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Assume that G is a finite group. We are interested in gluing
’algebras’ to ’points’, in order to generalize the non-equivariant
Loday construction:

For A a commutative ring, X a finite
simplicial set the Loday construction is LX (A)n =

⊗
x∈Xn

A. Face
maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G -action and let x ∈ X . Then
Gx = {gx , g ∈ G} is a G -subset of X , so the smallest meaningful
entities are orbits.
What is an adequate notion of commutative monoids in the
equivariant context?
There are actually two different ones: One is as commutative
monoids in a suitable symmetric monoidal category – these are
commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G -commutative monoids.
Rolf Hoyer showed in 2014: G -commutative monoids are precisely
G -Tambara functors.
What are they?
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The category, on which everything is based in our case, is the
category of G -Mackey functors.

A Mackey functor is a pair of functors M = (M∗,M
∗) from the

category of finite G -sets to abelian groups, such that

▶ M∗ is covariant and M∗ is contravariant,

▶ M∗(X ) = M∗(X ) for all finite G -sets X ,

▶ for every pullback diagram of finite G -sets

U
α //

β
��

V

γ
��

W
δ // Z

we have M∗(δ) ◦M∗(γ) = M∗(β) ◦M∗(α),

▶ for every pair of finite G -sets X and Y , applying M∗ to
X → X ⊔ Y ← Y gives the component maps of an
isomorphism M(X )⊕M(Y ) ∼= M(X ⊔ Y ).
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Every finite G -set is of the form X ∼= G/H1 ⊔ . . . ⊔ G/Hn, so a
Mackey functor is determined by its values on all G/Hs.

Think of the covariant part as describing transfer maps:
f : G/H → G/K gives a transfer map
M∗(f ) : M(G/H)→ M(G/K ).
The contravariant part describes restriction maps.

Example Let A be an abelian group with a G -action. Then the
Mackey functor Afix has Afix(G/H) = AH = G -maps(G/H,A).
For H < K we have π : G/H → G/K and AK ⊂ AH . This
determines the restriction map Rπ := Afix(π).
The transfer Tπ for π : G/H → G/K sends an
f ∈ G -maps(G/H,A) to Tπ(f )(gK ) =

∑
x∈π−1(gK) f (x).
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Tambara functors are Mackey functors with an additional
multiplicative structure:

R is a G -Tambara functor (TambG ), if it
is a G -Mackey functor, if each R(X ) is a commutative ring and if
there are multiplicative norm maps:
For the map π : G/H → G/K we have a multiplicative map
Nπ : R(G/H)→ R(G/K ).
These maps have to satisfy several compatiblity relations...

Example If R is a commutative ring with a G -action. Then the
Mackey functor Rfix is actually a G -Tambara functor:
The norm Nπ for π : G/H → G/K sends an f ∈ G -maps(G/H,A)
to Nπ(f )(gK ) =

∏
x∈π−1(gK) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A = AG , sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG and a unit for the so-called box product of
G -Mackey functors, □.
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The norm Nπ for π : G/H → G/K sends an f ∈ G -maps(G/H,A)
to Nπ(f )(gK ) =

∏
x∈π−1(gK) f (x).

Example If R is a commutative ring with a trivial G -action, then
we stress this by calling Rfix the constant Tambara functor: Rc .
Example The Burnside G -Tambara functor, A = AG , sends a finite
G -set X to the group completion of the abelian monoid of iso
classes of finite G -sets over X .
A is initial in TambG and a unit for the so-called box product of
G -Mackey functors, □.



The main technical input in the equivariant context is the following
result:

Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a
functor

(−)⊗ (−) : SetsfG × TambG → TambG

(X ,R) 7→ X ⊗ R

which satisfies the following properties:

1. For all X and Y in SetsfG and R, T in TambG , there are
natural isomorphisms (X ⨿ Y )⊗ R ∼= (X ⊗ R)□(Y ⊗ R) and
X ⊗ (R□T ) ∼= (X ⊗ R)□(X ⊗ T ).

2. There is a natural isomorphism X ⊗ (Y ⊗ R) ∼= (X × Y )⊗ R.

3. On the category with objects finite sets with trivial G -action
and morphisms consisting only of isomorphisms, the functor
restricts to exponentiation X ⊗ R =□x∈XR.
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Definition Let G be a finite group, R ∈ TambG and let X be a
finite simplicial G -set.

We define the Loday construction of R with
respect to X as the simplicial Tambara functor which in simplicial
degree n is

LGX (R)n := Xn ⊗ R.

Remarks

As Xn ⊗ R is functorical in Xn, this is a well-defined object.

Mazur and Hoyer show that

G/H ⊗ R ∼= NG
H i∗HR

where i∗H : TambG → TambH is the restriction functor and
NG
H : TambH → TambG is a norm functor.

The pair (NG
H , i∗H) is an adjoint functor pair.
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Let’s first do a sanity check:
If R is an ordinary commutative ring and X is a finite simplicial
set, then we can view both objects as having trivial G -action.

Proposition
LGX (Rc) ∼= LX (R)c .

The proof is by direct inspection, where we use the fact that
Rc□Rc ∼= (R ⊗ R)c .
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The next result is a fun fact about fixed points:

Let G = Cp for p
a prime and let X be any finite Cp-simplicial set.

Proposition[The hungry fixed points]

LCp

X (Zc) ∼=

{
Zc , if XCp ̸= ∅,

A, if XCp = ∅.

We saw that A is the initial object in TambCp and the ring of
integers is initial in the category of commutative rings. Therefore

N
Cp
e (Z) = N

Cp
e (i∗e (Zc)) ∼= A.

If XCp = ∅, then all orbits are free, so we just get A everywhere
and A□A ∼= A.
If there is a fixed point somewhere, then we have one in every
simplicial level. A fixed point corresponds to the orbit Cp/Cp,
hence there we get Zc . The claim follows from Zc□A ∼= Zc .
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The twisted cyclic nerve

The cyclic group of order n, Cn = ⟨γ⟩ acts on the circle S1
rot by

rotation, so that γ rotates by 2π/n. This circle has a simplicial
model with non-degenerate cells being one free 0-cell
Cn · x0 = {x0, γx0, · · · , γn−1x0} and one free 1-cell Cn · e0.

x0

γx0

γ2x0

γ−1x0

γe0
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We have (S1
rot)k = {Cn · x0k ,Cn · x1k , · · · ,Cn · xkk }, where

x0k = sk0 x0, x
i
k = s i−1

0 sk−i
1 e0 for 1 ≤ i ≤ k .

The simplicial identities imply that

dj(x
0
k ) =x0k−1,

dj(x
i
k) =

{
x i−1
k−1 0 ≤ j ≤ i − 1

x ik−1 i ≤ j ≤ k and i ̸= k

dk(x
k
k ) =γ−1x0k−1.
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So for a Cn-Tambara functor R with R := i∗eR, there is

LCn

S1
rot
(R)k =□0≤i≤k(Cn ⊗ R) = (NCn

e R)□(k+1),

and di : (N
Cn
e R)□(k+1) → (NCn

e R)□k is

di = idi□µ□idk−i for 0 ≤ i < k

dk = (µ□idk−1) ◦ (γ−1□idk) ◦ τ

where µ : (NCn
e R)□2 → NCn

e R is the multiplication and
τ : (NCn

e R)□(k+1) → (NCn
e R)□(k+1) moves the last coordinate to

the front. As i∗eR is an e-Tambara functor, it can be identified
with its value on e/e and that is R(Cn/e).
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We obtain a direct isomorphism of the Loday construction with the
twisted cyclic nerve HCCn defined by
Blumberg-Gerhardt-Hill-Lawson:

Theorem The Cn-equivariant Loday construction for S1
rot is

LCn

S1
rot
(R) ∼= HCCn(NCn

e i∗eR).

For every subgroup K < Cn we can identify the twisted cyclic
nerve relative to K as

HCCn
K (i∗KR) =: HCCn(NCn

K i∗KR)
∼= LCn

S1
rot/K

(R).

In particular, for K = Cn:

LCn

S1
rot/Cn

(R) ∼= HCCn
Cn
(R) = HCCn(R).
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Hesselholt, Madsen defined Real algebraic K-theory, a variant of
algebraic K-theory that accepts as input algebras with
anti-involution.

HM, Dotto develop a corresponding Real variant of topological
Hochschild homology, THR.
Angelini-Knoll, Gerhardt, and Hill show there are (zig-zag of) maps

of O(2)-spectra THR(A) ≃ N
O(2)
C2

A and N
O(2)
C2

(A)→ A⊗C2 O(2)
such that the first one is a C2-equivalence when A is flat and that
the second one is a C2-equivalence when A is well-pointed.

Theorem For A flat and well-pointed:

THR(A) ≃ LC2
Sσ(A).
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such that the first one is a C2-equivalence when A is flat and that
the second one is a C2-equivalence when A is well-pointed.

Theorem For A flat and well-pointed:

THR(A) ≃ LC2
Sσ(A).



Why is that true?

There is a simplicial model of O(2) with O(2)k = D4k+4 and of
course D4k+4 = µ2k+2 ⋊ D2.
This gives

A⊗D2 D4k+4
∼= µ2k+2 ⊗ A.

If we choose an ordering of the D2-set µ2k+2 as
1 < ζ < ζ2 < . . . < ζ2k+1, then we always get two trivial orbits
generated by 1 and ζk+1 and k free orbits generated by ζ, . . . , ζk .
We can identify µ2k+2 with the k-simplices of a reflection circle Sσ:

•

•

hh66
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