A spectral sequence for the homology of a finite algebraic delooping

Birgit Richter joint work in progress with Stephanie Ziegenhagen

Fourth Arolla Conference on Algebraic Topology 2012

 E_n -homology

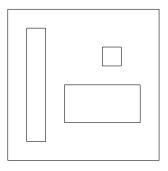
A resolution spectral sequence

A Blanc-Stover spectral sequence

Examples

Little *n*-cubes

Let C_n denote the operad of little *n*-cubes. $C_n(r)$, $r \ge 0$. n = 2, r = 3:



 C_n acts on and detects n-fold based loop spaces.

E_n -homology

 $(C_*C_n(r))_r$, $r \ge 1$ is an operad in the category of chain complexes. Let E_n be a cofibrant replacement of C_*C_n .

For an augmented E_n -algebra A_* let \overline{A}_* denote the augmentation ideal.

The sth E_n -homology group of \bar{A}_* , $H_s^{E_n}(\bar{A}_*)$ is then the sth derived functor of indecomposables of \bar{A}_* .

Theorem [Fresse 2011]

There is an n-fold bar construction for E_n -algebras, B^n , such that

$$H_s^{E_n}(\bar{A}_*) \cong H_s(\Sigma^{-n}B^n(\bar{A}_*)).$$

I.e., E_n -homology is the homology of an n-fold algebraic delooping.

Some results

Cartan (50s): $H_*^{E_n}$ of polynomial algebras, exterior algebras and some more.

Fresse (2011): X a nice space: $B^n(C^*(X))$ determines the cohomology of $\Omega^n X$.

Livernet-Richter (2011): Functor homology interpretation for $H_*^{E_n}$ for augmented commutative algebras.

 $H_*^{E_n}(\bar{A}_*) \cong HH_{*+n}^{[n]}(A_*)$, Hochschild homology of order n in the sense of Pirashvili.

What is $H_*^{E_n}(\bar{A}_*)$ in other interesting cases such as Hochschild cochains, $A_* = C^*(B, B)$, or $A_* = C_*(\Omega^n X)$?

Setting

In the following k is a field, most of the times $k = \mathbb{F}_2$ or $k = \mathbb{Q}$. The underlying chain complex of A_* is non-negatively or non-positively graded.

Over \mathbb{F}_2 : n=2; for \mathbb{Q} : arbitrary n.

1-restricted Lie algebras

Definition

A 1-restricted Lie algebra over \mathbb{F}_2 is a non-negatively graded \mathbb{F}_2 -vector space, \mathfrak{g}_* , together with two operations, a Lie bracket of degree one, [-,-] and a restriction, ξ :

$$[-,-]: \quad \mathfrak{g}_i \times \mathfrak{g}_j \to \mathfrak{g}_{i+j+1}, \quad i,j \geq 0,$$

$$\xi: \quad \mathfrak{g}_i \to \mathfrak{g}_{2i+1} \qquad i \geq 0.$$

These satisfy the relations

1. The bracket is bilinear, symmetric and satisfies the Jacobi relation

$$[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0$$
 for all homogeneous $a,b,c\in\mathfrak{g}_*$.

- 2. The restriction interacts with the bracket as follows: $[\xi(a), b] = [a, [a, b]]$ and $\xi(a + b) = \xi(a) + \xi(b) + [a, b]$ for all homogeneous $a, b \in \mathfrak{g}_*$.
- 1-rL: The category of 1-restricted Lie algebras.

1-restricted Gerstenhaber algebras

Definition

A 1-restricted Gerstenhaber algebra over \mathbb{F}_2 is a 1-restricted Lie algebra G_* together with an augmented commutative \mathbb{F}_2 -algebra structure on G_* such that the multiplication in G_* interacts with the restricted Lie-structure as follows:

► (Poisson relation)

$$[a,bc]=b[a,c]+[a,b]c, ext{ for all homogeneous } a,b,c\in \mathcal{G}_*.$$

(multiplicativity of the restriction)

$$\xi(ab) = a^2 \xi(b) + \xi(a)b^2 + ab[a, b]$$
 for all homogeneous $a, b \in G_*$.

1-rG: the category of 1-restricted Gerstenhaber algebras. In particular, the bracket and the restriction annihilate squares: $[a,b^2]=2b[a,b]=0$ and $\xi(a^2)=2a^2\xi(a)+a^2[a,a]=0$. Thus if 1 denotes the unit of the algebra structure in G_* , then [a,1]=0 for all a and $\xi(1)=0$.

Free objects and indecomposables

For a graded vector space V_* let $1rL(V_*)$ be the free 1-restricted Lie algebra on V_* .

The free commutative algebra $S(1rL(V_*))$ has a well-defined 1-rG structure and is the free 1-restricted Gerstenhaber algebra generated by V_* :

$$1rG(V_*) = S(1rL(V_*)).$$

For $G_* \in 1rG$ let $Q_{1rG}(G_*)$ be the graded vector space of indecomposables.

Note: $Q_{1rG}(G_*) = Q_{1rL}(Q_a(G_*)).$

Homology of free objects

Lemma

$$H_*(E_2(\bar{A}_*)) \cong 1rG(H_*(\bar{A}_*)).$$

Proof: Let X be a space. F. Cohen desribes $H_*(C_2(X); \mathbb{F}_2)$. Observation by Haynes Miller: $H_*(C_2(X); \mathbb{F}_2) \cong 1rG(\bar{H}_*(X; \mathbb{F}_2))$. (Dyer-Lashof operations only give algebraic operations.) Take X with $\bar{H}_*(X; \mathbb{F}_2) \cong H_*(\bar{A}_*)$, then $H_*(E_2(\bar{A}_*)) \cong H_*(C_2(X); \mathbb{F}_2)$.

Resolution spectral sequence

Theorem

There is a spectral sequence

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{1rG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_2}(\bar{A}_*)$$

.

Proof: Standard resolution $E_2^{\bullet+1}(\bar{A}_*)$.

$$E_{p,q}^1: H_q^{E_2}(E_2^{p+1}(\bar{A}_*)) \cong H_q(\bar{E}_2^p(\bar{A}_*))$$

$$H_q(E_2^p(\bar{A}_*))\cong 1rG^p(H_*\bar{A}_*)_q\cong Q_{1rG}(1rG^{p+1}(H_*\bar{A}_*))_q.$$

 d^1 takes homology wrt resolution degree.

Example

For *X* connected:

$$(\mathbb{L}_{p}Q_{1rG}(H_{*}(C_{*}(\Omega^{2}\Sigma^{2}X;\mathbb{F}_{2})))_{*} = (\mathbb{L}_{p}Q_{1rG}(1rG(\bar{H}_{*}(X;\mathbb{F}_{2})))_{*}.$$

This reduces to $\bar{H}_q(X; \mathbb{F}_2)$ in the (p=0)-line and

$$H_q^{E_2}(C_*(\Omega^2\Sigma^2X;\mathbb{F}_2))\cong \bar{H}_q(X;\mathbb{F}_2).$$

Rational case

The rational case is much easier:

$$H_*(E_{n+1}\bar{A}_*) \cong nG(H_*(\bar{A}_*)),$$

the free $\emph{n}\text{-}\mathsf{Gerstenhaber}$ algebra generated by the homology of \bar{A}_* . We get:

$$E_{p,q}^2 \cong (\mathbb{L}_p Q_{nG}(H_*(\bar{A}_*)))_q \Rightarrow H_{p+q}^{E_{n+1}}(\bar{A}_*)$$

for every E_{n+1} -algebra \bar{A}_* over the rationals.

General Blanc-Stover setting

Let $\mathcal C$ and $\mathcal B$ be some categories of graded algebras (e.g., Lie, Com, n-Gerstenhaber etc.) and let $\mathcal A$ be a concrete category (such as graded vector spaces) and $T\colon \mathcal C\to \mathcal B$, $S\colon \mathcal B\to \mathcal A$. If TF is is S-acyclic for every free F in $\mathcal C$, then there is a Grothendieck composite functor spectral sequence for all C in $\mathcal C$

$$E_{s,t}^2 = (\mathbb{L}_s \bar{S}_t)(\mathbb{L}_* T)C \Rightarrow (\mathbb{L}_{s+t}(S \circ T))C.$$

- ▶ Note: *T*, *S* non-additive.
- ▶ $\bar{S}_t(\pi_*B) = \pi_t(SB)$ if B is free simplicial; otherwise it is defined as a coequaliser.
- ▶ \bar{S} takes the homotopy operations on π_*B into account (B a simplicial object in B): π_*B is a Π -B-algebra.
- ▶ $\mathcal{B} = Com$: $\pi_*(B)$ has divided power operations. $\mathcal{B} = rLie$: π_*B inherits a Lie bracket and has some extra operations.

In our case

Theorem

▶ $k = \mathbb{F}_2$: For any $C \in 1rG$:

$$E_{s,t}^2 = \mathbb{L}_s((\bar{Q}_{1rL})_t)(AQ_*(C|\mathbb{F}_2,\mathbb{F}_2)) \Rightarrow \mathbb{L}_{s+t}(Q_{1rG}).$$

▶ For $k = \mathbb{Q}$ we get for all *n*-Gerstenhaber algebras C:

$$\mathbb{L}_{s}((\bar{Q}_{nL})_{t})(AQ_{*}(C|\mathbb{Q},\mathbb{Q})) \Rightarrow \mathbb{L}_{s+t}(Q_{nG}).$$

Hochschild cochains, rational case

Let V be a vector space. Then $C^*(TV, TV)$ is an E_2 -algebra. How close is $H^{E_2}_*(\bar{C}^*(TV, TV))$ to V, *i.e.*, how free is $C^*(TV, TV)$ as an E_2 -algebra?

Proposition

For $V=\mathbb{Q}$, i.e. $TV=\mathbb{Q}[x]$ the E_2 -homology of the reduced Hochschild cochain complex is non-trivial in all degrees $r\geq -1$, more precisely

$$H_r^{E_2}(\bar{C}^*(\mathbb{Q}[x],\mathbb{Q}[x])) \cong \mathbb{Q}$$

for all $r \geq -1$.

Thus in this case E_2 -homology of the Hochschild cochains on $T\mathbb{Q}$ is much larger than the vector space \mathbb{Q} we started with.

The calculations uses the equivalence of categories of *n*-Lie algebras and graded Lie-algebras given by *n*-fold (de)suspension.

Thus (up to suspension) we have to calculate ordinary Lie-homology of $AQ_*(HH^*(\mathbb{Q}[x],\mathbb{Q}[x]))$ and this is concentrated in homological degree zero and there it is $\mathbb{Q}\langle x_0,y_{-1}\rangle$ with trivial 1-Lie

structure.

$$\infty > dim(V) \ge 2$$

In these cases we can determine the input for the Blanc-Stover spectral sequence:

$$AQ_*(HH^*(TV,TV)|\mathbb{Q};\mathbb{Q})\cong HH^{(1)}_{*+1}(\mathbb{Q}\rtimes M(-1);\mathbb{Q})$$

and the first Hodge summand $HH_*^{(1)}(\mathbb{Q} \rtimes M(-1);\mathbb{Q})$ is additively isomorphic to the free graded Lie-algebra generated by the graded vector space M(-1).

However, $M(-1) = HH^1(TV, TV)$ is not free as a Lie-algebra.

Chains on iterated loop spaces

Let k be \mathbb{Q} and let X be an (n+1)-connected nice topological space.

Then $H_*(\Omega^{n+1}X;\mathbb{Q})\cong S(\Sigma^{-n}\pi_*(\Omega X)\otimes\mathbb{Q})$ as *n*-Gerstenhaber algebras.

Proposition

$$\mathbb{L}_{s}(Q_{nG})(H_{*}(\Omega^{n+1}X;\mathbb{Q}))_{q} \cong \operatorname{Tor}_{s+1,q+n}^{H_{*}(\Omega X;\mathbb{Q})}(\mathbb{Q},\mathbb{Q}).$$

Conjecture

This does not just look like a shifted version of the Rothenberg-Steenrod E^2 -term, but there is an underlying isomorphism of spectral sequences. The RS-spsq converges to $H_*(X;\mathbb{Q})$.