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Hochschild homology

Assume that A is a commutative, associative and unital k-algebra
and let M be a symmetric A-bimodule. Let A and M be
k-projective.

The ith Hochschild homology group of A with coefficients in M,
HHi (A;M) is defined as

Hi ( . . .
b // M ⊗ A⊗2 b // M ⊗ A

b // M ).

Here, b =
∑n

i=0(−1)idi where
di (a0 ⊗ . . .⊗ an) = a0 ⊗ . . .⊗ aiai+1 ⊗ . . . an for i < n and
dn(a0 ⊗ . . .⊗ an) = ana0 ⊗ . . .⊗ an−1.
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Via the 1-sphere

Let S1 be the simplicial model of the unit circle with
S1
n = [n] = {0, 1, . . . , n} and face and degeneracy maps di , si as

follows

si : [n]→ [n + 1] is the unique monotone injection that does not
contain i + 1.
di : [n]→ [n − 1],

di (j) =


j , j < i

i , j = i < n, (0, j = i = n),

j − 1, j > i .

S1:

[0] // [1]oo

oo //

// [2] · · ·
oo

oo

oo
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Via the 1-sphere, II

Let Γ be the skeleton of the category of finite pointed sets:

objects: [n] = {0, 1, . . . , n}, with n ≥ 0.
morphisms: maps of finite sets, preserving the basepoint 0.
Then we can define L(A;M) which sends Γ 3 [n] 7→ M ⊗ A⊗n.
Interpreting S1 as a functor ∆op → Γ we get by composition
L(A;M) ◦ S1 : ∆op → k-mod and

HH∗(A;M) = π∗L(A;M)(S1).
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Classical Hodge decomposition

Let k be a field of characteristic zero. Then

HH`(A;M) ∼=
⊕̀
j=1

HH
(j)
` (A;M)

for ` ≥ 1.

There are many ways to prove that:

I Collapse of a spectral sequence (Quillen),

I combinatorially (Hain, Gerstenhaber-Schack, Loday),

I using functor homology (Pirashvili),

I ...

From Quillen’s spectral sequence one obtains:

HH
(`)
m (A;Q) ∼= Hm−`(Λ`(Ω1

P∗|Q ⊗P∗ Q)).
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Higher order Hochschild homology

Pirashvili extended the definition to arbitrary pointed simplicial
sets, Y•: π∗L(A;M)(Y•).

Let HH
[n]
∗ (A;M) denote Hochschild homology of order n:

HH
[n]
∗ (A;M) := π∗L(A;M)(Sn)

for n ≥ 1.
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Parity matters – nothing else

Over Q, HH
[n]
∗ (A;M) has a decomposition, the Hodge

decomposition. In our case: M = Q, A an augmented Q-algebra:

Theorem [Pirashvili 2000] For odd n:

HH
[n]
`+n(A;Q) ∼=

⊕
i+nj=`+n

HH
(j)
i+j(A;Q).

Here HH
(j)
∗ (A;Q) is the j-th Hodge summand of ordinary

Hochschild homology. For even n, however, the summands are
different and described as follows in terms of functor homology:

HH
[n]
`+n(A;Q) ∼=

⊕
i+nj=`+n

TorΓ
i (θj ,L(A,Q)).

Here, θj [n] is the dual of the Q-vector space that is generated by
the S ⊂ {1, . . . , n} with |S | = j .
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Why?

1. Why do the same pieces show up for varying n, just depending
on the parity of n?

2. Is there a description of the Hodge pieces for even n in terms of
symmetric powers of derived Kähler differentials?

Answers:
1. Stability result for n-Gerstenhaber algebras, that compares n to
n + 2.
2. Yes!
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Little n-cubes

Let Cn denote the operad of little n-cubes.
Then (C∗Cn(r))r , r ≥ 1 is an operad in the category of chain
complexes. Let En be a cofibrant replacement of C∗Cn.

For an augmented En-algebra A∗ let Ā∗ denote the augmentation
ideal.

The sth En-homology group of Ā∗, H
En
s (Ā∗) is then the sth derived

functor of indecomposables of Ā∗.
I.e., it is Quillen homology of the En-algebra A∗.

Theorem [Fresse 2011] There is an n-fold bar construction for
En-algebras, Bn, such that

HEn
s (Ā∗) ∼= Hs(Σ−nBn(Ā∗)).

I.e., En-homology is the homology of an n-fold algebraic delooping.
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s (Ā∗) ∼= Hs(Σ−nBn(Ā∗)).
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En
s (Ā∗) is then the sth derived

functor of indecomposables of Ā∗.
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HH
[n]
∗ and HEn

∗

Assume A is an augmented commutative k-algebra. Then

HEn
∗ (Ā) ∼= HH

[n]
∗+n(A; k)

Setting: In the following k is a field, most of the times k = Q.
The underlying chain complex of A∗ is non-negatively graded.



HH
[n]
∗ and HEn

∗

Assume A is an augmented commutative k-algebra. Then

HEn
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n-Lie algebras

Definition An n-Lie algebra over Q is a non-negatively graded
Q-vector space, g∗, together with a Lie bracket of degree n, [−,−]:

[−,−] : gi ⊗ gj → gi+j+n, i , j ≥ 0.

1. [−,−] satisfies a graded Jacobi relation:

(−1)pr [x , [y , z ]] + (−1)qp[y , [z , x ]] + (−1)rq[z , [x , y ]] = 0,

2. and graded antisymmetry:

[x , y ] = −(−1)pq[y , x ].

Here, p = |x |+ n, q = |y |+ n and r = |z |+ n.
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n-Gerstenhaber algebras

Definition An n-Gerstenhaber algebra over Q is an n-Lie algebra
G∗ together with a unital commutative Q-algebra structure on G∗
and an augmentation ε : G∗ → Q such that the Poisson relation
holds

[a, bc] = [a, b]c+(−1)q(r−n)b[a, c], for all homogeneous a, b, c ∈ G∗

with |a| = q − n, |b| = r − n, and such that ε[a, b] = 0.



Free objects and indecomposables

For a graded vector space V∗ let nL(V∗) be the free n-Lie algebra
on V∗.

The free graded commutative algebra S(nL(V∗)) has a well-defined
n-Gerstenhaber structure and is in fact the free n-Gerstenhaber
algebra generated by V∗:

nG (V∗) = S(nL(V∗)).

For G∗ ∈ nG let QnG (G∗) be the graded vector space of
indecomposables.
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Homology of free objects

A classical Lemma [Cohen] In characteristic zero:

H∗(En(Ā∗)) ∼= nG (H∗(Ā∗)).



Resolution spectral sequence

Theorem There is a spectral sequence

E 2
p,q
∼= (LpQnG (H∗(Ā∗)))q ⇒ HEn

p+q(Ā∗).

Proof: Standard resolution E •+1
2 (Ā∗).

E 1
p,q : HEn

q (Ep+1
n (Ā∗)) ∼= Hq(Ep

n (Ā∗))

Hq(Ep
n (Ā∗)) ∼= nGp(H∗Ā∗)q ∼= QnG (nGp+1(H∗Ā∗))q.

d1 takes homology wrt resolution degree.
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n (Ā∗)) ∼= nGp(H∗Ā∗)q ∼= QnG (nGp+1(H∗Ā∗))q.

d1 takes homology wrt resolution degree.



Resolution spectral sequence

Theorem There is a spectral sequence

E 2
p,q
∼= (LpQnG (H∗(Ā∗)))q ⇒ HEn
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2 (Ā∗).

E 1
p,q : HEn

q (Ep+1
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d1 takes homology wrt resolution degree.



Hodge summands as Quillen homology of Gerstenhaber
algebras

Theorem Let A be a commutative augmented Q-algebra. For all
`, k ≥ 1 and m ≥ 0:

I

HH
(`)
m+1(A;Q) ∼= (LmQ2kG Ā)(`−1)2k .

I

TorΓ
m−`+1(θ`,L(A;Q)) ∼= (LmQ(2k−1)G Ā)(`−1)(2k−1).
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Idea of proof

Resolution spectral sequence collapses (formality).
Match the summands!

Main ingredient: a stability result

(LmQnG Ā)qn ∼= (LmQ(n+2)G Ā)q(n+2).

Proof of stability:
We consider the standard resolution that calculates (LmQnG Ā). In
simplicial degree ` and internal degree r this is (nG )`+1(Ā)r .
This resolution is concentrated in degrees of the form r = qn
because iterated n-Lie brackets on degree zero elements are
concentrated in these degrees.
(nG )`+1(Ā)qn ∼= ((n + 2)G )`+1(Ā)q(n+2): exchange n-Lie brackets
by (n + 2)-Lie brackets and adjust the internal degrees.
This yields an isomorphism of resolutions and hence an
isomorphism on the corresponding homology groups.
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Exterior and symmetric powers of derived Kähler
differentials

Theorem For every augmented commutative Q-algebra A we can
identify the Hodge summands of Hochschild homology of order 2k
for k ≥ 1 as

TorΓ
m+1−`(θ

`,L(A;Q)) ∼= (LmQ(2k−1)Ā)(2k−1)(`−1)

∼= Hm−`+1(Sym`(Ω1
P∗|Q ⊗P∗ Q)).

We also recover the identification for Hodge summands of
Hochschild homology of odd order:

HH
(`)
m+1(A;Q) ∼= LmQ2kG (Ā)2k(`−1)

∼= Hm−`+1(Λ`(Ω1
P∗|Q ⊗P∗ Q)).



Proof
Input: For A = S(V ) for an n-Lie algebra V and S(V ) with the
induced n-Gerstenhaber structure one has

(LpQnG (S(V )))q ∼= (LpQnL(V ))q.

Consider: C∗,∗ =

...

��

...

��

...

��

(SI )◦(3)(A)

��

(nG )((SI )◦(3)(A))oo

��

(nG )◦(2)((SI )◦(3)(A))oo

��

. . .oo

(SI )◦(2)(A)

��

(nG )((SI )◦(2)(A))oo

��

(nG )◦(2)((SI )◦(2)(A))oo

��

. . .oo

(SI )(A) (nG )((SI )(A))oo (nG )◦(2)((SI )(A))oo . . .oo



Proof cont.

Hh
r (Hv

s (C∗,∗)) ∼= LrQnG (Ā)

concentrated in the (s = 0)-line.

Hv
r (Hh

s (C∗,∗)) ∼= HrLsQnG (SI )◦(•+1)(A).

This is n-Lie-homology of a trivial n-Lie algebra and this causes the
symmetric and exterior powers of Ω1

P∗|Q ⊗P∗ Q for

Pt = (SI )◦(t+1)(A).
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concentrated in the (s = 0)-line.

Hv
r (Hh

s (C∗,∗)) ∼= HrLsQnG (SI )◦(•+1)(A).

This is n-Lie-homology of a trivial n-Lie algebra and this causes the
symmetric and exterior powers of Ω1

P∗|Q ⊗P∗ Q for

Pt = (SI )◦(t+1)(A).


	Hodge decomposition for Hochschild homology
	Pirashvili's Hodge decomposition
	En-homology
	A resolution spectral sequence
	Hodge decomposition revisited

