$\ddot{\mathbf{U}}$ bungsaufgaben zur Algebra (Bachelor)

Prof. Dr. Birgit Richter Wintersemester 2020/21

Blatt 11 Abgabetermin: 4. Februar 2021
Aufgabe 1 (2 Punkte)
Sind $\mathbb{Q}(\sqrt{2})$ und $\mathbb{Q}(\sqrt{7})$ die einzigen echten Zwischenerweiterungen zwischen \mathbb{Q} und $\mathbb{Q}(\sqrt{2}, \sqrt{7})$? Begründen Sie Ihre Antwort.
 Aufgabe 2 (1 + 2 + 1 Punkte) (1) Beweisen Sie, dass jeder endliche Körper pⁿ Elemente für eine Primzahl p und eine natürliche Zahl n hat. (2) Es sei ζ₅ = e^{2πi/5} ∈ ℂ. Was ist der Körpergrad [ℚ(ζ₅) : ℚ] und warum? (3) Entscheiden und begründen Sie, ob die Elemente cos(2π/5) und sin(2π/5)i Elemente von ℚ(ζ₅) sind.
Aufgabe 3 (2 + 3 Punkte)
 (1) Überlegen Sie sich, ob es für jede natürliche Zahl m ∈ N eine einfache Körpererweiterung Q(a_m) gibt mit [Q(a_m) : Q] = m. (2) Zeigen Sie, dass für eine Folge p₁,, p_n paarweise verschiedener Primzahlen p_i gilt, dass √p_n ∉ Q(√p₁,,√p_{n-1}). Was ist der Körpergrad von Q(√p₁,,√p_n) über Q(√p₁,,√p_{n-1}) und über Q?
Aufgabe 4 – Ja oder Nein? Für jede richtige Antwort bekommen Sie einen halben Punkt, für einer falsche Antwort einen halben Minuspunkt. Die Summe aller Punkte gibt die Gesamtpunktzahl – es sei denn, diese Zahl ist negativ. In diesem Fall erhalten Sie null Punkte. Antworten Sie mit "Ja" oder "Nein"; geben Sie keine Begründung.
 Nein □ Kann ein Körper gleichzeitig ℚ und ℤ/pℤ mit p prim als Primkörper haben? Nein □ Ist jeder Körper Körpererweiterung seines Primkörpers? Nein □ Es sei R ein Integritätsbereich und ein Unterring eines Körpers K. Ist dann immer der Quotientenkörper Quot(R) isomorph zu einem Unterkörper von K? Nein □ Ist ℚ(i) isomorph zu ℚ(√2) als ℚ-Vektorraum? Nein □ Es seien K ⊂ L und K ⊂ L' Körpererweiterungen. Folgt aus [L:K] = [L':K], dass L und L' als Körper isomorph sind?

Ja □ Ja □ Ja □

Ja □ Ja □