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This talk is based on my book chapter: Commutative ring spectra,
to appear in Stable categories and structured ring spectra, edited
by Andrew J. Blumberg, Teena Gerhardt, and Michael A. Hill,
MSRI Book Series, Cambridge University Press.

You find specific references there.

As symmetric monoidal categories of spectra were developed in the
1990s, most of the material is from 1990 onwards.
However, some authors assumed the existence of such models
before that and drew their conclusions and did their calculations
earlier.
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Some features of working with ring spectra

One crucial point is that the sphere spectrum is the initial ring
spectrum.

For ordinary rings this role is played by the integers.
These are embedded into stable homotopy theory via the Eilenberg
Mac Lane spectrum HZ, but there is a lot going on between S and
HZ.
Note that π0S = Z, so the map

π∗S −→ π∗HZ

has π∗>0S as the kernel. So all the interesting information about
the homotopy groups of spheres is lost.
In order to stress how large the gap is between S and HZ or HFp,
we’ll see that there is a Galois extension that sits between S and
the prime field HFp.
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Galois extensions of commutative ring spectra
Definition [Rognes 2008] Let A→ B be a map of commutative
ring spectra and let G be a finite group acting on B via
commutative A-algebra maps.

Assume that S → A→ B is a
sequence of cofibrations. Then A→ B is a G -Galois extension if

1. the canonical map ι : A→ BhG =: FG (EG+,B) is a weak
equivalence and

2.
h : B ∧A B →

∏
G

B (1)

is a weak equivalence.

The first condition is the familiar fixed points condition from
classical Galois theory of fields.
The map ι comes from taking the adjoint of the map

A ∧ EG+
id∧p //A ∧ S0 ∼= A //B

where p : EG+ → S0 collapses EG to the non-base point of S0.
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The map h is adjoint to the composite

B ∧A B ∧ G+ → B ∧A B → B

that comes from the G -action on the right factor of B ∧A B
followed by the multiplication in B.

Informally, if smashes we’d get tensors, then
h(b1 ⊗ b2) = (b1 · g(b2))g∈G .
Note that

∏
G B is isomorphic to F (G+,B), so we could rewrite

the condition in (1) as the requirement that

h : B ∧A B → F (G+,B)

is a weak equivalence.
The condition that the map h from (1) is a weak equivalence is
crucial.
It is also necessary for Galois extensions of discrete commutative
rings in order to ensure that the extension is unramified.
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For instance Z ⊂ Z[i ] satisfies Z[i ]C2 = Z, but
h : Z[i ]⊗Z Z[i ]→ Z[i ]× Z[i ] is not surjective:

h detects the
ramification at the prime 2.
Therefore Z→ Z[i ] is not a C2-Galois extension but Z[12 ]→ Z[12 , i ]
is C2-Galois.
Galois extensions of commutative ring spectra can have rather bad
properties as modules. So the following definition is actually an
additional assumption (this does not happen in the discrete
setting).

Definition A Galois extension A→ B is faithful if it is faithful as
an A-module: for every A-module M with M ∧A B ' ∗ we have
M ' ∗.

Important examples of Galois extensions of commutative ring
spectra are the following. By Cn we denote the cyclic group of
order n.
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I The concept of Galois extensions of commutative ring spectra
corresponds to the one for commutative rings via the
Eilenberg-Mac Lane spectrum functor.

Rognes shows the following: Let R → T be a homomorphism
of discrete commutative rings and let G be a finite group
acting on T via R-algebra homomorphisms.
Then R → T is a G -Galois extension of commutative rings if
and only if HR → HT is a G -Galois extension of commutative
ring spectra.

I The complexification of real vector bundles gives rise to a map
of commutative ring spectra KO → KU from real to complex
topological K-theory. There is a C2-action on KU
corresponding to complex conjugation of complex vector
bundles. Rognes shows that this turns KO → KU into a
C2-Galois extension.

I At an odd prime p there is a p-adic Adams operation on KUp

that gives rise to a Cp−1-action on KUp such that

Lp → KUp '
∨p−2

i=0 Σ2iLp is a Cp−1-Galois extension.
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I Let p be an arbitrary prime. The projection map
π : ECp → BCp = ECp/Cp induces a map on function spectra

F (π+,HFp) : F ((BCp)+,HFp)→ F ((ECp)+,HFp) ∼ HFp

which identifies HFp as a Cp-Galois extension over
F ((BCp)+,HFp).

Note that

π∗F ((BCp)+,HFp) ∼= H−∗(Cp;Fp),

so the map from group cohomology of Cp with coefficients in
Fp to the ground field Fp gives rise to a Cp-Galois extension.
Hence in the world of commutative ring spectra group
cohomology sits between S and HFp as the base of a Galois
extension!
Beware, this Galois extension is not faithful. This observation
is due to Ben Wieland: the Tate construction HFtCp

p isn’t
trivial and it is actually killed by the Galois extension (in the
spectral sequence you augment a Laurent generator to zero).
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I Studying elliptic curves with level structures gives C2-Galois
extensions on the level of topological modular forms with level
structures: TMF0(3)→ TMF1(3) [Mathew-Meier 2015].

For TMF1(3) you consider elliptic curves with one chosen
point of exact order 3 and for TMF0(3) you only remember a
subgroup of order 3. As C2

∼= Z/3Z× this gives a C2-action.

Issues with commutativity
What is the problem? Why don’t we just write down nice
commutative models of our favorite homotopy types and be done
with it?
In algebra, if someone tells you to check whether a given ring is
commutative, you can sit down and check the axiom for
commutativity and you should be fine.
In stable homotopy theory the problem is more involved, since
strict commutativity may only be satisfied by some preferred point
set level model of the underlying associative ring spectrum and the
incarnation of commutativity is an extra structure rather than a
condition.
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with it?

In algebra, if someone tells you to check whether a given ring is
commutative, you can sit down and check the axiom for
commutativity and you should be fine.
In stable homotopy theory the problem is more involved, since
strict commutativity may only be satisfied by some preferred point
set level model of the underlying associative ring spectrum and the
incarnation of commutativity is an extra structure rather than a
condition.
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There are easy examples: If you take singular cohomology with
coefficients in a commutative ring R, then this is represented by
the Eilenberg-Mac Lane spectrum HR and this can be represented
by a commutative ring spectrum.

So it would be nice if we could have explicit models for other
homotopy types that come naturally equipped with a commutative
ring structure. In many important examples this is possible
(bordism spectra, topological K-theory, etc.).
Quite often, however, the spectra that we like are constructed in a
synthetic way: You have some commutative ring spectrum R and
you kill a regular sequence of elements in its graded commutative
ring of homotopy groups, (x1, x2, . . .), xi ∈ π∗(R), and you consider
a spectrum E with homotopy groups π∗(E ) ∼= π∗(R)/(x1, x2, . . .).

Then it is not clear that E is a commutative ring spectrum.
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A notorious example is the Brown-Peterson spectrum, BP.

Take the complex cobordism spectrum MU. Its homotopy groups
are

π∗(MU) = Z[x1, x2, . . .]

where each xi is a generator in degree 2i . If you fix a large even
degree, then you have a lot of possible elements in that degree, so
you might wish to consider a spectrum with sparser homotopy
groups.
Using the theory of (commutative, 1-dimensional) formal group
laws you can do that:
If you consider a prime p, then there is a spectrum, called the
Brown-Peterson spectrum, that corresponds to p-typical formal
group laws.
It can be realized as the image of an idempotent on MU and
satisfies

π∗(BP) ∼= Z(p)[v1, v2, . . .]

but now the algebraic generators are spread out in an exponential
manner:
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The degree of vi is 2pi − 2. You can actually choose the vi as the
xpi−1, so you can think of BP as a quotient of MU in the above
sense.

Since its birth in 1966 its multiplicative properties have been an
important issue.
In 2017 Tyler Lawson finally showed that at the prime 2 BP is not
a commutative ring spectrum! Andrew Senger extended the result
to odd primes.

There are even worse examples: If you take the sphere spectrum S
and you try to kill the non-regular element 2 ∈ π0(S) then you get
the mod-2 Moore spectrum.
That isn’t even a ring spectrum up to homotopy.
You can also kill all the generators vi ∈ π∗(BP) including p = v0,
leaving only one vn alive. The resulting spectrum is the connective
version of Morava K-theory, k(n). At the prime 2 this isn’t even
homotopy commutative.
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Chain algebras and algebras over Eilenberg-Mac Lane
spectra

The derived category of a ring is important in many subjects and
chain complexes are the basic objects of homological algebra.

Ring spectra can help you to study these classical topics:

HR-module and algebra spectra
We collect some results that compare the category of chain
complexes of R-modules with the category of module spectra over
HR. We start with additive statements and move to comparison
results for flavors of differential graded R-algebras.
In the 1980s, so before any strict symmetric monoidal category of
spectra was constructed, Alan Robinson developed the notion of
the derived category, D(E ), of right E -module spectra for every
A∞-ring spectrum E .
He showed that for every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the
derived category of the associated Eilenberg-Mac Lane spectrum,
D(HR).



Chain algebras and algebras over Eilenberg-Mac Lane
spectra

The derived category of a ring is important in many subjects and
chain complexes are the basic objects of homological algebra.
Ring spectra can help you to study these classical topics:

HR-module and algebra spectra
We collect some results that compare the category of chain
complexes of R-modules with the category of module spectra over
HR. We start with additive statements and move to comparison
results for flavors of differential graded R-algebras.
In the 1980s, so before any strict symmetric monoidal category of
spectra was constructed, Alan Robinson developed the notion of
the derived category, D(E ), of right E -module spectra for every
A∞-ring spectrum E .
He showed that for every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the
derived category of the associated Eilenberg-Mac Lane spectrum,
D(HR).



Chain algebras and algebras over Eilenberg-Mac Lane
spectra

The derived category of a ring is important in many subjects and
chain complexes are the basic objects of homological algebra.
Ring spectra can help you to study these classical topics:

HR-module and algebra spectra
We collect some results that compare the category of chain
complexes of R-modules with the category of module spectra over
HR.

We start with additive statements and move to comparison
results for flavors of differential graded R-algebras.
In the 1980s, so before any strict symmetric monoidal category of
spectra was constructed, Alan Robinson developed the notion of
the derived category, D(E ), of right E -module spectra for every
A∞-ring spectrum E .
He showed that for every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the
derived category of the associated Eilenberg-Mac Lane spectrum,
D(HR).



Chain algebras and algebras over Eilenberg-Mac Lane
spectra

The derived category of a ring is important in many subjects and
chain complexes are the basic objects of homological algebra.
Ring spectra can help you to study these classical topics:

HR-module and algebra spectra
We collect some results that compare the category of chain
complexes of R-modules with the category of module spectra over
HR. We start with additive statements and move to comparison
results for flavors of differential graded R-algebras.

In the 1980s, so before any strict symmetric monoidal category of
spectra was constructed, Alan Robinson developed the notion of
the derived category, D(E ), of right E -module spectra for every
A∞-ring spectrum E .
He showed that for every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the
derived category of the associated Eilenberg-Mac Lane spectrum,
D(HR).



Chain algebras and algebras over Eilenberg-Mac Lane
spectra

The derived category of a ring is important in many subjects and
chain complexes are the basic objects of homological algebra.
Ring spectra can help you to study these classical topics:

HR-module and algebra spectra
We collect some results that compare the category of chain
complexes of R-modules with the category of module spectra over
HR. We start with additive statements and move to comparison
results for flavors of differential graded R-algebras.
In the 1980s, so before any strict symmetric monoidal category of
spectra was constructed, Alan Robinson developed the notion of
the derived category, D(E ), of right E -module spectra for every
A∞-ring spectrum E .

He showed that for every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the
derived category of the associated Eilenberg-Mac Lane spectrum,
D(HR).



Chain algebras and algebras over Eilenberg-Mac Lane
spectra

The derived category of a ring is important in many subjects and
chain complexes are the basic objects of homological algebra.
Ring spectra can help you to study these classical topics:

HR-module and algebra spectra
We collect some results that compare the category of chain
complexes of R-modules with the category of module spectra over
HR. We start with additive statements and move to comparison
results for flavors of differential graded R-algebras.
In the 1980s, so before any strict symmetric monoidal category of
spectra was constructed, Alan Robinson developed the notion of
the derived category, D(E ), of right E -module spectra for every
A∞-ring spectrum E .
He showed that for every associative ring R there is an equivalence
of categories between the derived category of R, D(R), and the
derived category of the associated Eilenberg-Mac Lane spectrum,
D(HR).



Work of Schwede and Shipley strengthened the result to a Quillen
equivalence of the corresponding model categories:

Theorem [Schwede-Shipley 2003] The model category of
unbounded chain complexes of R-modules is Quillen equivalent to
the model category of HR-module spectra.

Stefan Schwede uses the setting of Γ-spaces to embed simplicial
rings and modules into the stable world:
He constructs a lax symmetric monoidal Eilenberg-Mac Lane
functor H from simplicial abelian groups to Γ-spaces together with
a linearization functor L in the opposite direction and proves the
following comparison result:

Theorem [Schwede 1999] If R is a simplicial ring, then the
adjoint functors H and L constitute a Quillen equivalence between
the categories of simplicial R-modules and HR-module spectra.
If R is in addition commutative, then H and L induce a Quillen
equivalence between the categories of simplicial R-algebras and
HR-algebra spectra.
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Here, the functor L is left inverse to H and induces an isomorphism
of Γ-spaces

Hom(HA,HB) ∼= H(HomsAb(A,B));

thus H embeds algebra into brave new algebra.

Brooke Shipley extends this equivalence to corresponding
categories of monoids in the differential graded setting:

Theorem [Shipley 2007] For any commutative ring R, the model
categories of unbounded differential graded R-algebras and
HR-algebra spectra are Quillen equivalent.

Dugger and Shipley show that there are examples of HR-algebras
that are weakly equivalent as ring spectra, but whose
corresponding dgas are not quasi-isomorphic.
A concrete example is the differential graded ring A∗ which is
generated by an element in degree 1, e1, and has d(e1) = 2 and
satisfies e41 = 0.
The corresponding HZ-algebra spectrum is equivalent as a ring
spectrum to the one on the exterior algebra B∗ = ΛF2(x2) (with
|x2| = 2) but A∗ and B∗ are not quasi-isomorphic.
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However, a weak equivalence as ring spectra implies for instance
Morita equivalence as dgas.

We cannot expect that commutative HR-algebra spectra
correspond to commutative differential graded R-algebras unless R
is of characteristic zero, because of cohomology operations, but we
get the following result:

Theorem [R-Shipley 2017] If R is a commutative ring, then there
is a chain of Quillen equivalences between the model category of
commutative HR-algebra spectra and E∞-monoids in the category
of unbounded R-chain complexes.
Haldun Özgür Bayındır shows that one can find E∞-differential
graded algebras that are not quasi-isomorphic, but whose
corresponding commutative HR-algebra spectra are equivalent as
commutative ring spectra.
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Shipley and Dugger show, that the two maps

HZ ∼= HZ ∧ S → HZ ∧ HF2

and
HZ ∼= S ∧ HZ→ HZ ∧ HF2

give two equivalent ring structures on the spectrum HZ ∧ HF2.

However, the corresponding dgas are not quasi-isomorphic, so
these ring spectra are not equivalent as HZ-algebra spectra.
Bayındır generalizes this to odd primes, and to commutative ring
spectra and E∞-dgas.
Coming back to our seminar: If R is a commutative ring, then
Q∗(R) is a dg E∞-ring [R 2000].
Its corresponding commutative HZ-algebra was identified by
Horel-Ramzi in 2021 as HZ ∧ HR with HZ mapping to the
HZ-factor. This settles a conjecture by
Fiedorowicz-Pirashvili-Schwänzl-Vogt-Waldhausen from 1995.
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