Loday constructions for Tambara functors

Birgit Richter
joint work with Ayelet Lindenstrauss and Foling Zou

Topology Seminar Bloomington, 6th of March 2024

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction:

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$. Then $G x=\{g x, g \in G\}$ is a G-subset of X, so the smallest meaningful entities are orbits.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$. Then $G x=\{g x, g \in G\}$ is a G-subset of X, so the smallest meaningful entities are orbits.
What is an adequate notion of commutative monoids in the equivariant context?

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$. Then $G x=\{g x, g \in G\}$ is a G-subset of X, so the smallest meaningful entities are orbits.
What is an adequate notion of commutative monoids in the equivariant context?
There are actually two different ones: One is as commutative monoids in a suitable symmetric monoidal category - these are commutative Green functors.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$. Then $G x=\{g x, g \in G\}$ is a G-subset of X, so the smallest meaningful entities are orbits.
What is an adequate notion of commutative monoids in the equivariant context?
There are actually two different ones: One is as commutative monoids in a suitable symmetric monoidal category - these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$. Then $G x=\{g x, g \in G\}$ is a G-subset of X, so the smallest meaningful entities are orbits.
What is an adequate notion of commutative monoids in the equivariant context?
There are actually two different ones: One is as commutative monoids in a suitable symmetric monoidal category - these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Rolf Hoyer showed in 2014: G-commutative monoids are precisely G-Tambara functors.

Assume that G is a finite group. We are interested in gluing 'algebras' to 'points', in order to generalize the non-equivariant Loday construction: For A a commutative ring, X a finite simplicial set the Loday construction is $\mathcal{L}_{X}(A)_{n}=\bigotimes_{x \in X_{n}} A$. Face maps in X induce multiplication in A, degeneracies insert units.

Let X be a finite set with a G-action and let $x \in X$. Then $G x=\{g x, g \in G\}$ is a G-subset of X, so the smallest meaningful entities are orbits.
What is an adequate notion of commutative monoids in the equivariant context?
There are actually two different ones: One is as commutative monoids in a suitable symmetric monoidal category - these are commutative Green functors.
Mike Hill and Mike Hopkins developed a concept of
G-commutative monoids.
Rolf Hoyer showed in 2014: G-commutative monoids are precisely G-Tambara functors.
What are they?

The category, on which everything is based in our case, is the category of G-Mackey functors.

The category, on which everything is based in our case, is the category of G-Mackey functors.

A Mackey functor is a pair of functors $\underline{M}=\left(M_{*}, M^{*}\right)$ from the category of finite G-sets to abelian groups, such that

The category, on which everything is based in our case, is the category of G-Mackey functors.

A Mackey functor is a pair of functors $\underline{M}=\left(M_{*}, M^{*}\right)$ from the category of finite G-sets to abelian groups, such that

- M_{*} is covariant and M^{*} is contravariant,

The category, on which everything is based in our case, is the category of G-Mackey functors.

A Mackey functor is a pair of functors $\underline{M}=\left(M_{*}, M^{*}\right)$ from the category of finite G-sets to abelian groups, such that

- M_{*} is covariant and M^{*} is contravariant,
- $M_{*}(X)=M^{*}(X)$ for all finite G-sets X,

The category, on which everything is based in our case, is the category of G-Mackey functors.

A Mackey functor is a pair of functors $\underline{M}=\left(M_{*}, M^{*}\right)$ from the category of finite G-sets to abelian groups, such that

- M_{*} is covariant and M^{*} is contravariant,
- $M_{*}(X)=M^{*}(X)$ for all finite G-sets X,
- for every pullback diagram of finite G-sets

we have $M^{*}(\delta) \circ M_{*}(\gamma)=M_{*}(\beta) \circ M^{*}(\alpha)$,

The category, on which everything is based in our case, is the category of G-Mackey functors.

A Mackey functor is a pair of functors $\underline{M}=\left(M_{*}, M^{*}\right)$ from the category of finite G-sets to abelian groups, such that

- M_{*} is covariant and M^{*} is contravariant,
- $M_{*}(X)=M^{*}(X)$ for all finite G-sets X,
- for every pullback diagram of finite G-sets

we have $M^{*}(\delta) \circ M_{*}(\gamma)=M_{*}(\beta) \circ M^{*}(\alpha)$,
- for every pair of finite G-sets X and Y, applying M_{*} to $X \rightarrow X \sqcup Y \leftarrow Y$ gives the component maps of an isomorphism $\underline{M}(X) \oplus \underline{M}(Y) \cong \underline{M}(X \sqcup Y)$.

Every finite G-set is of the form $X \cong G / H_{1} \sqcup \ldots \sqcup G / H_{n}$, so a Mackey functor is determined by its values on all G / Hs.

Every finite G-set is of the form $X \cong G / H_{1} \sqcup \ldots \sqcup G / H_{n}$, so a Mackey functor is determined by its values on all G / Hs. Think of the covariant part as describing transfer maps:
$f: G / H \rightarrow G / K$ gives a transfer map
$M_{*}(f): \underline{M}(G / H) \rightarrow \underline{M}(G / K)$.

Every finite G-set is of the form $X \cong G / H_{1} \sqcup \ldots \sqcup G / H_{n}$, so a Mackey functor is determined by its values on all $G / H s$.
Think of the covariant part as describing transfer maps:
$f: G / H \rightarrow G / K$ gives a transfer map
$M_{*}(f): \underline{M}(G / H) \rightarrow \underline{M}(G / K)$.
The contravariant part describes restriction maps.

Every finite G-set is of the form $X \cong G / H_{1} \sqcup \ldots \sqcup G / H_{n}$, so a Mackey functor is determined by its values on all $G / H s$.
Think of the covariant part as describing transfer maps:
$f: G / H \rightarrow G / K$ gives a transfer map
$M_{*}(f): \underline{M}(G / H) \rightarrow \underline{M}(G / K)$.
The contravariant part describes restriction maps.
Example Let A be an abelian group with a G-action. Then the Mackey functor $\underline{A}^{f i x}$ has $\underline{A}^{f i x}(G / H)=A^{H}=G-\operatorname{maps}(G / H, A)$.

Every finite G-set is of the form $X \cong G / H_{1} \sqcup \ldots \sqcup G / H_{n}$, so a Mackey functor is determined by its values on all $G / H s$.
Think of the covariant part as describing transfer maps:
$f: G / H \rightarrow G / K$ gives a transfer map
$M_{*}(f): \underline{M}(G / H) \rightarrow \underline{M}(G / K)$.
The contravariant part describes restriction maps.
Example Let A be an abelian group with a G-action. Then the Mackey functor $\underline{A}^{f i x}$ has $\underline{A}^{f i x}(G / H)=A^{H}=G-\operatorname{maps}(G / H, A)$. For $H<K$ we have $\pi: G / H \rightarrow G / K$ and $A^{K} \subset A^{H}$. This determines the restriction $\operatorname{map} R_{\pi}:=\underline{A}^{f i x}(\pi)$.

Every finite G-set is of the form $X \cong G / H_{1} \sqcup \ldots \sqcup G / H_{n}$, so a Mackey functor is determined by its values on all $G / H s$.
Think of the covariant part as describing transfer maps:
$f: G / H \rightarrow G / K$ gives a transfer map
$M_{*}(f): \underline{M}(G / H) \rightarrow \underline{M}(G / K)$.
The contravariant part describes restriction maps.
Example Let A be an abelian group with a G-action. Then the Mackey functor $\underline{A}^{f i x}$ has $\underline{A}^{f i x}(G / H)=A^{H}=G-\operatorname{maps}(G / H, A)$. For $H<K$ we have $\pi: G / H \rightarrow G / K$ and $A^{K} \subset A^{H}$. This determines the restriction map $R_{\pi}:=\underline{A}^{\text {fix }}(\pi)$.
The transfer T_{π} for $\pi: G / H \rightarrow G / K$ sends an
$f \in G-\operatorname{maps}(G / H, A)$ to $T_{\pi}(f)(g K)=\sum_{x \in \pi^{-1}(g K)} f(x)$.

Tambara functors are Mackey functors with an additional multiplicative structure:

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\operatorname{Tamb}_{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\operatorname{Tamb}_{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\right.$ Tamb $\left._{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.
These maps have to satisfy several compatiblity relations...

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\right.$ Tamb $\left._{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.
These maps have to satisfy several compatiblity relations...
Example If R is a commutative ring with a G-action. Then the Mackey functor $\underline{R}^{\text {fix }}$ is actually a G-Tambara functor:

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\right.$ Tamb $\left._{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.
These maps have to satisfy several compatiblity relations...
Example If R is a commutative ring with a G-action. Then the Mackey functor $\underline{R}^{\text {fix }}$ is actually a G-Tambara functor:
The norm N_{π} for $\pi: G / H \rightarrow G / K$ sends an $f \in G-\operatorname{maps}(G / H, A)$ to $N_{\pi}(f)(g K)=\prod_{x \in \pi^{-1}(g K)} f(x)$.

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\right.$ Tamb $\left._{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.
These maps have to satisfy several compatiblity relations...
Example If R is a commutative ring with a G-action. Then the Mackey functor $\underline{R}^{\text {fix }}$ is actually a G-Tambara functor:
The norm N_{π} for $\pi: G / H \rightarrow G / K$ sends an $f \in G-\operatorname{maps}(G / H, A)$ to $N_{\pi}(f)(g K)=\prod_{x \in \pi^{-1}(g K)} f(x)$.
Example If R is a commutative ring with a trivial G-action, then we stress this by calling $\underline{R}^{\text {fix }}$ the constant Tambara functor: \underline{R}^{c}.

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\right.$ Tamb $\left._{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.
These maps have to satisfy several compatiblity relations...
Example If R is a commutative ring with a G-action. Then the Mackey functor $\underline{R}^{\text {fix }}$ is actually a G-Tambara functor:
The norm N_{π} for $\pi: G / H \rightarrow G / K$ sends an $f \in G-\operatorname{maps}(G / H, A)$ to $N_{\pi}(f)(g K)=\prod_{x \in \pi^{-1}(g K)} f(x)$.
Example If R is a commutative ring with a trivial G-action, then we stress this by calling $\underline{R}^{\text {fix }}$ the constant Tambara functor: \underline{R}^{c}. Example The Burnside \bar{G}-Tambara functor, $\underline{A}=\underline{A}^{G}$, sends a finite G-set X to the group completion of the abelian monoid of iso classes of finite G-sets over X.

Tambara functors are Mackey functors with an additional multiplicative structure: \underline{R} is a G-Tambara functor $\left(\right.$ Tamb $\left._{G}\right)$, if it is a G-Mackey functor, if each $\underline{R}(X)$ is a commutative ring and if there are multiplicative norm maps:
For the map $\pi: G / H \rightarrow G / K$ we have a multiplicative map $N_{\pi}: \underline{R}(G / H) \rightarrow \underline{R}(G / K)$.
These maps have to satisfy several compatiblity relations...
Example If R is a commutative ring with a G-action. Then the Mackey functor $\underline{R}^{\text {fix }}$ is actually a G-Tambara functor:
The norm N_{π} for $\pi: G / H \rightarrow G / K$ sends an $f \in G-\operatorname{maps}(G / H, A)$ to $N_{\pi}(f)(g K)=\prod_{x \in \pi^{-1}(g K)} f(x)$.
Example If R is a commutative ring with a trivial G-action, then we stress this by calling $\underline{R}^{\text {fix }}$ the constant Tambara functor: \underline{R}^{c}. Example The Burnside \bar{G}-Tambara functor, $\underline{A}=\underline{A}^{G}$, sends a finite G-set X to the group completion of the abelian monoid of iso classes of finite G-sets over X.
\underline{A} is initial in Tamb_{G} and a unit for the so-called box product of G-Mackey functors, \square.

The main technical input in the equivariant context is the following result:

The main technical input in the equivariant context is the following result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$
\begin{aligned}
&(-) \otimes(-): \text { Sets }_{G}{ }^{f} \times \operatorname{Tamb}_{G} \rightarrow \operatorname{Tamb}_{G} \\
&(X, R) \mapsto X \otimes R
\end{aligned}
$$

which satisfies the following properties:

The main technical input in the equivariant context is the following result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$
\begin{aligned}
& (-) \otimes(-): \text { Sets }_{G}{ }_{G} \times \operatorname{Tamb}_{G} \rightarrow \operatorname{Tamb}_{G} \\
& (X, R) \mapsto X \otimes R
\end{aligned}
$$

which satisfies the following properties:

1. For all X and Y in $\operatorname{Sets}^{f}{ }_{G}$ and $\underline{R}, \underline{T}$ in Tamb_{G}, there are natural isomorphisms $(X \amalg Y) \otimes \underline{R} \cong(X \otimes \underline{R}) \square(Y \otimes \underline{R})$

The main technical input in the equivariant context is the following result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$
\begin{gathered}
(-) \otimes(-): \text { Sets }_{G}{ }^{(} \times \operatorname{Tamb}_{G} \rightarrow \operatorname{Tamb}_{G} \\
(X, R) \mapsto X \otimes R
\end{gathered}
$$

which satisfies the following properties:

1. For all X and Y in $\operatorname{Sets}^{f} G$ and $\underline{R}, \underline{T}$ in Tamb_{G}, there are natural isomorphisms $(X \amalg Y) \otimes \underline{R} \cong(X \otimes \underline{R}) \square(Y \otimes \underline{R})$ and $X \otimes(\underline{R} \square \underline{I}) \cong(X \otimes \underline{R}) \square(X \otimes \underline{I})$.

The main technical input in the equivariant context is the following result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$
\begin{aligned}
&(-) \otimes(-): \text { Sets }_{G}{ }^{f} \times \operatorname{Tamb}_{G} \rightarrow \operatorname{Tamb}_{G} \\
&(X, R) \mapsto X \otimes R
\end{aligned}
$$

which satisfies the following properties:

1. For all X and Y in $\operatorname{Sets}^{f} G$ and $\underline{R}, \underline{T}$ in Tamb_{G}, there are natural isomorphisms $(X \amalg Y) \otimes \underline{R} \cong(X \otimes \underline{R}) \square(Y \otimes \underline{R})$ and $X \otimes(\underline{R} \square \underline{I}) \cong(X \otimes \underline{R}) \square(X \otimes \underline{I})$.
2. There is a natural isomorphism $X \otimes(Y \otimes \underline{R}) \cong(X \times Y) \otimes \underline{R}$.

The main technical input in the equivariant context is the following result:
Theorem [Kristen Mazur 2013, Rolf Hoyer 2014] There is a functor

$$
\begin{aligned}
&(-) \otimes(-): \text { Sets }_{G}{ }^{\mathrm{F}} \times \mathrm{Tamb}_{G} \rightarrow \mathrm{Tamb}_{G} \\
&(X, R) \mapsto X \otimes R
\end{aligned}
$$

which satisfies the following properties:

1. For all X and Y in $\operatorname{Sets}^{f} G$ and $\underline{R}, \underline{T}$ in Tamb_{G}, there are natural isomorphisms $(X \amalg Y) \otimes \underline{R} \cong(X \otimes \underline{R}) \square(Y \otimes \underline{R})$ and $X \otimes(\underline{R} \square \underline{I}) \cong(X \otimes \underline{R}) \square(X \otimes \underline{I})$.
2. There is a natural isomorphism $X \otimes(Y \otimes \underline{R}) \cong(X \times Y) \otimes \underline{R}$.
3. On the category with objects finite sets with trivial G-action and morphisms consisting only of isomorphisms, the functor restricts to exponentiation $X \otimes \underline{R}=\square_{x \in X} \underline{R}$.

Definition Let G be a finite group, $\underline{R} \in \operatorname{Tamb}_{G}$ and let X be a finite simplicial G-set.

Definition Let G be a finite group, $\underline{R} \in \operatorname{Tamb}_{G}$ and let X be a finite simplicial G-set. We define the Loday construction of \underline{R} with respect to X as the simplicial Tambara functor which in simplicial degree n is

$$
\mathcal{L}_{X}^{\mathcal{G}}(\underline{R})_{n}:=X_{n} \otimes \underline{R} .
$$

Definition Let G be a finite group, $\underline{R} \in \operatorname{Tamb}_{G}$ and let X be a finite simplicial G-set. We define the Loday construction of \underline{R} with respect to X as the simplicial Tambara functor which in simplicial degree n is

$$
\mathcal{L}_{X}^{\mathcal{G}}(\underline{R})_{n}:=X_{n} \otimes \underline{R} .
$$

Remarks
As $X_{n} \otimes \underline{R}$ is functorical in X_{n}, this is a well-defined object.

Definition Let G be a finite group, $\underline{R} \in \operatorname{Tamb}_{G}$ and let X be a finite simplicial G-set. We define the Loday construction of \underline{R} with respect to X as the simplicial Tambara functor which in simplicial degree n is

$$
\mathcal{L}_{X}^{\mathcal{G}}(\underline{R})_{n}:=X_{n} \otimes \underline{R} .
$$

Remarks
As $X_{n} \otimes \underline{R}$ is functorical in X_{n}, this is a well-defined object.
Mazur and Hoyer show that

$$
G / H \otimes \underline{R} \cong N_{H}^{G} i_{H}^{*} \underline{R}
$$

where $i_{H}^{*}: \operatorname{Tamb}_{G} \rightarrow \operatorname{Tamb}_{H}$ is the restriction functor and $N_{H}^{G}: \mathrm{Tamb}_{H} \rightarrow \mathrm{Tamb}_{G}$ is a norm functor.

Definition Let G be a finite group, $\underline{R} \in \operatorname{Tamb}_{G}$ and let X be a finite simplicial G-set. We define the Loday construction of \underline{R} with respect to X as the simplicial Tambara functor which in simplicial degree n is

$$
\mathcal{L}_{X}^{\mathcal{G}}(\underline{R})_{n}:=X_{n} \otimes \underline{R} .
$$

Remarks
As $X_{n} \otimes \underline{R}$ is functorical in X_{n}, this is a well-defined object.
Mazur and Hoyer show that

$$
G / H \otimes \underline{R} \cong N_{H}^{G} i_{H}^{*} \underline{R}
$$

where $i_{H}^{*}: \operatorname{Tamb}_{G} \rightarrow \operatorname{Tamb}_{H}$ is the restriction functor and $N_{H}^{G}: \mathrm{Tamb}_{H} \rightarrow \mathrm{Tamb}_{G}$ is a norm functor.
The pair $\left(N_{H}^{G}, i_{H}^{*}\right)$ is an adjoint functor pair.

Let's first do a sanity check:
If R is an ordinary commutative ring and X is a finite simplicial set, then we can view both objects as having trivial G-action.

Let's first do a sanity check:
If R is an ordinary commutative ring and X is a finite simplicial set, then we can view both objects as having trivial G-action.

Proposition

$$
\mathcal{L}_{X}^{G}\left(\underline{R}^{c}\right) \cong \underline{\mathcal{L}_{X}(R)^{c}} .
$$

Let's first do a sanity check:
If R is an ordinary commutative ring and X is a finite simplicial set, then we can view both objects as having trivial G-action.

Proposition

$$
\mathcal{L}_{X}^{G}\left(\underline{R}^{c}\right) \cong \underline{\mathcal{L}}_{X}(R)^{c} .
$$

The proof is by direct inspection, where we use the fact that $\underline{R}^{c} \square \underline{R}^{c} \cong(R \otimes R)^{c}$.

The next result is a fun fact about fixed points:

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

Proposition[The hungry fixed points]

$$
\mathcal{L}_{X}^{C_{p}}\left(\underline{\mathbb{Z}}^{c}\right) \cong \begin{cases}\underline{\mathbb{Z}}^{c}, & \text { if } X^{C_{p}} \neq \varnothing \\ \underline{A}, & \text { if } X^{C_{p}}=\varnothing\end{cases}
$$

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

Proposition[The hungry fixed points]

$$
\mathcal{L}_{X}^{C_{p}}\left(\underline{\mathbb{Z}}^{c}\right) \cong \begin{cases}\underline{\mathbb{Z}}^{c}, & \text { if } X^{C_{p}} \neq \varnothing \\ \underline{A}, & \text { if } X^{C_{p}}=\varnothing\end{cases}
$$

We saw that \underline{A} is the initial object in $\operatorname{Tamb}_{C_{p}}$ and the ring of integers is initial in the category of commutative rings. Therefore

$$
N_{e}^{C_{p}}(\mathbb{Z})=N_{e}^{C_{p}}\left(i_{e}^{*}\left(\underline{\mathbb{Z}}^{c}\right)\right) \cong \underline{A} .
$$

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

Proposition[The hungry fixed points]

$$
\mathcal{L}_{X}^{C_{p}}\left(\underline{\mathbb{Z}}^{c}\right) \cong \begin{cases}\underline{\mathbb{Z}^{c}}, & \text { if } X^{C_{P}} \neq \varnothing \\ \underline{A}, & \text { if } X^{C_{P}}=\varnothing\end{cases}
$$

We saw that \underline{A} is the initial object in $\operatorname{Tamb}_{C_{p}}$ and the ring of integers is initial in the category of commutative rings. Therefore

$$
N_{e}^{C_{p}}(\mathbb{Z})=N_{e}^{C_{p}}\left(i_{e}^{*}\left(\underline{\mathbb{Z}}^{c}\right)\right) \cong \underline{A} .
$$

If $X^{C_{p}}=\varnothing$, then all orbits are free, so we just get \underline{A} everywhere and $\underline{A} \square \underline{A} \cong \underline{A}$.

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

Proposition[The hungry fixed points]

$$
\mathcal{L}_{X}^{C_{p}}\left(\underline{\mathbb{Z}}^{c}\right) \cong \begin{cases}\underline{\mathbb{Z}^{c}}, & \text { if } X^{C_{P}} \neq \varnothing \\ \underline{A}, & \text { if } X^{C_{P}}=\varnothing\end{cases}
$$

We saw that \underline{A} is the initial object in $\operatorname{Tamb}_{C_{p}}$ and the ring of integers is initial in the category of commutative rings. Therefore

$$
N_{e}^{C_{p}}(\mathbb{Z})=N_{e}^{C_{p}}\left(i_{e}^{*}\left(\underline{\mathbb{Z}}^{c}\right)\right) \cong \underline{A} .
$$

If $X^{C_{p}}=\varnothing$, then all orbits are free, so we just get \underline{A} everywhere and $\underline{A} \square \underline{A} \cong \underline{A}$.
If there is a fixed point somewhere, then we have one in every simplicial level.

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

Proposition[The hungry fixed points]

$$
\mathcal{L}_{X}^{C_{p}}\left(\underline{\mathbb{Z}}^{c}\right) \cong \begin{cases}\underline{\mathbb{Z}^{c}}, & \text { if } X^{C_{P}} \neq \varnothing \\ \underline{A}, & \text { if } X^{C_{P}}=\varnothing\end{cases}
$$

We saw that \underline{A} is the initial object in $\mathrm{Tamb}_{C_{p}}$ and the ring of integers is initial in the category of commutative rings. Therefore

$$
N_{e}^{C_{p}}(\mathbb{Z})=N_{e}^{C_{p}}\left(i_{e}^{*}\left(\underline{\mathbb{Z}}^{c}\right)\right) \cong \underline{A} .
$$

If $X^{C_{p}}=\varnothing$, then all orbits are free, so we just get \underline{A} everywhere and $\underline{A} \square \underline{A} \cong \underline{A}$.
If there is a fixed point somewhere, then we have one in every simplicial level. A fixed point corresponds to the orbit C_{p} / C_{p}, hence there we get $\underline{\mathbb{Z}}^{c}$.

The next result is a fun fact about fixed points: Let $G=C_{p}$ for p a prime and let X be any finite C_{p}-simplicial set.

Proposition[The hungry fixed points]

$$
\mathcal{L}_{X}^{C_{p}}\left(\underline{\mathbb{Z}}^{c}\right) \cong \begin{cases}\underline{\mathbb{Z}^{c}}, & \text { if } X^{C_{P}} \neq \varnothing \\ \underline{A}, & \text { if } X^{C_{P}}=\varnothing\end{cases}
$$

We saw that \underline{A} is the initial object in $\mathrm{Tamb}_{C_{p}}$ and the ring of integers is initial in the category of commutative rings. Therefore

$$
N_{e}^{C_{p}}(\mathbb{Z})=N_{e}^{C_{p}}\left(i_{e}^{*}\left(\underline{\mathbb{Z}}^{c}\right)\right) \cong \underline{A} .
$$

If $X^{C_{p}}=\varnothing$, then all orbits are free, so we just get \underline{A} everywhere and $\underline{A} \square \underline{A} \cong \underline{A}$.
If there is a fixed point somewhere, then we have one in every simplicial level. A fixed point corresponds to the orbit C_{p} / C_{p}, hence there we get $\underline{\mathbb{Z}}^{c}$. The claim follows from $\underline{\mathbb{Z}}^{c} \square \underline{A} \cong \underline{\mathbb{Z}}^{c}$.

The twisted cyclic nerve

The twisted cyclic nerve The cyclic group of order $n, C_{n}=\langle\gamma\rangle$ acts on the circle $S_{\text {rot }}^{1}$ by rotation, so that γ rotates by $2 \pi / n$.

The twisted cyclic nerve
The cyclic group of order $n, C_{n}=\langle\gamma\rangle$ acts on the circle $S_{\text {rot }}^{1}$ by rotation, so that γ rotates by $2 \pi / n$. This circle has a simplicial model with non-degenerate cells being one free 0-cell
$C_{n} \cdot x_{0}=\left\{x_{0}, \gamma x_{0}, \cdots, \gamma^{n-1} x_{0}\right\}$ and one free 1-cell $C_{n} \cdot e_{0}$.

The twisted cyclic nerve

The cyclic group of order $n, C_{n}=\langle\gamma\rangle$ acts on the circle $S_{\text {rot }}^{1}$ by rotation, so that γ rotates by $2 \pi / n$. This circle has a simplicial model with non-degenerate cells being one free 0 -cell $C_{n} \cdot x_{0}=\left\{x_{0}, \gamma x_{0}, \cdots, \gamma^{n-1} x_{0}\right\}$ and one free 1-cell $C_{n} \cdot e_{0}$.

We have $\left(S_{\text {rot }}^{1}\right)_{k}=\left\{C_{n} \cdot x_{k}^{0}, C_{n} \cdot x_{k}^{1}, \cdots, C_{n} \cdot x_{k}^{k}\right\}$, where

$$
x_{k}^{0}=s_{0}^{k} x_{0}, x_{k}^{i}=s_{0}^{i-1} s_{1}^{k-i} e_{0} \text { for } 1 \leq i \leq k
$$

We have $\left(S_{\text {rot }}^{1}\right)_{k}=\left\{C_{n} \cdot x_{k}^{0}, C_{n} \cdot x_{k}^{1}, \cdots, C_{n} \cdot x_{k}^{k}\right\}$, where

$$
x_{k}^{0}=s_{0}^{k} x_{0}, x_{k}^{i}=s_{0}^{i-1} s_{1}^{k-i} e_{0} \text { for } 1 \leq i \leq k
$$

The simplicial identities imply that

$$
\begin{aligned}
& d_{j}\left(x_{k}^{0}\right)=x_{k-1}^{0}, \\
& d_{j}\left(x_{k}^{i}\right)= \begin{cases}x_{k-1}^{i-1} & 0 \leq j \leq i-1 \\
x_{k-1}^{i} & i \leq j \leq k \text { and } i \neq k\end{cases} \\
& d_{k}\left(x_{k}^{k}\right)=\gamma^{-1} x_{k-1}^{0} .
\end{aligned}
$$

So for a C_{n}-Tambara functor \underline{R} with $R:=i_{e}^{*} \underline{R}$, there is

$$
\mathcal{L}_{S_{\text {rot }}^{1}}^{C_{n}}(\underline{R})_{k}=\square_{0 \leq i \leq k}\left(C_{n} \otimes \underline{R}\right)=\left(N_{e}^{C_{n}} R\right)^{\square(k+1)},
$$

So for a C_{n}-Tambara functor \underline{R} with $R:=i_{e}^{*} \underline{R}$, there is

$$
\mathcal{L}_{S_{\text {rot }}^{1}}^{C_{n}}(\underline{R})_{k}=\square_{0 \leq i \leq k}\left(C_{n} \otimes \underline{R}\right)=\left(N_{e}^{C_{n}} R\right)^{\square(k+1)},
$$

and $d_{i}:\left(N_{e}^{C_{n}} R\right)^{\square(k+1)} \rightarrow\left(N_{e}^{C_{n}} R\right)^{\square k}$ is

$$
\begin{array}{rlr}
d_{i} & =\mathrm{id}^{i} \square \mu \square \mathrm{id}^{k-i} & \text { for } 0 \leq i<k \\
d_{k} & =\left(\mu \square \mathrm{id}^{k-1}\right) \circ\left(\gamma^{-1} \square \mathrm{id}^{k}\right) \circ \tau &
\end{array}
$$

where $\mu:\left(N_{e}^{C_{n}} R\right)^{\square 2} \rightarrow N_{e}^{C_{n}} R$ is the multiplication and $\tau:\left(N_{e}^{C_{n}} R\right)^{\square(k+1)} \rightarrow\left(N_{e}^{C_{n}} R\right)^{\square(k+1)}$ moves the last coordinate to the front.

So for a C_{n}-Tambara functor \underline{R} with $R:=i_{e}^{*} \underline{R}$, there is

$$
\mathcal{L}_{S_{\text {rot }}^{1}}^{C_{n}}(\underline{R})_{k}=\square_{0 \leq i \leq k}\left(C_{n} \otimes \underline{R}\right)=\left(N_{e}^{C_{n}} R\right)^{\square(k+1)},
$$

and $d_{i}:\left(N_{e}^{C_{n}} R\right)^{\square(k+1)} \rightarrow\left(N_{e}^{C_{n}} R\right)^{\square k}$ is

$$
\begin{aligned}
d_{i} & =\mathrm{id}^{i} \square \mu \square \mathrm{id}^{k-i} & \text { for } 0 \leq i<k \\
d_{k} & =\left(\mu \square \mathrm{id}^{k-1}\right) \circ\left(\gamma^{-1} \square \mathrm{id}^{k}\right) \circ \tau &
\end{aligned}
$$

where $\mu:\left(N_{e}^{C_{n}} R\right)^{\square 2} \rightarrow N_{e}^{C_{n}} R$ is the multiplication and $\tau:\left(N_{e}^{C_{n}} R\right)^{\square(k+1)} \rightarrow\left(N_{e}^{C_{n}} R\right)^{\square(k+1)}$ moves the last coordinate to the front. As $i_{e}^{*} \underline{R}$ is an e-Tambara functor, it can be identified with its value on e / e and that is $\underline{R}\left(C_{n} / e\right)$.

We obtain a direct isomorphism of the Loday construction with the twisted cyclic nerve $\underline{\mathrm{HC}}^{C_{n}}$ defined by
Blumberg-Gerhardt-Hill-Lawson:

We obtain a direct isomorphism of the Loday construction with the twisted cyclic nerve $\underline{H C}^{C_{n}}$ defined by
Blumberg-Gerhardt-Hill-Lawson:
Theorem The C_{n}-equivariant Loday construction for $S_{\text {rot }}^{1}$ is

$$
\mathcal{L}_{S_{\mathrm{rot}}^{1}}^{C_{n}}(\underline{R}) \cong \underline{\mathrm{HC}}^{C_{n}}\left(N_{e}^{C_{n}} i_{e}^{*} \underline{R}\right) .
$$

We obtain a direct isomorphism of the Loday construction with the twisted cyclic nerve $\underline{\mathrm{HC}}^{C_{n}}$ defined by Blumberg-Gerhardt-Hill-Lawson:

Theorem The C_{n}-equivariant Loday construction for $S_{\text {rot }}^{1}$ is

$$
\mathcal{L}_{S_{\mathrm{rot}}^{1}}^{C_{n}}(\underline{R}) \cong \underline{\mathrm{HC}}^{C_{n}}\left(N_{e}^{C_{n}} i_{e}^{*} \underline{R}\right) .
$$

For every subgroup $K<C_{n}$ we can identify the twisted cyclic nerve relative to K as

$$
\underline{\mathrm{HC}}_{K}^{C_{n}}\left(i_{K}^{*} \underline{R}\right)=: \underline{\mathrm{HC}}^{C_{n}}\left(N_{K}^{C_{n}} i_{K}^{*} \underline{R}\right) \cong \mathcal{L}_{S_{\mathrm{rot}}^{1} / K}^{C_{n}}(\underline{R})
$$

We obtain a direct isomorphism of the Loday construction with the twisted cyclic nerve $\underline{H C}^{C_{n}}$ defined by Blumberg-Gerhardt-Hill-Lawson:

Theorem The C_{n}-equivariant Loday construction for $S_{\text {rot }}^{1}$ is

$$
\mathcal{L}_{S_{\mathrm{rot}}^{1}}^{C_{n}}(\underline{R}) \cong \underline{\mathrm{HC}}^{C_{n}}\left(N_{e}^{C_{n}} i_{e}^{*} \underline{R}\right) .
$$

For every subgroup $K<C_{n}$ we can identify the twisted cyclic nerve relative to K as

$$
\underline{\mathrm{HC}}_{K}^{C_{n}}\left(i_{K}^{*} \underline{R}\right)=: \underline{\mathrm{HC}}^{C_{n}}\left(N_{K}^{C_{n}} i_{K}^{*} \underline{R}\right) \cong \mathcal{L}_{S_{\mathrm{rot}}^{1} / K}^{C_{n}}(\underline{R})
$$

In particular, for $K=C_{n}$:

$$
\mathcal{L}_{S_{\mathrm{rot}}^{1} / C_{n}}^{C_{n}}(\underline{R}) \cong \underline{\mathrm{HC}}_{C_{n}}^{C_{n}}(\underline{R})=\underline{\mathrm{HC}}^{C_{n}}(\underline{R})
$$

Hesselholt, Madsen defined Real algebraic K-theory, a variant of algebraic K-theory that accepts as input algebras with anti-involution.

Hesselholt, Madsen defined Real algebraic K-theory, a variant of algebraic K-theory that accepts as input algebras with anti-involution.
HM, Dotto develop a corresponding Real variant of topological Hochschild homology, THR.

Hesselholt, Madsen defined Real algebraic K-theory, a variant of algebraic K-theory that accepts as input algebras with anti-involution.
HM, Dotto develop a corresponding Real variant of topological Hochschild homology, THR.
Angelini-Knoll, Gerhardt, and Hill show there are (zig-zag of) maps of $O(2)$-spectra $\operatorname{THR}(A) \simeq N_{C_{2}}^{O(2)} A$ and $N_{C_{2}}^{O(2)}(A) \rightarrow A \otimes C_{2} O(2)$ such that the first one is a C_{2}-equivalence when A is flat and that the second one is a C_{2}-equivalence when A is well-pointed.

Hesselholt, Madsen defined Real algebraic K-theory, a variant of algebraic K-theory that accepts as input algebras with anti-involution.
HM, Dotto develop a corresponding Real variant of topological Hochschild homology, THR.
Angelini-Knoll, Gerhardt, and Hill show there are (zig-zag of) maps of $O(2)$-spectra $\operatorname{THR}(A) \simeq N_{C_{2}}^{O(2)} A$ and $N_{C_{2}}^{O(2)}(A) \rightarrow A \otimes C_{2} O(2)$ such that the first one is a C_{2}-equivalence when A is flat and that the second one is a C_{2}-equivalence when A is well-pointed.

Theorem For A flat and well-pointed:

$$
\operatorname{THR}(A) \simeq \mathcal{L}_{S^{\sigma}}^{C_{2}}(A)
$$

Why is that true?

Why is that true?
There is a simplicial model of $O(2)$ with $O(2)_{k}=D_{4 k+4}$ and of course $D_{4 k+4}=\mu_{2 k+2} \rtimes D_{2}$.

Why is that true?
There is a simplicial model of $O(2)$ with $O(2)_{k}=D_{4 k+4}$ and of course $D_{4 k+4}=\mu_{2 k+2} \rtimes D_{2}$.
This gives

$$
A \otimes_{D_{2}} D_{4 k+4} \cong \mu_{2 k+2} \otimes A
$$

Why is that true?
There is a simplicial model of $O(2)$ with $O(2)_{k}=D_{4 k+4}$ and of course $D_{4 k+4}=\mu_{2 k+2} \rtimes D_{2}$.
This gives

$$
A \otimes_{D_{2}} D_{4 k+4} \cong \mu_{2 k+2} \otimes A
$$

If we choose an ordering of the D_{2}-set $\mu_{2 k+2}$ as
$1<\zeta<\zeta^{2}<\ldots<\zeta^{2 k+1}$, then we always get two trivial orbits generated by 1 and ζ^{k+1} and k free orbits generated by ζ, \ldots, ζ^{k}.

Why is that true?
There is a simplicial model of $O(2)$ with $O(2)_{k}=D_{4 k+4}$ and of course $D_{4 k+4}=\mu_{2 k+2} \rtimes D_{2}$.
This gives

$$
A \otimes_{D_{2}} D_{4 k+4} \cong \mu_{2 k+2} \otimes A
$$

If we choose an ordering of the D_{2}-set $\mu_{2 k+2}$ as
$1<\zeta<\zeta^{2}<\ldots<\zeta^{2 k+1}$, then we always get two trivial orbits generated by 1 and ζ^{k+1} and k free orbits generated by ζ, \ldots, ζ^{k}. We can identify $\mu_{2 k+2}$ with the k-simplices of a reflection circle S^{σ} :

