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spectrum and Dy = G, = (7,72 = €) acts on A by anti-involution,
Sso
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commutes. Think ab = ba. Then the Real algebraic K-theory of A,
KR(A), in the sense of Hesselholt-Madsen is defined together with
the topological Real Hochschild homology of A, THR(A). There is
a Real trace map KR(A) — THR(A) (Dotto).

THR(A) can be identified with N *)(A) and Ng?)(A) can be
modelled by a dihedral bar construction (Angelini-Knoll, Gerhardt,
Hill).
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There is a Bokstedt type spectral sequence starting from Real
Hochschild homology and converging to Real topological
Hochschild homology (Lewis)

E2, = HRE-Pan((iBinE) (A)) = E.(ige) (THR(A))
under some harsh assumptions on E and A.

Goal for today: Find geometric descriptions of Real Hochschild
homology (and of i) (THR(AY))) for all m.

2m



Consider the flip-circle: 57:

»



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

.0(2
igTHR(A) ~ LS (A).



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

.0(2
igTHR(A) ~ LS (A).

Why is this good?



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

.0(2
igTHR(A) ~ LS (A).

Why is this good?

» Extra structure is visible,



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

.0(2
igTHR(A) ~ LS (A).

Why is this good?
» Extra structure is visible, e.g. THR(A) has the structure of an
A-Hopf algebroid in the D,-equivariant stable homotopy
category [Lewis].



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

.0(2
igTHR(A) ~ LS (A).

Why is this good?
» Extra structure is visible, e.g. THR(A) has the structure of an
A-Hopf algebroid in the D,-equivariant stable homotopy
category [Lewis]. For igz(z)THR(A) this is easy to see via S7.



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:

.0(2
igTHR(A) ~ LS (A).

Why is this good?
» Extra structure is visible, e.g. THR(A) has the structure of an
A-Hopf algebroid in the D,-equivariant stable homotopy
category [Lewis]. For igz(z)THR(A) this is easy to see via S7.

» This connects to factorization homology.



Consider the flip-circle: 57: < ° >
[ ]
This is the one-point compactification of the real

sign-representation and has a straightforward model as a finite
D»-simplicial set.

Theorem [LRZ 25] For A flat and well-pointed:
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igTHR(A) ~ LS (A).

Why is this good?

» Extra structure is visible, e.g. THR(A) has the structure of an
A-Hopf algebroid in the D,-equivariant stable homotopy
category [Lewis]. For igz(z)THR(A) this is easy to see via S7.

» This connects to factorization homology. Horev:

Jss A~ THR(A) if Ais a ring spectrum with anti-involution.
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Kristen Mazur 2013 (G = Cpr), Rolf Hoyer 2014 (general G)
showed: G-commutative monoids are G-Tambara functors.
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Example The Burnside G-Tambara functor, A = AG, sends a finite
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classes of finite G-sets over X.

A is initial in Tamb¢g and a unit for the so-called box product of
G-Mackey functors, [.



The main technical input in the equivariant context is the following
result:



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:

1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R)



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:
1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R) and
X@ROT) (X R)O(X®T).



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:

1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R) and
X@ROT) (X R)O(X®T).

2. There is a natural isomorphism X @ (Y @ R) = (X x Y)® R.



The main technical input in the equivariant context is the following

result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(=) ® (=): Sets’ ¢ x Tambg — Tambg
(X,R) = X @R

which satisfies the following properties:

1. For all X and Y in Sets’¢ and R, T in Tambg, there are
natural isomorphisms (X II Y)® R = (X ® R)O(Y ® R) and
X@ROT) (X R)O(X®T).

2. There is a natural isomorphism X @ (Y @ R) = (X x Y)® R.

3. On the category with objects finite sets with trivial G-action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ® R =[], .xR.
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Definition Let G be a finite group, R € Tambg and let X be a
finite simplicial G-set. We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial

degree n is
LZ(R)n =X ® R.

Remarks As X, ® R is functorical in X}, this is well-defined.
Mazur and Hoyer show that
G/H® R=NGiSR

where iﬁ: Tambg — Tamby is the restriction functor and
Nﬁ: Tamby — Tambg is a norm functor.
The pair (Nﬁ, /ﬁ) is an adjoint functor pair.



Why are we not happy with the result that for A flat and
well-pointed:
ig?THR(A) ~ L& (A)?



Why are we not happy with the result that for A flat and
well-pointed:

ig?THR(A) ~ L& (A)?
We want to describe the restrictions ig(z)THR(A) form>1lina

2m

similar manner and also their algebraic analogue.



Why are we not happy with the result that for A flat and
well-pointed:

.0(2 C

ig?THR(A) ~ L& (A)?
We want to describe the restrictions ng(j)THR(A) form>1lina
similar manner and also their algebraic analogue. Here, Dy,
denotes the dihedral group with 2m elements.



Why are we not happy with the result that for A flat and
well-pointed:

.0(2 C

ig?THR(A) ~ L& (A)?
We want to describe the restrictions iDOQ(j)THR(A) form>1lina
similar manner and also their algebraic analogue. Here, Dy,
denotes the dihedral group with 2m elements.
Angelini-Knoll, Gerhardt, Hill 2025:
The Real D,p,-Hochschild homology of R is the graded
D> ,-Mackey functor

mB(NG"R, N2 DR, ND2mc(R))
2

where D, = (s) and D} = (rs) for
Dom = (r,s|s®>=e=rm srm 1 = rs).



Why are we not happy with the result that for A flat and
well-pointed:

.0(2 C

ig?THR(A) ~ L& (A)?
We want to describe the restrictions iDOQ(j)THR(A) form>1lina
similar manner and also their algebraic analogue. Here, Dy,
denotes the dihedral group with 2m elements.
Angelini-Knoll, Gerhardt, Hill 2025:
The Real D,p,-Hochschild homology of R is the graded
D> ,-Mackey functor

mB(NG"R, N2 DR, ND2mc(R))
2

where D, = (s) and D} = (rs) for

Dom = (r,s|s?>=e=r" sr™1 = rs). Here, the input is a
discrete E,-ring, for instance the fixed point Mackey functor for a
ring with anti-involution.



Why are we not happy with the result that for A flat and
well-pointed:

.0(2 C

ig?THR(A) ~ L& (A)?
We want to describe the restrictions iDOQ(j)THR(A) form>1lina
similar manner and also their algebraic analogue. Here, Dy,
denotes the dihedral group with 2m elements.
Angelini-Knoll, Gerhardt, Hill 2025:
The Real D,p,-Hochschild homology of R is the graded
D> ,-Mackey functor

mB(NG"R, N2 DR, ND2mc(R))
2

where D, = (s) and D} = (rs) for

Dom = (r,s | s> = e=r™ sr™ 1 = rs). Here, the input is a
discrete E,-ring, for instance the fixed point Mackey functor for a
ring with anti-involution.

For our Loday construction we would a priori need a Dyp,-Tambara
functor.
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As orbit representatives in degree 0 we can always choose xp and
Xy — these are adjacent vertices on an edge.
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Lemma Assume that G is a finite group and that H is a subgroup
of G. Let ¢ be an automorphism of G and let R be a
¢(H)-Tambara functor. Then the assignment

(¢?"R)(H/K) := R(pH/¢K)
gives rise to an H-Tambara functor ¢*R.

Idea of proof: Set (¢*R)(H/K) := R(¢H/pK) and diligently show
that this is alright. O
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So it remains to show that L’Dz’"(i) is well-defined even if R is just
a D,-Tambara functor (even just a discrete E,-ring).

Theorem [LRZ] Let X be a finite simplicial G-set such that the
isotropy subgroups in an orbit decomposition of X are of the form
e, H and H’, where H # H' are proper subgroups of G. Assume
that there is an automorphism ¢ of G such that ¢oH = H’. Then
E)C'é(ﬂ) is defined for any H’-Tambara functor R if none of the
structure maps in X map a summand G/H to an orbit G/H’ or
vice versa.
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Idea of proof: Set

> G/H' @R := NS (R)

> G/e® R := NS (R)

» G/H® R = Nﬁ(go*ﬂ).
and extend via box products. The standard projections
G/e - G/H" and G/e — G/H induce

. ! ! . ! NG/ (6)
NS (R) —~ NG NH' it (R) ——~ NS,(R)
and
’ , NG
NS (R) = NSNHIH (R) —HE NG (*R)

Here, : NM'if'(R) — R is the counit of the norm-restriction

adjunction and e,,: NYit"(R) — *R is adjoint to

il (R) = i (¢"(R))

which is the identity map. Then: Take the other structure maps
into account and check the simplicial identities by brute force.

L]
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With this technical result we can show:

Proposition [LRZ] Let R be a discrete E,-ring. Then L j"’(ﬂ) is
defined for all m > 1 and coincides with the Real Ds,,-Hochschild
homology of R.

We can also define Eg;':(A) for an E,-ring spectrum A and get

ig D THR(A).

Our method extends to more examples.

The nth permutohedron is an (n — 1)-dimensional polytope defined
as the convex hull of the vectors 0(1,2,...,n),0 € ¥,.

The symmetric group X, acts on the nth permutohedron by
permuting the coordinates.

Edges connect those vertices whose vectors differ in two
coordinates whose values differ by 1, e.g. (3,1,2)——(2,1,3).

We consider simplicial models of the 1-skeleta of the nth
permutohedra and call them Py .
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(2,1,3) > 1< (3,1,2)

e AN

e AN
(1,2,3) (3,2, 1)
. %

A A

™ e

(1,3,2) = o< (2,3,1)

Here the vertices labelled with (i, /, k) for i,j, k € {1,2,3}
constitute a free orbit X3/e.

If we choose as representatives for the orbits the points in the
segment (1,2.5,2.5) =A«+— (1,2,3) — o = (1.5,1.5,3), then
the vertices labelled with o give rise to a ¥3/((1,2))-orbit and the
A-vertices assemble into a X3/((2, 3))-orbit.
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We can define EE; (R) for every ((1,2))-Tambara functor R.
3
With G, := ((1,2)) this gives E,E; (R) as a pushout of
3

NZ 2R —— = B(NZ3 2R, NZ3&R, N?;B)

B(N<z(%,3)> (C(1,3))*B, N§3 I'eCzB, Ne23 ieC?B)



