
The cosmic Galois group as Koszul dual to Waldhausen’s A(∗)

The world is so full of a number of things
I’m sure we shall all be as happy as kings.

Robert Louis Stevenson, A Child’s Garden of Verses

§I Basic questions

1.1 Existence: Why is there something, rather than nothing?

This does not seem to be accessible by current methods. A more realistic
goal is

Classification: Given that there’s something, what could it be?

This suggests a

Program: If things fall into categories (A,B,. . . ), hopefully small and
stable enough to be manageable, techniques from K-theory may be useful.

1.2 More precisely (following [4], see also [10]) there is a Cartesian closed
category Catperf

∞ of small stable ∞-categories, eg A,B,Funex(A,B), . . . and
there is then a (similarly Cartesian closed) big spectral category of pre-
motives: with objects as above, and morphism objects

HomMot(A,B) := K(Funex(A,B)) ∈ K($)−Mod

enriched over Waldhausen’s A-theory spectrum. [The superscript ‘ex’ sig-
nifies functors which preserve finite limits and colimits, and the objects of
BGT’s category are taken to be idempotent complete (ie, the category is
suitably localized with respect to Morita equivalence).]

Such a category has a functorial completion to a pre-triangulated cate-
gory Mot [6 §4.5], ie whose homotopy category is triangulated; this involves
enlarging the set of objects by adjoining suitable cofibers, generalizing the
classical Karoubification in the original theory of pure motives.
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1.3 These ‘big’ categories allow comparisons between objects from quite dif-
ferent areas of mathematics (eg homotopy theory and algebraic geometry),
and they raise a host of questions. This talk proposes the motivic (Tan-
nakian? Galois? descent? ) groups of such categories as a tool for sorting
out their relations. It is a report on work in progress with Andrew Blum-
berg and Kathryn Hess, without whose support it would not be even a
fantasy. I also want to thank Michael Ching, Ralph Cohen, Bjorn Dundas,
and Bill Dwyer for their help, and in particular for enduring more than their
share of foolish questions.

§II Some examples

2.1 If X is an algebraic variety over a field k, and AX = Dperf(oX) is the
derived category of quasicoherent sheaves of oX - modules, then we get a
version of classical motives, with Hom-objects enriched over K(k − Mod).
A cycle map associates to a subvariety Z of X, a resolution of its defining
sheaf IZ of functions.

2.2 This example fits in the general framework of A1 - homotopy theory, but
over more general rings the subject is in flux. If X is an arithmetic variety,
eg over the spectrum of integers of a number field, Deligne and Goncharov
[9] have constructed a good category of mixed Tate motives over Spec Z,
with Hom objects enriched overK(Z)⊗Q.

2.3 There is a great deal of interest in noncommutative motives over
a field, perhaps also represented by suitable derived categories of perfect
objects [1] . . .

but my concern in this talk is to ask how the most classical example of all,

2.4 topological spaces

might fit in this framework: in particular, in this new world of big motives,
how does the ‘underlying space’ or ‘Betti’ functor

X ∈ Varieties over Z 7→ X(C) ∈ Spaces

behaves? This reality check is the principal motivation for this talk.
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§III Fiber functors and their motivic Galois groups

3.1 There are dual approaches [3,5,11] to the study of spaces in this context,
both involving categories of modules over ring-spectra:

i) X 7→ $[ΩX+] = FX ∈ A∞ - algebras,

and

ii) X 7→ [X+, $] = DX (Spanier-Whitehead dual) ∈ E∞ - algebras.

The first leads to Waldhausen’s A(X) = K($[ΩX+]−Mod), while the second
leads to Williams’ [19] ∀(X) = K(DX − Mod); together these generalize
Grothendieck’s classical covariant and contravariant versions of K-theory.

Both DX and FX are supplemented $-algebras, and in good cases (ie if
X is both finite and simply-connected) then

FX ∼= Hom$(DX, DX), DX ∼= Hom$(FX, FY )

expresses a kind of ‘double centralizer’ duality.

3.2 In these notes I’ll work with the second alternative, in the category with
finite CW -spaces X, Y as objects, and morphisms

HomMot(X, Y ) ∼ K(DX ∧DY op −Mod)

defined by the K-theory spectra of right-compact DX−DY op - bimodules
[4 §2.16]. This category can then be made pre-triangulated, as above.

There are many technical variants of this construction: for example, BGT
consider both Karoubi-Villamayor or Bass-Thomason K-theory, and in the
discussion below we will want to modify categories of this sort by completing
their morphism objects in various ways. Eventually we will be interested in
constructions based on THH and its relatives (TR, TC, . . . ); then I’ll label
the resulting categories by the functors defining their morphism objects. For
example, the cyclotomic trace defines a monoidal spectral functor

MotK → MotTC

of pre-triangulated categories (and hence a triangulated functor between
their homotopy categories).
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3.3 Tannakian analogs of Galois groups are a central topic in the usual
theory of motives: complicated categories can sometimes be identified, via
some kind of descent, with categories of representations of groups of au-
tomorphisms of interesting forgetful (monoidal, ‘fiber’) functors to simpler
categories. Weil cohomologies (Hodge, étale, crystalline) are classical exam-
ples, but the following example may be more familiar here:

Ordinary cohomology (with coefficients in F2 and the grading neglected),
viewed as a monoidal functor

H : (Spectra) 3 X 7→ H∗(X, F2) ∈ (F2 −Vect) ,

defines a group-valued functor

AutH
⊗ : (F2 −Alg) 3 A 7→ AutA

⊗(H∗(−, A))

which is (co)represented by the dual Steenrod algebra:

AutA⊗(H∗(−, A)) ∼= HomAlg(A∗, A) .

The vector-space valued functor H∗ thus lifts to a functor taking values
in representations of a proalgebraic groupscheme, or (in more familiar lan-
guage), in the category of A∗-comodules.

Here I want to look at (pre-triangulated, spectral, monoidal) categories built
by reducing the morphism objects in BGT-style categories modulo the kernel
of the Dennis trace K($) → $ (much as we can consider the category ob-
tained from chain complexes over Z by reducing their internal Hom-objects
modulo p).

3.4 Hess’s theory of homotopical descent [13] provides us with the needed
technology: a cofibrant replacement

K($)
τ

##FFFFFFFF
tr // $

Q($)

ρ

>>}}}}}}}}}

(of $ as K($)-algebra, with τ a cofibration, and ρ a weak equivalence) asso-
ciates a ‘Hessian’ co-ring spectrum

Q($) ∧K($) Q($) (= THHK($)($) )
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(analogous to a Hopf-Galois object in the sense of Rognes [16]) to Dennis’s
ring homomorphism. The example

$ → HF2

above produces the dual Steenrod algebra

Q(HF2) ∧$ Q(HF2) ∼ A∗ .

This leads to a theory of descent relating a K($)-module spectrum V to a
THHK($)($) := $†K($) - comodule structure on

Q($) ∧K($) V = THHK($)($, V ) := V†K($) .

Then

K(DX ∧DY op) → K(DX ∧DY op)†K($) := K†(DX ∧DY op)

defines a monoidal functor

ωK† : MotK → MotK† ,

the latter category being enriched over spectra with an $†K($) - comodule
action analogous to an action of Aut(ωK†).

We expect a more careful version of this construction to provide effective
homotopical descent for a category with morphism objects defined by a
suitable completion [13 §4, §5.5] of those of MotK.

3.5 The notation above is admittedly unsatisfactory, but I haven’t found
anything better; it reflects similar difficulties with notation for Koszul du-
ality. In the classical case of a morphism A → B of algebras over a field k,
the covariant functor

V 7→ V ⊗L
A B := V†B : D(A−Mod) → D(A†B − Comod)

has a contravariant k-vector-space dual

V 7→ V †
B := (V†B)∗ ∼= RHomA(V,B)

with values in some derived category of RHomA(B,B) := A†
B-modules

[Cartan-Eilenberg VI §5], and in good cases this construction is a (Koszul)
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duality. In the formulation above, $†K($) is the analog of the algebra of
functions on a group object, while

RHomK($)($, $) = $†K$)

is the analog of its (convolution, L1) group algebra.

§IV Cyclotomic variants

4.1 The constructions above have a straightforward analog

MotTC → MotTC†

built from topological cyclic homology; where now

TC†(−) := THHTC($)($,TC(−)) ∈ THHTC($)($) := $†TC − Comod

(with profinite completions implicit but suppressed)1.

The cyclotomic trace

K($) → TC($) ∼ $ ∨ ΣCP∞
−1

identifies the K-theory spectrum with $ ∨ ΣH∞
+ at regular odd primes [14,

17]. The cofibration
S−1 → ΣCP∞

−1 → ΣCP∞
+

suggests that the Koszul dual of THHTC($)$ should be close to the tensor $ -
algebra [2] $[ΩΣCP∞

+ ] on CP∞
+ . In any case, $†K($)⊗Q can be identified with

the algebra of quasisymmetric functions over Q, ie the algebra of functions
on a pro-unipotent group with free Lie algebra. The cyclic structure on THH
endows this Lie algebra with a T-action and thus with a grading, placing
one generator in each odd degree [7].

This is very similar to Deligne’s motivic group for the category of mixed
Tate motives, itself modeled on Shafarevich’s conjectured description of the
absolute Galois group of Q as a profree profinite extension of Ẑ×.

4.2 One concern with the constructions discussed here is that neither K nor
TC is linear, in the sense of the calculus of functors.

1Another interesting variant can be built from THH, regarded as a T-equivariant spectrum.

6



THH$(DX) is the realization of a cyclic object

n 7→ (DX)∧(n+1) ∼ D(Xn+1)

S-dual to the totalization of a (cocyclic) cosimplicial space modelling the
free loopspace LX (cf [12]; thanks to WD for the reference!). I propose that
the homotopy fixed points THH$(DX)hT can be identified as something like

[ET+, [LX+, $]]hT = [LXhT+, $] = [LX+, [ET+, $]]hT

and that consequently TC(DX) might be accessible as a homotopy limit of
things like [LX+,THH$($)]Cn .

This suggests that the inclusion X → LX of fixed points might define a
kind of coassembly [18] map

TC(DX) → [X+,TC($)]

as a
TC(holim) → holim(TC)

interchange. [The classical assembly map defines a composition

HomK($)(K($[ΩX+], $) → HomK(§)(X ∧K($), $) ∼ DX . . .]

4.3 If so, then we might be able to add a third step

MotTC → MotTC† → MotlinTC†

to the sequence of pre-triangulated monoidal functors above, with

Homlin
TC†

(X, Y ) = THHTC($)($, [DX ∧DY op,TC($)]) ∈ $†TC − Comod .

Note that

Homlin
TC†

(X, Y )⊗Q = HHTCQ($)(TCQ($),H∗(Y ∧DX))

= H∗(Y ∧DX, Q) = [Y, X]Q ,

so the rationalization of MotlinTC†
reduces to the (rationalized) category of

finite spectra, (conjecturally!) reconciling the motive of an algebraic variety
with the stable homotopy type of its underlying space. More generally,

[X, K($)]†K($) ∼ [X, $] . . .
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