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Motivation: Find geometric descriptions of equivariant homology
theories.

Example: Let A be a genuine C2-spectrum, such that A is a ring
spectrum and D2 = C2 = ⟨τ, τ2 = e⟩ acts on A by anti-involution,
so

A ∧ A

τ∧τ
��

µ // A
τ // A

A ∧ A
tw
// A ∧ A

µ

<<

commutes. Think ab = ba. Then the Real algebraic K-theory of A,
KR(A), in the sense of Hesselholt-Madsen is defined together with
the topological Real Hochschild homology of A, THR(A). There is
a Real trace map KR(A)→ THR(A) (Dotto).

THR(A) can be identified with N
O(2)
D2

(A) and N
O(2)
D2

(A) can be
modelled by a dihedral bar construction (Angelini-Knoll, Gerhardt,
Hill).
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There is a Bökstedt type spectral sequence starting from Real
Hochschild homology and converging to Real topological
Hochschild homology (Lewis)

E 2
∗,⋆ = HRE⋆,D2m

∗ ((iD2m
D2

E )
⋆
(A))⇒ E ⋆(i

O(2)
D2m

(THR(A)))

under some harsh assumptions on E and A.

Goal for today: Find geometric descriptions of Real Hochschild

homology (and of i
O(2)
D2m

(THR(A))) for all m.
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Consider the flip-circle: Sσ: •

•

hh66

This is the one-point compactification of the real
sign-representation and has a straightforward model as a finite
D2-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

i
O(2)
D2

THR(A) ≃ LC2
Sσ(A).

Why is this good?

▶ Extra structure is visible, e.g. THR(A) has the structure of an
A-Hopf algebroid in the D2-equivariant stable homotopy

category [Lewis]. For i
O(2)
D2

THR(A) this is easy to see via Sσ.

▶ This connects to factorization homology. Horev:∫
Sσ A ≃ THR(A) if A is a ring spectrum with anti-involution.
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How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group.

We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction:

For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A.

Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X .

Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.

What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?

There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.

In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.

Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.

Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



How is the equivariant Loday construction defined?

Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction: For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category.
In equivariant algebra, these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Kristen Mazur 2013 (G = Cpn), Rolf Hoyer 2014 (general G )
showed: G -commutative monoids are G -Tambara functors.



Example Let R be a commutative ring with a G -action. Then the
Tambara functor Rfix has Rfix(G/H) = RH = G -maps(G/H,R).

For H < K we have π : G/H → G/K and RK ⊂ RH . This
determines a restriction map Rπ := Rfix(π).
The transfer Tπ for π : G/H → G/K sends an
f ∈ G -maps(G/H,R) to Tπ(f )(gK ) =

∑
x∈π−1(gK) f (x).

The norm Nπ for π : G/H → G/K sends an f ∈ G -maps(G/H,A)
to Nπ(f )(gK ) =

∏
x∈π−1(gK) f (x).

The Weyl group WG (H) acts on Rfix(G/H) = RH by [γ]r = γr .
These structure maps satisfy several compatiblity relations...
Example The Burnside G -Tambara functor, A = AG , sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG and a unit for the so-called box product of
G -Mackey functors, □.
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The main technical input in the equivariant context is the following
result:

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.



The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.



The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R)

and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.



The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.



The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.



The main technical input in the equivariant context is the following
result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.



Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set.

We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks As Xn ⊗ R is functorical in Xn, this is well-defined.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H iGH R

where iGH : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , iGH ) is an adjoint functor pair.
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Why are we not happy with the result that for A flat and
well-pointed:

i
O(2)
D2

THR(A) ≃ LC2
Sσ(A)?

We want to describe the restrictions i
O(2)
D2m

THR(A) for m > 1 in a
similar manner and also their algebraic analogue. Here, D2m

denotes the dihedral group with 2m elements.
Angelini-Knoll, Gerhardt, Hill 2025:
The Real D2m-Hochschild homology of R is the graded
D2m-Mackey functor

π∗B(N
D2m
D2

R,ND2m
e iD2

e R,ND2m

D′
2
cζ(R))

where D2 = ⟨s⟩ and D ′
2 = ⟨rs⟩ for

D2m = ⟨r , s | s2 = e = rm, srm−1 = rs⟩. Here, the input is a
discrete Eσ-ring, for instance the fixed point Mackey functor for a
ring with anti-involution.
For our Loday construction we would a priori need a D2m-Tambara
functor.
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So we need to get rid of the commutativity assumption (easy)

and
we need to work with D2 instead of D2m (harder).

Recall: We just need to define G/H ⊗ R in a compatible way.

Observation If a finite G -simplicial set has as small system of
isotropy subgroups, then we only need those.
Goal for D2m: Find an interesting finite D2m-simplicial set with
small isotropy.
Example For D8 we consider the 1-skeleton of the regular octagon:
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This is true in general:

For all m ≥ 1 the dihedral group D2m with
2m elements acts on the 1-skeleton of a regular 2m-gon, P2m.
As orbit representatives in degree 0 we can always choose x0 and
x ′0 – these are adjacent vertices on an edge.
They have isotropy subgroups D2 and D ′

2 – but beware, for even m
these subgroups are not conjugate in D2m.

Lemma Assume that G is a finite group and that H is a subgroup
of G . Let φ be an automorphism of G and let R be a
φ(H)-Tambara functor. Then the assignment

(φ∗R)(H/K ) := R(φH/φK )

gives rise to an H-Tambara functor φ∗R.

Idea of proof: Set (φ∗R)(H/K ) := R(φH/φK ) and diligently show
that this is alright.
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So it remains to show that LD2m
P2m

(R) is well-defined even if R is just
a D2-Tambara functor (even just a discrete Eσ-ring).

Theorem [LRZ] Let X be a finite simplicial G -set such that the
isotropy subgroups in an orbit decomposition of X are of the form
e, H and H ′, where H ̸= H ′ are proper subgroups of G . Assume
that there is an automorphism φ of G such that φH = H ′. Then
LGX (R) is defined for any H ′-Tambara functor R if none of the
structure maps in X map a summand G/H to an orbit G/H ′ or
vice versa.
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Idea of proof:

Set

▶ G/H ′ ⊗ R := NG
H′(R)

▶ G/e ⊗ R := NG
e iH

′
e (R)

▶ G/H ⊗ R := NG
H (φ∗R).

and extend via box products. The standard projections
G/e → G/H ′ and G/e → G/H induce

NG
e iH

′
e (R)

ξ // NG
H′NH′

e iH
′

e (R)
NG

H′ (ε) // NG
H′(R)

and

NG
e iH

′
e (R)

ξ // NG
HNH

e iH
′

e (R)
NG

H (εφ) // NG
H (φ∗R)

Here, ε : NH′
e iH

′
e (R)→ R is the counit of the norm-restriction

adjunction and εφ : N
H
e iH

′
e (R)→ φ∗R is adjoint to

iH
′

e (R)→ iHe (φ∗(R))

which is the identity map. Then: Take the other structure maps
into account and check the simplicial identities by brute force.
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With this technical result we can show:

Proposition [LRZ] Let R be a discrete Eσ-ring. Then LD2m
P2m

(R) is
defined for all m ≥ 1 and coincides with the Real D2m-Hochschild
homology of R.
We can also define LD2m

P2m
(A) for an Eσ-ring spectrum A and get

i
O(2)
D2m

THR(A).

Our method extends to more examples.
The nth permutohedron is an (n− 1)-dimensional polytope defined
as the convex hull of the vectors σ(1, 2, . . . , n), σ ∈ Σn.
The symmetric group Σn acts on the nth permutohedron by
permuting the coordinates.
Edges connect those vertices whose vectors differ in two
coordinates whose values differ by 1, e.g. (3, 1, 2) (2, 1, 3).

We consider simplicial models of the 1-skeleta of the nth
permutohedra and call them PΣn .
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PΣ3 :

(2, 1, 3) //

zz

△ (3, 1, 2)oo

$$◦ ◦

(1, 2, 3)

::

##

(3, 2, 1)

dd

{{
△ △

(1, 3, 2) //

cc

◦ (2, 3, 1)oo

;;

Here the vertices labelled with (i , j , k) for i , j , k ∈ {1, 2, 3}
constitute a free orbit Σ3/e.
If we choose as representatives for the orbits the points in the
segment (1, 2.5, 2.5) =△←− (1, 2, 3) −→ ◦ = (1.5, 1.5, 3), then
the vertices labelled with ◦ give rise to a Σ3/⟨(1, 2)⟩-orbit and the
△-vertices assemble into a Σ3/⟨(2, 3)⟩-orbit.
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We can define LΣ3
PΣ3

(R) for every ⟨(1, 2)⟩-Tambara functor R.

With C2 := ⟨(1, 2)⟩ this gives LΣ3
PΣ3

(R) as a pushout of

NΣ3
e iC2

e R //

��

B(NΣ3
e iC2

e R,NΣ3
e iC2

e R,NΣ3
C2

R)

B(NΣ3

⟨(2,3)⟩(c(1,3))
∗R,NΣ3

e iC2
e R,NΣ3

e iC2
e R)
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