Exercises in Algebra (master): Homological Algebra

Prof. Dr. Birgit Richter

Summer term 2021

Exercise sheet no 10

for the exercise class on the 16th of June 2021

1 (Coproducts of groups) For two groups G_{1} and G_{2} we denote by $G_{1} * G_{2}$ the coproduct of G_{1} and G_{2} in the category of groups.
(1) Write down an explicit model of $G_{1} * G_{2}$ in terms of finite reduced words in the alphabet $\left(G_{1} \backslash\{1\}\right) \cup$ $\left(G_{2} \backslash\{1\}\right)$ and prove that this satisfies the universal property.
(2) Consider the augmentation ideals $0 \longrightarrow I\left(G_{i}\right) \xrightarrow{i} \mathbb{Z}\left[G_{i}\right] \xrightarrow{\varepsilon_{i}} \mathbb{Z} \longrightarrow 0$ and show that

$$
I\left(G_{1} * G_{2}\right) \cong\left(I\left(G_{1}\right) \otimes_{\mathbb{Z}\left[G_{1}\right]} \mathbb{Z}\left[G_{1} * G_{2}\right]\right) \oplus\left(I\left(G_{2}\right) \otimes_{\mathbb{Z}\left[G_{2}\right]} \mathbb{Z}\left[G_{1} * G_{2}\right]\right)
$$

(3) Prove a flat base change for Tor: Let $f: R_{1} \rightarrow R_{2}$ be a ring map such that R_{2} is flat as an R_{1}-module. Then for all $R_{1}^{o p}$-modules M, all R_{2}-modules N and all n :

$$
\operatorname{Tor}_{n}^{R_{1}}\left(M, f^{*} N\right) \cong \operatorname{Tor}_{n}^{R_{2}}\left(M \otimes_{R_{1}} R_{2}, N\right)
$$

(4) Use this to show that for all $\mathbb{Z}\left[G_{1} * G_{2}\right]$-modules M and all $n \geqslant 2$

$$
H_{n}\left(G_{1} * G_{2} ; M\right) \cong H_{n}\left(G_{1} ; M\right) \oplus H_{n}\left(G_{2} ; M\right)
$$

where on the left hand side we view $M=i_{j}^{*} M$ as a G_{j}-module via the inclusions $i_{j}: G_{j} \hookrightarrow G_{1} * G_{2}$. (It is also true that for all $n \geqslant 2$ the inclusion maps induce an isomorphism

$$
\left.H^{n}\left(G_{1} * G_{2} ; M\right) \cong H^{n}\left(G_{1} ; M\right) \oplus H^{n}\left(G_{2} ; M\right) .\right)
$$

(5) What happens for $n=0$?

2 (Basics on Hochschild homology)
(1) Let A be an associative k-algebra and let M be an A-bimodule over k. Show that $\mathrm{HH}_{*}(A ; M)$ is a module over the center of A, i.e., over $Z(A)=\{a \in A, a b=b a$ for all $b \in A\}$.
(2) Let $0 \neq k$ be a commutative ring. Determine $\Omega_{k\left[x_{1}, \ldots, x_{n}\right] \mid k}^{1}$ as a $k\left[x_{1}, \ldots, x_{n}\right]$-module.
(3) What can you say about $\Omega_{\mathbb{Z}[X] /\left(X^{2}+1\right) \mid \mathbb{Z}}^{1}=\Omega_{\mathbb{Z}[i] \mid \mathbb{Z}}^{1}$?

3 (Hochschild homology and group homology)
Let G be a group and let M be a $k[G]$-bimodule. Show that

$$
\mathrm{HH}_{*}^{k}(k[G] ; M) \cong H_{*}\left(G ; M^{c}\right)
$$

where M^{c} is the G-module with $g . m:=g m g^{-1}$. In particular, if we use the augmentation $\varepsilon: k[G] \rightarrow k$ in order to view k as a $k[G]$-bimodule, then $\mathrm{HH}_{*}^{k}(k[G] ; k) \cong H_{*}(G ; k)$.

