Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter

Summer term 2021

Exercise sheet no 12

for the exercise class on the 30th of June 2021

1 (Very sparse spectral sequences)

Let (E^r, d^r) be a first quadrant spectral sequence with $E^r_{p,q} = 0$ if $p \neq 0, n$ for some fixed n > 0. What can you say about possible differentials? What about the E^{∞} -term?

Dually, assume that you have a first quadrant spectral sequence with $E_{p,q}^r = 0$ unless q = 0, n. What about non-trivial differentials? What about the E^{∞} -term?

(Such spectral sequences arise for the homology of fiber bundles whose base or fiber is a sphere.)

2 (Comparison theorem)

Assume that $f: (E_1^r, d^r) \to (E_2^r, d^r)$ is a morphism of spectral sequences and assume that $f^i: E_1^i \to E_2^i$ is an isomorphism for some $i \ge 2$. Prove that then all f^r 's are isomorphisms for all $r \ge i$. Prove that in the above situation $f^{\infty} \colon E_1^{\infty} \to E_2^{\infty}$ is an isomorphism if both spectral sequences are

bounded.

3 (Tor is balanced)

We proved that one can calculate **Tor** by deriving either variable and we did that in a rather ad-hoc manner. Revisit the proof and redo it using the spectral sequences associated to a bicomplex.