The Hodge decomposition of higher order Hochschild homology

> Birgit Richter joint work with Stephanie Ziegenhagen

> > BMC March 2013 Sheffield

Hodge decomposition for Hochschild homology

Pirashvili's Hodge decomposition

E_n-homology

A resolution spectral sequence

Hodge decomposition revisited

Assume that A is a commutative, associative and unital k-algebra and let M be a symmetric A-bimodule. Let A and M be k-projective.

Assume that A is a commutative, associative and unital k-algebra and let M be a symmetric A-bimodule. Let A and M be k-projective.

The *i*th Hochschild homology group of A with coefficients in M, $HH_i(A; M)$ is defined as

Assume that A is a commutative, associative and unital k-algebra and let M be a symmetric A-bimodule. Let A and M be k-projective.

The *i*th Hochschild homology group of A with coefficients in M, $HH_i(A; M)$ is defined as

$$H_i(\cdots \xrightarrow{b} M \otimes A^{\otimes 2} \xrightarrow{b} M \otimes A \xrightarrow{b} M$$
).

Assume that A is a commutative, associative and unital k-algebra and let M be a symmetric A-bimodule. Let A and M be k-projective.

The *i*th Hochschild homology group of A with coefficients in M, $HH_i(A; M)$ is defined as

$$H_i(\cdots \xrightarrow{b} M \otimes A^{\otimes 2} \xrightarrow{b} M \otimes A \xrightarrow{b} M$$
).

Here, $b = \sum_{i=0}^{n} (-1)^{i} d_{i}$ where $d_{i}(a_{0} \otimes \ldots \otimes a_{n}) = a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots a_{n}$ for i < n and $d_{n}(a_{0} \otimes \ldots \otimes a_{n}) = a_{n}a_{0} \otimes \ldots \otimes a_{n-1}$.

Let \mathbb{S}^1 be the simplicial model of the unit circle with $\mathbb{S}^1_n = [n] = \{0, 1, ..., n\}$ and face and degeneracy maps d_i , s_i as follows

Let \mathbb{S}^1 be the simplicial model of the unit circle with $\mathbb{S}^1_n = [n] = \{0, 1, ..., n\}$ and face and degeneracy maps d_i , s_i as follows

 $s_i \colon [n] \to [n+1]$ is the unique monotone injection that does not contain i + 1.

Let \mathbb{S}^1 be the simplicial model of the unit circle with $\mathbb{S}^1_n = [n] = \{0, 1, ..., n\}$ and face and degeneracy maps d_i , s_i as follows

 $s_i: [n] \rightarrow [n+1]$ is the unique monotone injection that does not contain i + 1. $d_i: [n] \rightarrow [n-1]$,

$$d_i(j) = \begin{cases} j, & j < i \\ i, & j = i < n, \\ j - 1, & j > i. \end{cases} (0, \quad j = i = n),$$

Let \mathbb{S}^1 be the simplicial model of the unit circle with $\mathbb{S}^1_n = [n] = \{0, 1, ..., n\}$ and face and degeneracy maps d_i , s_i as follows

 $s_i: [n] \rightarrow [n+1]$ is the unique monotone injection that does not contain i + 1. $d_i: [n] \rightarrow [n-1]$,

$$d_i(j) = \begin{cases} j, & j < i \\ i, & j = i < n, \\ j - 1, & j > i. \end{cases} (0, \quad j = i = n),$$

 \mathbb{S}^1 :

$$[0] \xleftarrow{[1]} \xleftarrow{[1]} \xleftarrow{[2]} \cdots$$

Via the 1-sphere, II

Let Γ be the skeleton of the category of finite pointed sets:

Let Γ be the skeleton of the category of finite pointed sets: objects: $[n] = \{0, 1, ..., n\}$, with $n \ge 0$. morphisms: maps of finite sets, preserving the basepoint 0. Let Γ be the skeleton of the category of finite pointed sets: objects: $[n] = \{0, 1, ..., n\}$, with $n \ge 0$. morphisms: maps of finite sets, preserving the basepoint 0. Then we can define $\mathcal{L}(A; M)$ which sends $\Gamma \ni [n] \mapsto M \otimes A^{\otimes n}$. Let Γ be the skeleton of the category of finite pointed sets: objects: $[n] = \{0, 1, ..., n\}$, with $n \ge 0$. morphisms: maps of finite sets, preserving the basepoint 0. Then we can define $\mathcal{L}(A; M)$ which sends $\Gamma \ni [n] \mapsto M \otimes A^{\otimes n}$. Interpreting \mathbb{S}^1 as a functor $\Delta^{op} \to \Gamma$ we get by composition $\mathcal{L}(A; M) \circ \mathbb{S}^1 \colon \Delta^{op} \to k$ -mod and

$$HH_*(A; M) = \pi_*\mathcal{L}(A; M)(\mathbb{S}^1).$$

Classical Hodge decomposition

Let k be a field of characteristic zero. Then

$$HH_{\ell}(A; M) \cong \bigoplus_{j=1}^{\ell} HH_{\ell}^{(j)}(A; M)$$

 $\text{ for } \ell \geq 1.$

Classical Hodge decomposition

Let k be a field of characteristic zero. Then

$$HH_{\ell}(A; M) \cong \bigoplus_{j=1}^{\ell} HH_{\ell}^{(j)}(A; M)$$

for $\ell \geq 1$.

There are many ways to prove that:

- Collapse of a spectral sequence (Quillen),
- combinatorially (Hain, Gerstenhaber-Schack, Loday),
- using functor homology (Pirashvili),

▶

From Quillen's spectral sequence one obtains:

$$HH_m^{(\ell)}(A;\mathbb{Q})\cong H_{m-\ell}(\Lambda^{\ell}(\Omega^1_{P_*|\mathbb{Q}}\otimes_{P_*}\mathbb{Q})).$$

Higher order Hochschild homology

Pirashvili extended the definition to arbitrary pointed simplicial sets, Y_{\bullet} : $\pi_* \mathcal{L}(A; M)(Y_{\bullet})$.

Higher order Hochschild homology

Pirashvili extended the definition to arbitrary pointed simplicial sets, Y_{\bullet} : $\pi_* \mathcal{L}(A; M)(Y_{\bullet})$. Let $HH_*^{[n]}(A; M)$ denote Hochschild homology of order *n*:

$$HH^{[n]}_*(A;M) := \pi_*\mathcal{L}(A;M)(\mathbb{S}^n)$$

for $n \ge 1$.

Parity matters - nothing else

Over \mathbb{Q} , $HH_*^{[n]}(A; M)$ has a decomposition, the *Hodge* decomposition. In our case: $M = \mathbb{Q}$, A an augmented \mathbb{Q} -algebra:

Parity matters - nothing else

Over \mathbb{Q} , $HH_*^{[n]}(A; M)$ has a decomposition, the *Hodge* decomposition. In our case: $M = \mathbb{Q}$, A an augmented \mathbb{Q} -algebra: Theorem [Pirashvili 2000] For odd *n*:

$$HH^{[n]}_{\ell+n}(A;\mathbb{Q})\cong \bigoplus_{i+nj=\ell+n}HH^{(j)}_{i+j}(A;\mathbb{Q}).$$

Here $HH_*^{(j)}(A; \mathbb{Q})$ is the *j*-th Hodge summand of ordinary Hochschild homology.

Parity matters - nothing else

Over \mathbb{Q} , $HH_*^{[n]}(A; M)$ has a decomposition, the Hodge decomposition. In our case: $M = \mathbb{Q}$, A an augmented \mathbb{Q} -algebra: Theorem [Pirashvili 2000] For odd *n*:

$$HH^{[n]}_{\ell+n}(A;\mathbb{Q})\cong \bigoplus_{i+nj=\ell+n}HH^{(j)}_{i+j}(A;\mathbb{Q}).$$

Here $HH_*^{(j)}(A; \mathbb{Q})$ is the *j*-th Hodge summand of ordinary Hochschild homology. For even *n*, however, the summands are different and described as follows in terms of functor homology:

$$HH_{\ell+n}^{[n]}(A;\mathbb{Q})\cong\bigoplus_{i+nj=\ell+n}\operatorname{Tor}_{i}^{\Gamma}(\theta^{j},\mathcal{L}(A,\mathbb{Q})).$$

Parity matters – nothing else

Over \mathbb{Q} , $HH_*^{[n]}(A; M)$ has a decomposition, the Hodge decomposition. In our case: $M = \mathbb{Q}$, A an augmented \mathbb{Q} -algebra: Theorem [Pirashvili 2000] For odd n:

$$HH^{[n]}_{\ell+n}(A;\mathbb{Q})\cong \bigoplus_{i+nj=\ell+n}HH^{(j)}_{i+j}(A;\mathbb{Q}).$$

Here $HH_*^{(j)}(A; \mathbb{Q})$ is the *j*-th Hodge summand of ordinary Hochschild homology. For even *n*, however, the summands are different and described as follows in terms of functor homology:

$$HH_{\ell+n}^{[n]}(A;\mathbb{Q})\cong\bigoplus_{i+nj=\ell+n}\operatorname{Tor}_i^{\Gamma}(\theta^j,\mathcal{L}(A,\mathbb{Q})).$$

Here, $\theta^{j}[n]$ is the dual of the \mathbb{Q} -vector space that is generated by the $S \subset \{1, \ldots, n\}$ with |S| = j.

1. Why do the same pieces show up for varying n, just depending on the parity of n?

Why?

1. Why do the same pieces show up for varying n, just depending on the parity of n?

2. Is there a description of the Hodge pieces for even n in terms of symmetric powers of derived Kähler differentials?

Why?

1. Why do the same pieces show up for varying n, just depending on the parity of n?

2. Is there a description of the Hodge pieces for even n in terms of symmetric powers of derived Kähler differentials?

Answers:

1. Stability result for *n*-Gerstenhaber algebras, that compares *n* to n + 2.

Why?

1. Why do the same pieces show up for varying n, just depending on the parity of n?

2. Is there a description of the Hodge pieces for even n in terms of symmetric powers of derived Kähler differentials?

Answers:

1. Stability result for *n*-Gerstenhaber algebras, that compares *n* to n + 2.

2. Yes!

Let C_n denote the operad of little *n*-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n .

Let C_n denote the operad of little *n*-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

Let C_n denote the operad of little *n*-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n -homology group of \overline{A}_* , $H_s^{E_n}(\overline{A}_*)$ is then the sth derived functor of indecomposables of \overline{A}_* .

Let C_n denote the operad of little *n*-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \bar{A}_* denote the augmentation ideal.

The sth E_n -homology group of \overline{A}_* , $H_s^{E_n}(\overline{A}_*)$ is then the sth derived functor of indecomposables of \overline{A}_* .

I.e., it is Quillen homology of the E_n -algebra A_* .

Let C_n denote the operad of little *n*-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \overline{A}_* denote the augmentation ideal.

The sth E_n -homology group of \overline{A}_* , $H_s^{E_n}(\overline{A}_*)$ is then the sth derived functor of indecomposables of \overline{A}_* .

I.e., it is Quillen homology of the E_n -algebra A_* .

Theorem [Fresse 2011] There is an *n*-fold bar construction for E_n -algebras, B^n , such that

$$H_s^{E_n}(\bar{A}_*)\cong H_s(\Sigma^{-n}B^n(\bar{A}_*)).$$

Let C_n denote the operad of little *n*-cubes. Then $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n . For an augmented E_n -algebra A_* let \overline{A}_* denote the augmentation ideal.

The sth E_n -homology group of \overline{A}_* , $H_s^{E_n}(\overline{A}_*)$ is then the sth derived functor of indecomposables of \overline{A}_* .

I.e., it is Quillen homology of the E_n -algebra A_* .

Theorem [Fresse 2011] There is an *n*-fold bar construction for E_n -algebras, B^n , such that

$$H_s^{E_n}(\bar{A}_*) \cong H_s(\Sigma^{-n}B^n(\bar{A}_*)).$$

I.e., E_n -homology is the homology of an *n*-fold algebraic delooping.

Assume A is an augmented commutative k-algebra. Then

 $HH_*^{[n]}$ and $H_*^{E_n}$

Assume A is an augmented commutative k-algebra. Then

$$H^{E_n}_*(\bar{A})\cong HH^{[n]}_{*+n}(A;k)$$

Assume A is an augmented commutative k-algebra. Then

$$H^{E_n}_*(\bar{A})\cong HH^{[n]}_{*+n}(A;k)$$

Setting: In the following k is a field, most of the times $k = \mathbb{Q}$. The underlying chain complex of A_* is non-negatively graded.

n-Lie algebras

Definition An *n*-Lie algebra over \mathbb{Q} is a non-negatively graded \mathbb{Q} -vector space, \mathfrak{g}_* , together with a Lie bracket of degree n, [-,-]:

[-,-]: $\mathfrak{g}_i \otimes \mathfrak{g}_j \to \mathfrak{g}_{i+j+n}, i,j \geq 0.$
n-Lie algebras

Definition An *n*-Lie algebra over \mathbb{Q} is a non-negatively graded \mathbb{Q} -vector space, \mathfrak{g}_* , together with a Lie bracket of degree n, [-, -]:

$$[-,-]$$
: $\mathfrak{g}_i \otimes \mathfrak{g}_j \to \mathfrak{g}_{i+j+n}, i,j \geq 0.$

1. [-, -] satisfies a graded Jacobi relation:

 $(-1)^{pr}[x,[y,z]] + (-1)^{qp}[y,[z,x]] + (-1)^{rq}[z,[x,y]] = 0,$

2. and graded antisymmetry:

$$[x, y] = -(-1)^{pq}[y, x].$$

Here, p = |x| + n, q = |y| + n and r = |z| + n.

Definition An *n*-Gerstenhaber algebra over \mathbb{Q} is an *n*-Lie algebra G_* together with a unital commutative \mathbb{Q} -algebra structure on G_* and an augmentation $\varepsilon \colon G_* \to \mathbb{Q}$ such that the Poisson relation holds

 $[a, bc] = [a, b]c + (-1)^{q(r-n)}b[a, c]$, for all homogeneous $a, b, c \in G_*$

with |a| = q - n, |b| = r - n, and such that $\varepsilon[a, b] = 0$.

For a graded vector space V_* let $nL(V_*)$ be the free *n*-Lie algebra on V_* .

For a graded vector space V_* let $nL(V_*)$ be the free *n*-Lie algebra on V_* .

The free graded commutative algebra $S(nL(V_*))$ has a well-defined *n*-Gerstenhaber structure and is in fact the free *n*-Gerstenhaber algebra generated by V_* :

For a graded vector space V_* let $nL(V_*)$ be the free *n*-Lie algebra on V_* .

The free graded commutative algebra $S(nL(V_*))$ has a well-defined *n*-Gerstenhaber structure and is in fact the free *n*-Gerstenhaber algebra generated by V_* :

 $nG(V_*) = S(nL(V_*)).$

For a graded vector space V_* let $nL(V_*)$ be the free *n*-Lie algebra on V_* .

The free graded commutative algebra $S(nL(V_*))$ has a well-defined *n*-Gerstenhaber structure and is in fact the free *n*-Gerstenhaber algebra generated by V_* :

$$nG(V_*)=S(nL(V_*)).$$

For $G_* \in nG$ let $Q_{nG}(G_*)$ be the graded vector space of indecomposables.

1

Homology of free objects

A classical Lemma [Cohen] In characteristic zero:

$$H_*(E_n(\overline{A}_*)) \cong nG(H_*(\overline{A}_*)).$$

Resolution spectral sequence

Theorem There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_n}(\bar{A}_*).$$

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_n}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$.

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_n}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$. $E_{p,q}^1: H_q^{E_n}(E_n^{p+1}(\bar{A}_*)) \cong H_q(E_n^p(\bar{A}_*))$

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_n}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$. $E_{p,q}^1: H_q^{E_n}(E_n^{p+1}(\bar{A}_*)) \cong H_q(E_n^p(\bar{A}_*))$

$$H_q(E_n^p(\bar{A}_*)) \cong nG^p(H_*\bar{A}_*)_q \cong Q_{nG}(nG^{p+1}(H_*\bar{A}_*))_q.$$

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_n}(\bar{A}_*).$$

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$. $E_{p,q}^1: H_q^{E_n}(E_n^{p+1}(\bar{A}_*)) \cong H_q(E_n^p(\bar{A}_*))$

$$H_q(E_n^p(\bar{A}_*)) \cong nG^p(H_*\bar{A}_*)_q \cong Q_{nG}(nG^{p+1}(H_*\bar{A}_*))_q.$$

 d^1 takes homology wrt resolution degree.

Hodge summands as Quillen homology of Gerstenhaber algebras

Theorem Let A be a commutative augmented \mathbb{Q} -algebra. For all $\ell, k \geq 1$ and $m \geq 0$:

►

$$HH_{m+1}^{(\ell)}(A;\mathbb{Q})\cong (\mathbb{L}_m Q_{2kG}\overline{A})_{(\ell-1)2k}.$$

Hodge summands as Quillen homology of Gerstenhaber algebras

Theorem Let A be a commutative augmented \mathbb{Q} -algebra. For all $\ell, k \geq 1$ and $m \geq 0$:

►

$$HH_{m+1}^{(\ell)}(A;\mathbb{Q})\cong (\mathbb{L}_m Q_{2kG}\bar{A})_{(\ell-1)2k}.$$

$$\operatorname{Tor}_{m-\ell+1}^{\Gamma}(\theta^{\ell},\mathcal{L}(A;\mathbb{Q}))\cong (\mathbb{L}_mQ_{(2k-1)G}\bar{A})_{(\ell-1)(2k-1)}.$$

Resolution spectral sequence collapses (formality). Match the summands!

Resolution spectral sequence collapses (formality). Match the summands! Main ingredient: a stability result

$$(\mathbb{L}_m Q_{nG}\overline{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\overline{A})_{q(n+2)}.$$

Resolution spectral sequence collapses (formality). Match the summands! Main ingredient: a stability result

$$(\mathbb{L}_m Q_{nG}\bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\bar{A})_{q(n+2)}.$$

Proof of stability:

We consider the standard resolution that calculates $(\mathbb{L}_m Q_{nG}\bar{A})$. In simplicial degree ℓ and internal degree r this is $(nG)^{\ell+1}(\bar{A})_r$.

Resolution spectral sequence collapses (formality). Match the summands! Main ingredient: a stability result

$$(\mathbb{L}_m Q_{nG}\bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\bar{A})_{q(n+2)}.$$

Proof of stability:

We consider the standard resolution that calculates $(\mathbb{L}_m Q_{nG}\bar{A})$. In simplicial degree ℓ and internal degree r this is $(nG)^{\ell+1}(\bar{A})_r$. This resolution is concentrated in degrees of the form r = qn because iterated *n*-Lie brackets on degree zero elements are concentrated in these degrees.

Resolution spectral sequence collapses (formality). Match the summands! Main ingredient: a stability result

$$(\mathbb{L}_m Q_{nG}\bar{A})_{qn} \cong (\mathbb{L}_m Q_{(n+2)G}\bar{A})_{q(n+2)}.$$

Proof of stability:

We consider the standard resolution that calculates $(\mathbb{L}_m Q_{nG} \bar{A})$. In simplicial degree ℓ and internal degree r this is $(nG)^{\ell+1}(\bar{A})_r$. This resolution is concentrated in degrees of the form r = qn because iterated *n*-Lie brackets on degree zero elements are concentrated in these degrees.

 $(nG)^{\ell+1}(\bar{A})_{qn} \cong ((n+2)G)^{\ell+1}(\bar{A})_{q(n+2)}$: exchange *n*-Lie brackets by (n+2)-Lie brackets and adjust the internal degrees. This yields an isomorphism of resolutions and hence an isomorphism on the corresponding homology groups.

Exterior and symmetric powers of derived Kähler differentials

Theorem For every augmented commutative \mathbb{Q} -algebra A we can identify the Hodge summands of Hochschild homology of order 2k for $k \ge 1$ as

$$\operatorname{Tor}_{m+1-\ell}^{\Gamma}(\theta^{\ell}, \mathcal{L}(A; \mathbb{Q})) \cong (\mathbb{L}_{m}Q_{(2k-1)}\overline{A})_{(2k-1)(\ell-1)} \\ \cong H_{m-\ell+1}(\operatorname{Sym}^{\ell}(\Omega^{1}_{P_{*}|\mathbb{Q}} \otimes_{P_{*}} \mathbb{Q})).$$

We also recover the identification for Hodge summands of Hochschild homology of odd order:

$$HH_{m+1}^{(\ell)}(A;\mathbb{Q})\cong \mathbb{L}_m Q_{2kG}(\bar{A})_{2k(\ell-1)}\cong H_{m-\ell+1}(\Lambda^{\ell}(\Omega^1_{P_*|\mathbb{Q}}\otimes_{P_*}\mathbb{Q})).$$

Proof

Input: For A = S(V) for an *n*-Lie algebra V and S(V) with the induced *n*-Gerstenhaber structure one has

$$(\mathbb{L}_p Q_{nG}(S(V)))_q \cong (\mathbb{L}_p Q_{nL}(V))_q.$$

Consider: $C_{*,*} =$ $(SI)^{\circ(3)}(A) \longleftarrow (nG)((SI)^{\circ(3)}(A)) \longleftarrow (nG)^{\circ(2)}((SI)^{\circ(3)}(A)) \leftarrow$ $(SI)^{\circ(2)}(A) \longleftarrow (nG)((SI)^{\circ(2)}(A)) \longleftarrow (nG)^{\circ(2)}((SI)^{\circ(2)}(A)) \leftarrow$ $(SI)(A) \leftarrow (nG)((SI)(A)) \leftarrow (nG)^{\circ(2)}((SI)(A)) \leftarrow (nG)^{\circ(2)}((SI)($

Proof cont.

$$H^h_r(H^v_s(C_{*,*})) \cong \mathbb{L}_r Q_{nG}(\bar{A})$$

concentrated in the (s = 0)-line.

Proof cont.

$$H^h_r(H^v_s(C_{*,*})) \cong \mathbb{L}_r Q_{nG}(\bar{A})$$

concentrated in the (s = 0)-line.

$$H_r^{\mathsf{v}}(H_s^h(C_{*,*})) \cong H_r \mathbb{L}_s Q_{nG}(SI)^{\circ(\bullet+1)}(A).$$

Proof cont.

$$H^h_r(H^v_s(C_{*,*})) \cong \mathbb{L}_r Q_{nG}(\bar{A})$$

concentrated in the (s = 0)-line.

$$H_r^{\mathsf{v}}(H_s^h(C_{*,*})) \cong H_r \mathbb{L}_s Q_{nG}(SI)^{\circ(\bullet+1)}(A).$$

This is *n*-Lie-homology of a trivial *n*-Lie algebra and this causes the symmetric and exterior powers of $\Omega^1_{P_*|\mathbb{Q}} \otimes_{P_*} \mathbb{Q}$ for $P_t = (SI)^{\circ(t+1)}(A)$.