4◦X2,3)◦X1,2)

commutes.
(2) For every object X of B(B1, B2), the following unit diagrams commute:

IF (B2) ◦ F (B1, B2)(X)
ϕ(B2)◦1

//

λ
��

F (B2, B2)(IB2) ◦ F (B1, B2)(X)

ϕ(B1,B2)(IB2
,X)

��

F (B1, B2)(X) F (B1, B2)(IB2 ◦X)
F (λ)

oo

and

F (B1, B2)(X) ◦ IF (B1)

1◦ϕ(B1)
//

%

��

F (B1, B2)(X) ◦ F (B1, B1)(IB1)

ϕ(B1,B2)(X,IB1
)

��

F (B1, B2)(X) F (B1, B2)(X ◦ IB1).
F (%)

oo

Remark 9.6.5. There is an abundance of different names in the setting of bicategories.
As the notion of a morphism of bicategories reduces to the notion of a lax monoidal functor
for the one-object bicategory, it is rather common to call such morphisms lax functors be-
tween bicategories. There is also the notion of a pseudofunctor ; for these, one requires the
natural transformations that are part of the data of a morphism, to be natural isomorphisms.
Thomason [T79] uses the variant that reduces to lax comonoidal functors between monoidal
categories and calls such functors op-lax, so this corresponds to reversing the direction of the
structure maps ϕ. The idea of not using functors but something weaker that is still coherent
goes back to Grothendieck [G-SGA1, Exposé VI].

You can now continue and define an analog of natural transformations for morphisms be-
tween bicategories. These are called modifications. For more background on these concepts,
see [Le∞, 1.3]. As every monoidal category can be strictified, as in Proposition 8.3.4, every
bicategory is biequivalent to a strict 2-category [Le∞, 2.3].

9.7. Functor Categories

Let D be a small category and let C an arbitrary category. Recall that we denote by
Fun(D, C) the category of functors from D to C, with natural transformations as morphisms.

Examples 9.7.1.
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• Let I denote the category of finite sets and injections with objects n = {1, . . . , n}
for n ≥ 0, where 0 denotes the empty set. Morphisms in this category are injective
functions. The category of functors from I to a category C plays an important role,
for instance, in Bökstedt’s definition of topological Hochschild homology [Bö∞] from
the 80’s, in the setting of FI-modules [CEF15] and in the study of I-spaces [SaSc12].
We will encounter this category again later.
• The category Σ has again the same objects as I, but we only consider bijections as

maps; hence,

Σ(n,m) =

{
∅, if n 6= m

Σn, if n = m.

Hence, one can view Σ as the subcategory of I of isomorphisms, that is, Σ = Iso(I).
Let C be an arbitrary category. Then, the category Fun(Σ, C) is called the category

of symmetric sequences in C. If X is an object of Fun(Σ, C), then X(n) is called the
nth level of X. Symmetric sequences play an important role in mathematics. You
can find more about symmetric sequences of module categories and their algebraic
properties in [Sto93], and a comprehensive overview is in [AM10]. We will come
back to them later when we discuss symmetric spectra.
• We denote by Γ the category of finite pointed sets and pointed maps with objects

[n] = {0, . . . , n} for n ≥ 0, where 0 is the basepoint of [n]. Morphisms are functions
of finite sets sending 0 to 0. Note that our use of Γ is the opposite to Segal’s category
Γ [Se74].

We saw in Proposition 3.3.1 that (co)completeness of C transfers to (co)completeness of
Fun(D, C). Enrichments can also be transferred.

Proposition 9.7.2. Let D be a small category and let C be a category enriched in V .
If V has all small limits, then Fun(D, C) is V-enriched.

Proof. For two objects F,G of Fun(D, C), we have to define an object in V , Fun(D, C)(F,G).
We construct this as the V-end of the diagram

C(F (−), G(−)) : Do ×D → V .
�

9.8. Day Convolution Product

The Day convolution product is a simple procedure to transfer symmetric monoidal
structures to the level of functor categories. This monoidal product features in several
applications, and we present some of those.

Definition 9.8.1.
• Let C be a symmetric monoidal category and let D be a small category. For two

functors F,G ∈ Fun(D, C), we can form their external product F �G ∈ Fun(D×D, C)
by defining

(F �G)(D1, D2) := F (D1)⊗G(D2), (F �G)(f1, f2) := F (f1)⊗G(f2)

for all objects D1, D2 of D and all morphisms f1, f2 in D.
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• Let (D,t, 0, τ) and (C,⊗, eC, c) be two symmetric monoidal categories, and assume
that D is small and that C is cocomplete. The Day convolution product F2G of two
functors F,G ∈ Fun(D, C) is defined as the left Kan extension of the external product
F �G along the functor t : D ×D → D:

D ×D F�G
//

t
��

C.

D
F2G

77

In the following, we will work with enriched functors and their Day convolution product,
and hence, the left Kan extension described previously takes place in an enriched setting. In
the applications, we will often use the standard enrichment (see Definition 9.1.3) of a small
category D in a cocomplete closed symmetric monoidal category (C,⊗, eC), with

D(D1, D2) =
⊔

D(D1,D2)

eC,

and then, C-functors F : D → C correspond to ordinary functors from D to C. By FunC(D, C),
we denote the category of C-functors and C-natural transformations.

Note that if D is a small symmetric monoidal category enriched in C and C is a cocom-
plete closed symmetric monoidal category, then we have a pointwise left Kan extension (see
Definition 4.1.5), and hence, we can also express the functor F2G as the coend∫ D×D

D(D1 tD2,−)⊗ (F �G)(D1, D2) =

∫ D×D
D(D1 tD2,−)⊗ F (D1)⊗G(D2).

An immediate reformulation is then of the following form:

Lemma 9.8.2. If D is a small symmetric monoidal category enriched in C and if C is a
cocomplete closed symmetric monoidal category, then there is an isomorphism

FunC(D, C)(F2G,H) ∼= FunC(D ×D, C)(F �G,H ◦ (− t−)).

With the coend interpretation of the Day convolution product, it is rather transparent
that we get a symmmetric monoidal structure on FunC(D, C).

Proposition 9.8.3. Assume that (D,t, 0, τ) is a small symmetric monoidal category
enriched in C, where C is a cocomplete closed symmetric monoidal category. Then the
category of enriched functors from D to C, FunC(D, C), is a symmetric monoidal category
with the Day convolution product. The unit for (FunC(D, C),2) is given by D(0,−), and the
symmetry is induced by the ones in D and in C.

Proof. Writing down a full proof is a tedious task, and Day has done it in [Day70b].
We sketch the main idea.

The associativity of the Day convolution product follows from the associativity of the
coend description given earlier, together with the associativity for the monoidal structures
in D and C.
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(F2G)2H =

∫ D×D
D(D1 tD4,−)⊗

(∫ D×D
D(D2 tD3, D1)⊗ F (D2)2G(D3)

)
⊗H(D4)

∼=
∫ D×D×D

D(D2 tD3 tD4,−)⊗ (F (D2)⊗G(D3))⊗H(D4).

The unit condition follows in a similar manner, and we only show the left unit condition

D(0,−)2F =

∫ D×D
D(D1 tD2,−)⊗D(0, D1)⊗ F (D2) ∼=

∫ D
D(0 tD2,−)⊗ F (D2) ∼= F.

For the symmetry isomorphism

χF,G : F2G→ G2F,

we have to apply the symmetry in C, c, in order to interchange the ⊗-factors F (D1)⊗G(D2),
but we also have to apply the twist in D, τ in order to get an isomorphism
(9.8.1)
D(τ, 1)⊗ cF (D1),G(D2) : D(D1 tD2,−)⊗F (D1)⊗G(D2)→ D(D2 tD1,−)⊗G(D2)⊗F (D1)

that combines to a binatural isomorphism χF,G. �

Corollary 9.8.4. Under the assumptions of Proposition 9.8.3 and if C has small limits,
then the symmetric monoidal structure on FunC(D, C) is closed.

Proof. We define an internal hom-object CD(F,G) : D → C as the C-functor that sends
an object D of D to the end ∫

D
C(F (D1), G(D tD1)).

For checking that this actually defines an adjoint to 2, we use

FunC(D, C)(F2G,H) ∼= FunC(D ×D, C)(F �G,H ◦ (− t−))

and the latter is isomorphic to∫
D×D
C(F (D1), C(G(D2), H(D1 tD2)))

∼=
∫
D
C(F (D1), CD(G,H)(D1))

∼=FunC(D, C)(F, CD(G,H)).

�

The fact that FunC(D, C) is closed with respect to the Day convolution product enables
us to calculate the product of two enriched representable functors.

Proposition 9.8.5. Assume that C has small limits and that the assumptions of Propo-
sition 9.8.3 are satisfied. Then, for any two objects D1, D2 of D,

D(D1,−)2D(D2,−) ∼= D(D1 tD2,−).
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Proof. The adjunction property implies that

FunC(D, C)(D(D1,−)2D(D2,−), H) ∼= FunC(D, C)(D(D1,−), CD(D(D2,−), H)),

but CD(D(D2,−), H) ∼=
∫
D C(D(D2, D3), H(− tD3)) ∼= H(− tD2) and

FunC(D, C)(D(D1,−), H(− tD2)) ∼= H(D1 tD2) ∼= FunC(D, C)(D(D1 tD2,−), H),

and hence, D(D1,−)2D(D2,−) ∼= D(D1 tD2,−). �

Examples 9.8.6.
• We already studied the first example in Example 4.1.7. Let (C,⊗, eC) be a bicomplete

closed symmetric monoidal category, let D be the category Σ, and assume that Σ is
enriched in C in the standard way, that is,

Σ(n,m) =
⊔

Σ(n,m)

eC.

The category of symmetric sequences in C, CΣ possesses a symmetric monoidal
structure given by the Day convolution product. The external product of two sym-
metric sequences X, Y is

(X � Y )(p,q) = X(p)⊗ Y (q).

The Day convolution product can be made explicit in this example, and we obtain

(X2Y )(n) =
⊔

p+q=n

Σn ×Σp×Σq X(p)⊗ Y (q).

Here,
⊔

denotes the coproduct in C, and Σn × C =
⊔

Σn
C carries the Σn-action that

permutes the summands.
The unit for this structure is given by the symmetric sequence u = D(0,−). This

can be made explicit. We obtain u(0) = eC and u(n) = ∅ for all positive n, where ∅
denotes the initial object of C.

For the twist map

c2 : X2Y → Y2X,

the twist c2 on level n is defined as

c2(n) : (X2Y )(n)→ (Y2X)(n),

where c2(n) applies the twist map

c⊗ : X(p)⊗ Y (q)→ Y (q)⊗X(p)

and uses the shuffle permutation χp,q ∈ Σn that exchanges the first p elements with
the last q elements on the permutation coordinate in Σn.

Example 9.8.7. Let I be the category of finite sets and injections from Example 9.7.1.
As C, we take any symmetric monoidal cocomplete category, in which I is enriched in the
standard way. In this example, the unit 0 is initial in I, and hence,

I(0,−) : I → C

is the constant functor with value eC.
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A version of the following result can be found in [MMSS01, §20]. The category of lax
(symmetric) monoidal functors has as objects lax (symmetric) monoidal functors and as
morphisms monoidal natural transformations, as in Definition 8.3.8.

Proposition 9.8.8. Let D be a small category symmetric monoidal category and let
C be a symmetric monoidal category that is cocomplete. Then, there is an equivalence of
categories between the category of lax (symmetric) monoidal functors and the category of
(commutative) monoids in FunC(D, C) with respect to the Day convolution product.

Proof. The universal property of maps out of the Day convolution product from Lemma
9.8.2

FunC(D, C)(F2G,H) ∼= FunC(D ×D, C)(F �G,H ◦ (− t−))

allows us to see that multiplications m : F2F → F are in bijection with C-natural transfor-
mations F � F ⇒ F ◦ (− t−).

A functor F is a lax monoidal functor if an only if there is such a C-natural transformation

ϕ : F � F ⇒ F ◦ ((−) t (−))

and a morphism eC → F (0) satisfying compatibility conditions. The associativity of the
monoid structure is equivalent to the associativity condition on ϕ. Starting with ϕ, we
denote the resulting multiplication F2F → F by mϕ. If m : F2F → F is given, we call the
resulting C-natural transformation ϕm.

It remains to check the equivalence of the unit condition on the monoid and on ϕ and
the equivalence of the commutativity of the monoid structure and symmetry condition on
ϕ.

Assume that F is lax monoidal with unit ηF : eC → F (0). We need a C-natural transfor-
mation η : D(0,−)⇒ F , and we define the C-component of η as

ηC : D(0, C) ∼= D(0, C)⊗ eC
1D(0,C)⊗ηF

//D(0, C)⊗ F (0)
ev
//F (C).

Here, ev is the evaluation map from (9.1.1).
Conversely, if F is a monoid with unit η : D(0,−) ⇒ F then the unit of the enriched

structure eC → D(0, 0) composed with η0 gives a morphism eC → F (0), and this gives a unit
for the lax monoidal structure.

These assignments are inverse to each other. Starting with η : D(0,−)⇒ F , and defining
first ηF : eC → F (0) from it and then the natural transformation associated with it gives the
composition from the upper-left corner to the lower-left corner in the diagram

D(0, C)
∼=
//

��

D(0, C)⊗ eC

��

D(0, C)⊗D(0, 0)

1D(0,C)⊗η0

��

ev
hh

F (C) D(0, C)⊗ F (0),
ev

oo

and as the upper triangle commutes, the dashed arrow is nothing but ηC .
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Vice versa, starting with ηF : eC → F (0) and defining η : D(0,−) ⇒ F from it and then
restricting to the resulting morphism eC → F (0) yields the composite

eC
ηF
// D(0, 0)

∼=
// D(0, 0)⊗ eC

1D(0,0)⊗ηF
��

D(0, 0)⊗ F (0)

ev

��

F (0)

and by the unitality condition on the action of enriched morphisms on enriched functors,
this is equal to ηF .

Assume that the monoid F is abelian, that is, m◦χF,F = m as elements in FunC(D, C)(F2F, F ).
Then, for ϕm : F � F → F ◦ (− t−), we get with (9.8.1) that

F (τD1,D2) ◦ (ϕm)D1,D2 = (ϕm)D2,D1 ◦ cF (D1),F (D2)

and that is precisely the symmetry of ϕm.
A morphism of monoids α : F → G is a C-natural transformation, which satisfies that

for all objects D1, D2, the diagram

F (D1)⊗ F (D2)
αD1
⊗αD2

//

(ϕFm)D1,D2
��

G(D1)⊗G(D2)

(ϕGm)D1,D2
��

F (D1 tD2)
αD1tD2

// G(D1 tD2)

commutes and vice versa. It remains to check that the condition on the unit transfers as
well.

If α : F ⇒ G satisfies that

D(0,−)
ηG

�'

ηF

w�
F

α +3 G

commutes, then the induced unit condition for eC → D(0, 0) → F (0) and eC → D(0, 0) →
G(0) is satisfied because

F (0)

α0

��

eC
u
// D(0, 0)

ηF0 55

ηF0
))

G(0)
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commutes. Starting with ηF : eC → F (0) gives the unit diagram

D(0, C) ∼= D(0, C)⊗ eC

))vv

D(0, C)⊗ F (0)

��

1D(0,C)⊗α0
// D(0, C)⊗ F (0)

��

F (C)
αC

// G(C)

for the monoid morphism α, and this commutes because of the naturality condition of α and
the unit property of ηF . �

Examples 9.8.9. In all our examples, we use the standard enrichment, so FunC(D, C) =
Fun(D, C). In the following examples, E∞-structures feature. We will define them in Def-
initions 12.3.6 and 12.4.1 for spaces and chain complexes. For now, just think of them as
encoding homotopy commutativity up to all coherence constraints that you can think of.

• Commutative monoids in Fun(I,Top) are called commutative I-space monoids in
[SaSc12] and with a suitable model structure, they correspond to topological spaces
with an E∞-structure, and hence, they allow us to replace a homotopy-coherent mul-
tiplication by a strictly commutative one.
• Similarly, if k is a commutative ring, then commutative monoids in Fun(I,Ch(k)) are

commutative I-chain complexes, and they model unbounded chain complexes over k
with an E∞-structure and commutative algebra spectra over the Eilenberg-Mac Lane
spectrum Hk [RiS17].
• For functors F ∈ Fun(Γ, sSets∗), with F (0) = ∗, commutative monoids are commuta-

tive Γ-rings. We will encounter them and their associated commutative ring spectra
later again in Remark 14.3.15.

Remark 9.8.10. We will see later in the example of functors from the category of braided
injections (see Definition 14.6.1) that a braided monoidal structure on the indexing category
can be used to turn the Day convolution product into a braided monoidal structure. Similarly,
if the indexing category is just monoidal, one obtains a monoidal Day convolution product.
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Part II

From Categories to Homotopy Theory





CHAPTER 10

Simplicial Objects

We focus on those aspects of simplicial objects that we will need later. The definition of
simplicial sets goes back to Eilenberg and Zilber [EZ50] in their comparison of singular chains
on a product of spaces, S∗(X × Y ), and the tensor product of the singular chains, S∗(X)⊗
S∗(Y ). Kan used simplicial sets as a combinatorial model for homotopy theory [K57, K58b].
We leave out the discussion of model category structures on simplicial objects in suitable
categories and refer to [Q67] and [GJ09] for that. Further comprehensive accounts of
simplicial sets and related topics are [GZ67] and [May67].

10.1. The Simplicial Category

We consider the finite set {0, 1, . . . , n} with its natural ordering 0 < 1 < . . . < n and call
this ordered set [n] for all n ≥ 0.

Definition 10.1.1. The simplicial category, ∆, has as objects the ordered sets [n], n ≥ 0,
and the morphisms in ∆ are the order-preserving functions, that is, functions f : [n]→ [m],
such that f(i) ≤ f(j) for all i < j.

The category ∆ is small. As the only order-preserving bijection of the set [n] is the
identity map, ∆ has only trivial automorphism groups. Hence, if you take the associated
category of isomorphisms, Iso(∆), then this is the discrete category on the objects [n] for
n ≥ 0.

As an example, consider the set of morphisms ∆([2], [1]). If an f ∈ ∆([2], [1]) is not
surjective, then it has to map all elements in [2] to either 0 or 1. If it is surjective, it has
to hit one value twice, and this can be either 0 or 1. Therefore, the set ∆([2], [1]) has four
elements:

2

��

1

&&

1

0 // 0

2

&&
1 // 1

0

88

0

2

&&
1

&&

1

0 // 0

2

&&
1 // 1

0 // 0
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There are certain basic morphisms in ∆, and we will see in Lemma 10.1.4 that we can
describe every morphism in ∆ via these building blocks. Consider, for instance, the order-
preserving map

6

++

6

5

++

5

4

++

4

3 // 3

2

++

2

1 // 1

0

33

0.

We can factor it as an order-preserving surjection, followed by an order-preserving injection:

6

��

6

5

��

5

4

��

4

3

$$

3

99

3

2

$$

2

99

2

1

**

1

99

1

0 // 0

44

0.

Definition 10.1.2.
• For 0 ≤ i ≤ n, let δi : [n − 1] → [n] be the order-preserving inclusion that misses the

value i in the target:

δi(j) =

{
j, for 0 ≤ j ≤ i− 1,

j + 1, for i ≤ j ≤ n− 1.

• For 0 ≤ j ≤ n, let σj : [n+ 1]→ [n] be the order-preserving surjective map that sends
j and j + 1 to j:

σj(k) =

{
k, for 0 ≤ k ≤ j,

k − 1, for j < k ≤ n+ 1.

Compositions of these maps satisfy certain identities.

180



Lemma 10.1.3. The following relations hold:

δj ◦ δi = δi ◦ δj−1, i < j,
σj ◦ σi = σi ◦ σj+1, i ≤ j, and

σj ◦ δi =

 δi ◦ σj−1, i < j,
1[n], i = j, j + 1,

δi−1 ◦ σj, i > j + 1.

In the example discussed earlier you can then write the surjection as composites of σis
and the injection as a composition of δjs. That works in general.

Lemma 10.1.4. Every morphism 1[n] 6= f : [n]→ [m] in ∆ can be written as a composition

f = δi1 ◦ . . . ◦ δir ◦ σj1 ◦ . . . ◦ σjs ,

with 0 ≤ ir < . . . < i1 ≤ m and 0 ≤ j1 < . . . < js < n, where m = n − s + r. This
decomposition is unique.

Proof. You can factor every f as an order-preserving surjection, followed by the order-
preserving inclusion of the image into the target. You express the surjection as a composite
of the maps σjs and express the inclusion as a composite of δis. The simplicial identities from
Lemma 10.1.3 guarantee that these decompositions are unique, if we impose the condition
on the indices ik and jk, as we did. �

10.2. Simplicial and Cosimplicial Objects

Definition 10.2.1. Let C be an arbitrary category. A simplicial object in C is a con-
travariant functor from ∆ to C. A cosimplicial object in C is a covariant functor from ∆ to
C.

How can we describe simplicial objects in an explicit manner? Assume that we have a
functor X : ∆op → C. Then, for every object [n] ∈ ∆, we have an object X([n]) =: Xn in C.
As all morphisms in ∆ can be described as a composite of δis and σjs, it suffices to know
what the maps X(δi) =: di : Xn → Xn−1 and X(σj) =: sj do. Hence, if you want to describe
a simplicial object, then you have to understand the sequence of objects X0, X1, . . . and the
morphisms di, sj in C. These maps satisfy the dual relations to the one in Lemma 10.1.3:

(10.2.1)

di ◦ dj = dj−1 ◦ di, i < j,
si ◦ sj = sj+1 ◦ si, i ≤ j, and

di ◦ sj =

 sj−1 ◦ di, i < j,
1[n], i = j, j + 1,

sj ◦ di−1, i > j + 1.

Thus a simplicial object can be visualized as a diagram of the form

X0
// X1oo

oo //

// X2 . . . ,
oo

oo

oo

where the morphisms ← correspond to the dis, whereas the morphisms → are given by the
sjs. Note that on Xn, you have n+ 1 maps going out to the left and to the right.
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Definition 10.2.2. The dis are called face maps and the sjs are called degeneracy maps.
For a concrete category C with a faithful functor U : C → Sets the elements x ∈ U(Xn)

are the n-simplices of X. We will omit the functor U from the notation. Elements of the
form x = siy ∈ Xn for a y ∈ Xn−1 are called degenerate n-simplices.

We will see later that degenerate simplices are irrelevant for certain properties of a sim-
plicial object.

Simplicial objects in a category C form a category, where the morphisms are natural
transformations of functors. We denote this category by sC.

As C is an arbitrary category, we can consider simplicial R-modules, simplicial sets,
simplicial rings, simplicial topological spaces, and many more. Simplicial sets are partic-
ularly important because they model topological spaces (see 10.6.1). Simplicial objects in
an abelian category A model non-negatively graded chain complexes over A. The famous
Dold-Kan correspondence (see Theorem 10.11.2) is an equivalence of categories between sA
and Ch≥0(A).

Definition 10.2.3. Let C be any category. For any object C of C, we can define the
constant simplicial object, c(C), with c(C)n = C and di = si = 1C for all i.

Exercise 10.2.4. Show that c : C → sC is a functor and that it is full and faithful.

Definition 10.2.5. Let ∆n : ∆op → Sets be the functor given by [m] 7→ ∆([m], [n]).

Remark 10.2.6. Often, the functor ∆n is denoted by ∆n, but as it covariantly depends
on n, we stick to ∆n.

Note that every map in ∆([2], [1]) (and actually every map in ∆([n], [1]) for n ≥ 2) is
degenerate. In ∆([1], [1]), there is a nondegenerate element, the identity on [1], whereas the
map that sends both elements of [1] to zero can be written as s0(δ1) = δ1 ◦ σ0. Similarly,
the map that sends all of [1] to 1 is equal to δ0 ◦ σ0 and hence, also degenerate. There are
two nondegenerate 0-simplices, namely δ0 = d0(1[1]) and δ1 = d1(1[1]) : [0]→ [1]. We will see
later that the representable functor ∆1 is a simplicial model for an interval (with one 1-cell
and two 0-cells corresponding to the nondegenerate simplices).

The Yoneda lemma (2.2.2) identifies the set Xn with the set of natural transformations
from ∆n to X for every simplicial set X:

(10.2.2) Xn
∼= sSets(∆n, X).

Definition 10.2.7. The category of elements of a simplicial set X, el(X), is the category
X\∆o associated with the functor X : ∆o → Sets. Explicitly, the objects of el(X) are the
x ∈ Xn for some n. The morphisms in el(X) from x ∈ Xn to y ∈ Xm are all f ∈ ∆([n], [m]),
with X(f)(y) = x.

Remark 10.2.8. The Yoneda lemma (10.2.2) gives an alternative description of el(X).
Objects are morphisms of simplicial sets x : ∆n → X, and a morphism from x : ∆n → X to
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y : ∆m → X is an f ∈ ∆([n], [m]), such that the diagram

∆n = ∆(−, [n])

∆(−,f)

��

x

''
X

∆m = ∆(−, [m])

y

77

commutes.

The following result is a corollary of Density Theorem 5.4.3:

Proposition 10.2.9. For every simplicial set X there is an isomorphism of simplicial
sets

(10.2.3) colimel(X)∆n
∼= X.

The category of simplicial sets is closed symmetric monoidal.

Definition 10.2.10. For two simplicial sets X and X ′, their product is the simplicial set
X ×X ′, with (X ×X ′)n = Xn ×X ′n and coordinatewise structure maps.

The simplicial set of morphisms from X to X ′ is sSets(X,X ′) with p-simplices:

sSets(X,X ′)p = sSets(X ×∆p, X
′).

Note that ∆p is covariant in [p], and this determines the simplicial structure maps of
sSets(X,X ′).

Exercise 10.2.11. Show that the preceding definition of the product and the internal
homomorphism object turn the category of simplicial sets into a closed symmetric monoidal
category.

10.3. Interlude: Joyal’s Category of Intervals

There is an alternative explicit description of the category ∆o due to Joyal in terms of
intervals [Jo-a∞]. I first learned about this approach to ∆o from Martin Markl.

Definition 10.3.1. Let I denote the category of proper intervals whose objects are the
objects [n] of ∆ for n ≥ 1. Morphisms are order-preserving maps f : [n] → [m], such that
f(0) = 0 and f(n) = m.

There are variants of this definition, where one doesn’t require n to be at least one. Then,
the corresponding simplicial category will be the diagram category describing augmented
simplicial objects.

Joyal describes an object [n+ 1] of I as the possible Dedekind cuts [Jo-a∞, p. 2] of the
object [n] of ∆. Let us mark a cut with the symbol “|”. For instance, the Dedekind cuts of
the object [3] are

| 0123, 0 | 123, 01 | 23, 012 | 3 and 0123 |;
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thus, in particular, a cut in front of the smallest number 0 is allowed and so is a cut after
the largest number, here 3, and therefore, the number of Dedekind cuts of [n] is n + 2 and
can be identified with the object [n+ 1].

We can identify the set of cuts of [n] with the set ∆([n], [1]). If f ∈ ∆([n], [1]), then there
is an i in [n], such that f(j) = 0 for all 0 ≤ j ≤ i− 1 and f(j) = 1 for all j ≥ i. A morphism
g : [m]→ [n] induces a map (−) ◦ g : ∆([n], [1]). If the cut described by f was at 0, that is,
f(j) = 1 for all j, then the cut described by f ◦ g is also at 0. Similarly, if f is the constant
map with value 0, that is, it describes the cut at n, then f ◦ g is also the constant map with
value 0, and hence, f ◦ g describes the cut at m. Thus the precomposition with g induces a
map of intervals and thus, we obtain the following:

Lemma 10.3.2. There is a functor D : ∆o → I, such that D[n] = [n+ 1].

For the following, it is useful to have a direct description of the effect of D on morphisms.
This can be found, for instance, in [Ou10]. For f ∈ ∆([n], [m]), the morphism D(f) ∈
I([m+1], [n+1]) can be described as follows: D(f)(i) is uniquely determined by the property
that the preimage f−1{i, i+1, . . . ,m} is equal to {D(f)(i), D(f)(i)+1, . . . , n}. The morphism
D(f) satisfies

(10.3.1) D(f)(i) ≤ j ⇔ i ≤ f(j) for all i ∈ [m], j ∈ [n].

Note that D(f)(0) = 0 and D(f)(m + 1) = n + 1, because D(f) is a map of intervals, and
thus, (10.3.1) determines D(f).

Example 10.3.3. Consider the following morphism f : [4]→ [3] in ∆:

−
4

,,
− −
3

,,

3
− −
2 // 2
− −
1 // 1
− −
0

22

0.
− −

Here, we indicated the cuts of [4] and [3] in the picture. If you focus on the cuts, then for
the dual morphism, you connect those cuts that are unobstructed by the arrows of f .

−
− −
− −
− −
− −
− −
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As we identify a category and an opposite category, you also have to reflect the picture,
and hence, the dual morphism of f , D(f), is

5

4

22

4

3

22

3

2 // 2

1

,,

1

0 // 0.

Thus, you can construct the dual morphism D(f), using the preimages of cuts under f .

Exercise 10.3.4. Draw D(δoi ) and D(σoj ).

Joyal also describes an inverse to this functor. If [n] is an interval, then we can consider
the internal Dedekind cuts of [n], for example, for [n] = [3], the list is

0 | 123, 01 | 23 and 012 | 3.

The number of internal cuts of [n] is n and can be identified with the object [n−1] of ∆. We
can also identify it as the set of morphisms of intervals I([n], [1]). Therefore, precomposition
with a morphism of intervals g ∈ I([m], [n]) gives a morphism in I([m], [1]). Identifying
the latter set again with the object [m − 1] of ∆, we get that the corresponding morphism
g∨ : [n− 1]→ [m− 1] is order-preserving. Thus we get the following:

Lemma 10.3.5. The assignment [n] 7→ [n− 1] and I([n], [m]) 3 g 7→ g∨ defines a functor

(−)∨ : Io → ∆.

Again, we can describe the morphism g∨ explicitly in terms of g as a morphism from
[n− 1] to [m− 1]. The preimage g−1{0, . . . , j} is {0, . . . , g∨(j)}. Therefore,

(10.3.2) i ≤ g∨(j)⇔ g(i) ≤ j for all i ∈ [n− 1] and j ∈ [m− 1].

You can also construct g∨ from g by considering preimages of internal cuts under g.
Summarizing the results, we get a duality between the categories ∆o and I.

Theorem 10.3.6. The functor D is an isomorphism of categories with inverse (−)∨.

Proof. It is clear that D and (−)∨ are inverse to each other on the level of objects.
Applying (10.3.2) to the trivial relation that g(i) ≤ g(i) for every g ∈ I([n], [m]) and for all
i ∈ [n] yields i ≤ g∨(g(i)) for all i ∈ [n]. With (10.3.1), we obtain

D(g∨)(i) ≤ g(i) for all i ∈ [n].

By the definition of D(f), we have that f(D(f)(i)) is always greater than or equal to i, and
this implies by (10.3.2) (with g∨ = f) that

g(i) ≤ D(g∨)(i)

for all i, and thus, we get that g = D(g∨).
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Similarly, if f ∈ ∆([n], [m]), then f(j) ≤ f(j) for all j ∈ [n] implies with (10.3.1) that
D(f)(f(j)) ≤ j for all j, and this, in turn, implies with (10.3.2) that

f(j) ≤ D(f)∨(j) for all j ∈ [n].

As g(g∨(i)) is always less than or equal to i by definition of g∨, we get (with g = D(f)),
using (10.3.1) that

D(f)∨(i) ≤ f(i),

and therefore, f = D(f)∨. �

Corollary 10.3.7. The category of simplicial objects in a category C is isomorphic to
the category of covariant functors from I to C.

Remark 10.3.8. If we denote by Ibig the category of arbitrary intervals, that is, linearly
ordered sets with a smallest and a biggest element, such that morphisms are order-preserving
and preserve the smallest and biggest elements, then a morphism f ∈ Ibig(D[n], [0, 1]) from
D[n] = [n + 1] to the unit interval [0, 1] is nothing but a point in the topological n-simplex
∆n: By definition, f(0) = 0 and f(n + 1) = 1. The (n + 1)-tuple (t0 = f(1), t1 = f(2) −
f(1), . . . , tn = 1− f(n)) is an element of ∆n.

10.4. Bar and Cobar Constructions

Let (C,⊗, 1) be a monoidal category, not necessarily symmetric. Let (C, µ, η) be a monoid
in C, let N be a right C-module, with structure map ρ : N ⊗ C → N , and let M be a left
C-module, with structure map λ : C ⊗M →M .

We assign to [n] ∈ ∆ the object N ⊗ C⊗n ⊗M and define

di : N⊗C⊗n⊗M → N⊗C⊗n−1⊗M, di =


N ⊗ C⊗i−1 ⊗ µ⊗ C⊗n−i−1 ⊗M, if 0 < i < n,

ρ⊗ C⊗n−1 ⊗M, if i = 0, and

N ⊗ C⊗n−1 ⊗ λ, for i = n.

The degeneracies are defined by

si : N ⊗ C⊗n ⊗M → N ⊗ C⊗n+1 ⊗M, si = N ⊗ C⊗i ⊗ η ⊗ C⊗n−i ⊗M.

Proposition 10.4.1. For every monoid C, every right C-module N , and left C-module
M , the preceding notions define a simplicial object in C.

Proof. The simplicial identities (10.2.1) are easy to check: If |i − j| > 1, then di and
dj don’t interfere, and the equality di ◦ dj = dj−1 ◦ di for i < j + 1 is caused by an index
shift due to the multiplication in C or a module action map. The relation di ◦ di+1 = di ◦ di
corresponds to the associativity of µ for 0 < i < n and to the associativity of the C-module
structures for i = 0, n. Inserting the unit in different places does not cause any relation but
a reindexing, so si ◦ sj = sj+1 ◦ si holds for i ≤ j. The relations di ◦ si = 1 = di+1 ◦ si follow
from the unit condition of the monoid structure on C and the unit condition for the module
structures. In all other cases, the dis and sjs don’t interfere, except for an index shift. �

Definition 10.4.2. The simplicial object B(N,C,M), [n] 7→ B(N,C,M)n = N⊗C⊗n⊗
M is the two-sided bar construction on N , C, and M .
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Remark 10.4.3. One can dualize the two-sided bar construction. For a comonoid T in
C, a right T -comodule N , and a left T -comodule M , the assignment [n] 7→ N ⊗ T⊗n ⊗M
defines a cosimplicial object, called the (two-sided) cobar construction. This is often denoted
by Ω(N, T,M).

10.4.1. Applications of Bar and Cobar Constructions. We present some sample
applications of bar and cobar constructions. As these constructions are quite ubiquitous in
homological algebra and algebraic topology, the following is just a tiny appetizer. We will
encounter more examples of bar constructions later.

• If C is the category of abelian groups and C = R is an associative ring, N is a
right R-module and M is a left R-module, then the definition of the two-sided bar
construction recovers the one from homological algebra [W94, Example 8.7.2]. It is
an important tool to generate resolutions and is used in many applications, where
you need to calculate Tor and Ext groups such as group (co)homology, Hochschild
(co)homology, and others.
• Monads C on a category C give rise to an important class of examples [May72,

§9]. Right C-modules are then functors F : C → C with a module structure map
ρ : F ◦C → F , which is compatible with the unit and the multiplication of the monad
C. Similarly, we can define left C-modules. For a right C-module F and a left
C-module G, we get a two-sided bar construction B(F,C,G).

We can modify the preceding construction to allow the left C-module to be a
functor from some category D to C and the right C-module to be a functor from C to
D. Then, the two-sided bar construction is a simplicial object in D.

Consider a monad C = RL associated with an adjoint pair of functors (L,R).
Then, L is a right C-module with structure map

ρ = εL : LC = L(RL) = (LR)L→ L,

and any C-algebra has a left C-action. In particular, if D is a C-algebra, then R(D)
has a left C-action, and we obtain a two-sided bar construction:

(10.4.1) B(L,C,R(D)).

• As an example of a monad, we consider the loop-suspension adjunction. We work
in the category of based compactly generated spaces cg∗ from Definition 8.5.13. The
reduced n-fold suspension functor Σn : cg∗ → cg∗ is given by

ΣnX = Sn ∧X.
Its right adjoint is the n-fold based loop functor, which sends X to kTop∗(S

n, X) =
ΩnX.

If Y is an n-fold based loop space, that is, Y = ΩnX for some X in cg∗, then Y is
a C = ΩnΣn-algebra whose structure map

ΩnΣnY = ΩnΣnΩnX → ΩnX

is Ωn(εX). The functor Σn is a right C-module, and thus, we can form the two-sided
bar construction B(Σn,ΩnΣn,ΩnX). This example features prominently in [May72].
Beck showed [Be69, Theorem (16)] that a space Y that is an algebra for the monad
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ΩnΣn and is of the homotopy type of a CW complex can be identified with the n-fold
based loop space of B(Σn,ΩnΣn, Y ). This bar construction hence provides an n-fold
delooping of Y = ΩnX.
• An important example of a two-sided cobar construction is the cosimplicial object

associated with two continuous maps of topological spaces:

E

p
��

X
f
// B.

Every topological space is a comonoid, thanks to the diagonal map of topological
spaces. We set

Ω(X,B,E)n := X ×Bn × E.
Then, X is a right B-comodule via the map

X
∆

//X ×X 1X×f
//X ×B,

and dually, E is a left B-comodule via (p× 1E) ◦∆: E → E × E → B × E.
A special case of this situation is the path-loop fibration. Choose a basepoint

b0 ∈ B and consider

PB

ev1

��

PB
ev1

// B,

where PB ⊂ BI is the space of continuous maps ω from the unit interval I = [0, 1] to
B, with ω(0) = b0. Then, the fiber product PB×B PB is equivalent to the based loop
space of B, ΩB. More generally, for every fibration p : E → B and any continuous
map f : X → B, the cosimplicial object [n] 7→ X ×Bn×E is the input for one way of
constructing the Eilenberg-Moore spectral sequence, which tells you something about
the (co)homology of the fiber product X ×B E. You can find a general overview on
the Eilenberg-Moore spectral sequence in [McCl01]. For approaches using the cobar
construction and related cosimplicial techniques, see [Sm70, Dw74, Bou87] and
[Sh96].
• Adams’ cobar construction [Ad56] is of central importance. Despite its name, it is

similar to the cobar construction in the sense of Remark 10.4.3, but it is slightly
twisted. Consider a differential N0-graded coalgebra C∗ over a commutative ground
ring k, with C0 = k, C1 = 0 and such that every Cn is a free k-module. Later, C∗ will
be the coalgebra of normalized simplicial chains C∗(X) on a 1-reduced simplicial set
X, that is, an X in sSets with X0 = X1 = {∗}.

Consider the reduction C̄∗ =
⊕

n≥2Cn, which you can also write as the kernel of

the counit map. Let s−1C̄∗ denote the desuspension of C̄∗, with

(s−1C̄∗)n = C̄n+1.

It is common to denote elements x ∈ (s−1C̄∗)n by x = s−1c for the unique element
c ∈ C̄n that represents x. Note that s−1C̄∗ inherits a differential ds−1C̄∗ from C∗ via
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ds−1C̄∗(s
−1c) := −s−1dC∗(c). Due to the shift of degrees, the comultiplication on C∗

gives rise to a map of degree −1:

∆: (s−1C̄∗)n = C̄n+1 →
⊕

p+q=n+1

Cp ⊗k Cq =
⊕

p+q=n+1

(s−1C∗)p−1 ⊗k (s−1C∗)q−1,

and you reduce the outcome to end up in⊕
`+m=n−1

(s−1C̄∗)` ⊗k (s−1C̄∗)m = (s−1C̄∗ ⊗k s−1C̄∗)n−1.

We set

Ω(C∗)n := (s−1C̄∗)
⊗kn,

so for every n ≥ 0, you obtain a graded k-module (s−1C̄∗)
⊗n. This looks like a

reduced and shifted version of the n-th cosimplicial degree of Ω(k, C, k), but for now,
you consider the underlying graded k-module.

This family of graded k-modules (Ω(C∗)n)n≥0 carries a multiplication via the con-
catenation of tensors; that is, there are morphisms

(µΩ(C∗))n,m : Ω(C∗)n ⊗k Ω(C∗)m → Ω(C∗)n+m

that send generators s−1c1 ⊗ . . .⊗ s−1cn ∈ Ω(C∗)n and s−1c′1 ⊗ . . .⊗ s−1c′m ∈ Ω(C∗)m
to

s−1c1 ⊗ . . .⊗ s−1cn ⊗ s−1c′1 ⊗ . . .⊗ s−1c′m.

You take the internal differential of C∗ and the diagonal of C∗ and merge them into
a total differential, dΩ(C∗). As we use as multiplication the one on the tensor algebra

T (s−1C̄∗) =
⊕
n≥0

(s−1C̄∗)
⊗kn =

⊕
n≥0

Ω(C∗)n

and as the tensor algebra functor is left adjoint to the forgetful functor, the differential
dΩ(C∗) is uniquely determined by its value on Ω(C∗)1 = s−1C̄∗ and the requirement
that it has to satisfy the Leibniz rule. One defines

dΩ(C∗)(s
−1c) := −s−1dC∗(c) +

∑
i∈I

s−1ci ⊗ s−1c′i

if ∆(c) = c⊗1+1⊗c+
∑

i∈I ci⊗c′i, so you discard the primitive part of the diagonal map
and just keep the mixed terms. By slight abuse of notation, (Ω(C∗), dΩ(C∗)) denotes
the complex Ω(C∗) = T (s−1C̄∗), graded by internal degree with this differential.

Adams shows that the cobar construction of the simplicial singular chains of a
1-reduced space X is a model of the based loop space of X [Ad56, Theorem p. 410]:

H∗(Ω(C∗(X)); dΩ(C∗(X))) ∼= H∗(ΩX).

One can upgrade this homology isomorphism to a statement at chain level. For in-
stance, Hess and Tonks prove [HT10, Theorem p. 1861] that for every 1-reduced
simplicial set X, there is a natural strong deformation retract of chain complexes

Ω(C∗(X))
φ
//C∗(G(X)),

ψ
oo
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where G(X) is the Kan loop group of X [GJ09, §V.5] which is a simplicial model for
Ω|X|. Here, ψ ◦φ is the identity, and there is a natural chain homotopy from φ ◦ψ to
the identity map on C∗(G(X)).

In rational homotopy theory, Adams’ cobar construction is crucial because it gives
rise to one of the possible algebraic models of rational spaces [Q69].

10.5. Simplicial Homotopies

For topological spaces, the usual notion of a homotopy between two continuous maps
f, g : X → Y requires a map H : X × [0, 1]→ Y , restricting to f on level 0 and to g at level
1. The notion for a homotopy between two maps of simplicial sets f, g : X → Y is similar,
requiring a morphism of simplicial sets

H : X ×∆1 → Y

restricting to f and g, respectively, under i0, i1 : ∆0 → ∆1, where ij(0) = j induces a map
∆0 → ∆1.

X
∼=
//

f
**

X ×∆0
i0
// X ×∆1

H
��

X ×∆0
i1
oo X

∼=
oo

g

ttY

The combinatorial nature of the simplicial category lets us express the notion of homotopy
in the following combinatorial manner.

Definition 10.5.1. Let f, g : X → Y be two maps of simplicial sets. A simplicial
homotopy from f to g consists of a family of maps

hi : Xn → Yn+1, 0 ≤ i ≤ n,

satisfying d0h0 = f , dn+1hn = g and

dihj =


hj−1di for i < j,

dihi−1 for i = j,

hjdi−1 for i > j + 1,

and sihj =

{
hj+1si for i ≤ j,

hjsi−1 for i > j.

Recall from Section 10.3 that elements in ∆1([n]) = ∆([n], [1]) can be described as
Dedekind cuts, and we label the cuts as {c0, . . . , cn+1}, with ci representing the cut un-
der i ∈ [n], that is, c−1

i (0) = {0, . . . , i− 1}. The following result relates the two notions of a
simplicial homotopy:

Proposition 10.5.2.
• Given a simplicial homotopy as in Definition 10.5.1, with h0, . . . , hn : Xn → Yn+1,

defines a homotopy H : X ×∆1 → Y as

Hn(xn, cj) =


gn(xn) for j = 0,

fn(xn) for j = n+ 1,

djhj−1(xn) for 1 ≤ j ≤ n.
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• Conversely, given a homotopy H : X ×∆1 → Y , with H ◦ i0 = f and H ◦ i1 = g, the
family hi(xn) = Hn+1(si(xn), ci+1) for 0 ≤ i ≤ n defines a simplicial homotopy as in
Definition, 10.5.1, from g to f .

Mind the switch of f and g in the second claim.

Proof. The map i0 maps the unique element in ∆0([n]) to cn+1, and i1 maps it to c0.
We record the following facts about face and degeneracy maps on Dedekind cuts:

(10.5.1) dicj =

{
cj−1 for i ≤ j − 1,

cj for i ≥ j,
and sicj =

{
cj+1 for i ≤ j − 1,

cj for i ≥ j.

In particular, dic0 = c0 and dicn+1 = cn for all i.
For the first claim, note that Hn ◦ i0(xn) = Hn(xn, cn+1) = fn(xn) by definition, and also,

Hn ◦ i1(xn) = gn(xn). The remaining identities boil down to using the relations from (10.5.1)
and the simplicial identities.

For the converse, given a homotopy H : X ×∆1 → Y , with H ◦ i0 = f and H ◦ i1 = g,
the assignment hi(xn) = Hn+1(si(xn), ci+1) satisfies

d0h0(xn) = d0(Hn+1(s0(xn), c1)) = Hn(xn, d0c1) = Hn(xn, c0) = H ◦ i1(xn) = gn(xn),

and similarly,

dn+1hn(xn) = dn+1Hn+1(sn(xn), cn+1) = Hn(xn, dn+1cn+1).

Here, cn+1 is a Dedekind cut in ∆([n+ 1], [1]), so it sends n+ 1 to 1, but dn+1 applied to it
sends all i ∈ [n] to 0, and hence dn+1hn(xn) = Hn(xn, cn+1) = fn(xn). �

Exercise 10.5.3. Let C be a monad on the category of sets and let X be a C-algebra.
(This can be extended to monads on cg.)

• Use the multiplication in the monad and the C-algebra structure on X to define a
morphism of simplicial objects:

%X : B(C,C,X)→ c(X),

where B(C,C,X) is the two-sided bar construction and where c(X) is the constant
simplicial object with value X.
• Use the unit of monad to define a morphism ϕX : c(X) → B(C,C,X), such that
%X ◦ ϕX = 1c(X) and such that there is a simplicial homotopy between ϕX ◦ %X and
1c(X). (If you are desperate, refer to [May72, Proposition 9.8].)

Remark 10.5.4. If we express a monad C as a composite of adjoint functors C = RL,
then

B(C,C,X)n = (RL)◦n+1(X) = R(L(RL)◦n(X) = R(B(L,RL,X)n).

In the case of R = Ωk and L = Σk, this trick, together with Exercise 10.5.3, can be used to
show that a C = ΩkΣk-algebra X is equivalent to Ωk|B(Σk,ΩkΣk, X)| (see [May72, §13] or
[Be69, Proof of Theorem (16)]).
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10.6. Geometric Realization of a Simplicial Set

The geometric realization of a simplicial set was introduced by Milnor [Mi57].

Definition 10.6.1. Let X be a simplicial set. The geometric realization of X, |X|, is
the topological space

|X| =
⊔
n≥0

Xn ×4n/ ∼ .

Here, we consider the sets Xn as discrete topological spaces, and 4n denotes the topological
n-simplex

4n = {(t0, . . . , tn) ∈ Rn+1|0 ≤ ti ≤ 1,
∑

ti = 1}.
The spaces 4n, n ≥ 0 form a cosimplicial topological space with structure maps

δi(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn) for 0 ≤ i ≤ n

and

σj(t0, . . . , tn) = (t0, . . . , tj + tj+1, . . . , tn) for 0 ≤ i ≤ n.

The quotient in the geometric realization is generated by the relations

(di(x), (t0, . . . , tn)) ∼ (x, δi(t0, . . . , tn)), (sj(x), (t0, . . . , tn)) ∼ (x, σj(t0, . . . , tn)).

Remark 10.6.2. The geometric realization of a simplicial set X is nothing but the coend
of the functor

H : ∆o ×∆→ Top,

with H([n], [m]) = Xn ×4m, using that [n] 7→ Xn is a contravariant functor from ∆ to Sets
and that [m] 7→ 4m is a covariant functor from the category ∆ to the category Top. Here,
we use the embedding of Sets into Top.

If f : X → Y is a morphism of simplicial sets, that is, a natural transformation from X
to Y , then f induces a continuous map of topological spaces

|f | : |X| → |Y |,
where an equivalence class [(x, t0, . . . , tn)] ∈ |X| is sent to the class [(f(x), t0, . . . , tn)] ∈ |Y |.
This turns the geometric realization into a functor from the category of simplicial sets to the
category of topological spaces.

Elements of the form sj(x) are identified with something of a lower degree in the geometric
realization, because of the relation

(sj(x), (t0, . . . , tn)) ∼ (x, σj(t0, . . . , tn)).

Hence, these elements do not contribute any geometric information to |X|. This might justify
the name degenerate for such elements. Note that elements in X0 are never degenerate.

An element (y, (t0, . . . , tm)) ∈ Xm ×4m is called nondegenerate, if y is not of the form
sj(x) for any x and j and if (t0, . . . , tm) ∈ 4m is not a point on the boundary of the
topological m-simplex.

Lemma 10.6.3. Assume that X is not the empty simplicial set. Then, every element
(x, (t0, . . . , tn)) ∈ Xn ×4n is equivalent to a uniquely determined nondegenerate element in
|X|.
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Proof. Lemma 10.1.4 yields that we can write every x ∈ Xm in a unique way in the
form x = sjp ◦ . . . ◦ sj1y with a nondegenerate y ∈ Xm−p and 0 ≤ j1 < . . . < jp < m. We
define a map ψ as

ψ[(sjp ◦ . . . ◦ sj1y, t0, . . . , tm)] = [(y, σi1 ◦ . . . ◦ σip(t0, . . . , tm))].

If (u0, . . . , un) is a point in the boundary of 4n of the form

(u0, . . . , un) = δir ◦ . . . ◦ δi1(v0, . . . , vn−r),

such that (v0, . . . , vn−r) is a point in the interior of4n−r and such that 0 ≤ i1 < . . . < ir ≤ n,
then we define

%[(x, (u0, . . . , un))] = [(di1 ◦ . . . ◦ dirx, (v0, . . . , vn−r))].

The maps % and ψ are self-maps of |X|, and the composite ψ ◦ % sends a representative of a
point in |X| to a unique nondegenerate representative that is equivalent to the representative
we started with. �

With the help of the result one can describe the structure of the topological space |X|
as a CW complex.

Proposition 10.6.4. ([Mi57, Theorem 1], [May67, Theorem 14.1]) The geometric
realization |X| of a simplicial set X is a CW complex, such that every nondegenerate n-
simplex corresponds to an n-cell.

Remark 10.6.5. Every CW complex is a compactly generated Hausdorff space; in par-
ticular, |X| is an object of cg (see Definition 8.5.13) for every simplicial set X.

Examples 10.6.6.
(1) The topological 1-sphere is the quotient space [0, 1]/0 ∼ 1. If we want to find

a simplicial model for the 1-sphere, such that the geometric realization has the
desired cell structure, then we should define a simplicial set S1 with one 0-simplex,
0, and one nondegenerate 1-simplex, 1. The simplicial identities force the existence
of a 1-simplex s0(0), so we get two 1-simplices. For the cell structure we do not need
any further maps, so we just take these simplices and all the resulting elements that
are given due to the simplicial structure maps. We then get S1

n
∼= [n] with face and

degeneracy maps as follows:

[0] // [1]oo

oo //

// [2] . . . ,
oo

oo

oo

The map si : [n]→ [n+ 1] is the unique monotone injection, whose image does not
contain i+ 1, while di : [n]→ [n− 1] is given by di(j) = j if j < i, di(i) = i if i < n,
and dn(n) = 0 and di(j) = j − 1 if j > i.

The face maps glue the only nondegenerate 1-simplex 1 to the zero simplex
0 ∈ [0], and we obtain that the geometric realization, |S1|, is the topological 1-
sphere.

(2) The geometric realization of the representable simplicial set ∆n is |∆n| = 4n. This
is a general fact about tensor products of functors and representable objects 15.1.5.

(3) Let X and Y be two simplicial sets. We already saw the product, X × Y , which is
the simplicial set with (X × Y )n = Xn × Yn. The simplicial structure maps di and
sj are defined coordinatewise. Be careful, an n-simplex (x, y) ∈ Xn×Yn of the form
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(six
′, sjy

′) for i 6= j might not be degenerate in Xn × Yn, despite the fact that both
coordinates are degenerate.

You know that a product of two CW complexes does not have to carry a CW
structure. How can we describe the geometric realization |X × Y |?

Proposition 10.6.7. Assume that X and Y are two simplicial sets, such that |X| × |Y |
is a CW complex, with the CW structure induced by the one on |X| and |Y |. Then,

|X × Y | ∼= |X| × |Y |.

Proof. This proof is more or less the original one from [Mi57]. The projection maps
pX : X × Y → X and pY : X × Y → Y induce continuous maps

|pX | : |X × Y | → |X|, |pY | : |X × Y | → |Y |,
which combine to a continuous map p : |X × Y | → |X| × |Y |. We construct a bijective map
|X| × |Y | → |X × Y |, which is continuous if |X| × |Y | is a CW complex.

Let (z, w) be a point in |X| × |Y | with a nondegenerate representative (x, (t0, . . . , tn)) of
z and (y, (u0, . . . , um)) of w. We consider the partial sums

ti :=
i∑

j=0

ti, u
i :=

i∑
j=0

ui.

As some of the tis and uis might be zero, the sequence of partial sums is not strictly monotone.
Some of the tis might also coincide with some of the ujs. Let r0 < . . . < rq = 1 be a strictly
monotone ordering of the elements in the union

{t0, . . . , tn} ∪ {u0, . . . , um}.
We can interpret the ris again as partial sums and can assign the element (r0, r1−r0, . . . , rq−
rq−1) ∈ 4q to it. This gives a description of (t0, . . . , tn) as σp1 ◦ . . .◦σpn−a(r0, r1−r0, . . . , rq−
rq−1), and similarly, we can express (u0, . . . , um) as σ`1 ◦ . . . ◦σ`m−b(r0, r1− r0, . . . , rq− rq−1).
Here, the sets {p1, . . . , pn−a} and {`1, . . . , `m−b} are disjoint and p1 < . . . < pn−a, `1 < . . . <
`m−b. We define a map

φ : |X| × |Y | → |X × Y |
as

φ(z, w) = [((spn−a ◦ . . . ◦ sp1x, s`m−b ◦ . . . ◦ s`1y), (r0, r1 − r0, . . . , rq − rq−1))].

If w′ ∈ |X×Y | has the nondegenerate representative ((x′, y′), (t0, . . . , tn)), then |pX |w′ has
the nondegenerate representative ψ(x′, (t0, . . . , tn)) and ψ(y′, (t0, . . . , tn)) is a nondegenerate
representative of |pY |w′. (Applying ψ is necessary because, for instance, (x′, y′) = (six, y

′)
could occur.) In total, we get

|pX |(φ(z, w)) =|pX |([((spn−a ◦ . . . ◦ sp1x, s`m−b ◦ . . . ◦ s`1y), (r0, r1 − r0, . . . , rq − rq−1))])

=[ψ((spn−a ◦ sp1x, (r
0, r1 − r0, . . . , rq − rq−1)))] = [(x, (t0, . . . , tn))] = z

and |pY |(φ(z, w)) = w. Hence, p◦φ = 1. For a nondegenerate representative ((x′, y′), (t0, . . . , tn))
of w′ ∈ |X × Y |, we get

φ ◦ p[((x′, y′), (t0, . . . , tn))] = φ([ψ((x′, (t0, . . . , tn)))], [ψ((y′, (t0, . . . , tn)))])

= [((x′, y′), (t0, . . . , tn))] = w′.
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So, φ is an inverse of p.

If |X| × |Y | is a CW complex, then φ is continuous on every product of cells [x×4n]×
[y×4m]. In the interior, no coordinate in the simplex is zero and φ just reorganizes things.
If one coordinate approaches zero, then two consecutive partial sums become equal and in
the sequence ri they will only be counted once. For the map φ, this has the effect of adding
a map sk. If several coordinates go to zero, then the simplicial identities ensure that the
map is well-defined and therefore continuous. �

As |∆1| is locally compact, we obtain the following compatibility result:

Corollary 10.6.8. If f, g : X → Y are maps of simplicial sets that are homotopic, then
|f | is homotopic to |g|.

Remark 10.6.9. One can always get a product description of |X × Y | as |X| ×k |Y |. By
the previous discussion, we know that |∆n × ∆m| ∼= |∆n| × |∆m| and this is |∆n| ×k |∆m|.
There are also direct combinatorial proofs for that (see for example [GZ67, III.3]). We
will see that geometric realization is a left adjoint functor in Proposition 10.12.9, so | − |
preserves colimits. By (10.2.3), every simplicial set X is isomorphic to colimel(X)∆n. By
Remark 8.5.17, the category cg is cartesian closed, and the product (−) ×k (−) preserves
colimits in every argument. These properties, together with the interchange law for colimits
from Proposition 3.5.1, give a chain of homeomorphisms

|X × Y | ∼= |colimel(X)∆n × colimel(Y )∆m|
∼= |colimel(X)×el(Y )∆n ×∆m|
∼= colimel(X)×el(Y )|∆n ×∆m|
∼= colimel(X)×el(Y )|∆n| ×k |∆m|
∼= colimel(X)|∆n| ×k colimel(Y )|∆m|
∼= |X| ×k |Y |.

Remark 10.6.10. One can also apply geometric realization to simplicial spaces, that is,
functors from ∆o to Top. But beware that this might not have the properties you would
expect. See Proposition 10.9.4 or [Se74, Appendix A] for more details.

10.7. Skeleta of Simplicial Sets

We consider the full subcategory ∆≤n of ∆ with objects [0], . . . , [n]. The inclusion functor

ιn : ∆≤n → ∆

allows us to restrict simplicial sets X to ∆≤n by considering X ◦ ιn : ∆o
≤n → Sets.

Definition 10.7.1. The n-skeleton of a simplicial set X, sknX, is the left Kan extension
of X ◦ ιn along ιn.

∆o
≤n

ιn
//

X◦ιn
��

∆o

sknX||

Sets

195



Remark 10.7.2. This definition also allows us to express skn via the left adjoint to
the restriction functor. Precomposition with the inclusion functor ιn : ∆≤n → ∆ defines a
functor

ι∗n : sSets→ s≤nSets,

where s≤nSets denotes the functor category Fun(∆o
≤n, Sets). The left adjoint L to ι∗n is then

given by the left Kan extension. If we already start with a functor of the form ι∗n(X) =
X ◦ ιn, then L(ι∗n(X)) = sknX. The counit of the adjunction then yields a canonical map
sknX → X.

So, first, you forget all information that X had in simplicial degrees greater than n,
and then, you extend it, filling in degenerate elements in simplicial degrees greater than n.
As degenerate simplices are identified to lower dimensional things, one gets the following
immediately:

Proposition 10.7.3. For every simplicial set X,

|sknX| ∼= skn|X| =: X(n),

where skn|X| = X(n) denotes the n-skeleton of the CW complex |X|.

10.8. Geometric Realization of Bisimplicial Sets

Definition 10.8.1. A bisimplicial set is a functor X : ∆o ×∆o → Sets. The morphisms
in the category of bisimplicial sets are the natural transformations.

We abbreviate X([p], [q]) by Xp,q and say that Xp,q is in bisimplicial degree (p, q). By
the exponential law,

Fun(∆o ×∆o, Sets) ∼= Fun(∆o,Fun(∆o, Sets)),

and due to the symmetry of ∆o × ∆o, we can also interpret X as a simplicial object in
simplicial sets in two different ways.

Example 10.8.2. There are two easy ways to embed the category of simplicial sets into
the category of bisimplicial sets. To any simplicial set Y , we can associate the bisimplicial
set XY ([p], [q]) = Yp that is constant in q-direction and XY ([p], [q]) = Yq that is constant in
p-direction.

Example 10.8.3. If Y and Z are two simplicial sets, then we can form their external
product, Y � Z, as a bisimplicial set, with

(Y � Z)p,q = Yp × Zq and (Y � Z)(ϕ, ψ) = Y (ϕ)× Z(ψ)

for all objects [p] and [q] in ∆ and all ϕ ∈ ∆([p′], [p]) and ψ ∈ ∆([q′], [q]).

Exercise 10.8.4. Find a suitable bisimplicial set Q(p, q), such that the set of morphisms
of bisimplicial sets from Q(p, q) to any bisimplicial set X are in natural bijection with the
set Xp,q.

There are several things one could suggest as the geometric realization of a bisimplicial
set X:

(1) We could define |X| as the suitable coend.
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(2) We could try to reduce the complexity of X by reducing X to a simplicial set and
realizing the latter. The diagonal simplicial set associated with the bisimplicial set
X is the functor diag(X) : ∆o → Sets, given by

diag(X)p = X([p], [p]), and diag(X)(ϕ) = X(ϕ, ϕ)

for every object [p] of ∆ and every ϕ ∈ ∆([q], [p]).
(3) We could do one step at a time: For a fixed [p], the functor

X([p],−) : ∆o → Sets

is a simplicial set and so is

X(−, [p]) : ∆o → Sets.

We could take the following two iterations of geometric realizations in sets and
spaces: |[q] 7→ |[p] 7→ Xp,q|| or |[p] 7→ |[q] 7→ Xp,q||.

The good news is that it doesn’t matter what you do.

Proposition 10.8.5. All four topological spaces described earlier are homeomorphic to
each other.

Proof. We first show with Quillen’s method from [Q73, p. 10 aka p. 86] that the models
from (2) and (3) are homeomorphic. To this end, we consider first special bisimplicial sets
of the form ∆p�∆q×S, where S is any set. Then, the geometric realization of the diagonal
of ∆p � ∆q × S is homeomorphic to 4p ×4q × S, because geometric realization commutes
with products in this case (Proposition 10.6.7). If we consider the two-fold realization

(10.8.1) |[n] 7→ |[m] 7→ ∆p([n])×∆q([m])× S||,
then in the inner realization, ∆p([n]) and S are constant and we get that the above is
homeomorphic to

|[n] 7→ ∆p([n])×4q × S|,
and this is also 4p ×4q × S. A symmetry argument gives the claim for the other two-fold
realization.

You solved Exercise 10.8.4, and this implies that we can express every bisimplicial set X
as the coequalizer:⊔

(∆×∆)(([p],[q]),([p′],[q′])) ∆p′ � ∆q′ ×Xp,q //
//
⊔

([p],[q])∈Ob(∆×∆) ∆p � ∆q ×Xp,q
//X.

Geometric realization is a left adjoint functor (see Proposition 10.12.9), and hence, it com-
mutes with colimits, in particular with disjoint unions and coequalizers. This proves the
claim.

Finally, it is not hard to see, for instance, that the two-fold realization, as in (10.8.1),
has the same universal property as the coend in (1). �

Note that the diagonal simplicial set associated with a bisimplicial set XY or XY , as in
Example 10.8.2, that is constant in one simplicial direction is Y again.

Remark 10.8.6. We state the following fact without proof (see [Ree∞, p. 7] or [BK72,
XII.4.2, p. 335]): Let f : X → Y be a morphism of bisimplicial sets, such that for every p ≥ 0,
the map fp,∗ : Xp,∗ → Yp,∗ is a weak equivalence. Then the map diag(f) : diag(X)→ diag(Y )
is also a weak equivalence.
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10.9. The Fat Realization of a (Semi)Simplicial Set or Space

Sometimes, you might want to use a variant of the geometric realization functor. An
obvious reason is, that there are sequences of objects X0, X1, . . . that are only connected via
face maps, but there are no degeneracy maps. Such functors are often called semisimplicial
objects. In that situation, you cannot perform the geometric realization. The other situation
that makes an alternative desirable is the situation, where you want to perform the geometric
realization of a simplicial space and this space has bad point set behavior.

Definition 10.9.1. ([Se74, Appendix A]) Let X be a simplicial set (or space), then the
fat realization of X, ||X||, is

||X|| =
⊔
n≥0

Xn ×4n/ ∼,

where the quotient in the fat geometric realization is generated by the relations

(di(x), (t0, . . . , tn)) ∼ (x, δi(t0, . . . , tn)).

Remark 10.9.2. There are several alternative descriptions of ||X||. One is to consider the
semisimplicial category, ∆, whose objects are the objects of ∆, but we restrict to injective
order-preserving maps. These are dual to the face maps used in the identifications in fat
geometric realization. Thus, we can describe ||X|| as the coend of the functor

H : ∆o ×∆→ Top,

with H([p], [q]) = Xp ×4q.
There is yet another description of the fat realization of a simplicial set or simplicial

topological space (see, for instance, [We05, Proof of Proposition 1.3] or [Se74, p. 308]) as
the ordinary geometric realization of a “fattened up” simplicial set.

Of course, ||X|| also makes sense, if you start with a semisimplicial object, that is, a
functor X : ∆o → Sets.

As we do not collapse degenerate simplices, the fat realization of a simplicial set is larger
than the geometric realization.

Exercise 10.9.3. What is the fat realization of ∆0?

Segal proves that the fat realization has some remarkable properties.

Proposition 10.9.4. ([Se74, Proposition A.1])

(1) If all the Xn are spaces of the homotopy type of a CW complex, then so is ||X||.
(2) If f : X → Y is a morphism of simplicial topological spaces, such that all fn : Xn →

Yn are homotopy equivalences, then ||f || is a homotopy equivalence.
(3) Fat realization commutes with finite products.

All these three properties don’t hold for the geometric realization of simplicial topological
spaces in general. Property (2) is fine if one works with bisimplicial sets instead of simplicial
spaces (compare Remark 10.8.6).

Segal introduces the notion of a good simplicial space and shows that for such spaces X,
the canonical map from the fat realization ||X|| to the geometric realization |X| is homotopy
equivalence [Se74, A.1, A.4].
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10.10. The Totalization of a Cosimplicial Space

A cosimplicial space is a cosimplicial object in simplicial sets, or a simplicial object in
cosimplicial sets, that is, a functor Y : ∆o × ∆ → Sets. We denote the evaluation of Y on
the object ([p], [q]) of ∆o × ∆ as Y q

p . Dual to the geometric realization of a bisimplicial
set X : ∆o × ∆o → Sets aka a simplicial space, we can build the totalization of Y , Tot(Y )
[BK72].

Example 10.10.1. Note that we can turn the set of function ∆([n], [m]) into a cosimplicial
space, because ∆(−, [m]) = ∆m is a simplicial set and ∆([n],−) is a cosimplicial set; thus,
∆(−,−) : ∆o ×∆→ Sets is a cosimplicial space.

Example 10.10.2. Let X and Z be two simplicial sets. Then, we can form the cosim-
plicial mapping space

([p], [q]) 7→ Sets(Xq, Zp).

For pointed simplicial sets, you could consider the variant that uses based maps.

Definition 10.10.3.
(1) For two cosimplicial spaces Y1 and Y2, their simplicial set of maps from Y1 to Y2 is

hom(Y1, Y2) : ∆o → Sets, hom(Y1, Y2)p = Sets∆o×∆(Y1 ×∆p, Y2).

(2) The totalization of a cosimplicial space is

Tot(Y ) = hom(∆, Y ).

If we unravel the definition of Tot(Y ), then it is a simplicial set with

Tot(Y )p = Sets∆o×∆(∆(−,−)×∆p, Y ).

Hence, in simplicial degree p, we consider the set of functions f qn : ∆([n], [q])×∆([n], [p])→ Y q
n

that are natural in [n] and [q]: For all ϕ ∈ ∆([q], [q′]) and α ∈ ∆([m], [n]) the diagram

∆([m], [q])×∆([m], [p])
fm,q
// Y q
m

∆([n], [q])×∆([n], [p])
fn,q
//

(∆(α,1[q]),∆(α,1[p]))

OO

(∆(1[n],ϕ),1∆([n],[p]))

��

Y q
n

Y qα

OO

Y ϕn
��

∆([n], [q′])×∆([n], [p])
fn,q′
// Y q′
n

commutes. Hence, Tot is nothing but the equalizer of the diagram∏
q≥0 sSets(∆(−, [q]), Y q) //

//
∏

ϕ∈∆([q],[q′]) sSets(∆(−, [q]), Y q′),

where sSets(∆(−, [q]), Y q′) is the internal hom object in simplicial sets from Definition 10.2.10
and where the maps in the diagram send a family (fn,q)q to (Y ϕ

n ◦fn,q)ϕ and (fn,q′◦∆(1[n], ϕ))ϕ.

Remark 10.10.4. Bousfield and Kan develop a spectral sequence in [BK72, Chapter X]
whose E2 term consists of πsπtY for a (fibrant) cosimplicial space Y and which converges
to the homotopy groups of Tot(Y ). This spectral sequence has many applications in the
calculation of the homotopy groups of mapping spaces and obstruction theory, for instance,
in [GH04, §§4,5].
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10.11. Dold-Kan Correspondence

Let A : ∆o → A be a simplicial object in an abelian category A.

Definition 10.11.1.
• The normalized chain complex of A is the chain complex N∗(A), with Nn(A) =⋂n−1

i=0 ker(di) and boundary operator d = (−1)ndn.
• The chain complex associated with A is the chain complex C∗(A), with Cn(A) = An

and boundary operator d : An → An−1 being defined as d =
∑n

i=0(−1)idi.

The normalized chain complex is sometimes referred to as the Moore chain complex.
Moore defined it in [Mo54/55, §4]. But beware, some people also refer to the unnormalized
complex as the Moore complex.

There is a variant of the normalization functor that uses the auxiliary chain complex
of degenerate elements D∗(A) and defines N∗(A) as C∗(A)/D∗(A). For details, see [GJ09,
III.2] or [W94, §§8.3, 8.4].

Dold and Kan discovered independently in the 50s [Do58] that the normalization functor
gives rise to an equivalence of categories.

Theorem 10.11.2. [Do58, Theorem 1.9] The normalized chain complex is part of an
equivalence of categories between the simplicial objects in A and the non-negatively graded
chain complexes over A.

The Yoneda lemma gives you a concise formula for what the inverse of N∗, ΓN , has to
be on objects. Assume that A is the category of k-modules for some commutative ring k.
For every simplicial degree n, ΓN(A)n corresponds to the maps of simplicial sets from ∆n to
the underlying simplicial set of ΓN(A) and hence to the maps of simplicial k-modules from
k{∆n} to ΓN(A). As we claim that ΓN is part of an equivalence, it is, in particular, an
adjoint, so we get

ΓN(A)n = Ch(k)≥0(N∗(k{∆n}), A).

You can also work out the simplicial structure maps of ΓN by using this trick, but you could
also look this up in [Do58, Definition 1.8].

Exercise 10.11.3. Assume that f, g : A→ B are morphisms of simplicial k-modules and
assume that there are maps h0, . . . , hn : An → Bn+1, satisfying the relations from Definition
10.5.1. Show that C∗(f) is then chain homotopic to C∗(g), with the chain homotopy H =∑n

i=0(−1)ihi.

10.12. Kan Condition

Definition 10.12.1. Let X : ∆o → Sets be a simplicial set. A functor Y : ∆o → Sets is a
simplicial subset of X if Yn ⊂ Xn for every n ≥ 0 and if for every morphism f ∈ ∆([n], [m]),
the induced morphism satisfies Y (f) = X(f).

Remark 10.12.2. If there are elements {xi|i ∈ I}, with xi ∈ Xni , then we can form the
simplicial subset of X generated by the xis by considering all elements in X of the form
X(f)(xi) for all morphisms f in ∆.

The representable functor ∆n has several important subfunctors:

Definition 10.12.3.
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• The ith face of ∆n, ∂i∆n, is the simplicial subset of ∆n generated by δi : [n−1]→ [n].
• The boundary of ∆n, ∂∆n, is the simplicial subset of ∆n generated by {δ0, . . . , δn} ⊂

∆([n− 1], [n]).
• The simplicial k-horn of ∆n, Λk

n, for some k with 0 ≤ k ≤ n, is the simplicial subset
of ∆n generated by {δ0, . . . , δk−1, δk+1, . . . , δn}.

You can also think of the simplicial k-horn Λk
n as the simplicial subcomplex of ∆n gen-

erated by all faces that contain the 0-simplex that maps 0 to k.

Exercise 10.12.4. Show that the geometric realization of the simplicial subsets de-
fined earlier are what they should be: |∂i∆n| = δi(4n−1), |∂∆n| = ∂4n, and |Λk

n| =⋃n
i=0,i 6=k δi(4n−1).

Definition 10.12.5. A simplicial set X is a Kan complex if for all n and 0 ≤ k ≤ n, all
maps from Λk

n to X can be extended over ∆n, that is, in all solid diagrams of the form

Λk
n

j

��

α
// X,

∆n

ξ

>>

there is a morphism of simplicial sets ξ : ∆n → X, such that ξ ◦ j = α.

Remark 10.12.6. Note that the condition of being a Kan complex has a very explicit
description. We denote by x̌ the fact that x is omitted. Then, X is Kan if and only if for all
n, all 0 ≤ k ≤ n, and all n-tuples of (n − 1)-simplices (x0, . . . , xk−1, x̌k, xk+1, . . . , xn), such
that dixj = dj−1xi for i < j, i, j 6= k, there is an n-simplex x in X, such that di(x) = xi. We
call x the horn filler.

Lemma 10.12.7. The simplicial sets ∆n do not satisfy the Kan condition for n ≥ 1.

Proof. We show that a specific map ϕ : Λ0
2 → ∆1 cannot be extended to a map ϕ̃ : ∆2 →

∆1. This argument extends to higher dimensions.
Define ϕ on the generators of Λ0

2 as ϕ(δ2) = id[1], and let ϕ(δ1) be the constant map with
value zero.

Assume that an extension ϕ̃ : ∆2 → ∆1 exists. Then, d0ϕ̃(0) = ϕ̃δ0(0) = ϕ̃δ2(1) =
ϕδ2(1) = id[1](1) = 1 and d0ϕ̃(1) = ϕ̃δ0(1) = ϕ̃δ1(1) = ϕδ1(1) = 0, and hence, the extension
is not order preserving. �

Definition 10.12.8. Let Sing : Top → Sets∆o

be the functor that sends a topological
space X to the simplicial set Sing(X), with

Sing(X)n = Top(4n, X),

and where the simplicial structure is induced by the cosimplicial structure of the family of
standard n-simplices.

Proposition 10.12.9.
(1) The functor Sing is right adjoint to the geometric realization functor.
(2) For every topological space X, Sing(X) is a Kan complex.
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The proof here is similar to the one of Theorem 15.1.3, but note that in the geometric
realization, we allow simplicial sets as input and view these sets as discrete topological
spaces.

Proof.
(1) The adjunction is a standard tensor-hom adjunction sending a continuous map

f :
⊔
n≥0

Xn ×4n/ ∼→ Y

with compatible components fn : Xn ×4n → Y to the map of simplicial sets

g : X → Sing(Y ),

whose degree n part gn : Xn → Top(4n, Y ) is given as fn(x,−) : 4n → Y .
(2) As the functor Sing(−) is adjoint to geometric realization, the lifting property of

∆0 → Sing(X) with respect to Λr
n → ∆n is equivalent to the lifting property of

the inclusion {∗} → X with respect to |Λr
n| → |∆n|, but the latter is a strong

deformation retract.
�

Proposition 10.12.10. [Mo54/55, Théorème 3] Let G be a simplicial object in the
category of groups. Then, the underlying simplicial set of G is a Kan complex.

Proof. Consider a compatible family of elements of Gn−1 (g0, . . . , gk−1, g`−1, . . . , gn),
with ` ≥ k + 2, that is, digj = dj−1gi for i < j. Assume that there is an n-simplex g ∈ Gn,
with di(g) = gi for i ≤ k − 1 and i ≥ `. We consider did`−1(g). If i smaller than k, then
because of the simplicial identities and because of the compatibility of the gis we get

(10.12.1) did`−1(g) = d`−2di(g) = d`−2(gi) = dig`−1.

Similarly, did`−1(g) = dig`−1 if i ≥ `.
We consider the element s`−2(g`−1d`−1(g−1))g. For d`−1, we obtain

d`−1(s`−2(g`−1d`−1(g−1))g) = d`−1(s`−2(g`−1))d`−1(s`−2(d`−1(g−1)))d`−1(g) = g`−1

because d`−1 ◦ s`−2 = 1 and because the structure maps are homomorphisms. Similarly, the
relations in (10.12.1) imply

di(s`−2(g`−1d`−1(g−1))g) = gi

for i ≤ k − 1 and i ≥ `.
Thus, s`−2(g`−1d`−1(g−1))g closes the gap one step further.

�

Remark 10.12.11. This result ensures that simplicial R-modules (R some associative
ring), simplicial k-algebras (k some commutative ring with unit), simplicial Lie algebras, and
many more simplicial objects that have an underlying simplicial group are Kan complexes.

Remark 10.12.12. For a Kan complex X, there is a combinatorially defined, well-defined
notion of homotopy groups of X, such that πn(X, x) ∼= πn(|X|, x) for every zero simplex
x ∈ X0. See, for instance, [May67, I §3] or [GJ09, I §7] for more details. As simplicial
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k-modules A are always Kan complexes, πn(A, 0) can always be defined just by using the sim-
plicial structure. A consequence [GJ09, Corollary III.2.7] of the Dold-Kan correspondence,
Theorem 10.11.2, is that

πn(A, 0) ∼= Hn(N∗(A)) ∼= Hn(C∗(A)).

For n = 0, the set π0(X) has a combinatorial description as the coequalizer of the diagram

X1

d0
//

d1

//X0.

There is a canonical map % : |X| → colim∆oX for every simplicial set X, induced by the
following commutative diagram:⊔

α∈∆([m],[n])4m ×Xn

pr2

��

//
//

⊔
n≥04n ×Xn

pr2

��

// |X|

%

��⊔
α∈∆([m],[n]) Xn

//
//

⊔
n≥0Xn

// colim∆oX.

The map % is nothing but the projection of |X| to π0(X).

Exercise 10.12.13. Show that for a simplicial set X, the colimit of X, colim∆oX, is
isomorphic to π0(X).

Proposition 10.12.14. The category ∆o is sifted.

Proof. We have to show that the colimit over ∆o commutes with finite products of
functors from ∆o to Sets. By Exercise 10.12.13 we know that for every functor X : ∆o → Sets,
the colimit is π0(X).

First, consider the terminal object, ∆0. Here, the colimit is the terminal object in the
category Sets because |π0(∆0)| = 1. Let X, Y : ∆o → Sets. Then, we claim that

π0(X × Y ) ∼= π0(X)× π0(Y ).

We establish this bijection by considering explicit maps. If (x, y) in X0× Y0 is equivalent to
(x′, y′) in X0 × Y0, then there is a zigzag of 1-simplices in X × Y connecting the two. But
then the first coordinate of the zigzag connects x to x′ and the second connects y to y′, so
we get a well-defined map:

ϕ : π0(X × Y )→ π0(X)× π0(Y ); [(x, y)] 7→ ([x], [y]).

For the inverse,
ψ : π0(X)× π0(Y )→ π0(X × Y ),

consider a zigzag of 1-simplices in X connecting x and x′ and another zigzig connecting y
and y′. Then, their product does not necessarily give a zigzag of 1-simplices in X × Y , but
we can modify the two zigzags with the help of degenerate 1-simplices to morph them into
the same shape. For instance, you can take first the zigzag for x and x′ and combine it with
degenerate 1-simplices s0y in the second coordinate, and then use s0x

′ in the first coordinate
and the zigzag for y and y′ in the second coordinate. �

Exercise 10.12.15. If R is a ring, M a left R-module, and N a right R-module, what is
π0 of the two-sided bar construction B(N,R,M) from Definition 10.4.2?
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10.13. Quasi-Categories and Joins of Simplicial Sets

Some lifting conditions of Kan complexes are different from others. Consider, for instance,
the 2-simplex ∆2 and its k-horns for 0 ≤ k ≤ 2:

2

0

EE

// 1

2

0 // 1

YY
2

0

EE

1.

YY

If we think of 1-simplices in a simplicial set X as oriented edges in X, then the lifting
property for a 1-horn implies that two edges e01, e12 in X that fit together can be composed
up to homotopy. There is an edge e02 in X and a 2-simplex, that is, a triangle in X, such
that e01, e12, and e02 are the edges of that triangle. The lifting properties for the 0- and
2-horns are much more drastic; they are not composition requirements but extension and
lifting properties. For instance, if we have a 0-horn

x

x

1x

EE

f
// y,

then a horn filler gives you a left inverse for f up to homotopy. Dually, a horn filler for a
2-horn can give you a right inverse up to homotopy.

Definition 10.13.1. A quasi-category is a simplicial set X that has the lifting property
with respect to all inner horns, that is, with respect to all Λk

n with 0 < k < n.

This definition goes back to Boardman and Vogt [BV73, 4.8], who called quasi-categories
restricted Kan complexes and considered them as “good substitutes for categories”. Joyal
advertised them [Jo02, Jo-b∞], and they are used as one model for infinity categories
[Lu09].

Remark 10.13.2. If X is a quasi-category, then we think of the 0-simplices x ∈ X0 as
objects of X, and the 1-simplices are the morphisms of X. The inner horn filler condition
then shows that we might not have a composition of f ∈ X1 and g ∈ X1, even if the target
of f is the source of g, but as we saw earlier, there is a 2-simplex in X that has f and g
as the legs of a 1-horn, and we think of the third edge as a composition of f and g up to
homotopy. Simplices of higher degrees then correspond to higher morphisms.

In order to stress the fact that quasi-categories behave like categories up to homotopy,
they are often denoted by C.

Exercise 10.13.3. Consider 1-simplices e01, e12, and e23 of a quasi-category X and call
them f , g, and h. By the 1-horn filler condition, we get a composition of g and f up to
homotopy that we call e02 and a composition of h and g up to homotopy, e13. What does
the horn filler condition for Λ1

3 ⊂ ∆3 and Λ2
3 ⊂ ∆3 say?

We saw the join construction for categories in Definition 1.1.7. There is a related con-
struction for simplicial sets, similar to the join construction in the category of topological
spaces that you might have seen. There is a definition in terms of a Day convolution product
[Jo-c∞, §3.2]. A hands-on definition is as follows:
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Definition 10.13.4. Let X and Y be two simplicial sets. The join of X and Y is the
simplicial set whose set of n-simplices is

(X ∗ Y )n = Xn t Yn t
⊔

i+j=n−1

Xi × Yj.

The face maps dk : (X ∗ Y )n → (X ∗ Y )n−1 restricted to Xn and Yn are the face maps of X
and Y . On a summand Xi × Yj,

dk(x, y) =

{
(dkx, y), if k ≤ i and i 6= 0,

(x, dk−i−1y), if k > i and j 6= 0.

If i = 0, then d0(x, y) = y, and if j = 0, then dn(x, y) = x.
For the degeneracy maps, you set

sk(x, y) =

{
(skx, y), if k ≤ i,

(x, sk−i−1y), if k > i,

on the mixed terms, and you use the ordinary degeneracies on Xn and Yn inside (X ∗ Y )n.

Remark 10.13.5. Joyal proves that the join of two quasi-categories is a quasi-category
(see for instance [Lu09, 1.2.8.3]). Later, in Proposition 11.1.11, we will see that the nerve
construction sends joins of categories to joins of simplicial sets.

Exercise 10.13.6. Check that the preceding definition of face and degeneracy maps
actually defines a simplicial object.

Example 10.13.7. On representable functors, we obtain ∆k∗∆`
∼= ∆k+`+1 for all k, ` ≥ 0.

This can be seen by spelling out an explicit isomorphism. Note that [k]t [`] ∼= [k+ `+ 1] as
sets. By definition, (∆k ∗∆`)([n]) is equal to

∆([n], [k]) t∆([n], [`]) t
⊔

i+j=n−1

∆([i], [k])×∆([j], [`]).

We define a map on each summand. Let

ϕ : ∆([n], [k])→ ∆([n], [k] t [`]) = ∆([n], [k + `+ 1]

be the map that sends σ ∈ ∆([n], [k]) to i
[k]t[`]
[k] ◦ σ, where i

[k]t[`]
[k] is the canonical inclusion.

Similarly, let
ψ : ∆([n], [`])→ ∆([n], [k] t [`])

be defined by ψ(τ) = i
[k]t[`]
[`] ◦ τ , where i

[k]t[`]
[`] (j) = j + k + 1. On a mixed term ∆([i], [k]) ×

∆([j], [`]) we define

ζij : ∆([i], [k])×∆([j], [`])→ ∆([n], [k] t [`])

as the map

ζij(ν, µ)(r) =

{
ν(r), if r ≤ i

µ(r − i− 1) + k + 1, for r > i,

where r ∈ [n].
It is easy to see that this gives a bijection of sets (∆k ∗∆`)([n]) ∼= ∆k+`+1([n]) because for

a given f ∈ ∆([n], [k+`+1]), you just cut f into pieces. If the image of f is contained in [k],
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then you send it to the summand ∆([n], [k]). If the image is contained in the complement of
[k] in [k] t [l], then you send it to ∆([n], [`]) by pushing the values down. If the image has
nontrivial parts in [k] and in its complement, then you cut f into two maps and send it to
the corresponding summand ∆([i], [k])×∆([j], [`]) if the value of f exceeds k at i+ 1. This
gives an inverse to the first map.

We leave it to the reader to check that this degreewise bijection is compatible with the
simplicial structure maps.

Exercise 10.13.8. Draw a proof that ∆1 ∗ ∆1
∼= ∆3. Show that Λ0

2 ∗ ∆0
∼= ∆1 × ∆1.

Again, draw the proof.

Definition 10.13.9. For a simplicial set X, X ∗∆0 is called the right cone on X, and
∆0 ∗X is the left cone on X.

10.14. Segal Sets

A concept that is closely related to quasi-categories is that of a Segal set. Consider the
morphisms ij : [1]→ [n] in ∆ for 1 ≤ j ≤ n, sending 0 to j− 1 and 1 to j. Note, that the ijs
satisfy the condition that ij ◦ δ0 = ij+1 ◦ δ1 for j ≤ n− 1. We denote by

X[1]×X[0] . . .×X[0] X[1]

the limit of the diagram

X[0]
d1

||

d0

""

d1

��

. . .
d0

��

X[0]
d1

||

d0

""

X[1] X[1] . . . X[1] X[1]

Definition 10.14.1. A simplicial set X is a Segal set, if the map

(10.14.1) (i1, . . . , in) : Xn → X1 ×X0 . . .×X0 X1

is a bijection for all n ≥ 2.

Exercise 10.14.2. Is every Segal set a quasi-category?

The Segal condition (10.14.1) means that X is determined by a subset of the 1-skeleton
of X. For n = 2, this subset can be visualized as

2

0 // 1

YY

↪→

2

0 //

FF

1,

YY

and for n = 3, it looks like

3

0

((

2

\\

1

;;

↪→

3

0

::

((

// 2.

\\

1

OO

::
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Proposition 10.14.3. Let X be a Segal set with X0 = {∗}. Then, X1 is an associative
monoid with unit s0(∗).

Proof. As every map from X1 to a point is the same, we have that X1×X0X1 = X1×X1.
We define the multiplication µ : X1 × X1 → X1 as d1 ◦ (i1, i2)−1. Note that in this low-
dimensional case, we have i1 = d2 and i2 = d0.

For the associativity of µ, consider the diagram

X1

X2

d1

66

(d2,d0)

xx

X2

d1

hh

(d2,d0)

&&

X1 ×X1 X3

(d1d3,i∗3)
//

(d2,d1d0)
oo

(i1,i2,i3)∗

��

d1d1

OO

d1

66

d1

hh

(d2,d0)

vv

(d3,i∗3)

((

X1 ×X1.

X1 ×X2

1X1
×d1

ff

1X1
×(d2,d0) ((

X2 ×X1

d1×1X1

88

(d2,d0)×1X1vv

X1 ×X1 ×X1

Going from the left via the middle to the right gives that

µ ◦ (1X1 × µ) =d1 ◦ (d2, d0)−1 ◦ (1X1 × d1) ◦ (1X1 × (d2, d0)−1)

=d1d1 ◦ (i1, i2, i3)∗

=d1 ◦ (d2, d0)−1 ◦ (d1 × 1X1) ◦ ((d2, d0)−1 × 1X1)

=µ ◦ (µ× 1X1).

We show the left unit condition; the proof of the right unit condition follows from sym-
metry. The diagram

X0 ×X1

s0×1X1
// X1 ×X1

X1

(d1,1X1
)

OO

s0
// X2

d1

��

(d2,d0)

OO

X1

commutes because d1s0 is the identity and

(d2s0x1, d0s0(x1)) = (s0d1x1, x1) = (s0∗, x1)

for all x1 ∈ X1, becauseX0 is a one-point set. The evaluation µ(s0∗, x1) is d1◦(d2, d0)−1(s0∗, x1),
but we just found a preimage of (s0∗, x1) under (d2, d0) in X2, namely s0x1; thus, µ(s0∗, x1) =
d1(s0x1) = x1 for all x1 ∈ X1. �

Remark 10.14.4. Proposition 10.14.3 has a variant, where monoids are replaced by
simplicial monoids. Julie Bergner compares reduced Segal spaces (see Definition 14.2.2) to
simplicial monoids. She shows in [B07, Theorem 1.6] that there is a Quillen equivalence
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between the model category of simplicial monoids and the category of reduced simplicial
spaces with an appropriate model structure, whose fibrant objects are reduced Segal spaces.

10.15. Symmetric Spectra

As an interlude, we present a symmetric monoidal model for the stable homotopy category
that is build out of simplicial sets.

The stable homotopy category, that is, the homotopy category of spectra, has been around
since the late 1950s and early 1960s. However, for a long time, there was no symmetric
monoidal category of spectra modelling it. A particularly small and explicit model is the
one of symmetric spectra, originally defined in [HoSS00]. Apart from its importance for
modelling stable homotopy types, its definition and its applications have been extended to
other contexts.

Let (C,⊗,1) be a bicomplete closed symmetric monoidal category and let K be an object
of C. Hovey defines symmetric spectra in C with respect to an object K of C in [Ho01].

Let Sym(K) be the symmetric sequence in C whose nth level is K⊗n and with Σn-action
given by permutation of the ⊗-factors. This is actually a commutative monoid in CΣ with
the symmetric monoidal structure coming from the Day convolution product, as in Example
9.8.6.

Definition 10.15.1. The category of symmetric spectra in C with respect to K, SpΣ(C, K),
is the category of right Sym(K)-modules in CΣ. Explicitly, a symmetric spectrum is a family
of Σn-objects X(n) ∈ C, together with Σn-equivariant maps

X(n)⊗K → X(n + 1)

for all n ≥ 0, such that the composites

X(n)⊗K⊗p → X(n + 1)⊗K⊗p−1 → . . .→ X(n + p)

are Σn×Σp-equivariant for all n, p ≥ 0. Morphisms in SpΣ(C, K) are morphisms of symmetric
sequences that are compatible with the right Sym(K)-module structure.

Symmetric spectra form a symmetric monoidal category (SpΣ(C, K),∧, Sym(K)), such
that for X, Y ∈ SpΣ(C, K),

X ∧ Y = X2Sym(K)Y.

Here, we use the right action of Sym(K) on Y after applying the twist map in the symmetric
monoidal structure on CΣ.

For the category of topological spaces or simplicial sets and K a model of the 1-sphere,
this recovers the definition of symmetric spectra from [HoSS00]. For many important
homotopy types, there are explicit models in symmetric spectra. We just mention two.

Examples 10.15.2.
• Let S1 be the standard simplicial model of the 1-sphere ∆1/∂∆1. The symmetric

sphere spectrum S = Sym(S1) has

S(n) = Sn =: (S1)∧n.

• Let A be an abelian group. Then, the model for the Eilenberg-Mac Lane spectrum of
A, HA, in SpΣ is

(HA)(n) = A⊗ Z̄{Sn},
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where Z̄{Sn}m is the free abelian group generated by the set Snm modulo the relation
that all multiples of the basepoint are zero.

Other spectra such as many flavors of cobordism spectra and K-theory spectra have
models in SpΣ. For more details and many more examples, we refer to [HoSS00] and
[Schw∞].

An important and amusing special case of general symmetric spectra is the one, where
you take the monoidal unit e as K. The following result goes back to Jeff Smith.

Proposition 10.15.3. [RiS17, Proposition 9.1] Let (C,⊗, e, τ) be any symmetric
monoidal category. Then, the category of symmetric spectra with respect to the unit object
e, SpΣ(C, e), is equivalent to the category of functors from I to C, Fun(I, C).

Proof. Let X ∈ SpΣ(C, e). Then, there are Σn-equivariant maps X(n) ∼= X(n) ⊗ e →
X(n + 1), such that the composite

σn,p : X(n) ∼= X(n)⊗ e⊗p → X(n + p)

is Σn × Σp-equivariant for all n, p ≥ 0.
We send X to φ(X) ∈ Fun(I, C), with φ(X)(n) = X(n). If i = ip,n−p ∈ I(p,n) is

the standard inclusion, then we let φ(i) : φ(X)(p) → φ(X)(n) be σp,n−p. Every morphism
f ∈ I(p,n) can be written as ξ ◦ i, where i is the standard inclusion and ξ ∈ Σn. For such
ξ, the map φ(ξ) is given by the Σn-action on X(n) = φ(X)(n).

If f = ξ′ ◦ i is another factorization of f into the standard inclusion, followed by a
permutation, then ξ and ξ′ differ by a permutation τ ∈ Σn, which maps all j with 1 ≤ j ≤ p
identically, that is, τ is of the form τ = 1p ⊕ τ ′m with τ ′ ∈ Σn−p. As the structure maps
σp,n−p are Σp × Σn−p-equivariant and as τ ′ acts trivially on e⊗(n−p) ∼= e, the induced map
φ(f) = φ(ξ′) ◦ φ(i) agrees with φ(ξ) ◦ φ(i).

The inverse of φ, ψ, sends an I-diagram in C, A, to the symmetric spectrum ψ(A) whose
nth level is ψ(A)(n) = A(n). The Σn-action on ψ(A)(n) is given by the corresponding
morphisms Σn ⊂ I(n,n), and the structure maps of the spectrum are defined as

ψ(A)(n)⊗ e⊗p = A(n)⊗ e⊗p
∼=
//A(n)

A(in,p)
//A(n + p) = ψ(A)(n+ p) .

The functors φ and ψ are well-defined and inverse to each other. �
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CHAPTER 11

The Nerve and the Classifying Space of a Small Category

To any small category, you can associate a topological space that takes the data of the
category (objects, morphisms, and composition of morphisms) and translates it into a CW
complex. This is done in a two-stage process: First you construct a simplicial set out of your
category, and then, you form its geometric realization.

11.1. The Nerve of a Small Category

The construction of a nerve of a small category C takes the data of the objects of C and
all morphisms of C, together with all their compositions, and creates a simplicial set out of
it.

Definition 11.1.1.
• For a small category C, let Mn(C) be the set

{C0
f1−→ C1

f2−→ . . .
fn−→ Cn|Ci object of C, fi morphism in C}

of the n-tuples of composable morphisms in C. We denote an element, as earlier, as
[fn| . . . |f1].
• The nerve of the category C is the simplicial set NC : ∆op → Sets, which sends [n] to

the set Mn(C). The degeneracies insert identity morphisms

si[fn| . . . |f1] = [fn| . . . |fi+1|1Ci |fi| . . . |f1], 0 ≤ i ≤ n,

and the face maps compose morphisms:

di[fn| . . . |f1] =


[fn| . . . |f2], i = 0,

[fn| . . . |fi+1 ◦ fi| . . . |f1], 0 < i < n,

[fn−1| . . . |f1], i = n.

You can also interpret the ith face map as omitting the object Ci. If i is 0 or n, then the
morphism next to Ci just dies with the object, whereas for 0 < i < n, deleting the object
causes the composition of the adjacent morphisms.

Proposition 11.1.2. Nerves of small categories are quasi-categories.

Proof. The morphism ϕi : [1]→ [n], ϕi(0) = i and ϕi(1) = i+ 1 is contained in Λk
n for

0 < k < n for all 0 ≤ i < n. We assume that we have a morphism ψ : Λk
n → N(C). Then,

ψ applied to the n + 1 morphisms in ∆([0], [n]) gives n + 1 objects C0, . . . , Cn of C, and ψ
applied to ϕi gives a morphism fi+1 from Ci to Ci+1 for all 0 ≤ i < n.

We define the extension ψ̃ of ψ to ∆n by ψ̃(1[n]) = [fn| . . . |f1].

In order to show that the restriction of ψ̃ to Λk
n agrees with ψ, it suffices to show that

their restriction with respect to every map ξ : [1] → {0, . . . , j − 1, j + 1, . . . , n} agrees for
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every j 6= k, 0 ≤ j ≤ n; in fact, we only need those maps that hits neighbours in the ordered
set {0, . . . , j − 1, j + 1, . . . , n}. If these neighbours are of the form i and i + 1, then both
restrictions agree by construction. Thus, we only need to consider the case that the image of
ξ is {j − 1, j + 1}, and here, the cases j = 0 and j = n lead to trivial cases. We can assume
that n is at least 3, because for n = 2, the only nontrivial case is j = k = 1, but the ξ with
image {0, 2} is not contained in Λ1

2.

For ψ̃, the restriction via ξ yields fj+1 ◦ fj, and by construction, the same is true for
ψ, because for n ≥ 3, the morphism f ∈ ∆([2], [n]), with f(0) = j − 1, f(1) = j, and
f(2) = j+ 1, is in Λk

n for 0 < k < n, and ξ = d1f is sent to the composition of d2f = fj with
d0f = fj+1. �

Remark 11.1.3. Note that the horn extensions in a nerve are actually unique. There is
a partial converse of Proposition 11.1.2: If X is a simplicial set, such that for all n and for
all 0 < k < n, the diagram

Λk
n

j

��

α
// X

∆n

has a unique extension ∆n → X, then there is a small category C and an isomorphism
X ∼= N(C). A proof can be found in, for instance, [Lu09, 1.1.2.2].

Exercise 11.1.4. Show that a simplicial set is a Segal set if and only if it is isomorphic
to the nerve of a small category.

Example 11.1.5. If we consider the poset [n] as a category, then the nerve of [n] is
isomorphic to the representable functor ∆n. We saw in Lemma 10.12.7 that ∆n is not a
Kan complex for n ≥ 2. Thus, in general, we cannot hope that nerves are better than
quasi-categories.

If our small category C has invertible morphisms, then we actually can guarantee the
Kan condition. Heuristically, the horn fillers for Λ0

n and Λn
n require extensions or lifts, but if

every morphism is invertible, this can be done.

Proposition 11.1.6. Let C be a small groupoid. Then, NC is a Kan complex.

A proof of this fact can be found in [GJ09, 3.5].

Lemma 11.1.7. The nerve functor from the category of all small categories to the category
of simplicial sets has a left adjoint.

Proof. Let X be a simplicial set. We have to construct a small category L(X). The
objects of L(X) are the zero simplices of X, X0. A y ∈ X1 is considered a morphism from
d1y to d0y. The morphisms in L(X) are freely generated by the 1-simplices in X, X1, subject
to the relations coming from 2-simplices. If there is an x ∈ X2, with d0(x) = x0, d1(x) = x1,
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and d2(x) = x2, then x1 = x0 ◦ x2:

x

x1

EE

x2

//

x0

YY

Degenerate 2-simplices encode the unit condition, and the associativity of the composition
is ensured by the simplicial identities for the face maps. �

Remark 11.1.8. Note that the category associated with the nerve of a small category is
isomorphic to the category, but the nerve of a category associated with a simplicial set X
is “wildly wrong” [LTW79]: it associates with X a quasi-category with unique inner horn
extensions, a Segal set.

Remark 11.1.9. Let C be a small category. Regarding [n] = {0, 1, . . . , n} as a category
associated with the poset [n] with its natural ordering, we can define a variant of the nerve,
N , as being the simplicial category, such thatNn is the category of functors from the category
[n] to the category C.

Later, we will need monoidal properties of the nerve functor. If C × D is a product of
small categories, then objects and morphism in C × D are just pairs of morphisms. Hence,
we obtain the following useful result:

Proposition 11.1.10. The nerve functor N is strong symmetric monoidal.

The nerve functor also respects the join construction.

Proposition 11.1.11. Let C and D be two small categories and let C ∗ D be their join.
Then, there is an isomorphism of simplicial sets

N(C) ∗N(D) ∼= N(C ∗ D).

Proof. We follow [Jo-c∞, Proof of Corollary 3.3]. We define a map

ϕ : N(C) ∗N(D)→ N(C ∗ D)

using that

(N(C) ∗N(D))n = N(C)n tN(D)n t
⊔

i+j=n−1

N(C)i ×N(D)j.

On the summands N(C)n and N(D)n we define ϕ by using the inclusions C → C ∗ D and
D → C ∗ D, which induce maps N(C) → N(C ∗ D) ← N(D). We express an element in
N(C)i as a functor x : [i]→ C and similarly consider a y : [j]→ D. Functoriality of the join
then gives a map x ∗ y : [i] ∗ [j] → C ∗ D. We know from Exercise 1.4.12 that [i] ∗ [j] ∼= [n].
These maps combine ϕ, and again, it is straightforward to check that ϕ is an isomorphism
of simplicial sets. �
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11.2. The Classifying Space and Some of Its Properties

Definition 11.2.1. The classifying space of a small category C, BC, is the geometric
realization of the nerve of C:

BC = |NC|.

The objects C of C give zero cells in BC, and a nonidentity morphism from C to C ′

gives rise to an edge whose endpoints correspond to the objects C and C ′. If g ◦ f is a
composition of morphisms in C, then in the classifying space, you will find a triangle, with
edges corresponding to f , g, and g ◦ f . Threefold compositions give rise to tetrahedra and
so on.

The topological space BC is always a CW complex, and a functor F : C → D induces a
continuous and cellular map of topological spaces:

BF : BC → BD.
Hence, B is a functor from the category cat to the category Top of topological spaces.

Examples 11.2.2.
• If X is a set and C is the corresponding discrete category, then the classifying space
BC is X with the discrete topology.
• If G is a group and we consider the small category CG associated with G, then the

classifying space B(CG) is called the classifying space of the group G and is denoted by
BG. If the group G is abelian, then the group composition is a group homomorphism,
and it induces a functor CG × CG → CG. We therefore obtain a map

BG×BG→ B(CG × CG)→ B(CG) = BG,

and for abelian groups G, BG is a topological group. For instance, BZ ' S1.
If G is a topological group, then we can implement the topology into the construc-

tion of BG by endowing Gn ×4n with the product topology.
For instance, BS1 ' CP∞, and this is an Eilenberg-Mac Lane space of type (Z, 2),

K(Z, 2) = CP∞ ' B(BZ). In general, if A is a finitely generated abelian group, then
the n-fold iterated classifying space construction is a model of the Eilenberg-Mac Lane
space K(A, n).

If G is a discrete group, then the homology of the group G (with coefficients in Z)
is the singular homology H∗(BG;Z).
• For a monoid, one can build B(CM). We will learn more about this space later (see,

for instance, Theorem 13.4.6 and Proposition 13.4.4).
• Let us consider the category Σ. This has as objects the natural numbers (including

zero), and the only morphisms are automorphisms with Σ([n], [n]) = Σn. Therefore,
the classifying space of Σ has one component for every natural number, because the
different objects are not connected by morphisms. Thus,

BΣ =
⊔
n≥0

BΣn.

• If we consider the poset [n] as a category, then the nerve of [n] is isomorphic to the
representable functor ∆n and B[n] ∼= 4n.
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Proposition 11.2.3. Viewed as a functor B : cat → cg, the functor B is strong sym-
metric monoidal.

Proof. Let C and D be two small categories. As the nerve functor is strong symmetric
monoidal (see Proposition 11.1.10) and as geometric realization commutes with products in
the sense of Proposition 10.6.7 and Remark 10.6.9, we get a homeomorphism φC,C′ : B(C ×
C ′) ∼= BC ×k BC ′, so the functor B : cat → cg is strong symmetric comonoidal and strong
symmetric monoidal. �

Segal shows some properties of the classifying space of a (topological) category in [Se74].
For Quillen’s work, [Q73] classifying spaces of categories and their properties are crucial.

Theorem 11.2.4.
(1) For two functors F, F ′ : C → D, a natural transformation τ : F ⇒ F ′ induces a

homotopy between BF and BF ′.

(2) If C
L
// D

R
oo is an adjoint pair of functors, then BC is homotopy equivalent to BD.

(3) In particular, an equivalence of categories gives rise to a homotopy equivalence of
classifying spaces.

Proof.
(1) We can view τ as a functor T from C × [1] to D: On objects, we define T as

T (C, 0) = F (C) and T (C, 1) = F ′(C). For a morphism f ∈ C(C,C ′), we set
T (f, 10) = F (f) and T (f, 11) = F ′(f). For the only nontrivial morphism 0 < 1 in
[1], we define T (1C , 0 < 1) as τC .

The composite

BC × [0, 1] ∼= B(C × [1])
B(T )

//BD
then gives the desired homotopy.

(2) For an adjoint pair of functors, we have the natural transformations η : Id ⇒ RL
and ε : LR⇒ Id. We just showed that these give rise to a homotopy equivalence.

�

Corollary 11.2.5. If a small category C has an initial or terminal object, then its
classifying space is contractible.

Proof. In both cases, there is an adjoint pair of functors between C and the category
[0], and B[0] is a point. �

Beware that an equivalence of categories does not give rise to homeomorphism in general.
The following is an explicit example:

Example 11.2.6. Let G be a discrete group. We saw that in its translation category, EG,
every object is terminal and initial, and thus, BEG is contractible. In fact, BEG is a model
for the universal space for G-bundles, EG, and this is, in general, not homeomorphic to a
point. For instance. EZ/2Z is S∞ = colimnSn.

The simplicial structure on NEG is as follows: An element in (NEG) is a string

g0

g1g
−1
0
//g1

g2g
−1
1
// . . .

gqg
−1
q−1
//gq,
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but this can be simplified by just remembering the (q+1)-tuple of group elements (g0, . . . , gq).
With this identification, the face maps omit a gi, and the degeneracies double a gi.

Proposition 11.2.7. If C is a small category possessing binary products, then BC is
contractible.

Proof. Let C be a fixed but arbitrary object of C. We consider the functor

C × (−) : C → C, (C × (−))(C ′) = C × C ′.
Projection to the first factor of the product gives rise to a natural transformation from
C× (−) to the constant functor with value C, whereas projection to the second factor yields
a natural transformation from C × (−) to the identity functor. �

Remark 11.2.8. We will see later in Proposition 11.3.10 that the classifying space of
any small filtered category is contractible.

Exercise 11.2.9. Let C be a small category and let Co be its dual category. Show that
there is a homeomorphism between BC and BCo. Is this homeomorphism always induced
by a functor from C to Co?

Remark 11.2.10. If C is a category with a proper class of objects but with a small
skeleton C ′, then one might talk about BC but actually work with BC ′.

11.3. π0 and π1 of Small Categories

We can apply topological invariants to the space BC, and we might get useful information
about the category in this way. Some invariants that you have encountered in algebraic
topology can be defined directly in terms of the objects and morphisms of a category. One
example is the set of path components of a small category.

In Definition 1.4.16, we defined the notion of a small connected category, using the
equivalence relation on the set of objects generated by the relation of being connected by a
morphism.

Definition 11.3.1. Let C be a small category. We denote the set of equivalence classes
of the morphism relation on the objects of C by π0C and call this the set of path components
of the category C.

If the cardinality of the set π0C is one, then we call the category C path connected or
connected. In particular, categories with just one object are connected, for instance, the
category associated with a monoid or group. By the very definition of π0C and by the
description of π0 of a CW complex, we obtain the following:

Proposition 11.3.2. The set of path components of the topological space BC, π0BC, is
in bijection with the set of path components of C, π0C.

Example 11.3.3. Let X be a set and let G be a group, such that X carries a G-action.
We can define the translation category of the G-action on X, EXG , to be the category whose
objects are the elements of X and

EXG (x1, x2) = {g ∈ G|gx1 = x2}.
With this notation, the translation category of a group G is EG = EGG .
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Two elements x and x′ of X are equivalent if and only if they lie in the same G-orbit,
and thus,

π0EXG = X/G.

Exercise 11.3.4. ([W13, Example IV.3.3.2], but beware of the difference in notation!)
Let D be a small category and let F : D → Sets be a functor. Show that

π0(F\D) ∼= colimDF.

Our next aim is to describe the fundamental group of the space BC in terms of the
morphisms of the category C. To this end, we introduce the concept of maximal trees. In
Proposition 11.5.6, we will see an alternative description.

Definition 11.3.5. Let C be a small category and let X be an arbitrary set of morphisms
in C.

• The graph of X, ΓX , is the one-dimensional sub-CW complex of BC consisting of all
edges in BC that correspond to morphisms in X.
• The set X is called a tree if ΓX is a tree.
• If π0C is trivial, then we call a tree X maximal, if every object of C arises as the source

or the target of a morphism in X.

We use maximal trees in order to describe π1(BC).

Proposition 11.3.6. Let C be a small path-connected category and let X be a maximal
tree in C. The fundamental group of BC (with respect to any chosen object C of C) has the
following presentation: For every morphism f in C, there is a generator [f ]. The relations
are given by the following list:

• A generator [f ] is trivial if f ∈ X.
• For every object C of C, the generator [1C ] is trivial.
• If f : C1 → C2 and g : C2 → C3 are morphisms in C, then

[g ◦ f ] = [g][f ].

Proof. The 1-skeleton of the CW complex BC, BC(1), corresponds to the graph Γ on
the set of morphisms in C, with the exception of the identity morphisms. The fundamental
group of BC(1) is the free group generated by all edges of Γ outside of the maximal tree
X. Cellular approximation ensures that the fundamental group of BC is isomorphic to the
fundamental group of the 2-skeleton BC(2). Therefore, the only relations that occur are those
coming from the composition of morphisms in C. �

Examples 11.3.7.
• If G is a discrete group and CG is its associated category, then every element g ∈ G

gives rise to a generator [g] of π1(BG). Relations of the first kind do not occur, and
the ones coming from composition identify π1(BG) as G.
• If M is a monoid and CM is its associated category, then again every element m ∈M

gives rise to a generator π1(BCM), and the only nontrivial relations come from the
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composition of elements ofm. We know that π1(BCM) is a group, so we have associated
a group with the monoid M . We will encounter this group later again in Definition
13.2.6.

In an extension of the earlier result, we define the higher homotopy groups of a small
category:

Definition 11.3.8. Let C be a small category, C be an object of C, and n be greater
than or equal to 0. The nth homotopy group of C with respect to the basepoint C is

πn(C;C) := πn(BC, [C]).

Here, [C] denotes the 0-simplex associated with the object C.
Note that the category of small categories has filtered colimits. If (F (D), D in D) is a

filtered system of categories, that is, a functor F : D → cat from a small filtered category
D to cat, then colimDF is again a small category C, with set of objects being Ob(C) =
colimDOb(F (D)). Every element in the nerve [fn| . . . |f1] ∈ NnC can be represented by an
element [gn| . . . |g1] ∈ NnF (D) for some D, and hence, we get that colimDNF ∼= NC.

Lemma 11.3.9. Assume that C is a small category that is the filtered colimit of a functor
F : D → cat. For every D in D, let CD be an object in F (D), such that for every f ∈
D(D,D′), we have F (f)(CD) = CD′ . Denote by C the equivalence class of the objects CD
in C. Then, for all n ≥ 0,

πn(BcolimDF ; [C]) ∼= colimD(πn(BF (D); [CD])).

Proof. Geometric realization commutes with filtered colimits, and hence, BC ∼= colimDBF .
As spheres are compact, the homotopy class of a map from a sphere to BC can be expressed
as the equivalence class of a map from this sphere to some BF (D). �

Proposition 11.3.10. The classifying space of any small filtered category is contractible.

Proof. Let D be a small filtered category. Let F : D → cat be the functor that sends
an object D of D to D ↓ D, and a morphisms f ∈ D(D,D′) is sent to F (f), with

F (f)(D̃, g : D̃ → D) = (D̃, D̃
g
//D

f
//D′).

We claim that D is isomorphic to the filtered colimit of the small categories D ↓ D, colimDF .
There is a canonical functor θ from D to colimDD ↓ D that sends an object D of D to the

equivalence class of the object (D, 1D) of D ↓ D. A morphism f ∈ D(D,D′) has θ(f) = [f ].
Note that (D, 1D) is equivalent to (D, f) in the colimit and f is a morphism in D ↓ D′ from
(D, f) to (D′, 1D′).

The forgetful functor from each category D ↓ D to D induces a functor

π : colimDF → D

that remembers the first coordinate. Note that π is well-defined because the equivalence
relation does not affect the source of an object in F (D′) and also does not affect the mor-
phisms.
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It is easy to see that π ◦ θ = IdD. For the converse, observe that θ ◦ π applied to an
equivalence class of (D′, g : D′ → D) is the equivalence class of (D′, 1D′), but (D′, 1D′) is
equivalent to (D′, g : D′ → D) = F (g)(D′, 1D′).

Each classifying space B(D ↓ D) is contractible, because the object D is terminal in
D ↓ D, and hence, BD ' BcolimDF is contractible as well. �

11.4. The Bousfield Kan Homotopy Colimit

The idea of a homotopy colimit is to create a homotopy invariant notion of a colimit.
See [D∞] for a rather gentle introduction. For functors to simplicial sets, there is an explicit
model of a homotopy colimit introduced by Bousfield and Kan in [BK72].

Functors to the category of sets do not carry any actual homotopical information. In this
case, the Bousfield Kan construction reduces to the nerve of a category.

Definition 11.4.1. Let C be a small category and F : C → Sets be a functor, and
consider the category F\C associated with F (see Definition 5.1.11). The homotopy colimit
of F , hocolimF , is the nerve of F\C, N(F\C).

Of course, if you prefer topological spaces, you can take B(F\C) = |N(F\C)|.
Let us make explicit what N(F\C) is. In simplicial degree zero, we get the set of objects

of F\C, (C, x), with x ∈ F (C). We can identify this set with
⊔
C F (C). In degree one, we get

the set of all morphisms in F\C, that is, all f1 : C0 → C1, such that F (f1) maps x ∈ F (C0)
to y ∈ F (C1). The information in F (C1) is redundant, and we obtain

N(F\C)1
∼=

⊔
f1 : C0→C1

F (C0),

and in general,

N(F\C)n ∼=
⊔

[fn|...|f1]∈N(C)n

F (C0).

Here, the simplicial structure maps si only affect the nerve, and so do the dis for i > 0, but
d0 maps an x ∈ F (C0) in the component of [fn| . . . |f1] ∈ N(C)n to F (f1)(x) ∈ F (C1) in the
component of [fn| . . . |f2] ∈ N(C)n−1. If, instead, F takes values in the category of simplicial
sets, then one can use the diagonal of a bisimplicial set and define the homotopy colimit as
follows:

Definition 11.4.2. Let C be a small category.

(1) Let F : C → sSets be a functor. Then, the Bousfield-Kan homotopy colimit of F ,
hocolimCF , is the simplicial set with n-simplices⊔

[fn|...|f1]∈N(C)n

F (C0)n.

(2) For a functor F : C → Top, the Bousfield-Kan homotopy colimit of F is the simplicial
topological space with n-simplices⊔

[fn|...|f1]∈N(C)n

F (C0).
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As discussed earlier, the simplicial structure on hocolimCF is induced by the nerve of C,
the application of F (f1) to F (C0), and the simplicial structure of F (C0). For instance, for
x ∈ F (C0)n, we get

d0([fn| . . . |f1], x) = ([fn| . . . |f2], d0(F (f1)(x))).

One can still view hocolimCF as the nerve of F\C, bearing in mind that the F (C)s are
themselves simplicial sets or topological spaces and that this structure has to be taken into
account.

Bousfield and Kan actually give a different description of the homotopy colimit in [BK72,
XII.5] first and then show in [BK72, XII.5.2] that it is equivalent to the one in Definition
11.4.2.

Remark 11.4.3.
• Note that there is always a map⊔

[fn|...|f1]∈N(C)n

F (C0)n →
⊔

[fn|...|f1]∈N(C)n

∆0

induced by the morphism of simplicial sets from F (C0) to the terminal simplicial set
∆0. Hence, there is always a continuous map |hocolimCF | → BC, no matter what F
is.
• If F is a simplicial set, that is, if C = ∆o and the target category is the category of

sets, then the map from N(F\∆o) to its set of path components is nothing but the
map from the homotopy colimit of F to the colimit of F ; compare Exercise 10.12.13.
For a functor F : C → Top, we can always project the zeroth space of the homotopy
colimit to the coequalizer of the diagram⊔

[f1]∈N(C)1
F (C0)

//

//

⊔
C∈N(C)0

F (C),

and this gives a morphism between the simplicial topological space hocolimCF and
the constant simplicial space colimCF .

Examples 11.4.4.
(1) Let [0] be the category with one object and one morphism. Then, the category

F\[0] for F : [0] → sSets captures the simplicial set F [0] as the only information.
The nerve of [0] has N [0]n = {[10| . . . |10]}, and hence, the homotopy colimit of F
over [0] is equivalent to the simplicial set F [0]. Similarly, if C is a small discrete
category, then

hocolimCF '
⊔

C∈Ob(C)

F (C).

(2) If C is the category of natural numbers viewed as a poset, then the homotopy colimit
over C of any F : C → sSets gives the telescope of

F [0]→ F [1]→ F [2]→ . . . .

(3) Let G be a group and let F : CG → Top be a functor. Then, we can identify F with
the G-space X = F (∗). By definition, in simplicial degree n, we get

(hocolimCGF )n =
⊔

[gn|...|g1]∈Nn(CG)

F (∗) ∼= Gn ×X.
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The simplicial structure maps insert the neutral element in G in the G-coordinates
or, in case of the face maps dis, either use the multiplication in the group or the
group action on X (for d0). This simplicial space is isomorphic to NEG ×GX, with
EG = |NEG|, as in Example 11.2.6, where the equivalence relation on Nq(EG)×X
for forming Nq(EG)×G X is

((g0, g1, . . . , gq), x) ∼ ((e, g1g
−1
0 , . . . , gqg

−1
0 ), g0x),

and hence, the G-orbits (N(EG) ×G X)q are represented by elements of the form
((e, g1g

−1
0 , . . . , gqg

−1
0 ), (g0x)). We can write (e, g1g

−1
0 , . . . , gqg

−1
0 ) as (e, h1, h1h2, . . . , h1·

. . . · hq) and can identify this with the element (h1, . . . , hq) in NqCG, because the
simplicial structure maps are now given by multiplication of group elements and
insertion of the neutral element e. Therefore,

hocolimCGF
∼= EG×G X,

and the homotopy colimit is the Borel construction of X with respect to G.
(4) For X : ∆o → sTop, the fat realization from Definition 10.9.1 is a homotopy colimit

under mild assumptions. Dugger shows, for instance, [D∞, Proposition 20.5] that
the maps

hocolim∆oX ← hocolim∆o
f
X → ||X||

are weak equivalences if every Xn is cofibrant (that is, a retract of a cell complex).
Here, ∆o

f denotes the subcategory of ∆o consisting of face maps.

For more examples, see [BK72, XII, §2] and [T82, §3].

Exercise 11.4.5. What is the geometric realization of the homotopy colimit of a functor
F : [1]→ Top?

Remark 11.4.6. Dugger [D∞, Theorem 6.7, §§9, 10] provides a criterion that allows us
to change the indexing category of a homotopy colimit without changing its homotopy type.
Similar to Theorem 5.2.5, he shows that for a functor γ : D → D′ between small categories,
such that for all objects D of D, the category D′ ↓ γ is nonempty and has a contractible
classifying space, the induced map

hocolimDγ
∗(F )→ hocolimD′F

is a weak equivalence for all F : D′ → Top.

Remark 11.4.7. Beatriz Rodŕıguez Gonzáles proves in [RG14, 4.6, p. 631], that the
explicit Bousfield Kan homotopy colimit formula can be used in all model categories that
satisfy simplicial descent [RG12, (2.4), p. 780]. In particular, the category of non-negatively
graded chain complexes in an abelian category with quasi-isomorphisms as weak equivalences
satisfies this property, and homotopy colimits can be computed as the total complex of the
associated bicomplex of the simplicial chain complex

(11.4.1) [n] 7→
⊕

[fn|...|f1]∈N(C)n

F (C0)n.

This also holds for diagrams in unbounded chain complexes [RiSa∞, §2].
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We will identify the E1 term of one of the spectral sequences that computes the homology
of this total complex with the help of the concept of the homology of small categories in
Theorem 16.3.1.

For other approaches to homotopy colimits, see [Rie14, II.7], [DwHKS04] or [Hi03,
§19].

11.4.1. Homotopy Limits. The homotopy limit of a functor F : C → sSets is defined
as the totalization of the cosimplicial replacement of F . This is a cosimplicial space associated
with F that takes products of F (C) indexed over the nerve. See [BK72, XI.5] for details.

Remark 11.4.6 tells us, that the following condition ensures that finite products commute
with homotopy colimits:

Definition 11.4.8. Let D be a small category and let ∆: D → D ×D be the diagonal
functor. We call D homotopy sifted if for all objects D1 and D2 of D, the category (D1, D2) ↓
∆ is non-empty and has a contractible classifying space.

Beware that the notion of homotopy sifted is stronger than the notion of sifted. The
condition that the category (D1, D2) ↓ ∆ is nonempty and has a contractible classifying space
is often called homotopy terminal and sometimes homotopy right cofinal [Hi03, Definition
19.6.1].

Rosický shows [R07, §4] that a category is homotopy sifted if and only if fibrant replace-
ments of homotopy colimits commute with finite products.

Several of our examples of sifted categories are actually homotopy sifted.

Examples 11.4.9.
• If D is a small category with finite coproducts, then the object (D1 tD2, D1 tD2) is

initial in the category (D1, D2) ↓ ∆ for all objects D1, D2 of D. Hence, such a category
is homotopy sifted.
• Filtered categories are homotopy sifted [R07, Proposition 3.8].
• The opposite of the simplicial category, ∆o, is homotopy sifted [R07, Remark 4.5 (f)].

Remark 11.4.10. Interchange laws for (homotopy) limits and homotopy colimits are
tricky. There are some concrete examples mentioned in [V77]. Rezk develops criteria for
homotopy colimits commuting with homotopy pullbacks [Rez∞].

There is a statement in [Hi∞, Theorem 14.19] for certain types of diagrams (one category
small and filtered and one ’finite and acyclic’ [Hi∞, Definition 14.15]). This result is close
to the classical exchange result about colimits and limits from Theorem 3.5.6.

But if you have your general favourite small diagram categories D and D′ and you want
to know whether holimD(hocolimD′X) is equivalent to hocolimD′(holimDX), then life might
be hard.

11.5. Coverings of Classifying Spaces

Coverings of classifying spaces of small categories have a very explicit description [Q73,
§1]:

Proposition 11.5.1. Let C be a small category and let p : E → BC be a covering.
Then, we can assign a functor F : C → Sets to p, such that F sends every morphism in C
to a bijection and such that the value of F on an object C of C is the fiber p−1[(C, 1)] with
[(C, 1)] ∈ BC(0).
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Proof. We have to define F on morphisms. For any f ∈ C(C1, C2), we consider the
path wf : [0, 1]→ BC that is given by [f ] ∈ N1C with wf (0) = [(C1, 1)] and wf (1) = [(C2, 1)].
The path-lifting property of coverings gives a bijection σ(wf ) : p−1[(C1, 1)] → p−1[(C2, 1)],
such that a composition of morphisms results in the composition of bijections. The identity
morphism 1C gives the identity permutation, and thus, F is a functor with the desired
properties. �

Quillen [Q73, §1] states a converse to Proposition 11.5.1, and we provide a proof following
the treatment in [GZ67, Appendix I].

Definition 11.5.2. A morphism p : E → B in sSets is a simplicial covering if p0 : E0 →
B0 is surjective and if for all n ≥ 0 and for all commutative diagrams

(11.5.1) ∆0

i
��

α
// E

p

��

∆n
β
// B,

there is a unique ξ : ∆n → E with p ◦ ξ = β and ξ ◦ i = α. Here, i is the map induced by
∂n ◦ . . . ◦ ∂1 : [0]→ [n], and thus, it sends the unique map cn0 ∈ ∆0([n]) to the map i(cn0 ) that
maps all j ∈ [n] to zero.

Thus, for every e0 ∈ E0 and bn ∈ Bn with pe0 = d1 ◦ . . . ◦ dnbn, there is a unique en ∈ En
with pnen = bn and d1 ◦ . . . ◦ dnen = e0.

Note that this definition implies that fibers of simplicial coverings are discrete. A fiber
associated with a zero simplex b0 ∈ B0 is the fiber product F = ∆0 ×B E, that is, the
pullback of

E

p

��

∆0
b0
// B.

So, we can restrict attention to coverings of ∆0. But there is only one morphism ∆n → ∆0

for all n ≥ 0, so any n-simplex in a covering space of ∆0 is determined by one of its vertices,
and thus, the fiber is discrete. A proof for the next result can be found in [GZ67, III.4,
Appendix I.2, I.3].

Proposition 11.5.3. The geometric realization of a simplicial covering is a covering of
topological spaces.

Remark 11.5.4. There is also a description of simplicial coverings as locally trivial maps
with typical discrete fiber [GZ67, loc. cit.].

Theorem 11.5.5. Let C be a small category, C be an object of C, and F : C → Sets be
a functor that is morphism-inverting, that is, that sends every f ∈ C(C1, C2) to a bijection.
Then, p = B(ρ) : B(F\C)→ BC is a covering with typical fiber F (C).

Together with Proposition 11.5.1 this yields an equivalence of categories between the
category of all coverings of BC and the category of all morphism-inverting functors F : C →
Sets.

Note that all the F (C)s are in bijection, because F is morphism-inverting.
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Proof. We use Proposition 11.5.3 and show that N(ρ) : N(F\C) → NC is a simplicial

covering. Let C0
u1
//C1

u2
// . . .

un
//Cn be an n-simplex of N(C) and let (C0, x0) be in

N(F\C)0. We define an n-simplex in N(F\C) out of these starting data as

(C0, x0)
u1
//(C1, F (u1)(x0))

u2
// . . .

un
//(Cn, F (un) ◦ . . . ◦ F (u1)(x0)).

Then, N(ρ)n maps this simplex to C0
u1
//C1

u2
// . . .

un
//Cn and

d1◦. . .◦dn((C0, x0)
u1
//(C1, F (u1)(x0))

u2
// . . .

un
//(Cn, F (un) ◦ . . . ◦ F (u1)(x0))) = (C0, x0).

This provides a unique lift ξ, as in (11.5.1). For C ∈ N(C)0, the corresponding fiber ∆0×N(C)
N(F\C) is {x ∈ F (C)} = F (C). �

Associated with C there is a groupoid, C[Mor(C)−1], obtained by formally inverting all
morphisms in C [GZ67, I.1]. Morphism-inverting functors F : C → Sets are nothing but
functors from the category C[Mor(C)−1] to Sets. For every object C of C, let G(C) be the
group of automorphisms of C in the category C[Mor(C)−1]. We get an alternative description
of π1(C).

Proposition 11.5.6. [Q73, p. 82 (aka p. 6 or p. 90)] For all objects C of C, there is an
isomorphism of groups

π1(C;C) ∼= G(C).

Proof. If C is connected, then the inclusion functor CG(C) → C[Mor(C)−1], which sends
the unique object ∗ of CG(C) to C, is part of an equivalence of categories. Coverings of BC
are then in bijection with G(C)-sets; hence, G(C) ∼= π1(BC, [C]) = π1(C, C). If C is not
connected, we restrict to the connected component of the object C. �

11.6. Fibers and Homotopy Fibers

Let F : C → D be a functor between small categories. Quillen’s Theorems A and B give
us control over the fiber of F and the homotopy fiber of BF in good cases. We will first
consider a categorical version of the actual fiber of F .

Definition 11.6.1. Let D be an object of D. The fiber of F over D, F−1(D) is the cate-
gory whose objects are the objects C of C, with F (C) = D. A morphism f ∈ F−1(D)(C,C ′)
is a morphism f ∈ C(C,C ′), such that F (f) = 1D.

In many sources, the notation CD for F−1(D) is used. Note that F−1(D) is the pullback
in the diagram

C
F
��

[0]
D
// D.

The fiber of F over D describes the actual fiber on the level of classifying spaces.

Lemma 11.6.2. Let F : C → D be a functor between small categories and let D be an
object of D. Then,

B(F−1(D)) = (BF )−1([D]).

224



Proof. If the fiber category is empty, then so is (BF )−1([D]).
By the very definition of F−1(D), we get that B(F−1(D)) ⊂ (BF )−1([D]). Let [([fp |

. . . | f1], (t0, . . . , tp))] be an element of (BF )−1([D]) ⊂ BC; that is,

[([F (fp) | . . . | F (f1))], (t0, . . . , tp))]

is equivalent to [D] ∈ BD. We saw in Lemma 10.6.3 that the element [F (fp) | . . . | F (f1)]
can be uniquely written in the form

[F (fp) | . . . | F (f1)] = sji ◦ . . . ◦ sj1 [gr | . . . | g1],

with 0 ≤ j1 < . . . < ji ≤ p and, such that none of the gas is an identity morphism
or such that [F (fp) | . . . | F (f1)] is of simplicial degree zero, that is, of the form [D′]
for an object D′ of D. The first case cannot happen, as we assumed that the element is
equivalent to [D] = [([D], (1))], and hence, we can write [([F (fp) | . . . | F (f1)], (t0, . . . , tp))]
as sjp ◦ . . . ◦ sj1([D], (1)) = ([1D | . . . | 1D], (r0, . . . , rp)), with one rb = 1 and all others equal
to 0 and [([fp | . . . | f1], (t0, . . . , tp))] is in B(F−1(D)). �

One can construct a model for the homotopy fiber of the map BF : BC → BD in terms
of comma categories. For an object D of D recall the definition of F ↓ D from Section 5.1:
There is a functor U : F ↓ D → C sending a pair (C, f) to C; here, C is an object of C and
f ∈ D(F (C), D). Dually, we can consider the comma category D ↓ F with objects (C, f),
with C an object of C and f ∈ C(D,F (C)). We will see in Theorem 11.7.7 under which
assumptions B(F ↓ D) actually has the homotopy type of the homotopy fiber. There is
always a map.

Proposition 11.6.3. There is a natural transformation τ : F ◦ U ⇒ ∆(D) from F ◦ U
to the constant functor with value D. Thus, the map BF ◦BU is nullhomotopic, and there
is a continuous map from B(F ↓ D) to the homotopy fiber of the map BF : BC → BD.
Similarly, there is a continuous map from B(D ↓ F ) to the homotopy fiber of BF .

Proof. We define τ(C,f) : FU(C, f) = F (C)→ D as f , and such a transformation gives
rise to a homotopy

H : B(F ↓ D)×B[1]→ BD,
with H(x, 0) = B(FU)(x) and H(x, 1) = D for all x ∈ B(F ↓ D).

In such a situation, the map from B(F ↓ D) into the homotopy fiber of BF is standard.
The homotopy fiber is the space

hfib(BF ) = {(x,w) ∈ BC ×BD[0,1]|w(0) = BF (x), w(1) = [D] ∈ BD},
and it comes with the map hfib(BF )→ BC, given by the projection onto the first coordinate.
We define

ξ : B(F ↓ D)→ hfib(BF )

as ξ(y) = (BU(y), H(y,−)).
The proof for D ↓ F is similar. �

Note that the fiber category F−1(D) is a full subcategory of F ↓ D (and of D ↓ F ), where
an object C of F−1(D) corresponds to an object (C, 1D : F (C) → D) (and (C, 1D : D →
F (C))). Therefore, the inclusion functors induce continuous maps

BF−1(D)→ B(F ↓ D)→ hfib(BF ) and BF−1(D)→ B(D ↓ F )→ hfib(BF ).
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We follow [Q73, G-SGA1] for the definition of a comparison property between the fiber
BF−1(D) and B(F ↓ D) (respectively B(D ↓ F )).

Definition 11.6.4. Let F : C → D be a functor between small categories.

• We call F precofibered if for every object D of D, the inclusion functor F−1(D) ↪→
F ↓ D has a left adjoint L. If (C, f) is an object of F ↓ D, then we denote the value
of L on (C, f) by L(C, f) = f∗(C).
• If L exists, then every g : D → D′ in D induces a functor F ↓ D → F ↓ D′, and hence,

a cobase-change functor g∗ : F
−1(D) → F−1(D′) by sending an object C of F−1(D)

first to the object (C, g) in F ↓ D′ and then to L(C, g) = g∗(C).
• A precofibered functor F is cofibered if for every pair of composable morphisms

D
f
//D′

g
//D′′ , we get

(g ◦ f)∗ = g∗ ◦ f∗.
• Dually, we call F prefibered if for every object D of D, the inclusion functor F−1(D) ↪→
D ↓ F has a right adjoint R. If (C, f) is an object of D ↓ F , then we denote the value
of R on (C, f) by R(C, f) = f ∗(C).
• If R exists, then every g : D → D′ in D induces a functor D′ ↓ F → D ↓ F , and hence,

a base-change functor g∗ : F−1(D′)→ F−1(D) by sending an object C of F−1(D′) to
R(C, g) = g∗(C).
• A prefibered functor F is fibered if for every pair of composable morphisms

D
f
//D′

g
//D′′,

we get (g ◦ f)∗ = f ∗ ◦ g∗.

Remark 11.6.5. The existence of a left or right adjoint of the inclusion functor ensures
that the actual fiber F−1(D) and F ↓ D or D ↓ F have homotopy equivalent classifying
spaces.

We compare the above notion of a precofibered functor to a Grothendieck opfibration,
which is heavily applied in [Lu∞, Chapter 2].

Definition 11.6.6. Let F : C → D be a functor and let f ∈ C(C1, C2) be a morphism.
Then f is F -cocartesian, if for all h ∈ C(C1, C3) and for all v ∈ D(D2, D3) with F (C2) = D2

and F (C3) = D3 with

F (h) = v ◦ F (f),

there is a unique g ∈ C(C2, C3), with v = F (g):

C1

h

&&f
// C2

∃!g
// C3

F (C1)

F (h)

77

F (f)
// F (C2)

v
// F (C3).
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You can express the same fact by saying that the diagram

C(C2, C3)
(−)◦f

//

F
��

C(C1, C3)

F
��

D(F (C2), F (C3))
(−)◦F (f)

// D(F (C1), F (C3)).

is a pullback square.

Exercise 11.6.7. Assume that u ∈ D(D1, D2) is a morphism and f is an F -cocartesian
morphism f ∈ C(C1, C2), with F (f) = u. Prove that the object C2 and the morphism f are
unique up to unique isomorphism, so if f ′ ∈ C(C1, C

′
2) is another F -cocartesian morphism

with F (f ′) = u, then there is a unique isomorphism g : C2 → C ′2 with g ◦ f ′ = f .

Definition 11.6.8. Let F : C → D be a functor. Then F is a Grothendieck opfibration
or a cocartesian fibration, if for all objects C1 of C and all morphisms u ∈ D(F (C1), D2)
there is an F -cocartesian morphism f ∈ C(C1, C2) with F (f) = u.

Remark 11.6.9. Note that for any Grothendieck opfibration and any u ∈ D(D1, D2),
there is a morphism u∗ : F

−1(D1)→ F−1(D2), that is, a fiber transport map. Let C1 be an
object of F−1(D1). Then, u : D1 = F (C1)→ D2, so there is an F -cocartesian f ∈ C(C1, C2),
with F (f) = u; in particular, C2 is an object of F−1(D2). So, we set u∗(C1) = C2.

If h ∈ C(C1, C
′
1), with F (h) = 1D1 and if f ′ : C ′1 → C ′2 is an F -cocartesian morphism of

u, now viewed as a morphism u : F (C ′1) = D1 → D2, then F (f ′ ◦ h) = F (f ′) = u, so there is
a unique g ∈ C(C2, C

′
2), with F (g) = 1D2 , and so, one can set u∗(h) = g.

Example 11.6.10. The projection functor U : C
∫
F → C is a Grothendieck opfibration.

For every object (C1, X1) of C
∫
F and every map f ∈ C(C1, C2) = C(U(C1, X1), C2), we can

take the morphism (f, 1F (f)(X1)) as a U -cocartesian lift of f . First of all, (f, 1F (f)(X1)) is a
morphism in C

∫
F from (C1, X1) to (C2, F (f)(X1)), and U maps it to f .

We have to show that (f, 1F (f)(X1)) is a U -cocartesian, so assume that (h1, h2) is a mor-
phism in C

∫
F ((C1, X1), (C3, X3)) and that v ∈ C(C2, C3), with v ◦ f = h1. Then, we have

no choice but to take

(g1, g2) = (v, h2) ∈ (C
∫
F )((C2, F (f)(X1)), (C3, X3))

as a lift of v.

Theorem 11.6.11. Let F : C → D be a functor. Then, F is precofibered if and only if
F is a Grothendieck opfibration.

There is a dual statement, comparing prefibered functors to Grothendieck fibrations. For
a topologist, the name cocartesian fibration or Grothendieck opfibration might seem more
natural than the name precofibered, because an opfibration has a fiber transport and a lifting
property from the target category to the source category, and we might think of the latter
as the total space of the functor. As Quillen uses precofibered, this term is widely spread in
the algebraic K-theory community.

Proof. Assume that F is a Grothendieck opfibration, and let D be an arbitrary object
of D. We have to find a left adjoint to the inclusion functor I : F−1(D) → C ↓ D. We
define a functor L : F ↓ D → F−1(D) via reflections (see Definition 2.4.13). For an object
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(C, α : F (C)→ D), let f : C → C ′ be an F -cocartesian morphism, with F (f) = α, in partic-
ular, with F (C ′) = D. We define G(C,α : F (C)→D) as C ′. For the morphism η(C,α) : (C, α) →
I(C ′) = (C ′, 1D : F (C ′)→ D), we can recycle f , because by the definition of f , the diagram

F (C)
F (f)

//

α
&&

F (C ′)

1Dxx

F (C ′) = D

commutes. We have to show that the pair (C ′, f) actually is a reflection, so let C̃ be an object
of F−1(D) and let h ∈ (C ↓ D)((C, α), (I(C̃))) be an arbitrary morphism. Thus, h : C → C̃,
with 1D ◦ F (h) = F (h) = α. As f is cocartesian, there is a unique morphism g ∈ C(C ′, C̃),
with g ◦ f = h, and this is precisely the condition that I(g) ◦ η(C,α) = h. Therefore, by
Lemma 2.4.15, we obtain a functor L : C ↓ D → F−1(D), which, by Proposition 2.4.16, is
left adjoint to I.

Now assume that F is precofibered and that L is a left adjoint to the inclusion functor
I : F−1(D)→ C ↓ D. Let u : F (C1) = D1 → D2 be a morphism in D. The set C2 = L(C1, u).
As L is a left adjoint to I, the identity morphism

1C2 ∈ F−1(D2)(C2, C2) = F−1(D2)(L(C1, u), C2)

corresponds to a morphism

f ∈ (C ↓ D2)((C1, u), (C2, 1D2 : F (C2) = D2 → D2)),

and this f : C1 → C2 satisfies

u = 1D2 ◦ F (f) = F (f),

and hence, f is F -cocartesian. �

11.7. Theorems A and B

For the proof of Theorem A, we use a variant of the twisted arrow category from Definition
4.5.1, where we twist the morphisms but here, we involve a functor as well.

Definition 11.7.1. Let F : C → D be a functor between small categories. The category
of twisted morphisms under F , F o D, is the category whose objects are triples (C,D, f),
where C is an object of C, D is an object of D, and f ∈ D(F (C), D). A morphism in F oD
from (C,D, f) to (C ′, D′, f ′) is a pair of morphisms (α ∈ C(C ′, C), β ∈ D(D,D′)), such that
the diagram

F (C)

f
��

F (C ′)
F (α)
oo

f ′

��

D
β

// D′

commutes.

For F = IdD, this is precisely the definiton of a twisted arrow category, so

(11.7.1) IdD oD = Dτ .
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Theorem 11.7.2. ([Q73, Theorem A]) Let F : C → D be a functor between small
categories. If B(F ↓ D) is contractible for every object D of D, then BF : BC → BD is a
homotopy equivalence.

Proof. We first expand the nerve of the category F o D into a bisimplicial set. Let
X(F )p,q be the set consisting of pairs

(Cp
αp
// . . .

α1
//C0 ; F (C0)

f0
//D0

β1
// . . .

βq
//Dq )

of composable morphisms in C and D.

• The diagonal simplicial set diag(X) has p-simplices:

(Cp
αp
// . . .

α1
//C0 ; F (C0)

f0
//D0

β1
// . . .

βp
//Dp ).

Applying F to the first component and filling in the diagram with compositions give

F (C0)

f0

��

F (C1)
F (α1)
oo

��

. . .
F (α2)
oo F (Cp)

F (αp)
oo

��

D0
β1

// D1
β2

// . . .
βp
// Dp.

Thus, diag(X)p ∼= Np(F oD).
• The projection to the first component defines a morphism of simplicial sets

prq2 : X(F )p,q → NpCo

for every fixed q.
• For a fixed p, we can take the geometric realization of the simplicial set [q] 7→ X(F )p,q

and obtain ⊔
Cp

αp
// . . .

α1
//C0

B(F (C0) ↓ D).

But B(F (C0) ↓ D) ' ∗, because (F (C0), 1F (C0)) is an initial object in F (C0) ↓ D.
Therefore,

|pr2| :

 ⊔
Cp

αp
// . . .

α1
//C0

B(F (C0) ↓ D)

→
 ⊔
Cp

αp
// . . .

α1
//C0

∗

 = NpCo

is a weak equivalence for every p. Using the results from Remark 10.8.6 and Proposi-
tion 10.8.5 gives that there is a weak equivalence

p2 : |diag(X)| = B(F oD)→ BCo.
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• If we fix q and take geometric realization in p-direction, we obtain that the projection
onto the first factor, pr1, induces a morphism ⊔

D0
β1
// . . .

βq
//Dq

B(F ↓ D0)

→
 ⊔
D0

β1
// . . .

βq
//Dq

∗

 ,

and by assumption, the spaces B(F ↓ D0) are contractible for all objects D0 of D,
and hence, there is a weak equivalence

p1 : |diag(X)| = B(F oD)→ ND.
• Note that the category IdD ↓ D has a contractible classifying space for all objects D

of D, because IdD ↓ D is isomorphic to D ↓ D, and here, D is terminal. Hence, we
obtain analogous weak equivalences, with F replaced by the identity functor on D.
• We consider the commutative diagram

Co

F o

��

F oD
pr1

oo

F∗
��

pr2
// D

Do Id oD
pr1

oo
pr2
// D,

where F∗(C,D, f) = (F (C), D, f). The horizontal functors give rise to weak equiva-
lences, and hence, BF o is a weak equivalence and so is BF .

�

Corollary 11.7.3. If F : C → D is precofibered or prefibered and if the actual fiber
BF−1(D) is contractible for all objects D of D, then the induced map BF : BC → BD is a
homotopy equivalence.

Example 11.7.4. A twisted arrow category, Dτ (see Definition 4.5.1), is cofibered over
Do via the source functor and over D via the target functor. Recall that Dτ has as objects all
f ∈ D(D,D′), and a morphism from f to g ∈ D(D1, D

′
1) is a pair of morphisms h : D1 → D

and k : D′ → D′1, with g = k ◦ f ◦ h. (Thus, Dτ is IdD o D in the notation of Definition
11.7.1.)

We show the claim for the target functor, T : Dτ → D, that sends f to D′ and a pair
(h, k) to k.

We define the left adjoint L to the inclusion T−1(D′) ↪→ Dτ ↓ D′ as the functor that takes
an object (σ : D → D′′, h : D′′ → D′) of Dτ ↓ D′ to the object h ◦ σ of the fiber T−1(D′). A
morphism (α, α′), as in the commuting diagram

D // D′′ //

α′

��

D′,

D1
//

α

OO

D′′1

>>

is sent to the morphism (α, 1D′) in T−1(D′). By construction, L is left adjoint to the inclusion
functor.
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Exercise 11.7.5. Show that the category F oD is cofibered over Co and D.

We consider the inclusion functor ι from the category CN0 to the category CZ.

Proposition 11.7.6. Bι : BN0 → BZ is a homotopy equivalence.

Proof. What is ι ↓ ∗? As ι(∗) = ∗, the objects of ι ↓ ∗ can be identified with the
integers, and a morphism from x ∈ Z to y ∈ Z is a natural number n, with y + n = x.
Hence, ι ↓ ∗ is the category of the ordered set of the integers. This is a filtered small
category, and hence, by 11.3.10, B(ι ↓ ∗) is contractible. �

We state Theorem B without a proof and refer the reader to the excellent original source
[Q73], to [Sr96, §6] for an extended account of Quillen’s proof, and to [GJ09, IV.5] for a
proof using model structures and bisimplicial techniques.

Theorem 11.7.7. [Q73, Theorem B] Let F : C → D be a functor between small
categories such that for every morphism f ∈ D(D,D′), the induced functor F ↓ D → F ↓ D′
is a homotopy equivalence. Then, for any object D of D, the diagram

B(F ↓ D)
BU

//

Bε
��

BC

BF

��

B(D ↓ D)
Bπ
// BD

is homotopy cartesian. Here, U sends a pair (C, f) to C, ε evaluates (C, f) to (F (C), f),
and π projects to the first component.

Here, homotopy cartesian means that the map from B(F ↓ D) to the homotopy fiber
product of

BC
BF
��

B(D ↓ D)
Bπ
// BD

is a homotopy equivalence. Note that B(D ↓ D) is contractible. In such a situation, the
diagram is homotopy cartesian if and only if the map from B(F ↓ D) to the homotopy fiber
of BF is a homotopy equivalence. Thus, under the assumptions of Theorem B, B(F ↓ D) is
a valid model for the homotopy fiber, and we get a long exact sequence of homotopy groups

. . .
δ
//πn(B(F ↓ D); [(C, f)])

πn(BU)
//πn(BC; [C])

πn(BF )
//πn(BD; [F (C)])

δ
// . . .

for all choices of objects (C, f) of B(F ↓ D).
Dually, we have an analogous statement for D ↓ F . In the precofibered and prefibered

case we can, of course, replace B(F ↓ D) with B(F−1(D)).
Recall (for instance, from [Ha02, Section 4.K]) that a quasi-fibration is a continuous

map p : E → B, with B path-connected, such that the inclusion of each fiber p−1(b) into
the homotopy fiber of p is a weak homotopy equivalence. Here, we are dealing with CW
complexes, so we can upgrade such a weak homotopy equivalence to an actual homotopy
equivalence.
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Corollary 11.7.8. [Q73, Corollary to Theorem B] Suppose that F : C → D is pre-
fibered (respectively precofibered) and that for every morphism f ∈ D(D,D′) the induced
base-change functor f ∗ : F−1(D′) → F−1(D) (respectively cobase-change functor) is a ho-
motopy equivalence. Then BF : BC → BD is a quasi-fibration.

The following example is mentioned in [BDR04].

Example 11.7.9. Let M be a monoid, let G be a group, and assume that f : M → G
is a morphism of monoids. We obtain an associated functor F : CM → CG, with F (∗) = ∗
and F (m) = f(m). We can identify the category F ↓ ∗ with the category whose objects are
morphisms g ∈ CG(∗, ∗) and whose morphisms are commutative diagrams

∗
f(m)

//

g1
��

∗

g2
��

∗

that is, g2f(m) = g1. Every g ∈ G induces an automorphism of categories on F ↓ ∗, and
hence, Quillen’s Theorem B applies, and B(F ↓ ∗) is equivalent to the homotopy fiber of
BM → BG.

Exercise 11.7.10. Let M be an abelian monoid and G(M) be its Grothendieck group,
as in Definition 13.2.1. Generalizing Proposition 11.7.6, what are possible assumptions on
M that guarantee, that the canonical map j : M → G(M) induces a homotopy equivalence
Bj : BM → BG(M)?

Exercise 11.7.11. What happens in Example 11.7.9 if f is the inclusion of a subgroup
H < G? What about a quotient map f : G→ G/N of groups? That should look familiar.

11.8. Monoidal and Symmetric Monoidal Categories, Revisited

11.8.1. Monoidal Categories via Grothendieck Opfibrations. For defining a mo-
noidal category (C,⊗, 1), you can write down the explicit axioms that the monoidal product
has to satisfy and state the necessary coherence conditions. This is the approach that we
presented in Definition 8.1.4. A different approach is to package the data of a monoidal
category into the requirement that a certain functor is a Grothendieck opfibration. We
first describe how every monoidal category gives rise to such a functor with the help of an
auxiliary category.

Definition 11.8.1. Let (C,⊗, e) be a monoidal category. The category C⊗ has as objects
finite sequences (C1, . . . , Cn) of objects Ci of C for all n ∈ N0, where we take the empty
sequence for n = 0. A morphism (ϕ; (fi)

m
i=1) from (C1, . . . , Cn) to (C ′1, . . . , C

′
m) consists of a

ϕ ∈ ∆([m], [n]) and fi ∈ C(Cϕ(i−1)+1⊗ . . .⊗Cϕ(i), C
′
i), where we set Cϕ(i−1)+1⊗ . . .⊗Cϕ(i) = e

if ϕ(i− 1) = ϕ(i).

Note that we do not assume that C is strict monoidal, so a priori, we have to fix a way of
placing parentheses in Cϕ(i−1)+1⊗ . . .⊗Cϕ(i). But Mac Lane’s coherence result (see Remark
8.1.8) implies that such choices don’t matter, because Cϕ(i−1)+1⊗ . . .⊗Cϕ(i) is defined up to
canonical isomorphism.
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Example 11.8.2. Let us spell out the effect of ϕ = δj : [m]→ [m+1] and ϕ = σj : [m]→
[m − 1]. For δj, we have δj(i − 1) + 1 = δ(i) for all i but i = j. So possible morphisms are
Ci → C ′i for i 6= j and Cj ⊗ Cj+1 → C ′j. For σj, we also have σj(i − 1) + 1 = σ(i) for all
i − 1 6= j and σj(j) + 1 = j = σj(j + 1), so possible morphisms are Ci → C ′i for i − 1 6= j
and e→ C ′j+1.

Exercise 11.8.3. Make the identity morphisms and the composition in C⊗ explicit.
Let ϕ ∈ ∆([4], [4]) be the morphism that has ϕ−1(0) = {0, 1}, ϕ−1(1) = {2} and ϕ−1(4) =

{3, 4}. What are possible morphisms in C⊗ with first coordinate ϕ?

There is a canonical projection functor p : C⊗ → ∆o that sends an object (C1, . . . , Cn) to
[n] and (ϕ; (fi)

m
i=1) to ϕ.

Proposition 11.8.4. If C is a monoidal category, then p is a Grothendieck opfibration.

Proof. Let (C1, . . . , Cn) be an arbitrary object in C⊗ and let ϕ ∈ ∆([m], [n]). We set
C ′i = Cϕ(i−1)+1 ⊗ . . .⊗ Cϕ(i) and choose the morphism

(ϕ; 1Cϕ(0)+1⊗...⊗Cϕ(1)
, . . . , 1Cϕ(m−1)+1⊗...⊗Cϕ(m)

) =: (ϕ; 1, . . . , 1)

as a lift of ϕ in C⊗. We have to show that this morphism is p-cocartesian. So, let (β; (fi)
`
i=1) ∈

C⊗((C1, . . . , Cn), (C ′′1 , . . . , C
′′
` )), with β : [`] → [n] in ∆. Assume that γ ∈ ∆([`], [m]), such

that β = ϕ ◦ γ = γ ◦o ϕ. We have to show that there is a unique (γ; (gi)
`
i=1) in C⊗ lifting

γ. But as the Cis are just tensor words in the Cis and as β = ϕ ◦ γ, we know where these
tensor words have to be sent in order to end up in the C ′′i s. �

In the preceding proof, one could have taken any isomorphism C ′i
∼= Cϕ(i−1)+1⊗. . .⊗Cϕ(i);

taking the identity was not necessary, just lazy.

Remark 11.8.5. We know that Grothendieck opfibrations have a fiber transport. Note
that for p : C⊗ → ∆o, the fiber at [1], C[1] := p−1([1]), is isomorphic to C. There is the
additional effect that we can recover all of the fibers C⊗[n] from C itself. Let ιi−1,i : [1] → [n]

for 1 ≤ i 6= n denote the unique map in ∆ with image {i− 1, i}. Then, the ιi−1,is induce an
equivalence of categories

C⊗[n]
∼=

n∏
i=1

C⊗[1]
∼=

n∏
i=1

C.

Note that C⊗[0] is the category with the empty sequence and an identity morphism, so C⊗[0]

is isomorphic to the category [0]. The important thing is that we can reverse the process.

Theorem 11.8.6. If p : D → ∆o is a Grothendieck opfibration, such that for all n ≥ 2,
the morphism (ι0,1, . . . , ιn−1,n) induces an equivalence of categories

D[n] →
n∏
i=1

D[1],

and D[0]
∼= [0] =: D0

[1]. Then, D[1] =: C is a monoidal category.

Proof. We consider the morphism δ1 : [1] → [2] in ∆ and an object (C1, C2) in C × C.
We use the equivalence C × C ∼= D[2] and choose an inverse to (ι0,1, ι1,2), together with δ1, to
induce a map

⊗ : C × C ∼= D[2] → D[1] = C,
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which we denote by ⊗, and we define C1 ⊗ C2 in this way.
As p is a Grothendieck opfibration, for a fixed choice of (C1, C2) and for δ1, the lift is

unique up to unique isomorphism by Exercise 11.6.7. On the level of morphisms, we define
f ⊗ g for f ∈ C(C1, C

′
1) and g ∈ C(C2, C

′
2) by precomposition in C × C by (f, g). This

constructs ⊗ as a functor. The identity δ1 ◦ δ1 = δ2 ◦ δ1 ensures that ⊗ is associative up to
isomorphism, because δ1 ◦ δ1 corresponds to (C1, C2, C3) 7→ (C1 ⊗ C2)⊗ C3, whereas δ2 ◦ δ1

sends (C1, C2, C3) to C1⊗ (C2⊗C3). We call the resulting natural associativity isomorphism
α. The pentagon axiom (8.1.2) for α, as in Definition 8.1.4, then follows from the equality
in ∆ for expressing the morphism from [1] to [4] that sends 0 to 0 and 1 to 4:

δ1 ◦ δ2 ◦ δ1 = δ1 ◦ δ1 ◦ δ1 = δ2 ◦ δ1 ◦ δ1 = δ2 ◦ δ2 ◦ δ1 = δ3 ◦ δ2 ◦ δ1.

The morphism σ0 ∈ ∆([1], [0]) induces a functor I : [0] → C (unique up to isomorphism),
and we define e as the object I(0) of C. The equality σ0 ◦ δ1 = 1[1] = σ1 ◦ δ1 translates into
natural isomorphisms e⊗C ∼= C ∼= C⊗e. The triangle axioms for these isomorphisms arises
from the equality

σ0 ◦ δ1 ◦ δ1 = δ1 = σ1 ◦ δ1 ◦ δ1.

�

11.8.2. Symmetric Monoidal Categories. For symmetric monoidal categories, Se-
gal’s category of finite pointed sets, Γ, is used for encoding the symmetric monoidal structure.
We follow [Lu∞] and [Gro20] and use the same name as in Definition 11.8.1 for the resulting
auxiliary category.

Definition 11.8.7. Let (C,⊗, e, τ) be a symmetric monoidal category. The category C⊗
has as objects n-tuples of objects of C, (C1, . . . , Cn) for n ≥ 0, and again, for n = 0 we take
the empty sequence. A morphism (f ; (gi)

m
i=1) from (C1, . . . , Cn) to (C ′1, . . . , C

′
m) consists of

an f ∈ Γ([n], [m]) and morphisms

gi :
⊗

j∈f−1(i)

Cj → C ′i,

in C. If f−1(i) = ∅, then gi : e→ C ′i.

Here, the tensor product is uniquely determined up to isomorphism, and the coherence
result for symmetric monoidal categories ensures that the maps gi are defined up to canonical
isomorphism. We fix a choice that respects the natural ordering on the fibers f−1(i). Note
that we only consider the fibers away from the basepoint 0. As in the monoidal case, there
is a projection functor p : C⊗ → Γ that sends and object (C1, . . . , Cn) to [n] and takes a
morphism (f ; (gi)

m
i=1) to f .

For 1 ≤ i ≤ n, let %i ∈ Γ([n], [1]) be the morphism that sends i to 1 and all other elements
of [n] to 0. The symmetric monoidal structure on C then ensures that the projection functor
p is a Grothendieck opfibration and that the fiber C[n] is equivalent to Cn[1] via the morphism

(%1, . . . , %n). We also obtain the analog of Theorem 11.8.6.

Theorem 11.8.8. Let p : D → Γ be a Grothendieck opfibration and let C be D[1]. If for
all n ≥ 0, the fiber D[n] is equivalent to Cn, such that the equivalence is induced by the %is,
then C is a symmetric monoidal category.

We refer to [Lu∞, Chapter 2] for a proof.
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11.8.3. Monoidal Structures on Quasi-Categories. It goes well beyond the scope of
this book to give an introduction to (symmetric) monoidal quasi-categories, because the defi-
nitions need background from [Lu09, Chapters 1,2]. Therefore, we only give a brief overview
of how to generalize (symmetric) monoidal structures to the context of ∞-categories.

Joyal and Lurie generalize the concept of cocartesian morphisms and Grothendieck opfi-
brations to the setting of quasi-categories in [Jo-c∞, p. 173] and [Lu09, Chapter 2]. Crucial
for this is the transfer of the concept of slice categories in the sense of Joyal 5.1.14. Joyal
develops this generalization in [Jo-c∞, 3.3]. Recall the join of simplicial sets from Definition
10.13.4.

The following is a simplicial analog of Proposition 5.1.13.

Proposition 11.8.9. For a fixed simplicial set Y , the functor (−)∗Y : sSets→ Y ↓ sSets
has a right adjoint, and dually, the functor X ∗ (−) : sSets → X ↓ sSets has a right adjoint
for every simplicial set X.

Proof. We prove the first claim: If such a right adjoint, R, exists, then for every object
f : Y → Z in Y ↓ sSets, we get in simplicial degree n that

R(f : Y → Z)n =sSets(∆n, R(f : Y → Z))
∼=(Y ↓ sSets)(∆n ∗ Y, Z),

so we have no choice but to set R(f : Y → Z)n := (Y ↓ sSets)(∆n ∗ Y, Z). �

Example 11.8.10. The most important examples in this context are simplices in Z; thus,
f : ∆k → Z for some k ≥ 0, for instance, points in Z (k = 0) or morphism in a quasi-category,
that is, f : ∆1 → Z.

For f : ∆k → Z, we obtain for R(f : Y → Z)k maps of simplicial sets from ∆n ∗ ∆k to
Z that extend f . But ∆n ∗∆k

∼= ∆n+k+1 (see Example 10.13.7), so we just obtain maps of
simplicial sets from ∆n+k+1 to Z restricting to f on ∆k ↪→ ∆n+k+1; these are elements in
Zn+k+1 restricting to the simplex that corresponds to f .

For k = 0, we obtain morphisms from the right cone on ∆n, ∆n ∗ ∆0
∼= ∆n+1 to Z, so

(n+ 1)-simplices of Z, whose restriction to the cone point is the point corresponding to f .
Dually, for the right adjoint of X ∗ (−), we get for an f : ∆k → Z an (n+ k+ 1)-simplex

in Z restricting to f on ∆k ↪→ ∆k ∗∆n
∼= ∆n+k+1.

Definition 11.8.11. [Jo-c∞, §3.3] [Lu09, 1.2.9.2] Let X, Y , and Z be simplicial sets
and let f : X → Z and g : Y → Z be morphisms in sSets.

• We denote the value of the right adjoint of (−) ∗ Y on g : Y → Z, R(g : Y → Z), by
Z/g.
• The value of the right adjoint of X ∗ (−) on f : X → Z, R(f : X → Z), is denoted by
Zf/.
• If Z is a quasi-category, then Z/g is the ∞-category of objects over g, and Zf/ is the
∞-category of objects under f .

Recall from Proposition 11.1.2 that nerves of small categories are automatically quasi-
categories. There is a compatibility result relating the slices of small categories to the
simplicial sets Z/g and Zf/ via the nerve functor.
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Proposition 11.8.12. [Jo-c∞, Proposition 3.13] Let C and D be small categories and
let F : C → D be a functor. There are canonical isomorphisms N(DF/) ∼= N(D)N(F )/ and
N(D/F ) ∼= N(D)/N(F ).

Proof. We prove the first claim. An n-simplex in N(DF/) is a map ∆n → N(DF/).
As ∆n

∼= N [n], this corresponds to a functor from the category [n] to DF/. By adjunction
(Proposition 5.1.13), such functors are in bijection with functors from [n]∗C to D that extend
F . As the nerve functor preserves joins (see Proposition 11.1.11), this corresponds to maps
of simplicial sets ∆n ∗N(C)→ N(D) that extend N(F ). By adjunction, this is nothing but
an n-simplex in N(D)N(F )/. �

The crucial point is the generalization of cocartesian morphisms and Grothendieck op-
fibrations to the context of quasi-categories. We just record the definition and refer the
interested reader to [Jo-c∞], [Lu09, §2.4.2], and [Gro20, §3.2] for more details.

Definition 11.8.13. [Gro20, Definitions 3.6, 3.7] Let X and Y be quasi-categories and
let p : X → Y be a map of simplicial sets.

(1) An f : x1 → x2 ∈ X (that is, an f ∈ X1 with d1(f) = x1 and d0(f) = x2) is
p-cocartesian if the map

Xf/ → Xx1/ ×Yp(x1)/
Yp(f)/

is an acyclic fibration of simplicial sets.
(2) The map p is a cocartesian fibration if p is an inner fibration and if for every x1 ∈ X0

and every α : p(x1) = y1 → y2 in Y , there is a p-cocartesian morphism f : x1 → x2

in X, with p(f) = α.

Here, an inner fibration is a map of simplicial sets that has the right lifting property with
respect to inner horn inclusions.

The definition of (symmetric) monoidal∞-categories is now a direct transfer of Theorems
11.8.6 and 11.8.8.

Definition 11.8.14.
• A monoidal ∞-category is a quasi-category X, together with a cocartesian fibration
p : X → N(∆o), such that for all n ≥ 0, the inclusions ιi−1,i induce a categorical equiv-
alence of ∞-categories X[n] → Xn

[1]. Often, X[1] is then referred to as the underlying
∞-category of X.
• A symmetric monoidal ∞-category is a quasi-category X, together with a cocartesian

fibration p : X → N(Γ), such that for all n ≥ 0, the projections %i induce a categorical
equivalence of ∞-categories X[n] → Xn

[1]. Then, X[1] is the underlying ∞-category of
X.

For the notion of categorical equivalence, see [Gro20, Definition 1.24] or [Lu09, Def-
inition 1.1.5.14]. It is common to denote a symmetric monoidal ∞-category by C⊗ and
to denote the underlying ∞-category by C = C⊗[1], in order to stress the similarity to the

construction from Definition 11.8.7.

Remark 11.8.15. Segal’s construction from Section 14.4 gives rise to a functor from Γ
to the category of simplicial sets for every symmetric monoidal category. For a symmetric
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monoidal∞-category X, the fiber transport induces functors of∞-categories f! : X[n] → X[m]

for every f ∈ Γ([n], [m]), and we know that each X[n] is equivalent to Xn
[1]. This is an

∞-categorical analog of Segal’s construction from Definition 14.4.1, where the choices of
isomorphisms are implemented in the objects.

If C is a small (symmetric) monoidal category, then N(C) is a (symmetric) monoidal ∞-
category ([Lu∞, Example 2.1.1.21]). For more interesting examples of symmetric monoidal
∞-categories, see [Lu∞]. Thomas Nikolaus and Steffen Sagave show in [NS17] that all (pre-
sentably) symmetric monoidal ∞-categories are represented by symmetric monoidal model
categories.
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CHAPTER 12

A Brief Introduction to Operads

Operads were introduced in the 1970s in topology when Michael Boardman, Rainer Vogt,
Peter May, and others [BV68, BV73, May72] worked on a systematic understanding of
iterated loop spaces. These are spaces of the form ΩnX, where X is a pointed topological
space and ΩnX is the topological space of pointed maps from an n-sphere, Sn, to X. Operads
had a renaissance in the 1990s and have never been out of fashion since then. We will only
give a very superficial introduction to operads. For more comprehensive overviews, see, for
instance, [Lo94, MSS02, LoVa12] and [Fr09].

12.1. Definition and Examples

Let (C,⊗, e, τ) be a symmetric monoidal category. We will ignore associativity isomor-
phisms in the following. This is justified by the coherence theorem, which ensures that no
matter which convention you choose for setting parentheses, it will amount to the same
definition. If you feel uncomfortable with this, then just think of C as being a permutative
category, but most applications use operads in symmetric monoidal categories that are not
strict monoidal, such as the category of k-modules for some commutative ring k or the cat-
egory of chain complexes over k. The concept of an operad is easy, but it can be confusing
at first sight.

If C is, in addition, a concrete category, then it is legitimate to visualize the operad
axioms by thinking about an element wm ∈ O(m) as a machine that allows for m slots of
input and that has one output.

?

? ?
. . .

1 m

wm

We can stack n such machines with ki inputs and one output on top of one machine with
n inputs, in order to create a combined machine with k1 + . . .+ kn inputs and one output.
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?

? ?
. . .

1 k1

?

? ?
. . .

1 kn

?

wk1 wkn

wn

. . .

This is what the composition morphisms in an operad do.
The axioms of an operad are then the natural ones that arise from iterated composition

and by a relabelling of the input slots.

Definition 12.1.1. Let (C,⊗, e, τ) be a symmetric monoidal category. An operad in C
is a collection of objects O(n) of C for n ∈ N0, together with a unit morphism η : e→ O(1),
a right Σn-action on O(n) for all n, and composition morphisms

γ : O(n)⊗O(k1)⊗ . . .⊗O(kn)→ O

(
n∑
i=1

ki

)

for n ≥ 1 and ki ≥ 0. The composition maps are associative, unital, and equivariant in the
following sense:

• Let k be
∑n

i=1 ki and let mi be the sum k1 + . . .+ ki. Starting from

O(n)⊗

(
n⊗
i=1

O(ki)

)
⊗

(
k⊗
j=1

O(`j)

)
,

one can first use γ on O(n)⊗ (
⊗n

i=1O(ki)) to get to O(k)⊗
(⊗k

j=1 O(`j)
)

and then

use another instance of γ to map to O(
∑k

j=1 `j). We require that this morphism is
equal to the one, where we first just permute the tensor factors

(
n⊗
i=1

O(ki)

)
⊗

(
k⊗
j=1

O(`j)

)
,

such that every O(ki) comes next to O(`mi−1+1)⊗ . . .⊗O(`mi). We can evaluate γ on
these terms to get to O(n)⊗ (

⊗n
i=1 O(`mi−1+1 + . . .+ `mi)) and then apply γ again to

240



end up in O(
∑k

j=1 `j):

O(k)⊗(
⊗∑n

i=1 ki
j=1 O(`j))

γ

��

O(n)⊗(
⊗n
i=1 O(ki))⊗(

⊗∑n
i=1 ki

j=1 O(`j))

γ⊗1
44

shuffle

��

O(
∑k
j=1 `j).

O(n)⊗(
⊗n
i=1(O(ki)⊗O(`mi−1+1)⊗...⊗O(`mi )))

1⊗γ⊗n
**

O(n)⊗(
⊗n
i=1O(`mi−1+1+...+`mi ))

γ

AA

Here, the shuffle map is induced by the symmetry τ of C.
• The unit map η : e→ O(1) fits into the following commutative diagrams:

O(n)⊗ e⊗n

1⊗η⊗n
��

∼=
// O(n)

O(n)⊗O(1)⊗n
γ

77
and e⊗O(k)

η⊗1

��

∼=
// O(k).

O(1)⊗O(k)

γ

88

• We require the following two equivariance conditions:

(1) If σ ∈ Σn, then we denote by σ(k1, . . . , kn) the permutation in Σk that permutes
the blocks ki−1 + 1, . . . , ki for 1 ≤ i ≤ n as σ permutes the numbers 1, . . . , n.
Then, the following diagram must commute:

O(n)⊗O(k1)⊗ . . .⊗O(kn)
σ⊗σ−1
//

γ

��

O(n)⊗O(kσ(1))⊗ . . .⊗O(kσ(n))

γ

��

O(k)
σ(kσ(1),...,kσ(n))

// O(k).

(2) We also need the permutation τ1⊕ . . .⊕ τn ∈ Σk1+...+kn for τi ∈ Σki for 1 ≤ i ≤ n,
which is the concatenation of the τis. Then the diagram

O(n)⊗O(k1)⊗ . . .⊗O(kn)

γ

��

1O(n)⊗τ1⊗...⊗τn
// O(n)⊗O(k1)⊗ . . .⊗O(kn)

γ

��

O(k)
τ1⊕...⊕τn

// O(k)

is commutative.

The object O(n) is often called the n-ary part of the operad. In the first equivariant condition,
σ−1 permutes the tensor factors O(ki) by using the symmetry τ of the symmetric monoidal
structure.
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Examples 12.1.2.
• Our first example is the prototypical operad. In fact, we will see later that any operad

action can be described by it. Assume that C is closed symmetric monoidal, and let
C be any object of C. Then, the endomorphism operad of C, EndC(C), has as n-ary
part

EndC(C)(n) := C(C⊗n, C),

where C(C⊗n, C) is the internal morphism object in C. The map γ is just given by
the composition of internal morphism objects. The right Σn-action on EndC(C)(n) is
given by the left Σn-action on C⊗n.

For instance, if C is the category of k-modules for some commutative ring k
with unit and M is a k-module, then γ sends an f ∈ k-mod(M⊗n,M) and gi ∈
k-mod(M⊗ki ,M) (1 ≤ i ≤ n) to the composition

γ(f ⊗ g1 ⊗ . . .⊗ gn) = f ◦ (g1 ⊗ . . .⊗ gn) ∈ k-mod(M⊗(k1+...+kn),M),

M⊗
∑n
i=1 ki = M⊗k1 ⊗ . . .⊗M⊗kn g1⊗...⊗gn

// M ⊗ . . .⊗M = M⊗n

f
��

M.

• Let C be the category Sets of sets. The collection of the symmetric groups (Σn)n≥0

forms an operad called the associative operad, As, in Sets, with As(n) = Σn. Here,
we follow the convention that Σ0 and Σ1 are both the trivial group. The composition
morphisms

γ : Σn × Σk1 × . . .× Σkn → Σk1+...+kn

are determined by the equivariance condition of Definition 12.1.1. Explicitly, a (σ, τ1, . . . , τn) ∈
Σn × Σk1 × . . .× Σkn is sent to

γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

Of course, we also get an associative operad in Top by considering the Σns as
discrete spaces. We can also transfer this operad to the category of k-modules for
some commutative ring with unit k by taking the free k-module generated by Σn,
k{Σn} as the n-ary part of the operad. We denote this operad by As, no matter in
which of these (and many more) categories we consider it.
• The operad in Sets, that has the one-point set ∗ with trivial Σn-action in arity n is

the operad Com. Composition is given by the obvious identification of products of ∗
with ∗. Again, we can transfer this operad to the category of k-modules by taking the
free k-module generated by ∗ as Com(n) for every n ≥ 0.

Remark 12.1.3. The zeroth part of an operad, O(0), contracts inputs. For instance, the
composition morphism

O(n)⊗O(0) ∼= O(n)⊗O(0)⊗ e⊗n−1
1O(n)⊗1O(0)⊗η⊗n−1

// O(n)⊗O(0)⊗O(1)⊗n−1

γ
��

O(n− 1)

reduces something with n inputs to something with n− 1 inputs.
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Definition 12.1.4. An operad O in (C,⊗, e, τ) is unital if O(0) ∼= e. For any unital
operad O, we call the map

ε(n) : O(n) ∼= O(n)⊗ e⊗n ∼= O(n)⊗O(0)⊗n → O(0)

that is induced by the isomorphism O(0) ∼= e and the composition map γ, the augmentation
of the operad O.

Definition 12.1.5. Let O and P be two operads in C. A morphism of operads f : O → P
is a family of Σn-equivariant morphisms f(n) : O(n)→ P (n) that respect the unit morphisms
ηO of O and ηP of P and the composition morphisms, γO and γP ; that is, we require that
f(1) ◦ ηO = ηP and the commutativity of

O(n)⊗O(k1)⊗ . . .⊗O(kn)

γO
��

f(n)⊗f(k1)⊗...⊗f(kn)
// P (n)⊗ P (k1)⊗ . . .⊗ P (kn)

γP
��

O(k)
f(k)

// P (k)

for all k1 + . . .+ kn = k. The operads in C form a category.
If O and P are unital operads, then we require that f(0) is a compatible isomorphism

O(0)
f(0)

// P (0).

e

∼=

<<

∼=

aa

Example 12.1.6. Note that ∗ is terminal in Sets. If O is any operad in Sets, then the
unique map O(n)→ ∗ defines a morphism of operads O → Com.

12.2. Algebras Over Operads

Definition 12.2.1. An object A of (C,⊗, e, τ) is an algebra over an operad O (an O-
algebra) in C if there are morphisms θn ∈ C(O(n) ⊗ A⊗n, A) for all n that are associative,
unital, and equivariant in the following sense:

(1) The action maps are associative. For all k =
∑n

i=1 ki, the diagram

O(n)⊗O(k1)⊗ . . .⊗O(kn)⊗ A⊗k γ⊗1
//

shuffle
��

O(k)⊗ A⊗k

θk

��

O(n)⊗O(k1)⊗ A⊗k1 ⊗ . . .⊗O(kn)⊗ A⊗kn

1⊗θk1
⊗...⊗θkn

��

O(n)⊗ A⊗n θn
// A

commutes.
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(2) The element e acts as an identity via η and θ1:

e⊗ A
η⊗1
��

∼=
// A.

O(1)⊗ A
θ1

::

(3) The symmetric group action on the operad and on n-fold tensor powers of A is
compatible for all n:

(12.2.1) O(n)⊗ A⊗n σ⊗σ−1
//

θn
%%

O(n)⊗ A⊗n

θn
yy

A

commutes for all σ ∈ Σn.

A morphism of O-algebras f : A→ B is a morphism f ∈ C(A,B), such that

O(n)⊗ A⊗n θn
//

1⊗f⊗n
��

A

f

��

O(n)⊗B⊗n θn
// B

commutes for all n.
We denote the category of O-algebras by O-alg.

In the preceding definition, we follow the convention that 0-fold tensor powers are the
unit of the monoidal structure: A⊗0 = e; thus, we always have a morphism θ0 : O(0)→ A. If
O(0) is an initial object in C, then this is no extra datum, but if O is unital, then θ0 : e→ A.

Definition 12.2.2. If O is an unital operad, then an O-algebra A is a unital O-algebra.

Examples 12.2.3. Assume that C is closed symmetric monoidal and is cocomplete.

• Every object C of C is an algebra over an operad, namely over its endomorphism
operad. In this case, the action map

θn : EndC(C
⊗n, C)⊗ C⊗n → C

is just the evaluation map.
• As C is closed, tensoring with A⊗n commutes with colimits; in particular, it commutes

with direct sums. Associative monoids in C are then algebras over the operad As, with
As(n) =

⊔
σ∈Σn

e. For e = eσ in the component of σ ∈ Σn, the map θn restricted to
eσ is a multiplication A⊗n → A that first acts by permutation with σ on A⊗n. If C is
the category of k-modules, then

θn(eσ; a1 ⊗ . . .⊗ an) = aσ−1(1) · . . . · aσ−1(n).
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• Commutative monoids in C are algebras over the operad Com with Com(n) = e.
The equivariance condition from (12.2.1) then ensures that the product θn : A⊗n ∼=
e ⊗ A⊗n → A satisfies θn ◦ σ = θn for all permutations σ ∈ Σn. In the category of
k-modules, this gives the condition that

aσ−1(1) · . . . · aσ−1(n) = a1 · . . . · an
for all σ ∈ Σn and for all ai ∈ A.

Exercise 12.2.4. Assume that C is a closed symmetric monoidal category. Show that
giving an O-algebra structure to an object A of C is equivalent to defining a morphism of
operads from the operad O to the endomorphism operad of A.

Exercise 12.2.5. Show that for every unital operad in a closed symmetric monoidal
cocomplete category, the augmentation map ε(n) : O(n)→ O(0) ∼= e from Definition 12.1.4
is a morphism of operads ε : O → Com.

For example, if C is the category of k-modules, then the morphism of operads ε : As →
Com that is induced by sending every σ ∈ Σn to ∗ arises in this way.

Lemma 12.2.6. Let C and D be symmetric monoidal categories and let F : C → D be a
lax symmetric monoidal functor. Then, for every operad O in C, F (O) is an operad in D. If
A is an O-algebra in C, then F (A) is an F (O)-algebra in D.

Proof. We define the structure maps of F (O) as

F (O(n))⊗ F (O(k1))⊗ . . .⊗ F (O(kn))
ϕ
// F (O(n)⊗O(k1)⊗ . . .⊗O(kn))

F (γ)
��

F (O(
∑n

i=1)).

Here, ϕ is the structure map of the lax monoidal functor F . The morphism ηF : eD → F (eC)
induces the unit map of the operad via F (ηO) ◦ ηF : eD → F (O(1)). As F is lax symmetric
monoidal, these structure maps turn F (O) into an operad. For the action of F (O) on F (A),
we take

F (O(n))⊗ F (A)⊗n
ϕ
//F (O(n)⊗ A⊗n)

F (θn)
//F (A).

�

Note that if O is unital, then F (O) doesn’t have to be unital unless eD ∼= F (eC).

12.2.1. Monads Associated with an Operad. Again, we assume that our symmetric
monoidal category (C,⊗, e, τ) is closed and cocomplete. In particular, (−) ⊗ C commutes
with colimits for all objects C of C.

Lemma 12.2.7. If O is an operad in C and X is an object of C, then

FO(X) :=
⊔
n≥0

O(n)⊗Σn X
⊗n

defines a functor from C to the category of O-algebras in C.
Sketch of proof. The structure map θ of the O-action on FO(X) is induced by the

operad product γ and by the concatenation of tensor powers of X. �
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Exercise 12.2.8. Check the details in the preceding sketch of a proof.

Proposition 12.2.9. The functor FO(−) : C → O-alg is left adjoint to the forgetful
functor U : O-alg→ C.

Proof. A morphism f ∈ C(X,U(A)) gives rise to a morphism f̃ ∈ O-alg(FO(X), A).

We define the restriction of f̃ to O(n)⊗Σn X
⊗n to be the composite

O(n)⊗Σn X
⊗n 1O(n)⊗f⊗n

//O(n)⊗Σn A
⊗n θn

//A.

This is indeed a map of O-algebras. For the converse, a morphism of O-algebras g : FO(X)→
A restricts to a morphism

X ∼= e⊗X η⊗1X
//O(1)⊗X //

⊔
n≥0O(n)⊗Σn X

⊗n g
//A

in C. This yields
O-alg(FO(X), A) ∼= C(X,U(A)),

and this isomorphism is natural in X and A. �

Definition 12.2.10. The monad associated with an operad O in a closed symmetric
monoidal cocomplete category C is the composite O = U ◦ FO(−) : C → C.

Remark 12.2.11. If A is an O-algebra, then we can use the monad of O to build a two-
sided bar construction, as in Definition 10.4.2 B(O,O, UA). This is a simplicial resolution
of UA in the sense of Exercise 10.5.3.

Exercise 12.2.12. Assume that O is a non-unital operad. Show that an object A of C
is an O-algebra if and only if it is an algebra for the monad O.

12.3. Examples

12.3.1. The Barratt-Eccles Operad. The definition of the Barratt-Eccles operad is
based on the definition of the associative operad, As, in Sets from Example 12.1.2. We will
first present its definition in the symmetric monoidal category of small categories, cat.

Recall that we defined for (σ, τ1, . . . , τn) ∈ Σn×Σk1 × . . .×Σkn the composition in As as

(12.3.1) γ(σ, τ1, . . . , τn) = (τσ−1(1) ⊕ . . .⊕ τσ−1(n)) ◦ σ(k1, . . . , kn).

We consider the collection of translation categories (EΣn)n≥0. Note that EΣ0
∼= [0] ∼= EΣ1 .

The composition, as in (12.3.1), then gives a morphism from the sets of objects of the
category EΣn×EΣk1

× . . .×EΣkn
to the objects of the category EΣk1+...+kn

. The composition γ
from (12.3.1) can be prolonged to a compatible composition on the level of morphisms, and
this yields the following:

Lemma 12.3.1. The composition morphisms γ, as in (12.3.1), give (EΣn)n≥0 the structure
of a unital operad in cat.

We call EΣ = (EΣn)n≥0 the Barratt-Eccles operad in cat.
The application of Lemma 12.2.6 allows us to transfer the Barratt-Eccles operad to several

different settings.

Proposition 12.3.2.
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(1) The nerve of the Barratt-Eccles operad, (NEΣn)n, is a unital operad in the category
of simplicial sets with monoidal structure ×.

(2) The classifying space of the Barratt-Eccles operad, (|NEΣn|)n, is a unital operad in
the category of topological spaces cg.

(3) For any commutative ring with unit k, the free simplicial k-module generated by the
nerve of the Barratt-Eccles operad, (k{NEΣn})n is a unital operad in the category
of simplicial k-modules with the simplicial tensor product as monoidal structure.

(4) The chain complexes associated with k{NEΣn}, (C∗(k{NEΣn}))n, and the nor-
malized chain complexes, (N(k{NEΣn}))n, form operads in the category of non-
negatively graded chain complexes over k with the tensor product of chain complexes
as the monoidal structure. Here, (N(k{NEΣn}))n is a unital operad.

Exercise 12.3.3. Can one also take the cellular chain complex of the |NEΣn|s instead of
(N(k{NEΣn}))n to end up in the category of chain complexes over k?

12.3.2. Little n-Cubes Operad. The little n-cubes operad Cn was introduced by
Boardman and Vogt in [BV68, BV73] as a tool for understanding n-fold loop spaces.
They observed that for any topological space Y , the n-fold loop space ΩnY has an action of
Cn. May showed in [May72, Theorem 13.1] that if X is a connected space with an action of
Cn, then there exists a space Y and a zigzag of weak equivalences of Cn-algebras connecting
X and ΩnY . Explicitly,

X ← B(Cn, Cn, X)→ B(ΩnΣn, Cn, X)→ ΩnB(Σn, Cn, X)

is a chain of weak homotopy equivalences of Cn-algebras. Here, Cn denotes the monad
associated with Cn. Thus, Y = B(Σn, Cn, X) is an n-fold delooping. There is an equivalence
X → B(Cn, Cn, X), but this is not a map of Cn-algebras.

For any n ≥ 1, let In be the n-dimensional unit cube.

Definition 12.3.4.
• An open little n-cube is a linear embedding f : I̊n → I̊n with parallel axes, that is,
f = (f1, . . . , fn) and each fi is a function fi : I̊ → I̊ of the form fi(t) = (vi− ui)t+ ui,
with ui, vi ∈ I and vi > ui.
• Let 1 ≤ n < ∞. The operad of little n-cubes, Cn, has as Cn(r) (for r ≥ 1) the space

of r-tuples (c1, . . . , cr) of little n-cubes, such that the images of the cis are pairwise

disjoint. The topology on Cn(r) is given as a subspace of Top(
⊔r
i=1 I̊

n, I̊). Let Cn(0)

be the point corresponding to the unique map from the empty set into I̊n.
• The composition of the operad (Cn(r))r≥0 is given by the composition of functions.

For c ∈ Cn(m) and (ci ∈ Cn(ri))
m
i1

, one defines γ(c; c1, . . . , cm) := c ◦ (c1 t . . . t cm):⊔r1
j=1 I̊

n t . . . t
⊔rm
j=1 I̊

n c1t...tcm
//
⊔m
j=1 I̊

n c
// I̊n.

The identity map 1I̊n ∈ Cn(1) is the unit of the operad, and the symmetric group acts
by permuting the factors in a tuple.

Note that the Σr-action on Cn(r) is free.
A picture for an element of the little square operad with r = 3 might look as follows. We

will draw the cubes with their boundary boxes.
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c1

c2

c3

The action of Cn on an n-fold based loop space is easy to describe. Let X = ΩnY for
n ≥ 1 and let α1, . . . , αr be r based n-loops in Y . We can view the αi as maps from the
n-dimensional unit cube to Y , which send the boundary to the basepoint of Y . If ω is an
element of Cn(r), then we define the action of ω on (α1, . . . , αr) to be the based n-loop, which
evaluates α1 on the first n-cube up to αr on the rth n-cube and which sends the complement
of the cubes to the basepoint.

In our example one can depict that as follows:

α1

α2

α3

∗

In the operad of little n-cubes Cn(r), r ≥ 0, we can shrink the inner cubes to their centers.
This gives a homotopy equivalence between Cn(r) and the ordered configuration space of r

points in I̊n.

2
1

3

• 2
• 1

• 3

This equivalence is Σr-equivariant.

Definition 12.3.5. Let σ(r) : Cn(r)→ Cn+1(r) be the map that sends an r-tuple of little
n-cubes (c1, . . . , cr) to (c1 × 1I̊ , . . . , cr × 1I̊). We define

C∞(r) = colimnCn(r).
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The maps σ(r) are morphisms of operads, and hence, C∞(r) is an operad as well.

Definition 12.3.6. An E∞-operad in the category of topological spaces is a unital operad
O in spaces, such that for each O(n), the augmentation map is homotopy equivalence and
every O(n) has a free Σn-action.

Note that for every E∞-operad O in spaces, the space O(n) is contractible and O(n)/Σn

is a classifying space for Σn.

Example 12.3.7. The operad C∞ is an E∞-operad (see, for instance, [May72, Theorem
4.8]).

Example 12.3.8. The Barratt-Eccles operad (|NEΣn|)n is an E∞-operad. Each space
|NEΣn| is a contractible space with a free Σn-action. Therefore, each space |NEΣn| is an
EΣn, and |NEΣn|/Σn is a classifying space BΣn.

Remark 12.3.9. You saw that there are different possibilities to encode E∞-structures
(via the Barratt-Eccles operad or the operad C∞). There are many more. Also, for k-fold
loop spaces for 1 < k < ∞, the operad Ck isn’t the only choice. In [Smi89], Smith, for
instance, constructs a series of simplicial sets

FX = Γ(1)X ⊂ Γ(2)X ⊂ . . . ⊂ ΓX,

where FX is Milnor’s model of ΩΣ|X| [Mi55] and ΓX is the Barratt-Eccles model of
Ω∞Σ∞|X| [BE74]. Smith shows [Smi89, Theorem 1.1] that the geometric realization of
Γ(k)X is a model for ΩkΣk|X| for all 1 ≤ k. Here, Γ(k)X is constructed like ΓX but with
respect to a combinatorially defined suboperad CkΣn of the Barratt-Eccles operad. Smith
conjectured that the geometric realization of CkΣn is equivalent to the ordered configuration
space of n points in Rk [Smi89, p. 334] and Kashiwabara proved this in [Kash93]. Hence,
the operad (CkΣn)n is equivalent to (Ck(n))n. There are many more models. For a beautiful
overview over some of them, see [Be97].

12.3.3. Homology of Iterated Loop Spaces. If X = ΩnY and n ≥ 2, then the
homology of X carries a very rich structure.

Kudo and Araki study the Pontrjagin rings H∗(Ω
NSm;F2), 0 < N < m, [KA56b] and

define Hn-spaces. For X an Hn-space and for 0 ≤ i ≤ n, they establish [KA56a] the
existence of homology operations

Qi : Hq(X;F2)→ H2q+i(X;F2).

Browder describes [Br60] H∗(Ω
nΣnZ;F2) as an algebra in terms of H∗(Z;F2). For odd

primes, Dyer and Lashof extend the definition of the operations Qis to the homology with
coefficents in Fp for p odd, and they prove partial results about H∗(Ω

nΣnZ;Fp) [DL62].
Milgram [M66] gives a description of H∗(Ω

nΣnZ;Fp) as an algebra, depending only on the
homology of Z and n. A complete description of the homology operations on iterated loop
spaces and of H∗(Ω

nΣnZ; k) for k = Q and k = Fp is obtained by Cohen [CLM76, Chapter
III].

The homology H∗(Cn+1,Q) forms an operad in the category of graded Q-vector spaces,
the operad that codifies n-Gerstenhaber algebras.
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Definition 12.3.10. An n-Gerstenhaber algebra over Q is a (non-negatively) graded
Q-vector space G∗ with a map [−,−] : G∗ ⊗G∗ → G∗ that raises degree by n and a graded
commutative multiplication of degree zero on G∗, such that [−,−] satisfies a graded version
of the Jacobi relation and graded antisymmetry (that is, [x, y] = −(−1)qr[y, x] for x ∈ Gq−n
and y ∈ Gr−n). In addition, there is a Poisson relation

[x, yz] = [x, y]z + (−1)q(r−n)y[x, z].

Cohen showed that the rational homology of any space X = Ωn+1Y is an n-Gerstenhaber
algebra and that

H∗(Cn+1Z;Q) ∼= nG(H̄∗(Z;Q))

for any space Z. Here, nG(−) denotes the free n-Gerstenhaber algebra functor.
For prime fields Fp, the situation is way more involved. Note that C2(2) ' S1 as a

Σ2-space and consider

Σ2 → S1 → S1 = RP 1.

We get two operations. The fundamental class of S1 corresponds to a Lie bracket of
degree one, λ, on H∗(Ω

2X;F2), and the class of RP 1 ∼ S1 gives rise to an operation

ξ : Hm(Ω2X;F2)→ H2m+1(Ω2X;F2).

For this note that x⊗ x is invariant under the Σ2-action, and thus we have

x 7→ κ([RP 1]⊗ (x⊗ x)).

Think of this as being ’half the circle’ giving rise to ’half the Lie bracket [x, x]’, aka the
restriction on x.

The complete description of H∗(Cn+1Z;Fp) and H∗(Ω
n+1Σn+1Z;Fp) as free objects built

out of the reduced homology of Z involves a restricted n-Gerstenhaber structure, allowable
modules and algebras over the Dyer-Lashof algebra and a compatible coalgebra structure.
See [CLM76, Chapter III] for the full picture.

12.3.4. Stasheff’s Associahedra. The associahedra form a non-symmetric operad.
This is a sequence of objects that satisfy the axioms of Definition 12.1.1, but one doesn’t
require an action of the symmetric groups, and consequently, there is no equivariance con-
dition that has to be satisfied. The associahedra are a family of polytopes that describe
objects that are not necessarily strictly associative but satisfy associativity up to coherent
homotopies – and that’s what is called an A∞-algebra. An early approach to such structures
is due to Sugawara [Su57], who formulated everything in terms of the appropriate properties
of higher homotopies.

Stasheff introduced a nonpolytopal version of the associahedra in [Sta63, part I, §2,
§6]. Later, other descriptions of the associahedra were introduced, see, for instance, [Lo04],
[GKZ94, §7.3], and [Lu∞, §4.1.6]. We will give a description in terms of planar binary
rooted trees.

Consider a set with a product X ×X → X that we just denote by concatenation. Then,
for three elements x, y, z ∈ X, the terms (xy)z and x(yz) might differ if the product is not
associative. A typical example is the set of based loops in a topological space W , that is,
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loops that start and end at a fixed basepoint w0 ∈ W . Then, the concatenation of loops x
and y

(x ∗ y)(t) =

{
x(2t), 0 ≤ t ≤ 1/2,

y(2t− 1), 1/2 ≤ t ≤ 1,

is associative up to homotopy but not strictly associative. Planar binary rooted trees encode
this situation. We will not draw an edge for the root. In the following picture, the left tree
has three leaves, so it can digest three inputs and you compose the two right inputs first
before you compose the result with the left input, so this tree stands for x(yz), whereas the
tree on the right-hand side encodes (xy)z. The interval indicates that there is a homotopy
between these two ways of forming the product. The tree in the middle of the interval stands
for this 1-cell that one might denote by xyz in order to express that up to homotopy, one
does not have to set parentheses.

�
��

@
@@��

• •�
��

@
@@

�
��

@
@@ @@

If one now forms a product of four elements, there are already five different ways of
setting pairs of parentheses in order to form a meaningful product. If we want to form the
product of u, v, x, and y in this fixed order, then we could form u(v(xy)), (uv)(xy), ((uv)x)y,
(u(vx))y, and u((vx)y). These correspond to the vertices in the following pentagon that are
labelled with planar binary rooted trees. There are the homotopies between adjacent terms
that correspond to 1-cells in the polytope. These are labelled by trees with one internal
vertex, whereas the 2-cell in the middle is labelled by the corolla with four leaves; this tree
has no internal vertex but just a root.
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These pictures should look familiar if you compare them to the pentagon axiom (8.1.2)
in the definiton of a monoidal category from Definition 8.1.4.

Definition 12.3.11. [Lo04, §2.4 and §2.5] For n ≥ 2, the nth Stasheff polytope, Kn, is
the (n − 2)-dimensional polytope, whose vertices correspond to planar rooted binary trees
with n leaves and whose unique n-cell corresponds to the corolla tree with n leaves. Its
k-dimensional cells can be labelled by planar rooted trees with n − k + 1 internal vertices
(1 ≤ k ≤ n). We set K1 = {∗}.

Stasheff’s original definition can be found in [Sta63, part I, §2, §6]. A picture of K5 is
as follows:
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Exercise 12.3.12. Fill in the trees in the preceding picture. (If that seems too much
work, then fill in trees for one of the squares.)

The number of ways in which n + 1 factors can be completely parenthesized is the
nth Catalan number, Cn. Here, Catalan stands for Eugène Charles Catalan, a Belgian
mathematician who lived from 1814 to 1894. For more background on the combinatorial
aspects of Catalan numbers, see, for instance, [St99, p. 212]. You saw that C4 is 14. A
closed formula for Cn is

Cn =
1

n+ 1

(
2n

n

)
.

Exercise 12.3.13. What is C5?

Every point in Kn can be uniquely represented by a planar rooted trees with n leaves
if one assigns a length in [0, 1] to each internal edge. The fact that the polytopes (Kn)n≥1

form a non-symmetric operad can be seen by grafting trees. One can use the polytopes Kn

for describing spaces with a product that is associative up to coherent homotopy.

Definition 12.3.14. A topological space is an A∞-space if it is an algebra over the
operad Kn.

For a beautiful explicit description of the structure of the Kn, see [Lo04] (but beware that
his Kn is our Kn+2). Similar to the relationship between the Kns and monoidal categories,
one can describe permutative categories in terms of permutahedra, (Pn)n≥1. Here, Pn is
the convex hull of the points in Rn with coordinates (σ−1(1), . . . , σ−1(n)) for σ ∈ Σn (see,
for instance, [Lo04, Ka93]). If one drops the strictness assumption and considers general
symmetric monoidal categories, then one arrives at the family of permutoassociahedra, KPn.

253



The vertices of KPn correspond to permuted words with a complete set of parentheses.
Explicit CW models of the KPns are constructed in [Ka93], where Kapranov also shows
that KPn is an (n− 1)-dimensional ball, thus, in particular, contractible.

12.4. E∞-monoidal Functors

Some functors are monoidal but not symmetric monoidal, so they will not map commu-
tative monoids in the source category to commutative monoids in the target category. An
important example is the inverse ΓN of the normalization functor N : s(k-mod)→ Ch(k)≥0.
In this case, ΓN maps differential graded commutative algebras to simplicial algebras that
are commutative up to coherent homotopy.

Definition 12.4.1.
• A unital operad O in the category of chain complexes is an E∞-operad if the O(n)s

are degreewise projective k-modules and if the augmentation maps

ε(n) : O(n)→ O(0) ∼= S0(k)

are quasi-isomorphisms, that is, the map of operads ε = (ε(n))n≥0 : O → Com is a
quasi-isomorphism in every arity. Here, Com is the operad with Com(n) = S0(k) for
all n ≥ 0.
• Similarly, a unital operad O in the category of simplicial k-modules is an E∞-operad

if the O(n)s are degreewise projective and if the augmentation map ε to the operad
Com is a weak equivalence in every arity. Here, Com(n) = c(k), where c(k) is the
constant simplicial k-module with value k.

One can always replace such an operad O by a weakly equivalent one P , such that
every P (n) satisfies a Σn-freeness condition [Ri03, p. 96]. This is why we don’t require this
condition here. If you want to define E∞-operads in other categories with weak equivalences,
then you have to be careful about this issue.

Definition 12.4.2. [Ri03, Definition 2.3] A functor F : Ch(k)≥0 → sk-mod is E∞-
monoidal, if there is an E∞-operad O in simplicial k-modules, such that there are natural
maps

θn,M1,...,Mn : O(n)⊗̂F (M1)⊗̂ . . . ⊗̂F (Mn)→ F (M1 ⊗ . . .⊗Mn)

for all M1, . . . ,Mn ∈ Ch(k)≥0, such that the natural unitality, associativity, and equivariance
conditions are satisfied.

Remark 12.4.3. [Ri03, Proposition 2.4] The important feature of E∞-monoidal functors
is that they map commutative monoids to algebras over an E∞-operad. If C∗ is a differential
graded commutative algebra, then F (C∗) is an O-algebra with the structure maps

O(n)⊗̂F (C∗)
⊗̂n θn,C∗,...,C∗

//F (C⊗n∗ )
F (µC∗ )

//F (C∗),

where µC∗ denotes the multiplication in C∗.

In [Ri03, Theorem 4.1], we show that ΓN is an E∞-monoidal functor.

Remark 12.4.4. One can generalize the concept of E∞-monoidal functors to P-monoidal
functors, where P is an operad. For details on this, see [AM10, §4.3.3].
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CHAPTER 13

Classifying Spaces of Symmetric Monoidal Categories

We relate monoidal structures on categories to multiplicative properties of the corre-
sponding classifying spaces. In this chapter all spaces are objects of cg, and we abbreviate
the k-ification of the product of two spaces X ×k Y with X × Y .

13.1. Commutative H-Space Structure on BC for C Symmetric Monoidal

Definition 13.1.1. An H-space is a topological space X, with a chosen point x0 ∈ X
and a continuous map µ : X × X → X, such that the two maps µ(x0,−) and µ(−, x0)
are homotopic to the identity on X via homotopies, preserving the basepoint. An H-space
is associative if µ is associative up to homotopy, and it is commutative if µ is homotopy
commutative. An H-space is called group-like if there is a continuous map χ : X → X, such
that µ ◦ (1X ×χ) ◦∆ is homotopic to the identity. Here, ∆ denotes the diagonal map on X.
Group-like associative H-spaces are also called H-groups.

Remark 13.1.2. In order to avoid pathological behavior, one should assume that (X, x0)
is well-pointed, that is, that the inclusion of {x0} into X is a cofibration.

If X is a CW complex and x0 is a 0-cell of X, then the requirement that µ(x0,−) and
µ(−, x0) are homotopic to the identity on X via pointed homotopies can be relaxed to the
property that µ(x0,−) and µ(−, x0) are just homotopic to the identity on X. You can also
demand that x0 is a strict two-sided unit. See, for instance, [Ha02, §3.C] for the equivalence
of these notions.

Exercise 13.1.3. Prove that π1(X, x0) is abelian if X is an H-space.

Every based loop space is a group-like H-space. Let Y be a topological space with
basepoint y0 and let

ΩY := kTop∗((S
1, 1), (Y, y0))

be the based loop space on Y (with the compact open topology). Then, the concatenation
of loops is a homotopy-associative multiplication, and time reversal of loops gives an inverse
up to homotopy. Higher based loop spaces

ΩnY := kTop∗((S
n, 1), (Y, y0)), n ≥ 2,

are also group-like H-spaces, and for n ≥ 2, loop concatenation is homotopy commutative.
The map µ is induced by the pinch map Sn −→ Sn ∨ Sn which collapses the equator of the
sphere to a point. You should read Adams’ book [Ad78]. It is an excellent book that tells
you the story of loop spaces and it is fun to read.

Symmetric monoidal structures on a (small) category directly translate into H-space
structures on the corresponding classifying space.
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Theorem 13.1.4. Let C be a small symmetric monoidal category. Then, BC is an
associative and commutative H-space.

Proof. We define the multiplication µ as

(13.1.1) BC ×BC

µ
''

∼=
// B(C × C)

B(⊗)
��

BC.
We choose x0 = [e] ∈ BC(0) ⊂ BC as a basepoint of BC. The two natural isomorphisms λ
and ρ give natural transformations between the functors

C ∼= {e} × C ↪→ C × C
µ
//C and C ∼= C × {e} ↪→ C × C

µ
//C

and the identity functor. These natural transformations yield the necessary homotopies in
order to identify x0 as a unit up to homotopy. The natural isomorphism α for the associativity
in C is a natural transformation between ⊗ ◦ (Id×⊗) and ⊗ ◦ (⊗× Id), and hence, BC is a
homotopy associative H-space. Homotopy commutativity follows from the properties of the
symmetry isomorphism τ , which gives rise to a homotopy between ⊗ and ⊗ ◦ (1, 2), where
(1, 2) : C × C → C × C denotes the permutation of the two factors. �

We can upgrade this structure to an action of the Barratt-Eccles operad.

Theorem 13.1.5. [May74, Theorem 4.9] Let C be a small permutative category.
Then, the classifying space BC is a unital algebra in cg over the Barratt-Eccles operad
(BEΣn)n.

Sketch of proof. By Lemma 8.3.6 from [May74, §4], we have Σn-equivariant func-
tors

τn : EΣn × Cn → C
for every n. Applying the classifying space functor B and using the continuous map BEΣn ×
(BC)n → B(EΣn × Cn) give

θn : BEΣn × (BC)n → BC
for every n. As these maps only use the property of B to being lax symmetric monoidal (see
Proposition 11.2.3) and the action of Σn on Cn, these θns are compatible and define an operad
action. You can find a detailed proof of the necessary coherence properties in [May74,
Lemmata 4.4 and 4.5]. The unit of the permutative structure on C gives a distinguished
basepoint in BC, and hence, BC is unital. �

Remark 13.1.6. By Proposition 8.3.4, we can rigidify every symmetric monoidal cat-
egory to a permutative one, and the corresponding classifying spaces are homeomorphic.
This implies that the classifying space of every symmetric monoidal category carries an
E∞-structure.

Remark 13.1.7. If C is a strict monoidal category (without any symmetries), then the
canonical map from (13.1.1) gives BC the structure of an associative topological monoid.

Exercise 13.1.8. Let M be a monoid. Consider the category CM with one object and
M as morphism set. When is CM a monoidal category? What does this say about general
classifying spaces of groups?
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Remark 13.1.9. For any symmetric monoidal category C, the set of path components of
C carries the structure of an abelian monoid with the product

(13.1.2) [C] + [D] := [C ⊗D]

for objects C,D of C. The neutral elements is [e].

Examples 13.1.10.
• We saw earlier that the classifying space of the category Σ splits as

BΣ ∼=
⊔
n≥0

BΣn

and π0(Σ) = N0. This category is symmetric monoidal, with

n⊗m := n+m,

where τn,m ∈ Σn+m is the shuffle map sending the first n elements of {1, . . . , n + m}
to the last n elements. The H-space structure is induced by the inclusion

Σm × Σn ↪→ Σm+n.

• Similarly, let R be an associative ring with unit and let F (R) be the category whose
objects are the natural numbers n ∈ N0 and whose morphisms are given by

F (R)(n,m) =

{
GLn(R), m = n,

∅, m 6= n.

Again, we get that π0(F (R)) = N0 and

BF (R) ∼=
⊔
n≥0

BGLnR.

The H-space structure is induced by the block sum of matrices

GLm(R)×GLn(R) ↪→ GLm+n(R), (A,B) 7→
(
A 0
0 B

)
,

where 0 stands for zero matrices of a suitable size.
• Assume that C is a closed symmetric monoidal category, such that the Picard groupoid

of C, Picard(C), from Definition 8.4.6 is a small category. Let PIC(C) be the classifying
space of the symmetric monoidal category Picard(C). The group of path components
π0(PIC(C)) is the Picard group of C, as in Remark 8.4.8.

In all of these examples, the classifying space carries an E∞-structure.

13.2. Group Completion of Discrete Monoids

Definition 13.2.1. Let M be an abelian monoid. The Grothendieck group on M , G(M)
is an abelian group, together with a morphism of monoids j : M → G(M), which satisfies
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the following universal property. For every group G and for every morphism of monoids
f : M → G, there is a unique homomorphism of groups f ′ : G(M)→ G, with f ′ ◦ j = f .

M
f
//

j
��

G

G(M)
f ′

<<

Note that the image of f consists of commuting elements in G because M is abelian, and
similarly, the image of f ′ consists of commuting elements in G. Thus, the universal mapping
property from above actually takes place in an abelian setting. The group G(M) is also
called the group completion of the abelian monoid M . There are explicit constructions of
Grothendieck groups. Thanks to abstract nonsense, we know that any two such constructions
are isomorphic.

Let us denote the product on M as addition. Take the product M ×M and define the
following addition on M ×M :

(m1, n1) + (m2, n2) := (m1 +m2, n1 + n2)

for m1, n1,m2, n2 ∈ M . We define the following equivalence relation on M ×M : A pair
(m1, n1) is equivalent to a pair (m2, n2) if there is an ` ∈M , with

m1 + n2 + ` = m2 + n1 + `.

The addition on M ×M is well-defined on equivalence classes, and every class of the form
[(m,m)] is neutral with respect to addition. Hence, the additive inverse of the class of a pair
(m,n) is the class of the pair (n,m). It might help to think of (m,n) as m− n.

Exercise 13.2.2. Prove that (M ×M)/ ∼ has the universal property of G(M).

Example 13.2.3. The Grothendieck group of the natural numbers (N0,+, 0) is the group
of the integers. An explicit isomorphism was given earlier.

In this case, the morphism j : N0 → G(N0) is injective. This is not always the case, but
it does hold if the monoid M has the cancellation property, that is, if m + p = n + p for
m,n, p ∈M , it implies that m = n.

The assignment M 7→ G(M) with any reasonable concrete model of G(M) defines a
functor from the category of abelian monoids to the category of abelian groups. The universal
property means that this functor is left adjoint to the forgetful functor.

An alternative construction of G(M) is as a quotient of the free abelian group generated
by M :

G(M) = Z{M}/〈(m+ n)− (m)− (n);n,m ∈M〉.
We write [m] for the equivalence class of m ∈ M in G(M) in this model. An element in

G(M) is the class of a sum
∑`

i=1 αi[mi], with integers αi and mi ∈ M . If you sort the
elements in the sum in those with non-negative αi and those with negative αi, then it is easy
to see that elements of the form [m]− [n], with m,n ∈M , generate the group G(M).

Exercise 13.2.4. Find an example of a nontrivial abelian monoid M with trivial G(M).
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Example 13.2.5. Let X be a compact Hausdorff space. Let VectR(X) denote the set of
isomorphism classes of real vector bundles over X of finite rank. Then, the Whitney sum of
vector bundles induces an addition on VectR(X). For two isomorphism classes [ξ] and [χ] in
VectR(X), we define

[ξ] + [χ] := [ξ ⊕ χ].

The class of the zero vector bundle serves as a neutral element with respect to addition, and
there is a natural isomorphism of bundles ξ ⊕ χ ∼= χ ⊕ ξ, and therefore, (VectR(X),+, [0])
is an abelian monoid. The Grothendieck group of this monoid is the zeroth topological real
K-theory group of X:

KO0(X) = G(VectR(X),+, [0]).

For instance, the representative of the real vector bundle over S1 associated with the Möbius
strip gives rise to a nontrivial element.

If you consider complex vector bundles of finite rank instead of real ones, then you get
the zeroth topological complex K-theory group of X:

KU0(X) = G(VectC(X),+, [0]).

Sometimes, we have to handle nonabelian monoids. There is an analogous process for
defining a universal group.

Definition 13.2.6. [BP72, 2.2] Let M be a monoid. The universal group, U(M),
generated by M is the quotient F (M)/N , where F (M) is the free group generated by M ,
and N is the normal subgroup generated by all products xyz−1 for x, y, z ∈M , with xy = z
in M .

Similar to the Grothendieck group, U(M) has a universal property. If f : M → G is
a morphism of monoids and G is a group, then there is a unique group homomorphism
f̃ : U(M) → G. In particular, if M is an abelian monoid, then the universal properties of
G(M) and U(M) guarantee that there is an isomorphism U(M) ∼= G(M).

13.3. Grayson-Quillen Construction

Let C be a small symmetric monoidal category. Our aim is to construct a category C−1C,
together with a functor C → C−1C, such that π0(C−1C) is the group completion of the abelian
monoid π0(C).

Quillen defined a group completion process for categories [Gr76].

Definition 13.3.1. Let (C,⊗, e, τ) be a small symmetric monoidal category. We denote
by C−1C the category whose objects are pairs of objects of C. Morphisms in C−1C from
(C1, D1) to (C2, D2) are equivalence classes of pairs of morphisms

(f : C1 ⊗ E → C2, g : D1 ⊗ E → D2),

where E is an object of C. Such a pair is equivalent to

(f ′ : C1 ⊗ E ′ → C2, g
′ : D1 ⊗ E ′ → D2)
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if there is an isomorphism h ∈ C(E,E ′), such that the diagram

(C1 ⊗ E,D1 ⊗ E)
(1C1

⊗h,1D1
⊗h)

//

(f,g) ((

(C1 ⊗ E,D1 ⊗ E)

(f ′,g′)vv

(C2, D2)

commutes.
The category C−1C is called the Grayson-Quillen construction of C.

Note that the special case E = e guarantees that every pair of morphisms in C gives rise
to a morphism in C−1C.

Lemma 13.3.2. The category C−1C is symmetric monoidal, there is a lax symmetric
monoidal functor j : C → C−1C, and π0(C−1C) is an abelian group.

Proof. You can check that C−1C is actually a category. We define its symmetric
monoidal structure coordinatewise by declaring that

(C1, D1)⊗ (C2, D2) := (C1 ⊗ C2, D1 ⊗D2).

Note that in order to establish the naturality of ⊗, we need the fact that C is symmetric
monoidal.

We define j : C → C−1C on objects as j(C) = (C, e), and for a morphism f : C → C ′, we
set j(f) to be the composition

(C ⊗ e, e⊗ e) ∼= (C, e)
(f,1e)−→ (C ′, e)

and we abuse notation and denote this morphism by [(f, 1e)].
In C−1C, there is a chain of morphisms

(C,D)⊗ (D,C) = (C ⊗D,D ⊗ C)
(1C⊗D,τD,C)

//(C ⊗D,C ⊗D) (e, e),oo

and thus, the set of path components π0(BC−1C) is an abelian group, because the inverse of
the equivalence class of (C,D) is the class of (D,C). �

Hence, we get that Bj : BC → BC−1C is a morphism of associative and commutative
H-spaces and the induced map

π0(Bj) : π0(BC)→ π0(BC−1C)
is a map of abelian monoids.

Definition 13.3.3. Let C be a small symmetric monoidal category. Then, the K-theory
space of C, KC, is defined as KC := B(C−1C), and the nth K-group of C, KnC, is its nth
homotopy group:

KnC := πnB(C−1C).

On the level of π0, we obtain a group completion.

Lemma 13.3.4. Let C be a small symmetric monoidal category. Then,

K0(C) = π0(KC) ∼= G(π0(C)).
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Proof. We consider the map from the set of objects of C−1C into the Grothendieck
group on the abelian monoid π0(C), which is given by

φ : (C,D) 7→ [C]− [D].

For a fixed object E of C, we obtain

φ(C ⊗ E,D ⊗ E) = [C ⊗ E]− [D ⊗ E] = [C] + [E]− [D]− [E] = [C] + [D] = φ(C,D).

If [(f, g)] : (C1, D1)→ (C2, D2) is a morphism in C−1C, that is, there is an object E of C and
morphisms f : C1 ⊗ E → C2 and g : D1 ⊗ E → D2 in C, then

φ(C1, D1) = [C1]− [D1] = [C2]− [D2] = φ(C2, D2).

Thus, φ factors through π0(C−1C) and we get an induced map

φ̄ : π0(C−1C)→ G(π0(C)).
This map is surjective because elements of the form [C]− [D] generate the group G(π0(C)).
If φ(C,D) = 0, then the classes [C] and [D] are equal in π0(C), and therefore, there is a finite
zigzag of morphisms in C between C and D. We can recycle this zigzag in order to get a
zigzag of morphisms in the category C−1C between (C,D) and (D,D), and thus, we obtain
that the class of (C,D) in π0(C−1C) is trivial. �

Remark 13.3.5. Note that the map φ̄ constructed in the proof is inverse to the universal
map from the group completion of π0(C) to π0(C−1C).

Example 13.3.6. There is a small version of the category of finitely generated projective
left R-modules, P(R), for an associative ring R. As for each such module P , there is a
module Q, with P ⊕ Q ∼= Rn, we can think of such projective modules as the image of
a projection map, and by slight abuse of notation, we call this P , so P : Rn → Rn is an
R-linear map, with P 2 = P .

The objects of P(R) are of the form (n, P ), where n ∈ N0 and P ∈Mn(R) is a projection
matrix, that is, P 2 = P . The morphisms in P(R)((n, P ), (m,Q)) are trivial for n 6= m.
For n = m, the set of morphisms P(R)((n, P ), (n,Q)) consists of R-linear isomorphisms
f : im(P ) → im(Q). Then, two objects are equivalent in π0(P(R)) if and only if they are
connected by a finite zigzag of R-isomorphism of the projective modules that are the images
of the projection; hence,

π0(P(R)) ∼= Proj(R)

and π0(P(R)−1P(R)) ∼= K0(R), the classical K0-group of the ring R, which is the group
completion of the monoid of isomorphism classes of finitely generated projective R-modules.

Example 13.3.7. Alternatively, we can use the small permutative category of finitely
generated free R-modules F (R) that we saw earlier. In this case, we set GLn(R) as the set
of morphisms. Then, π0F (R) ∼= N0, and the group completion is just Z.

Example 13.3.8. One can identify the group completion of the category Σ explicitly.
Sagave and Schlichtkrull [SaSc12] define a category J , whose objects are pairs of ob-
jects of I, the category of finite sets and injections from Example 1.2.3. A morphism in
J ((n1,n2), (m1,m2)) is a triple (α, β, σ), where α ∈ I(n1,m1), β ∈ I(n2,m2), and σ is a
bijection

σ : m1 \ α(n1)→m2 \ β(n2).
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For another morphism (γ, δ, ξ) ∈ J ((m1,m2), (l1, l2)), the composition is the morphism
(γ ◦ α, δ ◦ β, τ(ξ, σ)), where τ(ξ, σ) is the permutation

τ(ξ, σ)(s) =

{
ξ(s), if s ∈ l1 \ γ(m1),

δ(σ(t)), if s = γ(t) ∈ γ(m1 \ α(n1)).

Note that l1 \ γ(α(n1)) is the disjoint union of l1 \ γ(m1) and γ(m1 \ α(n1)).
With these definitions, J is actually a category, and it inherits a symmetric monoidal

structure from I via componentwise disjoint union [SaSc12, Proposition 4.3]. In particular,
the category of J -spaces is symmetric monoidal with the Day convolution product. Note
that the unit for the monoidal structure �J is J ((0,0), (−,−)), and this is not a constant
functor, but J ((0,0), (n,n)) can be identified with the symmetric group Σn.

There is an isomorphism of categories Σ−1Σ ∼= J , which is the identity on objects
and which sends a morphism in Σ−1Σ, represented by (f, g), with f : n1 t l → m1 and
g : n2 t l→m2, to the morphism (f |n1 , g|n2 , (f |l) ◦ (g|l)−1) in J .

13.4. Group Completion of H-Spaces

Definition 13.4.1. Let X be an associative H-space of the homotopy type of a CW
complex in which left translation by any element of X is homotopic to right translation by
the same element. The group completion of X is an associative H-space Y of the homotopy
type of a CW complex that satisfies the same left versus right translation property, together
with a morphisms of H-spaces f : X → Y , such that the map π0(f) : π0(X)→ π0(Y ) identifies
the abelian monoid π0(Y ) as the Grothendieck group of π0(X) and such that H∗(f ; k) induces
an isomorphism

(13.4.1) H∗(X; k)[π0(X)−1] ∼= H∗(Y ; k)

for all commutative rings k.

For an H-space X as in Definition 13.4.1, the singular homology of X is a graded ring
with unit, where the multiplication

Hp(X; k)⊗k Hq(X; k)→ Hp+q(X ×X; k)→ Hp+q(X; k)

is given as the composite of the Künneth map and the map that is induced by the H-
space structure on X, µ : X × X → X. In particular, H∗(X; k) is a graded H0(X; k)-
module and H0(X; k) is the group algebra k[π0(X)], such that the elements of π0(X) are
central. Therefore, it makes sense to localize the ring H∗(X; k) at π0(X). The homological
requirement in the definition of a group completion of X implies that this localization is
isomorphic to the homology of Y .

Remark 13.4.2. Quillen [Q94, Remark 1.4] showed that it suffices to check the isomor-
phism from (13.4.1) for k = Q and k = Fp for all primes p.

If X is a group-like H-space, we want to compare it to its group completion. To this end,
consider the following version of the Whitehead theorem for homology with local coefficients
(see, for instance, [DK01, Theorem 6.71] for a proof):
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Theorem 13.4.3. Let f : X → Y be an arbitrary continuous map between connected
CW spaces X and Y . If π1(f) is an isomorphism and if

Hn(X;A)→ Hn(Y ;A)

is an isomorphism for all local coefficient systems A and for all n, then f is a homotopy
equivalence.

If X is a group-like H-space, then

X ' π0(X)×X0,

where X0 is the path component of the homotopy unit – all the path components are home-
omorphic and every x ∈ X can be sent to X0 with the help of a correction term in π0(X),
because the latter is a group.

Let Y be a group completion of X, and assume that X and Y are CW complexes. For
every H-space X, any local coefficient system is simple (in the sense of Example 2.1.3); hence,
it suffices to check that the map f : X0 → Y0 induces an isomorphism on homology groups.

The map X0 → Y0 induces an isomorphism on homology by the very definition of a group
completion and the fact that π0(X) is a group. Hence, by Theorem 13.4.3, X is homotopy
equivalent to its group completion.

We mention one important identification of a group completion. Note that for a topo-
logical group G, a standard argument (see e.g.[Ha02, Proposition 4.66]) yields that there is
a weak homotopy equivalence G→ ΩBG.

Proposition 13.4.4. [May74, Theorem 1.6] If M is a topological monoid, such that for
M and ΩBM , left translation by any element is homotopic to right translation by the same
element, then the map

α : M → ΩBM

is a group completion.

Here, α is the adjoint of the map

ΣM → BM, [t,m] 7→ [m, (t, 1− t)].
Proposition 11.3.6 implies that for such topological monoids M , we obtain that π1(BM) ∼=
G(M). Examples include

M =
∞⊔
n=0

BΣn, M =
∞⊔
n=0

BGLn(R).

An analog of α for iterated and infinite loop spaces is as follows:

Theorem 13.4.5.
• [May74, Lemma 2.1] Let O be an E∞-operad in topological spaces. There is a functor
G from O-spaces to spaces, together with a natural transformation η : Id ⇒ G, such
that ηX is a group completion for all O-spaces X.
• [Se73] [CLM76, III.3.3] For all n > 1, CnX → ΩnΣnX is a group completion.

Theorem 13.4.6. [Gr76] If C is a small groupoid that is symmetric monoidal and
such that for every object C of C, the functor

(−)⊗ C : C → C
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is faithful, then BC−1C is a group completion of BC.

In the examples Σ and F (R), we obtain that the group completion has π0 isomorphic to
Z and that

B(Σ−1Σ) ' ΩB

(⊔
n≥0

BΣn

)
,

and

B(F (R)−1F (R)) ' ΩB

(⊔
n≥0

BGLn(R)

)
.

The latter is one version of the classical definition of the K-theory space of a ring R due to
Quillen.

Remark 13.4.7. Kan and Thurston show [KT76] that for every connected space X,
there is a discrete group GX , such that there is a homology isomorphism from the classifying
space of GX , BGX , to X. As BGX has only one nontrivial homotopy group, there cannot
be an analogous result about homotopy types. However, Dusa McDuff [McD79] extended
the Kan-Thurston result and proved that for every connected space X, there is a discrete
monoid M , such that X has the same weak homotopy type as BM .
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CHAPTER 14

Approaches to Iterated Loop Spaces via Diagram Categories

Since the 1970s diagram categories have been used to model loop spaces, so spaces of
the form ΩnX, mostly for n = 1, 2, and ∞. During the last decades, new approaches, in
particular for modelling iterated loop spaces ΩnX for all n, have been developed. This
chapter intends to give an overview, and I mostly refer to the literature for proofs and
technical details.

Before we start with the more complicated topic of iterated loop spaces, we explain how
diagram categories can be used to detect algebraic structures in the discrete and in the
k-linear setting, where k is a commutative ring with unit.

14.1. Diagram Categories Determine Algebraic Structure

Some categories are suitable for encoding algebraic properties. For instance, if you con-
sider the category ∆o, then there is the equality d1d2 = d1d1 : [3] → [1] of morphisms, and
if you assign Mn to [n] in a functorial manner, then this can correspond to an associativity
condition for a multiplication d1 : M2 → M . In constrast, when you consider the category
Fin, then the extra symmetry coming from Σn ⊂ Fin(n,n) will encode commutativity, and
you have to desymmetrize Fin if you want to avoid that.

Some of the examples of diagram categories in Chapter 15 are actually categories of
operators. The following is a discrete version of the one in [MayTh78, Construction 4.1]:

Definition 14.1.1. Let O be an operad in the category of sets, with O(0) = ∗. The
category of operators with respect to O, Γ(O), has the same objects as the category of
finite pointed sets, Γ, and a morphism in Γ(O)([n], [m]) is a tuple (f ;ω0, . . . , ωm), with
f ∈ Γ([n], [m]) and ωi ∈ O(|f−1(i)|), where |f−1(i)| denotes the cardinality of the fiber of f
over i ∈ [m]. The identity morphism 1[n] in Γ(O)([n], [n]) is (1[n] ∈ Γ([n], [n]); η(e), . . . , η(e)).
Composition of morphisms in Γ(O) is induced by the composition of morphisms in Γ and
the composition in the operad O.

Example 14.1.2. For the operad Com in Sets, we obtain Γ(Com) ∼= Γ. For the operad As
in Sets, the category of operators Γ(As) is precisely the category of finite pointed associative
sets Γ(as) from Definition 15.3.2. A morphism f ∈ Γ(as)([m], [n]) is a morphism f ∈
Γ([m], [n]), together with a total ordering on every fiber f−1(i). This is a desymmetrized
version of Γ.

May and Thomason use categories of operators in [MayTh78] for comparing infinite
loop space machines. Loop spaces need basepoints, so in their context, it is natural to work
with finite pointed sets. In an algebraic setting, basepoints can be used for dealing with
coefficients, for instance, when one wants to consider Hochschild homology of an algebra
with coefficients in a bimodule (see Definition 15.3.1). If we are interested in purely algebraic
structures, we might use the category of (unbased) finite sets, Fin.
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A prototypical example of the description of an algebraic structure via a diagram category
is the following basic result, which we already saw in disguise in Proposition 10.14.3.

Proposition 14.1.3. Let M be a set. Then, M is a monoid if and only if the assigment

[n] 7→Mn

gives rise to a functor from ∆o to Sets.

Proof. In the proof of Proposition 10.14.3, we already saw that the fact that [n] 7→Mn

defines a functor from ∆o to Sets ensures that M is a monoid. For the converse, if (M, ·, 1)
is a monoid, then we set

di : M
n →Mn−1, di(m1, . . . ,mn) :=


(m2, . . . ,mn), for i = 0,

(m1, . . . ,mi ·mi+1, . . . ,mn), for 1 ≤ i ≤ n− 1,

(m1, . . . ,mn−1), for i = n.

The degeneracy map si inserts 1 in slot number i+ 1. This gives rise to a simplicial object,
as we know from the definition of the nerve (Definition 11.1.1) of CM . �

The following is a typical k-linear example:

Proposition 14.1.4. Let k be a commutative ring and let A be a k-module. Then, A is
a commutative k-algebra if and only if the assignment {1, . . . , n} = n 7→ A⊗kn is a functor
Lk(A) : Fin→ k-mod.

Proof. If A is a commutative k-algebra and f ∈ Fin(n,m) then we define the morphism
Lk(f) : Lk(A)(n)→ Lk(A)(m) by sending a generator a1 ⊗ . . .⊗ an to b1 ⊗ . . .⊗ bm, where

bi =
∏

j∈f−1(i)

aj,

and if the fiber of i is empty, then we set
∏

∅ = 1A. As A is commutative, it does not
matter in which order we multiply the element. For g ∈ Fin(m, `), the equality of fibers
(g ◦ f)−1(i) = f−1(g−1(i)) guarantees that Lk(g ◦ f) = Lk(g) ◦ Lk(f)

Conversely, if we just know that A is a k-module, but, in addition, we know that
Lk(A) : Fin → k-mod is a functor, then we define a multiplication µ on A as Lk(A)(v),
where v is the unique map from 2 to 1 in Fin. Note that µ is bilinear because Lk(A)(v) is a
map of k-modules.

The object 0 is initial in Fin, and let u denote the unique map u ∈ Fin(0,1). We define
the unit η : k = A⊗k0 → A⊗k1 = A as Lk(A)(u).

Twisting 1 and 2 in 2 first and then applying v is equal to v; therefore, µ is commutative.
Associativity follows from the equality v ◦ (v ⊕ id) = v ◦ (id⊕ v):

3
''

3
''

2
''

2
''

= 2 // 2
''

1 // 1 // 1 1 // 1 // 1

in Fin. The identity on 1 is equal to the composite that identifies 1 with ∅ ⊕ 1, sends this
to 1 ⊕ 1 ∼= 2, and applies v. Similarly, we can first use 1 ∼= 1 ⊕ ∅ and compose with the
same string of morphisms and get the identity on 1. This implies that η satisfies the unit
axioms. �
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A probably less obvious identification relates a skeletal version of the category of finitely
generated free groups with the category of commutative Hopf algebras. This result is crucial,
for instance, for the work of [BRY∞, §5].

Definition 14.1.5. Let Free be the category whose objects are n for n ∈ N0. Morphisms
in Free from n to m are group homomorphisms from the free group on n generators to the
free group on m generators.

Note that in Free, the object 0 corresponds to the free group on 0 generators and hence
to the trivial group. Therefore, it is a zero object in Free.

Proposition 14.1.6. (see [P02, Theorem 5.2]) Let H be a k-module. Then, H is a
commutative Hopf algebra over k if and only if the assignment n 7→ H⊗n is a functor
Lk(H) : Free→ k-mod.

Proof. We only give a proof of the direction that H is a commutative Hopf algebra
over k if Lk(H) : Free → k-mod is a functor. The fact that 0 is a zero object in Free gives
rise to a unit map for H, η : k → H via Lk(H)(0 → 1) and to a co-unit map, ε : H → k,
via Lk(H)(1 → 0). The multiplication in H, µ : H ⊗k H → H, corresponds to the map
Lk(H)(v), where v : 2 → 1 is the morphism that sends the generators of the free group on
two generators x1, x2 to the generator of the free group 〈x1〉. As the map that exchanges
the generators composed with v is v, we get that the multiplication is commutative. As in
the proof of 14.1.4, we see that the unit map, together with the multiplication map, turns
H into a commutative k-algebra.

For the diagonal map ∆: H → H ⊗k H, we take Lk(ψ), where ψ : 〈x1〉 → 〈x1, x2〉 is the
map that sends x1 to x1x2. As the free group on two generators is not commutative, this
comultiplication will not be cocommutative in general. As we have the equality (x1x2)x3 =
x1(x2x3) in the free group on three generators, this diagonal is coassociative.

The counit ε corresponds to the map that sends the generator x1 of 〈x1〉 to the empty
word. Therefore, (ε⊗ 1H) ◦∆ = 1H = (1H ⊗ ε) ◦∆.

The morphism i of free groups that sends x1 to x−1
1 induces a self-map Lk(i) : H → H.

The fact that the composites x1 7→ x1x2 7→ x1x
−1
2 7→ x1x

−1
1 and x1 7→ x1x2 7→ x−1

1 x2 7→ x−1
1 x1

give the empty word shows that S = Lk(i) is an antipode for H.
We need to show that the diagram

H ⊗k H
µ

//

∆⊗k∆
��

H

∆
��

H⊗k4

1H⊗kτ⊗k1H
��

H ⊗k H

H⊗k4

µ⊗kµ

88

commutes (where τ denotes the twist morphism). If we chase the diagram of generators
around in the same diagram, we obtain that both ψ ◦ v and (v, v) ◦ τ ◦ (ψ, ψ) send (x1, x2)
to (x1x2, x1x2).

�
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14.2. Reduced Simplicial Spaces and Loop Spaces

We consider simplicial topological spaces.

Definition 14.2.1. A simplicial set or simplicial topological space X is reduced if X0 is
a point.

In analogy to the definition of Segal sets (see Definition 10.14.1), one can consider Segal
spaces.

Definition 14.2.2. A simplicial topological space X or a bisimplicial set viewed as a
simplicial object in simplicial sets is a Segal space if the canonical map

(i1, . . . , in) : Xn → X1 ×X0 . . .×X0 X1

is a weak equivalence for all n ≥ 2.

Note that for a reduced Segal space X, π0(X1) carries the structure of a pointed monoid.
Every simplicial space has an underlying topological space by forming X1. Segal proved

the following result that identifies certain spaces as based loop spaces:

Theorem 14.2.3. [Se74, Proposition 1.5] A reduced Segal space X has X1 ' Ω|X| if
and only if X1 has homotopy inverses and if X is good.

Here, good is the same technical assumption on a simplicial topological space that ensures
that the fat realization is equivalent to the geometric realization (compare 10.9, [Se74,
Appendix A]). If a simplicial topological space X arises as the partial geometric realization
of a bisimplicial set, then X is good.

14.3. Gamma-Spaces

Recall the definition of the category Γ. The objects of Γ are the finite pointed sets
[n] = {0, . . . , n} for n ≥ 0, with zero as basepoint and morphisms are functions preserving
the basepoint. There is a canonical functor from ∆o to Γ.

Definition 14.3.1. The simplicial circle is the functor C : ∆o → Γ, with C[n] = [n],
and C(si) : [n]→ [n+ 1] is the strict monotone injection missing the value i+ 1. For i < n,
the ith face map is

C(di)(j) =

{
j, j ≤ i,

j − 1, j > i.

For i = n, we have

C(dn)(j) =

{
j, j ≤ n− 1,

0, j = n.

It is easy to see that this actually defines a functor. Furthermore, there are only two
nondegenerate simplices, the one in degree 0 and 1 ∈ C[1] and d0(1) = d1(1) = 0, and hence,
the geometric realization of C is S1.

Segal’s original definition in [Se74] uses the opposite category of Γ, Γo. It can be de-
scribed as having as objects the sets n = {1, . . . , n}, with 0 = ∅. A morphism in Γo
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from m to n is an m-tuple (S1, . . . , Sm) of pairwise disjoint subsets of n. The composite of
(T1, . . . , T`) : `→m and (S1, . . . , Sm) : m→ n is the `-tuple

(
⋃
j1∈T1

Sj1 , . . . ,
⋃
j`∈T`

Sj`).

In order to see that this category is the opposite of Γ, just think of a morphism f : [n]→
[m] as being determined by the preimages f−1(1), . . . , f−1(m).

Exercise 14.3.2. The symmetric group on n letters, Σn, is contained in Γ([n], [n]).
Determine the morphism fσ in Γo(n,n) that corresponds to a permutation σn ∈ Γ([n], [n]).

Definition 14.3.3.
• Let C be any category with zero object ∗. Then, a Γ-object in C is an F ∈ Fun(Γ, C),

with F [0] = ∗.
• A Γ-space is a Γ-object in the category of pointed simplicial sets, that is, a Y ∈
Fun(Γ, sSets∗), with Y [0] = ∆0.

For two pointed simplicial sets X1, X2 with basepoints ∗X1 and ∗X2 , their smash product
is

X1 ∧X2 = X1 ×X2/X1 ∨X2,

where X1 ∨X2 = X1 tX2/∗X1 ∼ ∗X2 .

Examples 14.3.4.
(1) Every finite pointed set can be turned into a finite pointed simplicial set, using the

constant functor. Thus, we have a canonical Γ-space

S : Γ→ sSets∗.

(2) [Se74, §1] Let M be an abelian monoid. Then, we define the Γ-space HM as
HM [n] = Mn, such that an f ∈ Γ([n], [`]) induces

HM(f) : Mn →M `, HM(f)(m1, . . . ,m`) = (
∑

i∈f−1(1)

mi, . . . ,
∑

i∈f−1(`)

mi).

Here, we place the unit 0 of M in the ith coordinate if f−1(i) = ∅.
(3) If X is a simplicial set and Y is a Γ-space, then X ∧ Y is the Γ-space

[n] 7→ X ∧ (Y [n]).

(4) Consider a commutative ring k, a commutative k-algebra A, and a symmetric A-
bimodule M . By forgetting structure, M is also a k-module. We denote ⊗k by ⊗.
We consider as C the category of k-modules under and over M . The Loday functor

Lk(A;M) : Γ→ C,Lk(A;M)[n] = M ⊗ A⊗n

defines a Γ-object in C by declaring that for any f ∈ Γ([n], [`]), we send a0 ⊗ a1 ⊗
. . .⊗ an (with a0 ∈M , ai ∈ A for i > 0) to b0 ⊗ b1 ⊗ . . .⊗ b`, with

bi =
∏

j∈f−1(i)

aj,

where bi = 1A if the preimage of i is empty.

Exercise 14.3.5. Show that S is isomorphic to the representable Γ-space Γ([1],−).
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Definition 14.3.6.
(1) If Y is a Γ-space and X is a finite pointed simplicial set, then the evaluation of Y

on X is the diagonal of the bisimplicial set

Y (X)p,q = (Y (Xp))q, 0 ≤ p, q,

that is, Y (X)p = Y (Xp)p.
(2) If X1 and X2 are finite pointed simplicial sets and Y is a Γ-space, then there is an

assembly map

X1 ∧ Y (X2)→ Y (X1 ∧X2),

defined as follows: For a fixed x ∈ X1, we get a function fx sending X2 to X1 ∧X2:

fx : X2 → X1 ∧X2, x2 7→ [(x, x2)],

where [(x, x2)] denotes the equivalence class of (x, x2) in the smash product. For
varying x, this gives a well-defined map

σX1,X2 : X1 ∧ Y (X2)→ Y (X1 ∧X2)

for every Γ space Y .
(3) The spectrum associated with a Γ space Y is the sequence of simplicial sets (Y (Sn)),

where Sn is the simplicial model of the n-sphere Sn = (S1)∧n. The assembly maps
induce structure maps

σS1,Sn : S1 ∧ Y (Sn)→ Y (Sn+1).

The spectrum associated with a Γ-space gives a notion of homotopy groups.

Definition 14.3.7. Let Y be a Γ-space. Its nth homotopy group is

πn(Y ) = colimiπn+iY (Si),

where the structure maps σS1,Sn induce the maps for the filtered colimit.

Note that for any Γ-space Y , Y [1] = Y [S0], the zeroth simplicial set in the spectrum
associated with Y .

Examples 14.3.8.
(1) The spectrum associated with the Γ-space S (Example 1) has

S(Sn) = Sn.

This is the sphere spectrum. Its homotopy groups are the stable homotopy groups
of spheres.

(2) If A is an abelian group, then the Γ-space HA (Example 2) has

HA(Sn) ∼= A⊗ Z̄{Sn},
and this is an Eilenberg-Mac Lane space of type (A, n) because πjHA(Sn) is trivial
for all j but n, where we get

πnHA(Sn) ∼= πnA⊗ Z̄{Sn} ∼= H̄n(Sn;A) = A.

The spectrum (HA(Sn))n ≥ 0 is the Eilenberg-Mac Lane spectrum of A.
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(3) For a simplicial set X, the associated spectrum of the Γ-space X∧S is the suspension
spectrum of X.

(4) The homotopy groups of the functor Lk(A;M) : Γ → k-mod are isomorphic to the
Gamma homology of A with coefficients in M [PR00, Theorem 1], a homology the-
ory for commutative algebras introduced by Alan Robinson and Sarah Whitehouse
in [RoWh02], see 15.5.

Remark 14.3.9. The first two examples should look familiar. In Example 10.15.2, we
already encountered them in the context of symmetric spectra. This is no accident. Every
spectrum associated with a Gamma space carries the structure of a symmetric spectrum by
using the action of Σn on (S1)∧n that permutes the smash factors.

A Γ space gives rise to a spectrum, but we can also forget down to simplicial sets.

Definition 14.3.10. The underlying pointed simplicial set of a Γ-space Y is U(Y ) = Y [1].

Exercise 14.3.11. Show that the functor U : Γ spaces → sSets has a left adjoint given
by X 7→ X ∧ S, where S is the Γ-space from Example 1.

Segal posed extra conditions on Γ-spaces to single out those Γ-spaces that give rise to
infinite loop spaces.

Definition 14.3.12.
(1) A Γ-space Y is special if the projection maps from [k + `] ∼= [k] ∨ [`] to [k] and [`]

induce weak equivalences of simplicial sets Y [k + `]→ Y [k]× Y [`].
(2) A special Γ-space Y is very special if π0Y [1] is a group.

Note that the condition for special Γ-spaces is equivalent to requiring that the projection
maps pi : [n] → [1], pi(i) = 1, pi(j) = 0 for all j 6= i induce weak equivalences of simplicial
sets

(14.3.1) Y [n]→ Y [1]n.

In particular, Y [2] ' Y [1]× Y [1].
Compare this to the condition of a Segal set from Definition 10.14.1 and to Segal spaces

from Definiton 14.2.2. As we require Y [0] = ∗, (14.3.1) is about products and not about
actual fiber products.

There is a fold map ξ : [2]→ [1] in Γ, sending 1 and 2 to 1. Thus, we get a zigzag

Y [1]× Y [1] Y [2]
'
oo

ξ
//Y [1]

that turns π0Y [1] into an abelian monoid. The extra condition of being very special demands
that this abelian monoid actually be an abelian group.

Segal then shows the following:

Theorem 14.3.13. [Se74, Proposition 1.4] If Y is a very special Γ-space, then Y [1] is
an infinite loop space.

The concept of a Γ-space looks innocent, but we saw that it is strong enough for infinite
loop spaces. Bousfield and Friedlander showed [BF78, Theorem 5.8] that there is a model
structure on Γ-spaces, which gives rise to a Quillen equivalence with the model category
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of connective spectra, that is, spectra with homotopy groups concentrated in non-negative
degrees.

As a diagram category, Γ-spaces possess a Day convolution product, as in Section 9.8.

Definition 14.3.14. Let Y1 and Y2 be two Γ-spaces. The external smash product of Y1

and Y2 is the functor

Y1∧̃Y2 : Γ× Γ→ sSets, ([n], [m]) 7→ Y1[n] ∧ Y2[m].

The smash product of Y1 and Y2, Y1 ∧Y2, is the Day convolution product with respect to
the external smash product and the symmetric monoidal structure of the smash product on
Γ, that is, (Y1 ∧ Y2)[n] = colimf∈Γ([m]∧[`],[n])Y1[m] ∧ Y2[`] :

Γ× Γ
Y1∧̃Y2

//

∧
��

sSets.

Γ
Y1∧Y2

::

Remark 14.3.15. Note that [m] ∧ [`] can be identified with [m`]. Manos Lydakis real-
ized that the smash product defined above turns the category of Γ-spaces into a symmetric
monoidal category, and he used that to develop a model of connective spectra with a strict
symmetric monoidal smash product [Ly99]. Schwede [Schw99] then investigated the cor-
responding world of spectra with a strict multiplication, ring spectra, via Γ-spaces. Many
spectra that play a role in algebraic K-theory have nice models in Γ-spaces, and we will say
a bit about some of those in the following section. If you want to learn more about this (and
many more related topics), then [DGM13] is an excellent source.

A word of warning: Tyler Lawson showed [La09] that not all connective E∞-ring spectra
can be modelled by commutative Γ-rings.

14.4. Segal K-Theory of a Permutative Category

Although not all connective E∞-spectra arise as Γ-spaces, there are particularly nice
examples. Segal describes in [Se74, §2] a way of associating a spectrum with a symmetric
monoidal category. For simplicity, we deal with the permutative case here, as in [May78,
Construction 10] and follow the description in [EM06].

Definition 14.4.1. Let (C,⊕, 0, τ) be a small permutative category and let X be a
finite pointed set with basepoint ∗. Let C(X) be the category whose objects are families
(CS, %S,T ;S, T ⊂ X \ {∗}, S ∩ T = ∅), where the CSs are objects of C and the %S,T s are
isomorphisms %S,T : CS ⊕ CT → CS∪T in C. These objects satisfy the following conditions:

• CS = 0 if S = ∅.
• %S,T is the identity morphism if S or T is the empty subset.
• The %S,T s are commutative and associative in the sense that the following diagrams

commute:

CS ⊕ CT
%S,T

//

τS,T
��

CS∪T

CT ⊕ CS
%T,S

// CT∪S

and CS ⊕ CT ⊕ CU
%S,T⊕1CU

//

1CS⊕%T,U
��

CS∪T ⊕ C,U
%S∪T,U

��

CS ⊕ CT∪U
%S,T∪U

// CS∪T∪U .
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Morphisms in C(X) from (CS, %S,T ) to (C̃S, %̃S,T ) are families of morphisms fS ∈ C(CS, C̃S)
for S ⊂ X \ {∗}, such that f∅ = 10 and the fSs are compatible with the %s and %̃s. The
diagram

CS ⊕ CT
%S,T

��

fS⊕fT
// C̃S ⊕ C̃T

%̃S,T
��

CS∪T
fS∪T

// C̃S∪T

commutes for all S, T ⊂ X \ {∗}, with S ∩ T = ∅.

Example 14.4.2. If X = [2], then an object in C([2]) is a square of objects of C:
C∅ = 0 C{1}
C{2} C{1,2},

together with an isomorphism %{1},{2} : C{1} ⊕ C{2} ∼= C{1,2}, so up to isomorphism, C{1,2} is
determined by C{1} ⊕ C{2}, but you remember an isomorphism as part of the data.

Similarly, for X = [3], we get a cube of objects

0 C{1}

C{2} C{1,2}

C{3} C{1,3},

C{2,3} C{1,2,3}

and you remember all possible ways of forming C{1,2,3} out of C{1}, C{2}, and C{3} by merging
sums. The lines in the picture are not meant to be maps; they are just there to indicate the
cube.

This construction gives a functor C(−) : Γ→ cat as follows: If g : X → Y is a morphism
of finite pointed sets, then an object (CS, %S,T ) is sent to (Cg

S′ , %
g
S′,T ′), where Cg

S′ := Cg−1(S′)

and %gS′,T ′ := %g−1(S),g−1(T ). As g preserves the basepoint, this is well-defined.

Definition 14.4.3. Let C be a small permutative category. Then, the Γ-space

NC(−) : Γ→ sSets

is the Segal K-theory of the permutative category C. We denote it by KS(C).
We can also form the corresponding spectrum (NC(Sn))n≥0. One can identify the homo-

topy type of the spectrum in many cases (see, for instance, [May77, VI.5]).

Examples 14.4.4.
• The process of remembering splittings of projective modules into direct sums should

sound familiar from Example 13.3.6, and it should not be a surprise that the Segal
K-theory of the category of finitely generated projective R-modules for some ring R,
P(R), gives the K-theory spectrum of that ring, K(R).
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• The Segal K-theory of the category of finite sets and bijections, Σ, gives rise to the
sphere spectrum.
• The category of complex vector spaces, VC gives rise to a spectrum via KS(VC), which

is a connective version of complex topological K-theory, ku. Its real analog, VR, gives
connective real topological K-theory, ko.
• If A is an abelian group, then the discrete category associated with A, with a ∈ A

as objects, is permutative (using the abelian group structure of A), and the Segal
K-theory gives the Eilenberg-Mac Lane spectrum of A, HA.

14.5. Injections and Infinite Loop Spaces

Establishing E∞-structures on spaces is usually not easy. Schlichtkrull gives in [Sc09,
Proposition 6.5] an explicit action of the Barratt-Eccles operad on a model of the homotopy
colimit of a commutative I-space. In the simplicial setting, the action is as follows:

Proposition 14.5.1. Let X : I → sSets be a commutative I-space monoid with mul-
tiplication µ : X2X → X. Then, hocolimIX is a simplicial set with an action of the
Barratt-Eccles operad (NEΣm)m≥0, and hence, its geometric realization is an E∞-space.

Proof. We define a functor Fm : EΣm × (X\I)m → X\I for every m by

Fm(σ, (n1, x1), . . . , (nm, xm))

= (nσ−1(1) t . . . t nσ−1(m), σ(n1, . . . , nm)(µ((n1, x1), . . . , (nm, xm)))).

Here, the permutation σ(n1, . . . , nm) ∈ Σn1+...+nm permutes the blocks n1 up to nm, as
σ ∈ Σm permutes the numbers 1 to m.

On morphisms, we define Fm as follows: For τ ∈ EΣm(σ, τ ◦ σ), we set

Fm(τ, 1(n1,x1), . . . , 1(nm,xm)) = τ(nσ−1(1), . . . , nσ−1(m)).

For fi : (ni, xi)→ (pi, yi) morphisms in X\I for 1 ≤ i ≤ m, that is, fi ∈ I(ni,pi), such that
X(fi)(xi) = yi, we define

Fm(1m, f1, . . . , fm) = fσ−1(1) t . . . t fσ−1(m).

�

Note that in the case of the terminal I-space, this reduces to May’s result about actions
of the Barratt-Eccles operad on the classifying space of any permutative category, here in
the case BI (Theorem 13.1.5).

Sagave and Schlichtkrull discuss important examples of such structures in [SaSc12, §1].

Example 14.5.2. The families of groups O(n), U(n), and GLn(R) for R some dis-
crete commutative ring give rise to commutative I-spaces n 7→ BO(n), n 7→ BU(n), and
n 7→ BGLn(R) and the corresponding Bousfield-Kan homotopy colimits are BO, BU , and
BGL(R)+.

Example 14.5.3. Any pointed simplicial set X and any well-based topological space
gives rise to the commutative I-space Sym(X), with Sym(X)(n) = Xn. Schlichtkrull showed
in [Sc08] that hocolimISym(X) is equivalent to the Barratt-Eccles construction [BE74]. For
connected X, this is a model for Q(X) = Ω∞Σ∞X.
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14.6. Braided Injections and Double Loop Spaces

One can use a different diagram category in order to identify double loop spaces. It is
stated in Stasheff [Sta92, pp. 122–123] that one can deloop braided monoidal categories
twice. By a result of Fiedorowicz [Fi∞, Theorem 2], we know that the classifying space of
a braided monoidal category is a double loop space after group completion. Berger [Be99]
proves this fact by using simplicial operads.

The idea of [ScSo16] is to desymmetrize the category of finite sets and injections by
allowing braid groups as automorphisms and not symmetric groups. This can be viewed
as a crossed semisimplicial group in analogy to the crossed simplicial groups of Fiedorowicz
and Loday [FiLo91]. Using the corresponding diagram category of braided injections, they
produce an explicit twofold delooping.

Definition 14.6.1.
• Let MI denote the category of order-preserving injections. The objects of MI are

the sets n = {1, . . . , n} for n ≥ 0 and the morphisms are order-preserving functions
of finite sets.
• As in Example 8.6.6, we denote by Brn the braid group on n strands.
• Let B be the category of braided injections. The objects of B are the same as the

objects ofMI, but the morphisms f ∈ B(n,m) are composites of morphisms f = i◦σ,
where σ ∈ Brn and i ∈MI(n,m). Composition in B is defined by concatenation and
combing. If g = j ◦ τ , with j ∈ MI(m, `), then g ◦ f = j ◦ τ ◦ i ◦ σ can be uniquely
written as (j ◦ τ∗(i)) ◦ (i∗(τ) ◦ σ), with j ◦ τ∗(i) ∈MI(n, `) and i∗(τ) ◦ σ ∈ Brn, as in
[FiLo91, Theorem 3.8].

Remark 14.6.2. Note that the decomposition of morphisms above is analogous to the
one in the category I. Every f ∈ I(n,m) can be uniquely written as a composite f = i ◦ σ,
where i ∈ MI(n,m) and σ ∈ Σn. Thus, in the category B, you just replace the family of
symmetric groups by the family of braid groups.
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The category B is a braided monoidal category [ScSo16, §2], with monoidal product
given by disjoint ordered union of sets:

(n,m) 7→ n tm,

where we declare the elements of n to be smaller than the elements of m, and thus, n tm
identifies with n + m. There are two choices for the braiding: using the braid χ̃(n,m) ∈
Brn+m that pulls the first n strands in front and the last m strands to the back and then
moves them around each other, or we can take its inverse. We use χ̃(n,m).

Proposition 14.6.3. ([ScSo16, Proposition 3.12]) The Day convolution product from
Definition 9.8.1 turns the category of functors from B to the category of simplicial sets into
a braided monoidal category.

Following Schlichtkrull and Solberg, we call such functors B-spaces. Explicitly, for two
B-spaces X and Y , the value of the Day convolution product X �Y on an object n is given
by

(X � Y )(n) = colim`tm→nX(`)× Y (m).

The morphisms χ̃(n,m) define a braiding, that is, an isomorphism β : X�Y → Y �X. The
unit for the Day convolution product is the terminal B-space B(0,−).

Definition 14.6.4. A B-space A is a commutative B-space monoid if it is a monoid
with multiplication µ and unit and if the diagram

A� A
β

//

µ
##

A� A

µ
{{

A

commutes.

Given a monoidal structure, we can form a two-sided bar construction of any monoid, as
in Definition 10.4.2. As the unit B(0,−) is the terminal object in the category of B-spaces,
it is also a bimodule over any monoid. In particular, we can construct the reduced bar
construction B�

• (B(0,−), A,B(0,−)) of any commutative B-space monoid A. Note that
this is a bisimplicial object.

Definition 14.6.5. The reduced bar construction, B�(A), of a B-space monoid A is the
diagonal simplicial B-space associated with B�

• (B(0,−), A,B(0,−)).
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Schlichtkrull and Solberg show [ScSo16, Lemma 6.1] that the reduced bar construction of
a commutative B-space monoid is a B-space monoid, and hence, one can apply the reduced
bar construction once more. This yields the following result:

Proposition 14.6.6. [ScSo16, Proposition 6.4] If A is a commutative B-space monoid
(with underlying flat B-space), then B�(B�(A))hB is a double delooping of the group com-
pletion of the Bousfield-Kan homotopy colimit hocolimBA. 2

Here, the flatness condition ensures correct homotopical behavior.

14.7. Iterated Monoidal Categories as Models for Iterated Loop Spaces

Our understanding of single loop spaces and infinite loop spaces is rather good. For
double loop spaces we saw that we have a fair understanding in terms of braided monoidal
categories or braided operads. It is harder to find explicit models for iterated loop spaces of
the form ΩnX, with 2 < n <∞. An early approach can be found in Cobb’s paper [Co74].
He uses a diagram category Pn and relates connected special Pn-spaces to n-fold loop spaces
[Co74, Corollary 3.1] via an iterated delooping.

We discuss two different approaches: one via iterated monoidal categories due to [BFSV03]
and a different one using the category Θn in Section 14.8.

If you have a double loop space Ω2X = kTop∗(S
2, X) on a based space X, then you can

reexpress Ω2X as Ω(ΩX), and in fact, one can use this reformulation and the Eckmann-
Hilton argument from (8.1.1) to get that π2(X) is abelian, by considering the two H-space
structures coming from the two loop coordinates.

As monoidal categories model loop spaces, the rough idea is that double loop spaces
should be modelled by categories with two monoidal structures that are compatible. How-
ever, the compatibility must not be too good, because otherwise, you could apply the
Eckmann-Hilton trick and you would get a commutative structure. This idea is worked
out in [BFSV03].

Definition 14.7.1. Let n be bigger than 1. An n-fold monoidal category is a category
C with the following data:

• There are n strict monoidal structures

21, . . . ,2n : C × C → C

on C that share a unit object, that is, there is an object e in C that is the common
strict unit for all of these strict monoidal structures.
• For all 1 ≤ i < j ≤ n, there is a natural transformation ϕij, whose components are

ϕijA,B,C,D : (A2jB)2i(C2jD)→ (A2iC)2j(B2iD).

These natural transformations (ϕij)1≤i<j≤n satisfy the following conditions:

(1) (unit conditions) For all objects A,B of C:

ϕijA,B,e,e = 1A2jB = ϕije,e,A,B and ϕijA,e,B,e = 1A2iB = ϕije,A,e,B.
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(2) (associativity conditions) The diagrams

(A2jB)2i(C2jD)2i(E2jF )
ϕijA,B,C,D2i1E2jF

//

1A2jB
2iϕ

ij
C,D,E,F

��

((A2iC)2j(B2iD))2i(E2jF )

ϕijA2iC,B2iD,E,F

��

(A2jB)2i((C2iE)2j(D2iF ))
ϕijA,B,C2iE,D2iF

// (A2iC2iE)2j(B2iD2iF )

and

(A2jB2jC)2i(D2jE2jF )
ϕijA2jB,C,D2jE,D

//

ϕijA,B2jC,D,E2jF

��

((A2jB)2i(D2jE))2j(C2iF )

ϕijA,B,D,E2j1C2iF

��

(A2iD)2j((B2jC)2i(E2jF ))
1A2iD

2jϕ
ij
B,C,E,F

// (A2iD)2j(B2iE)2j(C2iF )

commute for all objects A,B,C,D,E, F of C and for all i < j.
(3) For all 1 ≤ i < j < k ≤ n, the following hexagon diagram commutes. (We omit

the objects at the ϕs to ease notation.)

((A12kA2)2j(B12kB2))2i((C12kC2)2j(D12kD2))

ϕjk2iϕ
jk

vv
ϕij

!!

((A12jB1)2k(A22jB2))2i((C12jD1)2k(C22jD2))

ϕik

��

((A12kA2)2i(C12kC2))2j((B12kB2)2i(D12kD2))

ϕik2jϕ
ik

��

((A12jB1)2i(C12jD1))2k((A22jB2)2i(C22jD2))

ϕij2kϕ
ij

!!

((A12iC1)2k(A22iC2))2j((B12iD1)2k(B22iD2))

ϕjkvv

((A12iC1)2j(B12iD1))2k((A22iC2)2j(B22iD2))

Note that the ϕijs are not required to be isomorphisms. In the associativity diagrams, the
second diagram looks like a backward version of the first, but note the asymmetric condition
that i < j. The flow of the associativity diagrams and the hexagon diagram is upward from
a 2i-product as the central product to a 2j- or 2k-product for i < j or i < j < k.

Theorem 14.7.2. [BFSV03, Theorem 2.2] The group completion of the classifying
space of an n-fold monoidal category is an n-fold based loop space.

14.8. The Category Θn

André Joyal defined in [Jo-a∞] a category Θn for every n ≥ 1, in order to define
weak versions of n-categories. Michael Batanin [Ba08] and Clemens Berger [Be07] used
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the category Θn for understanding n-fold based loop spaces. The categories Θn also play
an important role in higher category theory for the understanding of (∞, n)-categories
[BRez13b, BRez13a, BRez∞].

Definition 14.8.1. Let C be an arbitrary small category.

• The category Θ(C) has objects ([m];C1, . . . , Cm), where [m] is an object of ∆ and the
Cis are objects of C. For m = 0, there is an object ([0]) of Θ(C), which we also denote
by ([0];−). A morphism in Θ(C) from ([m];C1, . . . , Cm) to ([n];D1, . . . , Dn) consists
of an f ∈ ∆([m], [n]) and morphisms gij ∈ C(Ci, Dj) if f(i−1) < j ≤ f(i). For m = 0,
a morphism from ([0],−) to ([n];D1, . . . , Dn) is just a morphism f ∈ ∆([0], [n]).
• The same category Θ(C) is also denoted by ∆ o C and is called the wreath construction

of the category ∆ with the category C.
Remark 14.8.2. Wreath constructions can be with other categories than ∆, and we will

see another example later in Definition 14.8.12. Precursors of this idea can be found as early
as in [Co74].

A nice way of visualizing the objects ([m];C1, . . . , Cm) of the category Θ o C is to write
the object Ci of C between the elements i − 1 and i of [m]. A morphism in Θ o C from
([m];C1, . . . , Cm) to ([n];D1, . . . , Dn) consists of a morphism f ∈ ∆([m], [n]) and morphisms
in C from Ci to Dj whenever the object Ci can see the object Dj, that is, when its view is
not blocked by the arrows of f .

Example 14.8.3. Consider the map f : [4]→ [4] in ∆, which is given by f(0) = 1, f(1) =
2, and f(2) = f(3) = f(4) = 4. A morphism from ([4];C1, C2, C3, C4) to ([4];D1, D2, D3, D4),
with f as the first coordinate, is then of the form

(f, g12 : C1 → D2, g23 : C2 → D3, g24 : C2 → D4).
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Exercise 14.8.4. What are possible morphisms in Θ(C) whose first component is a δi
or a σj?

There is a canonical functor ∆× C → Θ(C).
Definition 14.8.5. We define a functor δ : ∆×C → Θ(C) on objects by setting δ([m], C) :=

([m];C, . . . , C︸ ︷︷ ︸
m

) for m > 0 and δ([0], C) = ([0];−). A pair of morphisms (f, g) with f ∈

∆([m], [n]) and g ∈ C(C,C ′) is sent to the morphism in Θ(C) that has f as a first component
and gij = g whenever gij is defined.
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Recall that we denote the terminal category by [0].

Definition 14.8.6. The categories Θn are defined in an iterative way. We set Θ0 = [0]
and Θn+1 := Θ(Θn).

Note that Θ1 is isomorphic to ∆; thus, if you prefer the wreath notation,

Θn = ∆ o . . . o∆︸ ︷︷ ︸
n

.

Objects in Θ2 are of the form ([n]; [k1], . . . , [kn]), with objects [n], [k1], . . ., [kn] of ∆.
For Θ3, we get an additional copy of ∆ on the left, and for [n] in ∆, we need n objects
([m1]; [k1

1], . . . , [k1
m1

]), . . ., ([mn]; [kn1 ], . . . , [knmn ]) to form an object

([n]; ([m1]; [k1
1], . . . , [k1

m1
]), . . . , ([mn]; [kn1 ], . . . , [knmn ]))

in Θ3. For sake of clarity, we reorder these as

([n]; [m1], . . . , [mn]; [k1
1], . . . , [k1

m1
], . . . , [kn1 ], . . . , [knmn ])

and call [n] the left-most object and ([knj ])mnj=1 the right-most sequence of objects of the object.
The iterative nature of the definition of Θn allows us to connect the categories Θn for

different n via suspension and inclusion functors (see [Rez10, 11.3]).

Definition 14.8.7.
• The suspension functor σn : Θn → Θn+1 sends an object x of Θn to the object ([1];x)

of Θn. A morphism f ∈ Θn(x, y) is sent to the morphism

σn(f) = (1[1]; f) ∈ Θn+1(σn(x), σn(y)).

• The inclusion functor in : Θn → Θn+1 sends an object x ∈ Θn to the object (x; [0], . . . , [0])
of Θn+1, where we add as many instances of [0] as prescribed by the right-most se-
quence of objects in x. On morphisms, in adds the identity on [0] everywhere, where
it is needed.

Remark 14.8.8. Note that the functor δ : ∆×∆→ Θ(∆) = ∆ o∆ from Definition 14.8.5
can be iterated to a functor

(14.8.1) δn : ∆× . . .×∆︸ ︷︷ ︸
n

→ Θn.

Exercise 14.8.9. Convince yourself that for n > 1, the functor δn is neither full nor
faithful, and, of course, it is not essentially surjective.

14.8.1. Trees with n-Levels, Finite Combinatorial n-Disks and Θn. As an alter-
native, you can think about objects of Θn as planar trees with up to n levels. For Θ1 = ∆,
the object [m] for m ≥ 0 corresponds to the planar corolla tree with m leaves,

@
@

@
@
@
@

A
A
A
A
A
A

�
�
�
�
�
�

��
�
��

�
��

�
��
�

. . .

1 2 m− 1 m,
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where the tree is empty for m = 0. As Θ2 = ∆ o ∆, an object ([m]; [n1], . . . , [nm]) of Θ2

corresponds to a planar tree with two levels, where level one is the tree above and the second
level consists of corolla trees with ni leaves, such that the ni-corolla tree in level 2 is glued
to the ith leave in the first level. For example, the object ([2]; [3], [2]) corresponds to

@
@
@

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

1 2 3 1 2.

Exercise 14.8.10. Describe morphisms in Θn in terms of morphisms between planar
n-level trees.

We formalize the description given earlier in order to obtain a model for the opposite
category of Θn, Θo

n, and we use the category of finite combinatorial n-disks in the sense of
[Jo-a∞] as an intermediate category for the comparison.

Recall that n denotes the set {1, . . . , n} with the convention that 0 = ∅.

Definition 14.8.11. [Jo-a∞, p. 3] [Ba08, Def. 4.3] The category Ωn has as objects
chains of order-preserving maps

T = (kn
fn
//kn−1

fn−1
// . . .

f2
//k1

f1
//1).

A morphism from T to

S = (`n
gn
//`n−1

gn−1
// . . .

g2
//`1

g1
//1)

consists of functions (αi : ki → `i, 1 ≤ i ≤ n), such that the diagram

kn

αn
��

fn
// kn−1

fn−1
//

αn−1

��

. . .
f2
// k1

f1
//

α1

��

1

`n
gn
// `n−1

gn−1
// . . .

g2
// `1

g1
// 1

commutes and, such that the restriction of each αi to every fiber f−1
i−1(j) is order-preserving.

As for Θn, the objects of Ωn correspond to planar trees with less or equal to n levels. For
n = 1, we just have objects k1 → 1 of Ω1, which correspond to corollas with k1 leaves.
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If k1 = 0, then we get the empty corolla.
In Ω2, there are corollas stacked on every i ∈ k1, but as we do not only consider surjective

order-preserving functions we might also get empty preimages. A typical example of an
object in Ω2 is

@
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@
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We will establish Ωn as a model for Θo
n up to homotopy equivalence (see [Jo-a∞] and

[Be07, §3.6]). We obtain an immediate model of Θo
n via the category of intervals, I. To this

end, we define the wreath product of the interval category of Definition 10.3.1 with a small
category.

Definition 14.8.12. Let C be a small category.

• The objects of the category I o C are tuples ([n + 1];C1, . . . , Cn), where [n + 1] is an
object of I and the Cis are objects of C.
• A morphism in I o C from ([n + 1];C1, . . . , Cn) to ([m + 1];D1, . . . , Dm) consists of a
g ∈ I([n+ 1], [m+ 1]) and morphisms fij : Ci → Dj in C for all i and j, with f(j) = i.

In contrast to ∆ o C, one can view the objects Ci as being glued to i ∈ [n+ 1], and they
move with f .

Example 14.8.13. Observe that (∆ o ∆)o = Θo
2 is isomorphic to I o I: We know that

I ∼= ∆o; hence, the crucial thing is to observe that the morphisms really move in the opposite
direction.

Consider the morphism
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in ∆ o∆, with g12 : D1 → C2, g13 : D1 → C3, g34 : D3 → C4, g35 : D3 → C5, and g46 : D4 → C6.
The corresponding morphism g = D(f) : [7]→ [6] of proper intervals is

-

XXXXXXXXXXXXz

XXXXXXXXXXXXz

HH
HHH

HHH
HHHHj

XXXXXXXXXXXXz

H
HHH

HHH
HHH

HHj

HH
HHH

HHH
HHHHj

XXXXXXXXXXXXz

0

1

2

3

4

5

6

7

C1

C2

C3

C4

C5

C6

0,

1

2

3

4

5

6

D1

D2

D3

D4

D5

and we obtain f12 : C2 → D1, f13 : C3 → D1, f34 : C4 → D3, f35 : C5 → D3, and f46 : C6 → D4

in I o I.

An iteration of the preceding argument gives that the n-fold iterated wreath product of
I with itself is isomorphic to Θo

n. For brevity, we set

Ψ1 := I, and Ψn := I oΨn−1 for n ≥ 2.

Proposition 14.8.14. For all n ≥ 1,

Ψn
∼= Θo

n.

2

There is a beautiful description in [Jo-a∞] of the category that you can build by us-
ing balls of different dimensions and their canonical inclusion and projection maps. For
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simplicity, consider the standard balls in Euclidean space

Bn := {x ∈ Rn, ||x|| ≤ 1},
with the convention that B0 is a point. We can embed B0 into the boundary of B1 in
two different ways, as the starting point or as the endpoint of the interval B1. In higher
dimensions, you express ∂Bn as the union of the two hemispheres and get two canonical
inclusions Bn−1 → Bn. We also have projection maps qn : Bn → Bn−1 collapsing the last
dimension. The corresponding small category is as follows: We use a variant of the definition
given in [Jo-a∞] and [Be07, Proof of Theorem 3.10], where we require proper intervals as
fibers.

Definition 14.8.15. The category Dn of finite combinatorial n-disks has as objects
sequences of finite sets and functions

(14.8.2) Dn
//Dn−1oo

oo
// . . .oo

oo
//D1oo

oo
//D0 = {∗},oo

oo

with functions qi : Di → Di−1 for 1 ≤ i ≤ n and si, ti : Di−1 → Di for 1 ≤ i ≤ n. These have
to satisfy the following conditions:

• For each x ∈ Di−1, the fiber q−1
i (x) is a proper interval with minimal element si(x)

and maximal element ti(x).
• For all i,

qisi = qiti = 1Di−1
,

ti+1ti = si+1ti, and
ti+1si = si+1si.

• For i ≥ 2, the equalizer of ti and si is si−1(Di−2) ∪ ti−1(Di−2).

A morphism in Dn is a commutative diagram

Dn

fn
��

// Dn−1oo

oo

fn−1

��

// . . .oo

oo
// D1oo

oo

f1

��

// {∗}oo

oo

D′n // D′n−1oo

oo
// . . .oo

oo
// D′1oo

oo
// {∗},oo

oo

such that the fi respect the order of the fibers and the minimal and maximal elements.

Theorem 14.8.16. For all n ≥ 1, the n-fold wreath product of I, Ψn, is equivalent to
Dn.

Proof. We have I = Ψ1
∼= D1. By induction, we assume that the claim is shown for all

k ≤ n− 1, and we show that I o Dn−1
∼= Dn. This is a proof by cutting and stacking.

We define a functor F : I o Dn−1 → Dn by taking an object

([m+ 1], D1
n−1

// . . .oo

oo
//D1

1oo

oo
//D1

0 = {∗}oo

oo
, . . . , Dm

n−1
// . . .oo

oo
//Dm

1oo

oo
//Dm

0 = {∗}oo

oo
)

of I o Dn−1 and stacking it together, sending it to the object

D1
n−1 t . . . tDm

n−1 → . . .→ D1
1 t . . . tDm

1 → [m+ 1]→ {∗}
in Dn, where we have ordered the m endpoints of the objects and have added a minimal and
a maximal element to obtain [m+ 1].

The functor G : Dn → I o Dn−1 cuts a finite combinatorial n-disk, as in (14.8.2), into
m = |D1| − 2 finite combinatorial (n − 1)-disks but remembers the object [m + 1] of I
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from the cutting procedure. We can write D1 = {min, x1, . . . , xm,max} and take the m
combinatorial (n− 1)-disks that lie over x1, . . ., xm.

The functors F and G are defined on morphisms in the only possible way. As F and G
are inverse to each other, this proves the claim. �

If we discard the part of the diagram (14.8.2) that involves the functions si and ti, then
we focus on the inner part of the disks.

Definition 14.8.17.
• The boundary of the set Di of a finite combinatorial n-disk, as in (14.8.2), is ∂Di =
si(Di−1) ∪ ti(Di−1). We set ∂D0 = ∅.

• The interior of the set Di is the complement Di \ ∂Di. We denote it by D̊i.
• The interior of a finite combinatorial n-disk (14.8.2) is the diagram

D̊n
qn
//D̊n−1

qn−1
// . . .

q1
//D̊1

//{∗},
where we abuse notation, and re-use qi for the restriction of qi to the interior.
• Morphisms between such open finite combinatorial n-disks are commutative diagrams

of functions

D̊n
qn
//

fn
��

D̊n−1

qn−1
//

fn−1

��

. . .
q1
// D̊1

f1

��

// {∗}

D̊′n
q′n
// D̊′n−1

qn−1
// . . .

q1
// D̊′1 // {∗},

such that the fis are order-preserving on the fibers of the qis.
• We denote the category of open finite combinatorial n-disks by D̊n.

Proposition 14.8.18.
(1) The categories D̊n and Ωn are isomorphic.
(2) There is a functor

˚(−) : Dn → D̊n,
and ˚(−) has a left adjoint.

Proof.
(1) There is a total ordering on every fiber q−1(x) for qi : D̊i → D̊i−1. We can use the

total ordering on D̊1 in order to identify D̊1 with the labels of the first layer of a tree
in Ωn, |D̊1|. The total ordering on D̊1 induces a total ordering on D̊2 if we order
the fibers, such that the elements in q−1

2 (x) are less than the elements in q−1
2 (y) for

x < y. This allows us to identify D̊2 with the nodes in the second layer of a tree in
Ωn. Iteratively, the object

D̊n
qn
//D̊n−1

qn−1
// . . .

q1
//D̊1

//{∗}

corresponds to a unique tree in Ωn. Morphisms in D̊n correspond to morphisms in
Ωn.

(2) Taking an object in Dn to its interior D̊n defines a functor ˚(−) : Dn → D̊n. We can
take an object

D̊n
qn
//D̊n−1

qn−1
// . . .

q1
//D̊1

//{∗}
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and set D′0 = D0 = {∗}. We define the Dis for 0 < i ≤ n by adding a minimal
and a maximal element to each fiber of qi. This defines Di and also a function
q′i : D

′
i → D′i−1. Then, we define si : Di−1 → Di by sending an x ∈ D′i−1 to the

minimal element in the fiber (q′i)
−1(x), and ti sends x to the maximal element in

(q′i)
−1(x). This defines the left adjoint L to ˚(−) on the level of objects.

For a morphism f in D̊n, we define L(f) by requiring that L(f) is equal to f

on the subsets D̊i ⊂ Di and that it respects minimal and maximal elements in the
fibers. This defines a morphism in Dn.

As ˚(−) forgets structure, it is easy to see that L is left adjoint to ˚(−).
�

Corollary 14.8.19. There is a homotopy equivalence between BΩn and BΘo
n.

Proof. As we have a left-adjoint L to ˚(−), we get that BΩn ' BDn, and we know from
Theorem 14.8.16 that BDn ∼= B(Ψn) and from Proposition 14.8.14 that B(Ψn) ∼= B(Θo

n). �

14.8.2. Θn and n-Fold Loop Spaces. Explaining Berger’s result [Be07] in full detail
would go well beyond the scope of this book, so we only sketch his approach. For functors
X : Θo

n → cg, he has a notion of being reduced, which means that X(in−1(x)) = ∗ for every
object x ∈ Θn−1 and that X([0],−) = ∗. Here, in−1 : Θn−1 → Θn is the inclusion functor from
Definition 14.8.7. Berger defines a topological realization functor | − |Θn [Be07, Corollary
3.11] that sends a functor X : Θo

n → Sets (or X : Θo
n → cg) to a topological space. There is

also a model categorical requirement that ensures the correct homotopical behavior. For a
functor X : Θo

n → cg, one denotes by U(X) the evaluation of X on the object ([1]; [1]; . . . ; [1])
of Θn. Note that this is the object σn−1 ◦ . . . σ1[1], where σi : Θi → Θi+1 is the suspension
functor from Definition 14.8.7.

Theorem 14.8.20. [Be07, Theorem 4.5] Let X : Θo
n → cg be reduced and cofibrant-

fibrant. Then, U(X) is weakly equivalent to Ωn|X|Θn , and hence, in this case, |X|Θn is an
n-fold delooping of X.

Remark 14.8.21. The case n = 1 of the preceding result recovers Segal’s Theorem 14.2.3
that identifies suitable reduced Segal spaces as based loop spaces.

Exercise 14.8.22. Prove that precomposition with δn sends reduced Θn-spaces to re-
duced n-fold simplicial spaces. Here, an n-fold simplicial space Y is reduced when Y ([k1], . . . , [kn]) =
∗ if ki = 0 for one 1 ≤ i ≤ n.

In the algebraic setting, n-fold deloopings are realized by so-called En-homology. Let
k be a commutative ring and let A be a commutative augmented k-algebra. Note that k
is a left and right A-module. We consider the two-sided bar construction of A, B(k,A, k),
as in Definition 10.4.2, which is an algebraic analog of a delooping. If G is a group, then
B({e}, G, {e}) is a model for the classifying space BG, and there is a weak homotopy equiv-
alence G→ ΩBG.

AsA is commutative, the chain complex associated with the simplicial k-moduleB(k,A, k)
carries a multiplication. Let us denote elements in Bp(k,A, k) by [a1 | . . . | ap], omitting the
scalars in k. Then,

(14.8.3) [a1 | . . . | ap] · [ap+1 | . . . | ap+q] =
∑

σ∈Sh(p,q)

sign(σ)[aσ−1(1) | . . . | aσ−1(p+q)],
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where the sum runs over all (p, q)-shuffles, that is, all permutations in the symmetric group
on p+ q letters, which respect the ordering of the first p and the last q elements.

The shuffle multiplication in the bar construction can be encoded by the category Ω2.
Consider the morphism

p + q
ρ
//

s

��

2 //

��

1

p + q // 1 // 1

in Ω2, where ρ maps every i ∈ {1, . . . , p} to 1 and the complement to 2. The unlabelled
morphisms are uniquely determined because 1 is terminal. The function s has to be order-
preserving on the fibers of ρ, so it has to preserve the ordering 1 < . . . < p and p+ 1 < . . . <
p+ q. If s is bijective, then s is a shuffle in Sh(p, q).

The bar construction can be turned into a functor Lk(A; k) from Ω2 to the category of

k-modules by sending an object p + q
ρ
//2 //1 to A⊗p+q. A morphism as considered

earlier induces the shuffle multiplication from (14.8.3). This idea is used in [LR11] in order
to show that En-homology of commutative augmented algebras possesses a functor homology
description. Instead of Ωn, we work with a variant, Epin, that has as objects chains of order-
preserving surjections [LR11, Definition 3.1], whereas in Definition 14.8.11, one allows chains
of arbitrary order-preserving maps.

14.8.3. Θn and Higher Categories. The objects in Θn correspond to certain full
subcategories of the category of strict n-categories. An object in Θ1 is of the form [n] for
some n ≥ 0, and [n] corresponds to the strict 1-category (which is nothing but a category)

0→ 1→ . . .→ n.

An object ([n]; [k1], . . . , [kn]) in Θ2 encodes the strict 2-category, whose set of objects is
[n] = {0, . . . , n} and where we have ki 1-morphisms between the object i−1 and i of [n] and
(ki − 1) 2-morphisms. For example, the object ([5]; [0], [2], [1], [4], [3]) represents the strict
2-category with 1-morphisms

0 //1 77//
''2 ++333 ''��//

??774
%%
99
,,225.

In an n-category, you have k-morphisms for all 1 ≤ k ≤ n.
The suspension functor σn : Θn → Θn+1 upgrades objects to 1-morphisms and i-morphisms

to (i+ 1)-morphisms for i ≤ n.
For instance, the suspension of the object ([5]; [0], [2], [1], [4], [3]) of Θ2 is the object

([1]; [5]; [0], [2], [1], [4], [3]) of Θ3.
Rezk [Rez10, p. 523] considers particular objects Oi in Θi: O0 = [0] is the only object

of Θ0. The suspension of O0 is O1 = ([1];O0) = ([1], [0]). Iteratively, we set

On+1 = σnOn for all n ≥ 0.
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In the interpretation of strict n-categories, On corresponds to an n-cell:

O0 = 0; O1 = 0
0
//1; O2 = 0

0

$$

1

::�� 0 1 , . . .

The term∞-category denotes a higher version of a category, where one has k-morphisms
for all k ≥ 1. If you take a topological space X, you can take its points as objects. A
1-morphism between x and y in X is a path from x to y. If you have two such paths, then a
2-morphism between them could be a continuous map from a unit square that is a basepoint
preserving homotopy between the two paths. But nobody can prevent you at this point from
defining k-morphisms for arbitrary k ≥ 1 as homotopies between the (k−1)-morphisms that
you had. This is the ∞-groupoid of the space X, and Grothendieck’s homotopy hypothesis
demands that everything that wants to be called an∞-groupoid should be equivalent to the
∞-groupoid of a space. An ∞-category then gets rid of the assumption of the invertibility
of morphisms.

An (∞, n)-category is an ∞-category, such that the k-morphisms are weakly invertible
for all k > n. Lurie’s book [Lu09] is the standard reference for the model of quasi-categories
as a model for (∞, 1)-categories. For an overview about other models, see [B18].

Charles Rezk used the category Θn for a model of (∞, n)-categories for n ≥ 1 via Θn-
spaces [Rez10]. Together with Julie Bergner, they compare the model of Θn-spaces to other
models of (∞, n)-categories [BRez13a, BRez∞]. See [B20] for an overview.
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CHAPTER 15

Functor Homology

Let C be a small category and let A be an abelian category. Functor homology assigns to
a functor F : C → A the groups TorC∗(G,F ) for some fixed functor G : Co → A. If you have
your favorite homology theory for some kind of algebraic objects, say associative algebras
over a fixed commutative ground ring k, then a functor homology interpretation would say
that your homology theory applied to some algebra A is of the form TorC∗(G,FA) for some
functor FA depending on A.

Why do we want functor homology interpretations?

• Combinatorial features of the parametrizing category C can be used in order to get
extra structure, additional spectral sequences and more, for instance the Hodge de-
composition of Hochschild homology [Lo98, Theorem 6.4.5] and higher Hochschild
homology [P00a] can be expressed in terms of functor homology.
• Tor- and Ext-functors have universal properties, and this helps to obtain uniqueness

and comparison results: You might want to compare two (co)homology theories by
comparing both of them to functor (co)homology. For instance, the functor homology
description of Gamma homology from [PR00] combined with [P00a, Proposition 2.2]
allows a comparison of Gamma homology with stable homotopy.
• In order to get functor homology interpretations we have to understand what some-

thing really is.

15.1. Tensor Products

We defined coends in 4.4.6 and saw special cases of coends in the form of tensor products.
In all examples, the target category was a cocomplete symmetric monoidal category, and this
is, in fact, the suitable generality for considering such tensor products.

Definition 15.1.1. Let D be a small category, (C,⊗, 1) be a cocomplete symmetric
monoidal category, and F : Do → C and G : D → C be functors. Then, their tensor product,
F ⊗D G, is defined as the coend of the functor

H : Do ×D → C,
where a pair of objects (D1, D2) is mapped to F (D1)⊗G(D2).

Explicitly, F ⊗D G is given as the coequalizer of⊔
f∈D(D1,D2) F (D2)⊗G(D1)

⊔
D(f,1D1

)
//⊔

D(1D2
,f)
//

⊔
objects D of D F (D)⊗G(D).

Example 15.1.2. Let R be a ring, M be a right R-module, and N be a left R-module. Let
R be the category with one object ∗ and with R as endomorphisms. We define FM : Ro → Ab
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as FM(∗) = M and GN : R → Ab as GN(∗) = N . Then, the tensor product of the additive
functors FM and GN can be identified with the tensor product of the right R-module M with
the left R-module N :

FM ⊗R GN
∼= M ⊗R N.

For rings and modules, we know that the tensor product is adjoint to a hom-functor. The
analogous statement is true for tensor products of functors if C is closed and bicomplete. Let
D be a small category and let C be an object of C. For a functor G : D → C, we consider
the functor

Sets(G(−), C) : Do → C, D 7→ C(G(D), C), g ∈ D(D,D′) 7→ C(G(g), C).

This functor is adjoint to the tensor product.

Theorem 15.1.3. Let C be a closed symmetric monoidal and bicomplete category. For
all functors F : Do → C, G : D → C and for all objects C of C, there is an isomorphism in C

C(F ⊗D G,C) ∼= natC(F, C(G(−), C)),

where natC denotes the enriched end of natural transformations from F to C(G(−), C).

Proof. The functor C(−, C) sends colimits to limits, so we can rewrite

C(F ⊗D G,C) ∼= limDC(F (D)⊗G(D), C).

Adjunction tells us that the latter is isomorphic to limDC(F (D), C(G(D), C)), and this limit
is precisely the enriched end of natural transformations, as claimed. �

Remark 15.1.4. As we will mostly work with the target category of k-modules for some
commutative ring with unit k, we will make Theorem 15.1.3 explicit in this setting. For all
functors F : Do → k-mod and G : D → k-mod and for all k-modules M , the k-module of
k-linear maps from F ⊗D G to M is isomorphic to the k-module of natural transformations
from F to k-mod(G(−),M):

(15.1.1) k-mod(F ⊗D G,M) ∼= nat(F, k-mod(G(−),M)).

The following result is a special case of Proposition 9.3.10. We will mostly be interested
in the case, where D has the standard enrichment in C, that is, DC(D1, D2) =

⊔
f∈D(D1,D2) e.

Corollary 15.1.5. Assume that C is a closed symmetric monoidal and bicomplete
category. Let G : D → C be a C-enriched representable functor G = DC(D,−) and let
F : Do → C be an arbitrary functor. Then, there is an isomorphism in C

F ⊗D DC(D,−) ∼= F (D)

that is natural in F and D. Similarly,

DC(−, D)⊗D G ∼= G(D)

for every G : D → C.
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15.2. Tor and Ext

Let A be an abelian bicomplete category. If D is a small category and A has enough pro-
jectives, then the functor categories Fun(D,A) and Fun(Do,A) are again abelian categories
(see Proposition 7.3.7), and they have enough projectives.

Lemma 15.2.1. Assume that A has enough projectives. If P is a projective object in A,
then for all objects D of D,

(15.2.1) FD(P ) =
⊕

f∈D(D,−)

P

is a projective object in Fun(D,A), and Fun(D,A) has enough projectives.

Proof. The evaluation functor

εD : Fun(D,A)→ A, G 7→ G(D)

has
FD : A → Fun(D,A), A 7→

⊕
f∈D(D,−)

A

as a left adjoint, and hence, for P projective, FD(P ) is projective.
Let G be an arbitrary functor G : D → A and let ρD : PD → G(D) be an epimorphism

with PD projective in A. Then, there is an epimorphism⊕
D an object of D

FD(PD)→ G,

whose restriction to a (D, f)-component in
⊕

D an object of D
⊕

f∈D(D,D′) PD is given by the

composite of the epimorphism ρD with G(f),

PD
ρD
//G(D)

G(f)
//G(D′).

�

Hence, we can do homological algebra in these functor categories.

Definition 15.2.2. Let A be a bicomplete abelian category with enough projectives,
and assume that A is closed symmetric monoidal. Let F : Do → A and G : D → A be
functors. Then,

TorD∗ (F,G) := H∗(P∗ ⊗D G),

where P∗ is a projective resolution of F in Fun(Do,A).

Similarly, we can define Ext groups.

Definition 15.2.3. Let F,G : D → A be functors. Then,

Ext∗D(F,G) := H∗(nat(P∗, G)),

where P∗ is a projective resolution of F in Fun(D,A).

Theorem 15.2.4. (Axiomatic description of Tor and Ext) [CE56, III.5], [FFPS03,
p. 110, Proposition 2.1] If H∗ is a functor from Fun(C, k-mod) to the category of graded
k-modules, such that
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• H0(F ) is canonically isomorphic to G⊗C F for all F ∈ Fun(C, k-mod),
• H∗(−) maps short exact sequences of functors in Fun(C, k-mod) to long exact sequences

in a way that is natural in short exact sequences, and
• Hi(F ) = 0 for all projective F and i > 0,

then Hi(F ) ∼= TorCi (G,F ) for all F in Fun(C, k-mod).

15.3. How Does One Obtain a Functor Homology Description?

The following is a common situation. You have a homology theory and you want to
describe it as functor homology, for instance, because you hope that combinatorial features
of the diagram category might give you some additional means for calculations (e.g., via
a spectral sequence) or because you hope to understand your homology theory better by
extracting what diagrams you need, in order to describe it.

There are several functor homology interpretations of homology theories and their appli-
cations in the literature (see, for instance, [Dj∞, FP98, FFPS03, LR11, PR02, PR00],
and [Z16] for a tiny and very biased selection of some of them). But how does one actually
find such a thing? How do you guess the diagram category, and how do you find the ’right’
functors?

Well, it’s not rocket science, and I will explain the procedure by using the example of
Hochschild homology.

First of all, one homology theory can have different descriptions as functor homology.
Hochschild homology has one using the simplicial category [Lo98]. I’ll explain the one from
[PR02].

So, what is Hochschild homology? You start with a commutative ring with unit k, a
k-algebra A, and an A-bimodule M .

Definition 15.3.1. The ith Hochschild homology group of A over k with coefficients in
M , HHki (A;M) is defined as

Hi( . . .
b
// M ⊗ A⊗2 b

// M ⊗ A b
// M ).

Here, the tensor products are over k and b =
∑n

i=0(−1)idi, where

(15.3.1) di(a0 ⊗ . . .⊗ an) =

{
a0 ⊗ . . .⊗ aiai+1 ⊗ . . . an, for i < n and

ana0 ⊗ . . .⊗ an−1, for i = n.

for a0 ∈M and ai ∈ A for 0 < i < n.

A nice way to visualize this is to draw elements in the Hochschild complex in a cyclic
manner:

a0

a1

an

⊗ ⊗

⊗

⊗ · · ·

···
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Then the ith face map in the Hochschild complex just multiplies the elements ai and ai+1

together, where now, the indices have to be read modulo n+1. If we take A as an A-module,
then this gives rise to the important cyclic structure on the Hochschild complex [Lo98]; see
also (15.4.1).

15.3.1. How Do We Guess the Diagram Category? First of all, we do not assume
that A is commutative and that M is a symmetric bimodule, so one should think of the
elements of being ordered, and it is important that we get ai · ai+1 in the ith face map and
not ai+1 · ai. The other important feature is that the coordinate of the bimodule M always
stays on the left. It is acted upon with the face maps d0 and dn, but the leftmost entry is
always in M , and we think of M as being glued to a basepoint. Therefore, if we want to
have a diagram category modelling the Hochschild complex, then it should have basepoint
preserving maps as morphisms.

In every chain degree, we have something of the form M ⊗ A⊗n for n ≥ 0, so we do not
need more than finite sets to model this complex, and the rough idea is to assign M ⊗ A⊗n
to a finite set with n+ 1 elements. That’s it. So, we have

• finite sets,
• with a basepoint,
• an ordering.

The corresponding category is as follows:

Definition 15.3.2. Let Γ(as) be the category of finite pointed associative sets. Its objects
are the finite pointed sets [n] = {0, 1, . . . , n} for n ≥ 0, with 0 as a basepoint. A morphism
in Γ(as)([n], [m]) is a basepoint preserving function of finite sets f : [n]→ [m] together with
a total ordering on each fiber f−1(j) for all j ∈ [m].

Example 15.3.3. An f ∈ Γ(as)([5], [0]) is a function from [5] to [0] (it is automatically
preserving the basepoint), together with a total ordering of the fiber, but here, the only fiber
is [5], so we can identify f with a total ordering of the set {0, . . . , 5}, and this is nothing but
a permutation in Σ6.

In order to model the Hochschild complex, we have to define a functor Lk(A;M) : Γ(as)→
k-mod, such that

HH∗(A;M) ∼= TorΓ(as)
∗ (b̄,Lk(A;M)),

where b̄ : Γ(as)o → k-mod is a functor that we will specify later.

Definition 15.3.4. The functor Lk(A;M) : Γ(as)→ k-mod is defined as

Lk(A;M)[n] := M ⊗ A⊗n,
and for an f ∈ Γ(as)([n], [m]), we set

Lk(A;M)(f)(a0 ⊗ . . .⊗ an) = b0 ⊗ . . .⊗ bm,

where bi =
∏<

f(j)=i aj is the product of the ajs, according to the total order of the fiber

f−1(i).

Example 15.3.5. Let f ∈ Γ(as)([4], [2]) be the morphism with fibers f−1(0) = {0},
f−1(1) = {4}, and f−1(2) = {2 < 1 < 3}.
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Ĵ

0

1

2

3

4

1

2

0

Then,

Lk(A;M)(f)(a0 ⊗ . . .⊗ a4) = a0 ⊗ a4 ⊗ a2 · a1 · a3.

If your algebras are not associative algebras, but are, maybe, algebras over an operad in
the category of sets (see Definition 12.2.1), then a diagram category that you can try is the
category of operators for that operad (see Definition 14.1.1).

So far, we have an educated guess for the diagram category and for the covariant functor.
What we need now is the contravariant functor b̄, which is global; that is, for every Lk(A;M)

for varying A and M , the groups TorΓ(as)
∗ (b̄,Lk(A;M)) should give Hochschild homology.

15.3.2. How to Guess the Functor? In order to guess the correct contravariant
functor b̄ : Γ(as)o → k-mod, we have a look at the bottom part of the Hochschild complex,
because the axiomatic description from Theorem 15.2.4 of the Tor functor tells us that

Tor
Γ(as)
0 (b̄,Lk(A;M)) ∼= b̄⊗Γ(as) Lk(A;M) = HH0(A;M),

and we know that HH0(A;M) ∼= M/〈am−ma,m ∈M,a ∈ A〉. Thus we want a quotient of
M = Lk(A;M)[0], but thanks to Corollary 15.1.5, we can express this as

Lk(A;M)[0] ∼= k{Γ(as)(−, [0])} ⊗Γ(as) Lk(A;M).

The Hochschild complex in chain degree one is

M ⊗ A = Lk(A;M)[1] ∼= k{Γ(as)(−, [1])} ⊗Γ(as) Lk(A;M).

Therefore, we don’t have a choice but to define b̄ as the cokernel of a transformation

d : k{Γ(as)(−, [1])} → k{Γ(as)(−, [0])}.

This transformation is forced on us by the boundary map M ⊗ A → M , which takes
m⊗ a to ma− am, which is an alternating sum of two face maps. The first one takes m⊗ a
to ma (in that order), and the second one switches the elements first and then applies the
module structure map. So, both maps must be induced by morphisms in Γ(as) from [1] to
[0], and there are only two such maps. Both send 0 and 1 to 0, but one has the order 0 < 1
on the fiber and the other map specifies that the order on the fiber is 1 < 0. We call the
first one d0<1 and the second one d1<0. That’s it:

k{Γ(as)(−, [1])} d0<1−d1<0
//k{Γ(as)(−, [0])} // b̄ //0.
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15.3.3. How to Prove that This Is Actually Correct? The steps so far were rather
easy in this case. You didn’t need much creativity to come up with the correct diagram
category and the correct functor. However, guessing an adequate diagram category can be
more involved in other examples (see, for instance, [LR11] or [HV15]). What you have to
do now is to extend the definition of Hochschild homology to functors from Γ(as) to the
category of k-modules. That is straightforward, because here also, you don’t really have a
choice.

Definition 15.3.6. Let F : Γ(as)→ k-mod be a functor. Then, the Hochschild homology
of F , HH∗(F ), is the homology

H∗( . . .
b
// F [2]

b
// F [1]

b
// F [0] ).

Here, b : F [n] → F [n − 1] is b =
∑n

i=0(−1)idi, where di : F [n] → F [n − 1] is di = F (∂i),
and for i 6= n,

∂i : [n]→ [n− 1], ∂−1
i (j) =

{
{j}, for i 6= j,

{i < i+ 1}, for i = j.

However, for i = n,

∂n : [n]→ [n− 1], ∂−1
n (j) =

{
{j}, for j 6= 0,

{n < 0}, for j = n.

With these definitions, you will get that Tor
Γ(as)
0 (b̄, F ) ∼= HH0(F ).

The bad news is that what you have done so far might not work! So what can go wrong?
You have to show that this newly defined Hochschild homology vanishes on projectives in
positive degrees. That is the part of the argument, where you actually have to work.

Proving something for all projective objects might be too involved. Often, one can
simplify things.

Definition 15.3.7. A set of projective objects {P i|i ∈ I} in an abelian category A is
called a family of projective generators, if every object of A can be written as the cokernel
of a morphism from a direct sum of P is.

Lemma 15.3.8. If D is a small category, then the functor category Fun(D, k-mod) always
possesses a family of projective generators given by the family

{k{D(D,−)}, D an object of D}.
Proof. Let F : D → k-mod be a functor. The category of k-modules has the module k

as a projective generator. Using (15.2.1), we get an epimorphism⊕
D and object of D

⊕
f∈D(D,−)

PD → F,

where PD is a direct sum of copies of k. Hence, we get an epimorphism⊕
X

k{D(D,−)} → F,

where X is a suitable indexing set, and hence, the functors k{D(D,−)} are a family of
projective generators. �
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In the case of finite pointed associative set Γ(as), we have the projective generators
Γ(as)n of Fun(Γ(as), k-mod), with

Γ(as)n([m]) = k{Γ(as)([n], [m])},
and thus, one has to show that

HH∗(Γ(as)n) ∼= 0 for ∗ > 0 and for all n ≥ 0.

In [PR02, 2.2], this is done by showing that HH∗(Γ(as)n) is the singular homology with
coefficients in k of n! copies of the standard n-simplex. Thus, we obtain the following:

Theorem 15.3.9. ([PR02, Theorem 1.3] For all F : Γ(as)→ k-mod,

HH∗(F ) ∼= TorΓ(as)
∗ (b̄, F ).

Remark 15.3.10. In [Lo98, Corollary 6.2.3], you find a different functor homology de-
scription of Hochschild homology in terms of the simplicial category ∆ (see Definition 10.1.1):
For all associative k-algebras A and any A-bimodule M ,

HH∗(A;M) ∼= Tor∆
o

∗ (k,Lk(A;M)),

where k is the constant functor k : (∆o)o = ∆ → k-mod with value k. We will show this
later in Corollary 16.5.10. Jolanta S lomińska proved a direct comparison of both functor
homology descriptions, using a decomposition of the category Γ(as). See [S l03] for details.

In other examples, the acyclicity of the projective generators might be proven using an
explicit chain homotopy (e.g. in [PR00]) or a spectral sequence argument (e.g. in [LR11]
and [HV15]).

15.4. Cyclic Homology as Functor Homology

Cyclic homology takes the cyclic symmetry of the Hochschild complex serious. For an
associative k-algebra A, we consider A as an A-bimodule. Then, there is a visible action of
the cyclic group Z/(n+ 1)Z on A⊗n+1 by rotating tensor factors:

(15.4.1)

a0

a1

an

⊗ ⊗

⊗

⊗ · · ·

···

So, in this situation, we do not consider basepoints, but any tensor factor behaves like any
other one, so we work with finite sets instead of finite pointed sets. But, we still consider
associative algebras A, so we need to fix an ordering of elements.

Definition 15.4.1. [PR02] Let F(as) denote the category of finite associative sets. Its
objects are the finite sets [n] = {0, 1, . . . , n} for n ≥ 0, and a morphism f ∈ F(as)([n], [m])
is a function f : [n]→ [m], together with a total ordering of the fibers f−1(i) for 0 ≤ i ≤ n.

The Loday functor Lk(A) := Lk(A;A) can be viewed as a functor Lk(A) : F(as) →
k-mod, sending [n] to A⊗n+1 and Lk(A)(f)(a0⊗. . .⊗an) = b0⊗. . .⊗bm, where bi =

∏<
f(j)=i aj

is the product of the ajs, according to the total order of the fiber f−1(i).
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Remark 15.4.2. Similar to Proposition 14.1.4, one can show that a k-module A is an
associative algebra if and only if Lk(A) : F(as)→ k-mod is a functor.

Remark 15.4.3. Note that Γ(as) is a subcategory of F(as) and that we can also embed
the category ∆ into F(as) by taking the identity on objects and by sending an order-
preserving function to the same function, together with the standard ordering on each fiber.
There are also forgetful functors, that forget orderings, so we get a diagram of categories:

Γ(as)

��

// Γ

��

∆ // F(as) // F .

Actually, we prove in [PR02] that F(as) is isomorphic to the category ∆S from [FiLo91]:
Every morphism f in F(as) has a unique composition as f = g◦h, where g is order-preserving
and h is a permutation.

For every functor F : F(as)→ k-mod, you can define the cyclic homology of F , HC∗(F )
as the homology of the total complex of the cyclic bicomplex. We have to understand HC0(F )
in terms of representable functors. But, HC0(F ) is the zeroth homology of the total complex
of

...

��

...

��

F [1]

d0<1−d1<0

����

F [1]
1−t1
oo

��

. . .
1+t1
oo

F [0] F [0]
1−t0
oo . . . ,

1+t0
oo

where t1 = F ((0, 1)) is the map induced by the transposition (0, 1) and t0 is the identity due
to lack of space for permutations. Thus, 1− t0 = 0 and

HC0(F ) = coker(d0<1 − d1<0 : F [1]→ F [0]).

As earlier, we rewrite that as

HC0(F ) = coker(d0<1 − d1<0 : F(as)1 ⊗F(as) F → F(as)0 ⊗F(as) F )

with F(as)n : F(as)o → k-mod, F(as)n([m]) = k{F(as)([m], [n])}.
So the (educated) guess is to define the functor b as

b = coker(d0<1 − d1<0 : F(as)1 → F(as)0),

and the content of [PR02, Theorem 1.3] is that this actually works.

Theorem 15.4.4. For every F : F(as)→ k-mod,

TorF(as)
∗ (b, F ) ∼= HC∗(F ),

in particular, HC∗(A) ∼= TorF(as)
∗ (b,Lk(A)) for every associative k-algebra A.
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15.5. The Case of Gamma Homology

Gamma homology of a commutative k-algebra A with coefficients in an A-module M
is defined in [RoWh02] in terms of an explicit chain complex. It is a homology theory
that views A as an E∞-algebra and takes its homology in that setting. Robinson develops
an obstruction theory for E∞-structures on ring spectra [Ro03], whose obstruction groups
are the Gamma cohomology groups of the corresponding algebra of cooperations. Gamma
cohomology groups can actually be described as André-Quillen cohomology in the category
of simplicial (or non-negatively graded differential) E∞-algebras [BasRi04, §2]. The ob-
struction groups in Robinson’s approach [Ro03] are therefore isomorphic to the obstruction
groups in the setting of Goerss-Hopkins [GH04], and both approaches have been used in
important applications for establishing E∞-structures on ring spectra.

As we take commutative algebras and as we want a homology theory with coefficients,
our diagram category is Γ, the category of finite pointed sets.

The Loday functor for A and M is defined as earlier:

Lk(A;M) : Γ→ k-mod, [n] 7→M ⊗ A⊗n,

but as we have commutativity, Lk(A;M) is well-defined as a functor on Γ. We don’t have
to specify orderings of the fibers of morphisms. We denote by Γn the functor

Γn : Γo → k-mod, [m] 7→ k{Γ([m], [n])}.

The zeroth Gamma homology group of A over k with coefficients in M , HΓk0(A;M),
is isomorphic to the first Hochschild homology group of A over k with coefficients in M ,
HHk1(A;M) ∼= M ⊗ A/b(M ⊗ A⊗2), where the boundary is

b(m⊗ a1 ⊗ a2) = ma1 ⊗ a2 −m⊗ a1a2 + a2m⊗ a1 for m ∈M,a1, a2 ∈ A.

(For those of you who know about Kähler differentials, HHk1(A;M), and therefore HΓk0(A;M),
is isomorphic to M ⊗A Ω1

A|k.) Thus, HΓ0(A;M) is a quotient of Lk(A;M)[1] by a submodule

generated by an image of Lk(A;M)[2] under the b-differential.

Definition 15.5.1. Let t : Γo → k-mod be the functor

t = coker(χ : Γ2 → Γ1),

with χ = d0 − d1 + d2.

Again, for every F : Γ → k-mod, we come up with a suitable definition of HΓ∗(F ), and
we show the following in [PR00]:

Theorem 15.5.2. For all F : Γ→ k-mod,

HΓ∗(F ) ∼= TorΓ∗ (t, F ),

in particular,

HΓ∗(A;M) ∼= TorΓ∗ (t,Lk(A;M)).

This functor homology description, together with the identification of TorΓ∗ (t, F ) as the
stable homotopy groups of F , made it possible to calculate Gamma homology in some crucial
classes of examples, such as abelian group algebras [RiRo04].
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Example 15.5.3. [RiRo04, Proposition 3.2] A nice sample example is the Gamma
homology of a polynomial ring in one variable k[x] with coefficients in k, with k[x] acting
on k via the augmentation that sends x to zero. Although k[x] is free as a commutative
k-algebra, it is far from being free as an E∞-algebra, and Gamma homology detects this:

HΓ∗(k[x]; k) ∼= Hk∗HZ,

where Hk∗HZ is the stable k-homology of the Eilenberg-MacLane spectrum of the integers.
This is huge. For instance, for k = Fp, we get ’half’ of the dual of the Steenrod algebra:

(HFp)∗HZ ∼=

{
F2[ξ2

1 , ξ2, ξ3, . . .], for p = 2,

Fp[ξ1, ξ2, . . .]⊗ ΛFp(τ1, τ2, . . .), for p odd.

Here, as usual, ξi is of degree 2i − 1 for p = 2 and 2pi − 2 for p odd. The τis are of degree
2pi − 1.

Exercise 15.5.4. Take k = A = M , and show that HΓn(k; k) = 0 for all n ≥ 0 by
identifying Lk(k; k).

15.6. Adjoint Base-Change

For a morphism of rings f : R1 → R2, there is a flat base-change result: If R2 is flat as
an R1-module via f , then there is an isomorphism of Tor groups

TorR2
n (M ⊗R1 R2, N) ∼= TorR1

n (M,Nf )

for all right R1-modules M , all left R2-modules N , and all n ≥ 0. Here, Nf is the R1-module
whose underlying abelian group is N , such that r1.n = f(r1)n for all r1 ∈ R1, n ∈ N .

There is a general base-change result for Tor groups in functor categories. Let C and
D be two small categories, and assume that there is an adjoint pair of functors L : C → D
and R : D → C. Then, we can precompose any functor F : Do → k-mod with Lo : Co →
Do and obtain a functor L∗(F ) : Co → k-mod and precomposition with R maps functors
G : C → k-mod to functors R∗(G) : D → k-mod. These changes of categories always preserve
exactness.

Lemma 15.6.1. Let L : C → D be a functor between small categories and let

0 +3G′
τ +3G

ξ +3G′′ +30

be an exact sequence of functors. Then,

0 +3L∗G′
τ +3L∗G

ξ +3L∗G′′ +30

is exact.

Proof. Exactness is checked objectwise, so the first sequence is exact if and only if

0 //G′(D)
τD
//G(D)

ξD
//G′′(D) //0

is exact for every object D of D. In particular, the sequence is exact for every object L(C)
of D, and hence, the second sequence is exact. �
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So, we do not need flatness for preserving exactness, but we need that the corresponding
functors build an adjoint pair in order to get isomorphisms on Tor groups:

Theorem 15.6.2. [FFPS03, p. 113, Lemma 2.7] For any adjoint pair of functors

C
L
//D

R
oo and any F : Do → k-mod, G : C → k-mod, there are isomorphisms for all n ≥ 0,

TorCn(L∗(F ), G) ∼= TorDn (F,R∗(G)).

Proof. We first show the claim for functors of the form F = k{D(−, D)} and G =
k{C(C,−)}. In these cases we do not get higher Tor groups, and from Corollary 15.1.5, we
obtain

F ⊗D R∗G ∼= R∗G(D)

= k{C(C,RD)}
∼= k{C(−, RD)} ⊗C k{C(C,−)}
∼= k{D(L(−), D)} ⊗C k{C(C,−)}
= L∗F ⊗C G.

This proves the claim for the projective generators and hence for projectives. As the pre-
compositions with L and R are exact functors, the general claim follows. �

Exercise 15.6.3. Assume that C is a small category and D is a small category with an
initial object ∅. Show that the functor i1 : C → C × D, i1(C) = (C,∅) is left adjoint to the
projection functor p1 : C × D → C, with p1(C,D) = C. Formulate the consequence of the
adjoint base-change result of Theorem 15.6.2.
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CHAPTER 16

Homology and Cohomology of Small Categories

There are many variants of the (co)homology of a small category with coefficients in a
suitable system of coefficients. We start with a description of the one that is probably the
most general one and then focus on some important special cases and examples. We close
with a comparison result between functor homology and homology of small categories.

16.1. Thomason Cohomology and Homology of Categories

We follow [GCNT13] for the description of the Thomason (co)homology of categories
and its properties.

Recall that the objects of the category ∆ are of the form [n] = {0 < . . . < n}, and thus,
each of these objects is a category, with objects {0, . . . , n} and morphism coming from the
poset structure. A morphism h ∈ ∆([n], [m]) can be viewed as a functor from the poset
category [n] to [m].

For a small category, the nerve of C is a functor N(C) : ∆o → Sets, [n] 7→ Nn(C). As
earlier, we use the category N(C)\∆o, whose objects are of the form ([n], [fn| . . . |f1]), with
[n] an object of ∆ and [fn| . . . |f1] ∈ Nn(C). A morphism

h ∈ N(C)\∆o(([n], [fn| . . . |f1]), ([m], [gm| . . . |g1]))

is a morphism h ∈ ∆([m], [n]), such that N(C)(h)[fn| . . . |f1] = [gm| . . . |g1]. This is called
the simplex category of C in [GCNT13] and corresponds to the category of elements of a
simplicial sets from Definition 10.2.7. We abbreviate [fn| . . . |f1] to F and [gm| . . . |g1] to G
with F (i− 1 < i) = fi and G(j − 1 < j) = gj. Then, the condition on a morphism h is that
G ◦ h is equal to F . We need suitable coefficients for the (co)homology of the category C.

Definition 16.1.1.
• A Thomason natural system with values in a category E is a functorM : N(C)\∆o → E .
• A contravariant Thomason natural system with values in a category E is a functor
L : (N(C)\∆o)o → E .

If h ∈ N(C)\∆o(([n], F ), ([m], G)) (hence G ◦ h = F ), then we get induced morphisms
M(h) : M([n], G ◦ h)→M(([m], G)) and L(h) : L(([m], G))→ L([n], G ◦ h).

Definition 16.1.2. Let A be an abelian category that is complete and cocomplete and
that has exact products and coproducts.

• The Thomason cochain complex of C with coefficients in M : N(C)\∆o → A has as
nth cochain group

Cn
T (C;M) :=

∏
([n],F ) object of N(C)\∆o

M([n], F ).
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The coboundary map δ : Cn
T (C;M)→ Cn+1

T (C;M) is the alternating sum of the maps
induced by the δi ∈ ∆([n], [n+ 1]):

δ =
n∑
i=0

(−1)iM(δi).

The nth Thomason cohomology group of C with coefficients in M is the nth cohomol-
ogy of the Thomason cochain complex. We denote it by Hn

T (C;M).
• Dually, the nth Thomason chain group of C with coefficients in a contravariant Thoma-

son natural system L is

CT
n (C;L) =

⊕
([n],F ) object of N(C)\∆o

L([n], F ).

The differential is induced by d =
∑n

i=0(−1)iL(δi). The nth Thomason homology
group of C with coefficients in L is the nth homology of the Thomason chain complex.
We denote it by HT

n (C;L).

Remark 16.1.3. Note that the Thomason chain complex actually is a chain complex
associated with a simplicial object in A, and similarly, the Thomason cochain complex is
the cochain complex associated with a cosimplicial object in A.

16.2. Quillen’s Definition

There is a projection functor P : N(C)\∆o → C sending an object ([n], F ) to F (n). If
h ∈ ∆([n], [m]), with F = G ◦ h, then h(n) ≤ m, and, in particular, Cn = Dh(n). The
composite gm ◦ . . . ◦ gh(n)+1 is a morphism from F (n) = Cn to Dm = G(m), and this is what
we define as P (h) : F (n)→ G(m).

Dually, there is a projection P ′ : (N(C)\∆o)o → C defined by P ′([n], F ) = F (0) = C0 and
P ′(h) = gh(0) ◦ . . . ◦ g1, where

gh(0) ◦ . . . ◦ g1 : D0 → Dh(0) = C0.

Definition 16.2.1. Let A be again complete and cocomplete, with exact products and
coproducts. Let K : C → A be a functor. Then, the Thomason natural system associated
with K is the functor

K ◦ P : N(C)\∆o → C → A.
Dually, the precomposition with P ′ defines a contravariant Thomason natural system

associated with K.

Therefore, Thomason homology and cohomology are defined in this context. Explicitly,
we get as a chain complex

CT
n (C, K ◦ P ) =

⊕
[fn|...|f1]∈Nn(C)

K(C0)

and the corresponding nth homology group coincides with Quillen’s definition of Hn(C, K)
[Q73, p. 91]:
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Definition 16.2.2. The homology of a small category C with coefficients in a functor
K : C → A is

Hn(C, K) := HT
n (C, K ◦ P ).

If L is a functor L : C → k-mod that sends every morphism in C to an isomorphism, then
Quillen’s homology of C with coefficients in L has a topological interpretation. Recall from
Theorem 11.5.5 that there is an equivalence of categories between covering spaces of BC and
morphism-inverting functors L : C → Sets. If L has as a target the category of abelian groups,
L : C → Ab, and is morphism-inverting, then its corresponding functor L : C[Mor(C)−1]→ Ab
is a bundle of groups on BC in the sense of [Wh78, VI.1], and hence, such Ls give rise to
local coefficient systems for the homology of BC [Wh78, VI.2].

Theorem 16.2.3. [Q73] Denote byH∗(BC;L) the singular homology of the topological
space BC, with coefficients in the local coefficient system associated with L. Then, there is
an isomorphism

H∗(C;L) ∼= H∗(BC;L).

Proof. We consider the skeleton filtration

BC(0) ⊂ BC(1) ⊂ . . . ⊂ BC(n) ⊂ BC(n+1) ⊂ . . .

The associated spectral sequence has as E1 term

E1
p,q = Hp+q(BC(p), BC(p−1);L),

and this is trivial for q > 0. For q = 0, we get precisely the homology of the normalized
chain complex associated with the simplicial k-module

[p] 7→
⊕

[fp|...|f1]∈Np(C)

L(C0),

and this calculates Hp(C;L). As the spectral sequence converges to the singular homology
of BC with coefficients in L, we get the result. �

Example 16.2.4. Let CG be the category associated with a discrete group G and let k
be a commutative ring with unit. Then, every morphism in CG is an isomorphism, and every
functor L : CG → k-mod satisfies the requirement that L(g) is an isomorphism; hence, we
can apply Quillen’s result and get that H∗(CG;L) is isomorphic to the singular homology
groups of the space BG, with coefficients in the local coefficient system defined by L. Let
M denote L(∗). Then, in addition to being a k-module, M carries a G-action by k-linear
maps via the isomorphisms L(g) for g ∈ G. Hence, M is a module over the group algebra
k[G]. The homology H∗(CG;L) is nothing but the group homology of G, with coefficients in
the k[G]-module M .

16.3. Spectral Sequence for Homotopy Colimits in Chain Complexes

Let k be a commutative ring, D be a small category, and F : D → Ch(k)≥0 be a functor.
We saw in Remark 11.4.7 (11.4.1) that the homotopy colimit of F is the total complex
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associated with the bicomplex

. . .

δ
��

. . .

−δ
��

. . .

⊕
[f2|f1]∈N(D)2

F (s(f1))0

δ

��

⊕
[f2|f1]∈N(D)2

F (s(f1))1

⊕
d

oo

−δ
��

. . .
⊕
d

oo

⊕
[f1]∈N(D)1

F (s(f1))0

δ

��

⊕
[f1]∈N(D)1

F (s(f1))1

⊕
d

oo

−δ
��

. . .
⊕
d

oo

⊕
D∈D F (D)0

⊕
D∈D F (D)1

⊕
d

oo . . . ,
⊕
d

oo

where s(g) denotes the source of a morphism g, δ is the differential coming from the nerve,
and d is the internal differential of the values of F .

To any such total complex, there are two standard spectral sequences [W94, 5.6] converg-
ing to the homology of the total complex. Filtration by columns gives a spectral sequence.
whose E1 term is

E1
p,q = Hv

p (
⊕

[f∗|...|f1]∈N∗(D)

F (s(f1))q),

and these groups are the homology groups of the category D, with coefficients in the functor
Fq, and thus, we obtain the following:

Theorem 16.3.1. For every F : D → Ch≥0, there is a spectral sequence with

E1
p,q = Hp(D;Fq)⇒ Hp+qhocolimDF,

where Fq : D → Ab is the functor given by Fq(D) = F (D)q.

16.4. Baues-Wirsching Cohomology and Homology

Recall the definition of a twisted arrow category of C, Cτ , from Definition 4.5.1. Objects
are the morphisms of C, and a morphism in Cτ from f : C1 → C2 to g : C3 → C4 is a pair of
morphisms (α : C3 → C1, β : C2 → C4), such that g = β ◦ f ◦ α:

C1

f
��

C3
α

oo

g

��

C2
β
// C4.

Baues and Wirsching define in [BW85] the (co)homology of small categories with coef-
ficients that are functors from the twisted arrow category category of C, Cτ , to the category
of abelian groups. They call Cτ the category of factorizations of C.

Definition 16.4.1. Let A be an abelian category. A natural system (in the sense of
Baues and Wirsching) on C is a functor M from Cτ to A.

Lemma 16.4.2. [GCNT13] There is a projection functor ν : N(C)\∆o → Cτ given by

ν([n], F ) = fn ◦ . . . ◦ f1 : C0 → Cn,

ν(h : ([n], F )→ ([m], G)) = (gh(0) ◦ . . . ◦ g1 : D0 → C0, gm ◦ . . . ◦ gh(n)+1 : Cn → Dm)
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C0

fn◦...◦f1

��

D0

gh(0)◦...◦g1
oo

gm◦...◦g1

��

Cn
gm◦...◦gh(n)+1

// Dm.

Definition 16.4.3. Let C be a small category and let M be a natural system on C. The
Baues-Wirsching homology of C with coefficients in M is

HBW
∗ (C;M) = HT

∗ (C;M ◦ ν).

Example 16.4.4. An important class of examples of natural systems in the sense of
Baues-Wirsching is given by functors

D : Co × C → k-mod.

We can view D as a functor D : Cτ → k-mod, by defining

D(f : C1 → C2) := D(C1, C2),

and a morphism (α : C3 → C1, β : C2 → C4) induces a morphism

α∗ ◦ β∗ = β∗ ◦ α∗ = D(α, β) : D(C1, C2)→ D(C3, C4) :

D(C1, C2)
β∗=D(1C1

,β)
//

α∗=D(α,1C2
)

��

D(C1, C4)

α∗=D(α,1C4
)

��

D(C3, C2)
β∗=D(1C3

,β)
// D(C3, C4).

(1) For a commutative ring k, let F : Co → k-mod and G : C → k-mod be functors.
Then,

F ⊗G : Co × C → k-mod, (C,C ′) 7→ F (C)⊗k G(C ′)

gives rise to a Baues-Wirsching natural system.
(2) For an associative ring R, let G1, G2 : C → R-mod. Then,

R-mod(G1, G2) : Co × C → R-mod, (C,C ′) 7→ R-mod(G1(C), G2(C ′))

is a natural system.
(3) Let G : C → k-mod be an arbitrary functor and let k : Co → k-mod be the constant

functor with value k. Then, (k ⊗ G)(C1, C2) ∼= G(C2), and we can identify Baues-
Wirsching homology with Quillen’s homology:

HBW
∗ (C; k ⊗G) ∼= H∗(C;G).

Exercise 16.4.5. Prove that

(16.4.1) HBW
0 (C;F ⊗G) = F ⊗C G

and that H0
BW (C;R-mod(G1, G2)) is the R-module of natural transformations from G1 to

G2, and hence, HBW
0 calculates coends and H0

BW calculates ends.
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16.5. Comparison of Functor Homology and Homology of Small Categories

Mamuka Jibladze and Teimuraz Pirashvili showed in [JP91] that under a mild pro-
jectivity assumption, functor homology can be expressed as Baues-Wirsching homology of
categories with coefficients in a suitable tensor functor. They actually chose to work in the
setting of cohomology. We do not claim any originality for the following result; it is a mere
dualization of their work, and its proof can also be found in [FFPS03, p. 115, Proposition
2.10].

We prove the following result, extending the result from (16.4.1) to positive homological
degree.

Theorem 16.5.1. ([JP91, Corollary 3.11]) Let C be a small category, let k be a com-
mutative ring, and let F : Co → k-mod and G : C → k-mod be functors. If F or G has values
in projective k-modules, then there is an isomorphism

HBW
∗ (C;F ⊗G) ∼= TorC∗(F,G).

The following lemma needs a bit of homological algebra.

Lemma 16.5.2. ([JP91, Proposition 3.7]) Let ε : C• → C−1 be an augmented simplicial
objects in cat. Assume that all categories Ci are small and have the same set of objects, and
assume that the djs and sjs are the identity on objects. Also assume that for every pair of
objects C,C ′ of the Cis, the augmented simplicial set

ε(C,C ′) : C• → C−1(C,C ′)

has a simplicial contraction h. Then, for any functor D : Co−1 × C−1 → k-mod, there is a
spectral sequence

E1
p,q = HBW

q (Cp;D)⇒ HBW
p+q (C−1;D).

Proof. The Baues-Wirsching chain complex of the augmented simplicial object in cat
gives rise to a double complex whose chain group in bidegree (p, q) is CBW

p (Cq;D). To
this bicomplex, we can associate two spectral sequences [W94, Section 5.6], both of which
converge to the homology of the total complex. The first one arises from the filtration by
columns. It takes vertical homology of entries in bidegree (p, ∗), and this gives

IE1
p,q = HBW

q (Cp;D)⇒ Hp+qTot(CBW
∗ (C∗;D)).

Filtration by rows gives the second spectral sequence, with

IIE1
p,q = Hq(C

BW
p (C∗;D))⇒ Hp+qTot(CBW

∗ (C∗;D)).

The simplicial contraction h gives rise to a chain contraction, and therefore, the IIE1 term
is concentrated in the (q = 0)-row with value CBW

p (C−1;D). Hence, this spectral sequence
shows that the abutment is

HpTot(CBW
∗ (C∗;D)) ∼= HBW

p (C−1;D)

and that the first spectral sequence converges to HBW
∗ (C−1;D). �

The next result investigates the homology of categories with coefficients in a tensor
product, where the contravariant tensor factor is of the form C ′ 7→ k{C(C ′, C)}.
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Lemma 16.5.3. ([JP91, Lemma 3.9]) For every small category C, every object C of C,
and every functor G : C → k-mod, we get

H∗(C; k{C(−, C)} ⊗G) ∼=

{
0, if ∗ > 0,

G(C), for ∗ = 0.

Proof. The value of the zeroth homology group is a consequence of Corollary 15.1.5
and Exercise 16.4.5:

k{C(−, C)} ⊗C G ∼= G(C).

We define a chain homotopy

(Hp : CBW
p (C; k{C(−, C)} ⊗G)→ CBW

p+1 (C; k{C(−, C)} ⊗G))p

as follows: We send G(C) to CBW
0 (C; k{C(−, C)} ⊗G) by mapping any element m ∈ G(C)

to 1C ⊗m ∈ k{C(C,C)}⊗G(C). In higher degrees, we send an element g⊗m in component
[fp| . . . |f1] in CBW

p (C; k{C(−, C)} ⊗ G) to 1C ⊗ m in component [g|fp| . . . |f1], which is an

element in CBW
p+1 (C; k{C(−, C)} ⊗G). This defines a chain contraction, as claimed. �

As functor homology TorC∗(F,G) vanishes for projective F , the same has to be true for
the homology of categories with tensor coefficients.

Remark 16.5.4. ([JP91, Lemma 3.10]) We showed in Lemma 15.3.8 that the functors
of the form k{C(−, C)} are a family of projective generators of the category Fun(Co, k-mod);
thus, every projective object of the category Fun(Co, k-mod) receives an epimorphism from
a direct sum of such functors. As we proved in Lemma 16.5.3 that the functors k{C(−, C)}
are acyclic, we get the same result for any projective object F in Fun(Co, k-mod):

HBW
∗ (C;F ⊗G) ∼=

{
F ⊗C G, for ∗ = 0,

0, for ∗ > 0.

The results so far suffice to establish an important spectral sequence that calculates
functor homology via the homology of categories.

Proposition 16.5.5. [JP91, Theorem B] Let C be a small category and let F : Co →
k-mod and G : C → k-mod be functors. Then, there is a spectral sequence

E2
p,q = HBW

p (C;Torkq(F (−), G(−)))⇒ TorCp+q(F,G).

Here, Torkq(F (−), G(−)) : Co × C → k-mod is the functor

(C ′, C) 7→ Torkq(F (C ′), G(C)).

Proof. We calculate TorC∗(F,G) by choosing a projective resolution P∗ in Fun(Co, k-mod)
of F and by taking the homology of P∗ ⊗C G. The resolution P∗ gives a functor

P∗ ⊗G : Co × C → Ch≥0(k),

where in chain degree `, we take

(C ′, C) 7→ P`(C
′)⊗G(C).
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We know that for all `, the homology HBW
∗ (C;P` ⊗G) is concentrated in degree ∗ = 0. The

hyperhomology spectral sequence [W94, 5.7.8] has

E2
p,q = HBW

p (C;Hq(P∗ ⊗G))

and converges in our case to the (p+q)th homology of the complex HBW
0 (C;P∗⊗G) = P∗⊗CG,

which is nothing but TorCp+q(F,G).
For every object C ′ of C, the chain complex P∗(C

′) is a projective resolution of F (C ′).
Every P`(C

′) is a projective k-module because the projectivity of P` as a functor implies the
projectivity on objects. Also, acyclicity is tested objectwise.

Thus, Hq(P∗ ⊗G) is nothing but Torkq(F,G). �

We can now return to the proof of the main result.

Proof of Theorem 16.5.1. By assumption, all values F (C ′) are projective k-modules;
hence, Torkq(F,G) is trivial for q 6= 0 and the earlier spectral sequence collapses to the zeroth
row

E2
p,0 = HBW

p (C;F ⊗G),

and hence, by Proposition 16.5.5, the latter is isomorphic to TorCp(F,G). �

Example 16.5.6. Gamma homology of a functor F : Γ→ k-mod can be described as the
homology of the category Γ,

TorΓ∗ (t, F ) ∼= HBW
∗ (Γ; t� F ),

where t� F : Γo × Γ→ k-mod is the bifunctor in the sense of Baues-Wirsching:

(t� F )([m], [n]) = t[m]⊗ F [n].

An important application of Theorem 16.5.1 is the case, where F is the constant functor
with value k.

Corollary 16.5.7. Let k : Co → k-mod be the constant functor with value k. For every
functor G : C → k-mod, Quillen’s homology H∗(C;G) is isomorphic to TorC∗(k,G).

Proof. By Theorem 16.5.1, we get

H∗(C;G) ∼= HBW
∗ (C; k ⊗G) ∼= TorC∗(k,G)

�

Remark 16.5.8. We know that

H0(C, G) ∼= k ⊗C G,
and the latter is isomorphic to ⊕

C an object of C

G(C)/ ∼,

where the relation ∼ takes into account the morphisms in C. Hence,

H0(C, G) ∼= colimCG.

One can show that colimC is a right-exact functor and that the higher homology groups
Hi(C, G) are the left-derived functors of the colimit functor, often denoted by colimi

CG
[GZ67, Appendix II, Proposition 3.3]. This is compatible with Theorem 16.3.1, because

308



here, we are considering functors with values in k-modules. You can view G as a functor to
chain complexes, such that G(C) is concentrated in chain degree zero. Therefore, the spec-
tral sequence of Theorem 16.3.1 is concentrated in the zeroth column and Hi(C, G) coincides
with the ith homology group of the homotopy colimit of G:

HihocolimCG ∼= Hi(C;G) = colimi
CG.

With C = ∆o, the constant functor is the cosimplicial module k : (∆o)o = ∆ → k-mod,
and Theorem 16.5.1 yields for every simplicial k-module G,

Tor∆
o

∗ (k,G) ∼= H∗(∆
o, G).

In this particular case, we obtain an easy description of these groups.

Proposition 16.5.9. For every simplicial k-module G,

Tor∆
o

∗ (k,G) ∼= H∗(C∗(G)).

Proof. We pick a particular resolution of the functor k. We define Pn = k{∆([n],−)}
and take

d =
n∑
i=0

(−1)idi : k{∆([n],−)} = Pn → Pn−1 = k{∆([n− 1],−)}

as a boundary. We claim that P∗ is a projective resolution of k in the category of cosimplicial
k-modules. For a fixed object [m] of ∆, we obtain a complex of k-modules

. . .
d
//k{∆([n], [m])} d

//k{∆([n− 1], [m])} d
// . . .

d
//k{∆([0], [m])}.

Its homology is isomorphic to the singular homology of ∆m, and this is acyclic, with the
zeroth homology being k, and thus, the complex P∗⊗∆oG calculates Tor∆

o

∗ (k,G). As Pn⊗∆o

G ∼= G[n] and as the boundary gives precisely the boundary operator in the chain complex
associated with G, the same complex also calculates H∗(C∗(G)). �

Corollary 16.5.10. Let A be an associative k-algebra and let M be an A-bimodule.
Then,

HHk∗(A;M) ∼= Tor∆
o

∗ (k,Lk(A,M)) ∼= H∗(∆
o,Lk(A,M)).

309





Index

Ab, 9
abelian category, 123, 182, 291
abelianization, 16
absolute coequalizer, 47
Adams’ cobar construction, 188
additive category, 122
additive functor, 119, 155
adjoint pair of functors, 31, 38, 42, 54, 64,

73, 81, 91, 94, 102, 103, 115, 187, 299
adjunction between categories, 31
A∞-algebra, 250
algebra over a monad, 93, 246
algebra over an operad, 243
amalgamated product of groups, 46
As, 242
associahedra, 250
associative algebras, 297
associative H-space, 255
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cobar construction, 187
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colimDF , 41
colimit, 41, 42, 51, 53, 54, 56, 60, 62, 72,

83, 84, 108, 203

312



Com, 242, 243
comma category, 77
comma category F ↓ D, 78
commutative Hopf algebras, 267
commutative algebras, 266
commutative H-space, 255
commutative monoid in a symmetric

monoidal category, 135
commutative B-space monoid, 276
comonoid in a monoidal category, 132
compactly closed, 144
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complex topological K-theory, 259, 274
components of a natural transformation,

23
composition morphisms in an operad, 240
concrete category, 80, 182
cone, 42
connected category, 21, 82, 84, 216
constant diagram, 41
constant functor, 17, 41
constant simplicial object, 182
contravariant functor, 18
contravariant Thomason natural system,

301
Co, 11
copower, 45
coproduct, 44
cosimplicial object, 181
cosimplicial space, 199
coslice category, 80
cotensor, 163
cotensored category, 163
C⊗, 232, 234
counit of an adjunction, 33
covariant functor, 18
CW, 9

Day convolution product, 62, 170, 208,
262

Dedekind cuts, 183, 191
degeneracies, 182
degenerate n-simplex, 182
delooping, 188, 247, 277, 286
∆, 179

∆n, 182
∆ o C, 279
dense functor, 85
dense subcategory, 85
diagonal morphism, 49
diagonal simplicial set, 197
differential graded coalgebra, 133, 188
dinatural transformation, 68
discrete category, 8, 44, 45, 48, 127
discrete category associated with X, 8
disjoint union of two categories, 10
Dn, 284
domain, 7
dual category of C, 11

Eckmann-Hilton argument, 128, 133, 277
EG, 12, 21, 140
EI category, 11
Eilenberg Mac Lane spectrum, 209, 270,

274
Eilenberg-Moore adjunction of a monad,

94
Eilenberg-Moore spectral sequence, 188
E∞-monoidal functor, 254
E∞-operad in spaces, 249
E∞-operad in chain complexes, 254
E∞-operad in simplicial modules, 254
empty category, 10
end, 69
endomorphism operad, 242, 244
enriched category, 153
enriched Yoneda lemma, 162
epimorphism, 13, 19, 20, 51, 120
equalizers, 49
equivalence of categories, 31
essentially surjective functor, 20
Ext of functors, 291
external product of functors, 170
external product of two simplicial sets,

196
external smash product of Γ-spaces, 272

face maps, 182
faithful functor, 20
family of projective generators, 295
F(as), 296
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fat geometric realization, 198, 221, 268
F -cocartesian, 226
fiber of a functor over an object, 224
fiber product, 50
fibered functor, 226
filtered category, 56
Fin, 39, 130, 134, 266
finite category, 8, 51
finite combinatorial n disks, 284
finitely cocomplete category, 51
finitely complete category, 51
fold map, 44
forgetful functor, 16
42, 253
F (R), 257, 261, 264
Free, 267
free abelian group functor, 17
free T -algebras, 100
free algebras over a monad, 100
free group functor, 17
free product of groups, 45
FT (C), 100
Fubini theorem for ends, 72
full functor, 19
full subcategory, 16
fully faithful functor, 20
FunC(D, C), 171
Fun(C, C ′), 25
functor, 16
functor category, 53, 163
functor preserving colimits, 54
functor preserving limits, 54
fundamental groupoid, 12, 19
Fun(D, C), 53, 163
F\C, 80, 182, 217, 219, 223, 301
FX (Milnor), 249

Γ, 170, 176, 234, 236, 265, 268, 269, 271,
273, 298, 308

Gamma homology, 271, 289, 298, 308
Γ(as), 265, 293
ΓN , 200, 254
Γ(O), 265
Γo, 268
geometric realization, 192

global sections, 18
G(M), 257
G ↓ D (comma category), 60
Gr, 9
graph (for categories), 217
Grayson-Quillen construction, 259
Grothendieck construction, 89, 90, 227
Grothendieck group, 257
Grothendieck opfibration, 227
group algebra, 133
group completion of a commutative and

associative H-space, 262
group completion of an abelian monoid,

258
group with many objects, 12
group-like H-space, 255
groupoid, 11

H-space, 255
HH∗, 292, 295, 298
Hochschild homology, 289, 292, 295, 296,

298
hocolimCF , 219
homology of a small category, Quillen, 303
homotopy colimit, 219, 221, 222, 274, 277,

304, 309
homotopy group of a category, 218
homotopy groups of a simplicial set, 202
homotopy sifted, 222
homotopy terminal, 222
horizontal composition of natural

transformations, 24

I, 11, 135, 170, 173, 176, 209, 261, 274
I, 183
Ibig, 186
IdC, 16
ID, 25
identity functor, 16
identity morphism, 7
identity natural transformation, 25
inclusion functor for Θn, 280
inclusion morphism (coproduct), 44
inductive cone with base C, 22
∞-category, 288
∞-category over g, 235
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∞-category under f , 235
(∞, n)-category, 288
(∞, 1)-category, 288
initial object, 21
injective object, 14
interchange law for natural

transformations, 25
interior of a disk, 285
Iso(C), 11
isomorphism, 11
isomorphism of categories, 19
I-spaces, 170
iterated monoidal category, 277

J , 261
join of categories, 10, 20, 22, 80, 81, 213
join of simplicial sets, 205, 213, 235
J -spaces, 262

K-theory of a small symmetric monoidal
category, 260

Kan complex, 201
k-closed, 144
kernel of a morphism, 120
kernel pair, 51
k-horn of ∆n, 201
k-ification, 144
Kleisli adjunction of a monad, 102
Kleisli category of a monad, 100
Kn, 252
ko, 274
k-open, 144
K(R), 261, 273
k-space, 144
ku, 274
K-vect, 9

Lk(A;M), 293
lax functor between bicategories, 169
lax monoidal functor, 137, 140
lax symmetric monoidal functor, 138, 141
left adjoint functor, 31
left cone on a simplicial set, 206
left Kan extension, 59, 62, 64, 72, 171
Leibniz rule, 132
limit, 48, 51, 53, 54, 56, 72

limiting cone, 42
limDF , 48
local coefficients, 19
local coefficients, simple, 24
locally small category, 8
Loday functor, 269
lower slice of C by F , 81

maximal tree (for categories), 217
MI, 275
monad, 91
monad associated with an operad, 246
monadic functor, 115
monoid, 10, 127, 128, 266
monoid in a monoidal category, 131
monoid with many objects, 10
monoidal category, 128, 233, 252
monoidal ∞-category, 236
monoids, 14
monomorphism, 13, 20, 51, 54, 120
morphism, 7
morphism functor, 17
morphism of algebras over a monad, 93
morphism of algebras over an operad, 244
morphism of bicategories, 168
morphism of comonoids, 133
morphism of monads, 91
morphism of monoids, 132
morphism of operads, 243
morphism-inverting functor, 223
multilinear Yoneda lemma, 162

N∗(A), 200
n-ary part of an operad, 241
natural system (Baues and Wirsching),

304
natural system (Thomason), 301
natural transformation, 23
naturally isomorphic functors, 23
nerve of a small category, 211–213, 219,

235, 301
N(C), 211
nerves are quasi-categories, 211
n-fold monoidal category, 277
n-Gerstenhaber algebra, 250
non-symmetric operad, 250
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normalized chain complex, 200
n-simplex, 182
n-skeleton of a simplicial set, 195

Ω, 11
Ω(N, T,M), 187
ΩnY , 255
1C , 7
1-morphism, 165
open little n-cube, 247
operad, 240
operad of little n-cubes, 247
opposite category of C, 11

p-adic integers, 48
partial function, 100
path components of a small category, 216
p-cocartesian, 236
permutative category, 135, 253, 272
permutoassociahedra, 254
Picard group, 143
Picard groupoid, 143
Picard(C), 143
picture of EΣ3 , 12
πn(C;C), 218
Π(X), 12
π0(C), 216
pointwise left Kan extension, 62, 85, 171
poset, 10, 19
P(R), 261, 273
preadditive category, 119, 154
precofibered functor, 226
prefibered functor, 226
presheaf, 18
product of simplicial sets, 183
product of two categories, 10
product of k-spaces, 145
products, 48
projection map (product), 48
projective cone with base C, 22
projective generators, 295
projective object, 14
pseudofunctor, 169
pullbacks, 49
pushouts, 45

quasi-category, 204, 211, 213
quasi-fibration, 231

real topological K-theory, 259, 274
reduced bar construction of a B-space

monoid, 276
reduced category, 39
reduced simplicial set, 268
reduced simplicial space, 268
reflection, 34, 64
reflective subcategory, 38
representable functor, 27
representable simplicial sets, 182
representation of a functor, 27
restricted Kan complexes, 204
restriction maps, 18
retract, 14
retraction, 14
right adjoint functor, 31
right cone on a simplicial set, 206
right Kan extension, 64, 66, 72
ring with many objects, 119
R-mod, 9

sC, 182
section, 14
Segal construction, 272
Segal K-theory of a permutative category,

273
Segal set, 206
Segal space, 268
semidirect product, 90
semisimplicial category, 198
semisimplicial object, 198
sequential colimit, 43
sequential limits, 48
Sets, 9
sheaf, 50
sifted category, 84, 203
sifted colimits, 84
Σ, 12, 62, 135, 170, 173, 214, 257, 261,

264, 274
simplicial category, 179
simplicial circle, 268
simplicial covering, 223
simplicial groups are Kan complexes, 202

316



simplicial homotopy, 190
simplicial object, 181
simplicial set of maps between two

cosimplicial spaces, 199
simplicial set of morphisms of simplicial

sets, 183
simplicial subset, 200
Sing(X), 201
skeleton of a category, 39
sknX, 195
slice category, 80
small category, 8
smash product of Γ-spaces, 272
smash product of pointed simplicial sets,

269
Smith operad, 249
source, 7
special Γ-space, 271
spectrum associated with a Γ space, 270
sphere spectrum, 270, 274
split coequalizer, 47
SpΣ(C, K), 208
stable homotopy groups of spheres, 43
standard enrichment, 154, 155, 171
Stasheff polytope, 252
Steenrod algebra, 30
strict monoidal category, 127
strict monoidal functor, 137, 141
strict n-category, 287
strict symmetric comonoidal functor, 141
strict symmetric monoidal functor, 138
strictification of (symmetric) monoidal

categories, 138
strict 2-category, 165
strong monoidal functor, 137, 141
strong symmetric comonoidal functor, 141
strong symmetric monoidal functor, 138
subcategory, 15
sum, 44
suspension functor for Θn, 280
suspension spectrum of a simplicial set,

271
symmetric monoidal category, 134, 253
symmetric monoidal ∞-category, 236
symmetric sequences, 170, 173

symmetric spectra, 208
symmetric sphere spectrum, 208

target, 7
tensor, 163
tensor product of functors, 70, 289
tensored category, 163
terminal functor, 82
terminal object, 21
Θ-construction, 279
Θn, 280, 287
Thomason chain complex, 302
Thomason cochain complex, 301
Thomason cohomology, 302
Thomason homology, 302
Thomason natural system, 301
Top, 9
topological K-theory, 259
Top∗, 9, 80
Tor of functors, 291
Tot, 199
totalization of a cosimplicial space, 199
translation category of a group, 12, 21,

140
tree (for categories), 217
triple, 91
tripleable functor, 115
two-sided cobar construction, 187
2-morphism, 165

U(M), 259
underlying category of an enriched

category, 157
underlying set functor, 131
underlying space of a simplicial

topological space, 268
unit morphism in an operad, 240
unit of an adjunction, 33
unital algebra over an operad, 244
unital operad, 243
universal cone, 42
universal group generated by a monoid,

259
upper slice of C by H, 81

VC, 154, 274
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V-category, 153
V-dinatural family, 161
V-end, 161
vertical composition of two natural

transformations, 24
very special Γ-space, 271
V-functor, 154
V-natural transformation, 156
VR, 274

wandering isomorphism, 17
weak Hausdorff space, 145

wreath construction, 279

Yang-Baxter equation, 151
Yoneda embedding, 30
Yoneda lemma, 27, 73, 88, 160, 162, 182
Yoneda lemma, enriched, 162
Yoneda lemma, linear version, 32
Yoneda lemma, multilinear, 162

zero morphism, 21, 119
zero object, 21, 119
Z/g, 235
Zf/, 235
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[Jo-a∞] André Joyal, Disks, duality and Θ-categories, preprint, available on https://ncatlab.org/

nlab/files/JoyalThetaCategories.pdf. 10.3, 10.3, 14.8, 14.8.1, 14.8.11, 14.8.1, 14.8.1
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1955), Exp. No. 18, 8 p. 10.11, 10.12.10

[NS17] Thomas Nikolaus, Steffen Sagave, Presentably symmetric monoidal∞-categories are represented
by symmetric monoidal model categories, Algebr. Geom. Topol. 17 (2017), no. 5, 3189–3212.
11.8.3

[Ou10] David Oury, On the duality between trees and disks, Theory Appl. Categ. 24 (2010), No. 16,
418–450. 10.3

[PS86] Maria Cristina Pedicchio, Sergio Solimini, On a “good” dense class of topological spaces, J. Pure
Appl. Algebra 42 (1986), no. 3, 287–295. 8.4.4

[P00a] Teimuraz Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École
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