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1 Introduction

Observability is, roughly speaking, the property of a system that the state can be
reconstructed from the knowledge of input and output. The precise concept how-
ever depends on the specific framework, as quite a number of different concepts of
observability are present today.

As many crucial concepts in mathematical systems theory, observability goes
back to KALMAN [43–45], who introduced the notion of observability more than
fifty years ago for finite-dimensional linear systems governed by ordinary differ-
ential equations (ODEs) . Observability has been defined via the property that the
initial value of the state is uniquely determined by input and output trajectories.
What is particularly nice about observability is a duality principle. An ODE sys-
tem is observable if, and only if, a certain artificial system obtained by taking the
transposes of the involved matrices is controllable.

The theory of observability has been an essential ingredient for LUENBERGER’s
achievements on observer design [56–58], which is, on the other hand, an essential
ingredient for design of dynamic controllers. The idea behind controller design is
amazingly simple: The observer reconstructs the state and this reconstructed state is
fed back to the system.

A further milestone in mathematical systems theory has been the theory of be-
haviors introduced by WILLEMS [68, 82], where systems of differential equations
of possibly higher order are considered. The novelty of this approach was that no
explicit distinction between input, state and output is made. Nevertheless (or even
maybe because of this), the behavioral approach provides a deep understanding of
nearly all tasks of modern systems theory. In particular, the essential systems the-
oretic concepts of controllability and observability are defined in a way that they
coincide with the respective properties of ODE systems: Behavioral controllability
is defined via concatenability of trajectories [68, Def. 5.2.2], whereas observability
uses a split of the dynamic variables into two kinds, namely external and inter-
nal variables [68, Def. 5.3.2]. For ODE systems, the external variables are inputs
and outputs, whereas the internal variables are the states. Behavioral observability
means that the external variables uniquely determine the internal variables. The be-
havioral approach already reveals a certain lack of duality between controllability
and observability: While underdetermined systems of differential equations are con-
trollable in the behavioral sense, their dual, namely overdetermined systems, cause
non-observability in general.

The type of systems to be analyzed in the present article is “in between” ODE
and behavioral systems: We consider linear constant coefficient descriptor systems
given by differential-algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t) ,
(1)
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where E,A∈Rl×n, B∈Rl×m, C∈Rp×n, D∈Rp×l . A matrix pencil sE−A∈R[s]l×n

is called regular, if l = n and det(sE−A)∈R[s]\{0}; otherwise it is called singular.
In the present paper, we put special emphasis on the singular case.

We distinguish between input u : R→ Rm, output y : R→ Rp and (generalized)
state x : R→ Rn. One should keep in mind that in the singular case u might be
constrained and some of the state variables may play the role of an input. Note
that, strictly speaking, x(t) is in general not a state in the sense that the free system
(i.e., u ≡ 0) can be initialized with an arbitrary state x(0) = x0 ∈ Rn [47, Sec. 2.2].
We will, however, speak of the state x(t) for sake of brevity, especially since x(t)
contains the full information about the system at time t.

We recall that in DAE systems (1) the algebraic constraints may lead to consis-
tency conditions on the input and cause non-existence of solutions to certain initial
value problems. Furthermore, solutions may not be unique due to underdetermined
parts. There is a vast amount of literature on the solution theory of DAEs; here
we refer to the more present depiction of DAEs in a systems theoretic framework
in [16], where also several application areas are mentioned and a comprehensive list
of literature is given.

Though DAEs are a subclass of behavioral systems, the study of behavioral ob-
servability is not fully satisfactory in the DAE case: The reason is that there might
be purely algebraic variables which do not exert influence on the output. An ob-
servability concept which also covers this effect is in particular indispensable for
the minimal realization problem by differential-algebraic systems [31, Sec. 2.6].
This need has led to the notions of impulse observability and observability at in-
finity [3, 13, 24, 25, 30–32, 39, 42, 52, 75, 80]. However, a rigorous definition of
these concepts is a delicate issue: In various publications, the theoretical claim
that an inconsistent initial value causes Dirac impulses in the state has been used
to define impulse observability (which is actually the reason for the choice of the
name) [30, 31, 39, 42]. In particular, this leads to the consideration of distributional
solutions. However, this approach contains a grave paradox: The initial value is the
evaluation of the state at initial time (which can always be chosen to be zero here be-
cause of time-invariance); SCHWARTZ’ celebrated theory of distributions [74] how-
ever does not allow for evaluations at certain time points. Loosely speaking, distri-
butions are only defined by means of their average behavior along compactly sup-
ported, infinitely often differentiable functions. In the present article we also aim to
circumvent this paradox by focussing on the smaller class of piecewise-smooth dis-
tributions D ′pwC ∞ as introduced in [75, 76]. This class indeed allows for evaluation
at specific time points, and therefore it is apt to consider inconsistently initialized
DAEs and rigorously define accordant observability concepts.

A survey article [16] on controllability of DAE systems has appeared in the
same series “Surveys on Differential-Algebraic Equations” within the “Differential-
Algebraic Equations Forum”. The present article on observability is the continua-
tion of that survey. The structure of the present paper is similar to [16]: We introduce
different observability concepts using the solution behavior and thereafter we give
characterizations by means of properties of the involved matrices. We further ana-
lyze duality to the respective controllability concepts.
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As in [16], many of our considerations utilize certain (normal) forms. Besides
the Weierstraß and Kronecker canonical forms for matrix pencils (see [49, 81] and
the famous book [35] by GANTMACHER), we also use a form that we call “output
injection (OI) normal form”, which is a normal form under state space and output
space transformation and output injection. Loosely speaking, the OI-normal form is
the transpose of the feedback canonical form derived by LOISEAU, ÖZÇALDIRAN,
MALABRE and KARCANIAS in [55].

The paper is organized as follows:

2 Weak and distributional solutions p.6
The solution framework for the present article is introduced in this section. Be-
sides weak solutions (which are basically solutions in a function setting), we
consider distributional solutions of linear DAEs. The collection of solutions is
called behavior. In particular we consider the behavior arising from initial tra-
jectory problems which is, loosely speaking, the set of those solutions which sat-
isfy the DAE only for times t ≥ 0. The relation between the introduced behavior
notions is discussed.

3 Observability concepts p.10
This part contains the definition of all observability notions which are treated
in the present article, such as behavioral, impulse, strong and complete observ-
ability as well as observability at infinity. We further introduce corresponding
concepts of RS (relevant state) observability. Loosely speaking these concepts
correspond to observability of the part of the state which is uniquely determined
by input, output and initial values. The RS observability notions will later turn
out to be weaker than the respective conventional observability notions and to be
equivalent to them, if the system is regular. All the observability concepts are in-
troduced by means of time-domain properties. That is, they are defined by means
of the (distributional) behavior of the underlying system. We also present some
basic properties.

4 Output injection normal form p.20
We introduce an “output injection (OI) normal form”, which is a special form
under output injection and coordinate transformation of state and output. We fur-
ther show that all considered observability concepts from Section 3 are invariant
under this type of transformation. This allows for an analysis of the observabil-
ity concepts by means of a system being in this form. Since, in particular, the
OI-normal form consists of decoupled parts, this analysis leads to a test of the
respective observability properties by means of certain “prototypes”.
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5 Duality of observability and controllability p.31
It is well known from systems theory for ODEs that controllability and observ-
ability are dual in a certain sense. More precisely, an ODE system is observable
if and only if, the control system obtained by transposition is controllable. Here
we analyze duality for the introduced observability concepts and behavioral, im-
pulse, strong and complete controllability as well as controllability at infinity as
considered in [16]. It turns out that there is a certain lack of duality. However, we
show that the aforementioned controllability concepts are dual to the respective
relevant state observability notions.

6 Algebraic criteria p.33
Duality and the OI-normal form enable us to give short proofs of equivalent cri-
teria for the observability concepts which are in particular generalizations of the
Hautus test. Most characterizations are well known and we discuss the relevant
literature.

7 Geometric criteria p.38
In Section 7 we present some geometric viewpoints of DAE systems using so-
called restricted Wong sequences. This leads to further equivalent criteria for the
observability concepts from Section 3.

8 Kalman decomposition p.41
In Section 8 we consider different types of Kalman decompositions for DAE
systems. We show that a combined Kalman decomposition for controllability and
observability is possible as well as a refined pure observability decomposition.

9 Detectability and stabilization by output injection p.44
Finally, in Section 9 we introduce some notions related to detectability for DAE
systems. Criteria of Hautus type and duality to stabilizability concepts from [16]
are derived. We further prove some new results concerning the stabilization and
index reduction by output injection.

We close the introduction with the nomenclature used in this paper:

Z, N, N0 the set of integers, natural numbers and N0 = N∪{0}, resp.

`(α), |α| length `(α) = l and absolute value |α|=
∑l

i=1 αi of a multi-index
α = (α1, . . . ,αl) ∈ Nl

C+(C−) open set of complex numbers with positive (negative) real part,
resp.

R[s] the ring of polynomials with coefficients in R

R(s) the quotient field of R[s]

Rn×m the set of n×m matrices with entries in a ring R
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Gln(R) the group of invertible matrices in Rn×n

σ(M) the spectrum of M ∈ Rn×m

‖x‖ =
√

x>x, the Euclidean norm of x ∈ Rn

MS = { Mx ∈ Rm | x ∈S }, the image of S ⊆ Rn under M ∈ Rm×n

M−1S = { x ∈ Rm |Mx ∈S }, the pre-image of S ⊆ Rm under M

C ∞(T ;Rn) the set of infinitely differentiable functions f : T → Rn

A C (R;Rn) the set of absolutely continuous functions f : R→ Rn

L 1
loc(R;Rn) the set of locally Lebesgue integrable functions f : R → Rn,

where
∫

K∩T ‖ f (t)‖ dt < ∞ for all compact K ⊆ R

D ′ the set of distributions on R

ḟ ( f (i)) the (i-th) distributional derivative of f ∈D ′, i ∈ N0

fD ′ the distribution induced by the function f ∈L 1
loc(R;R)

δt , δ the Dirac impulse at t ∈ R and δ = δ0

f a.e.
= g means that f ,g∈L 1

loc(R;Rn) are equal “almost everywhere”, i.e.,
f (t) = g(t) for almost all t ∈ R

esssupI ‖ f‖ the essential supremum of the measurable function f : T → Rn

over I ⊆T

fI the restriction of the function f : R→ Rn to I ⊆ R, i.e., fI(t) =
f (t) for t ∈ I and fI(t) = 0 otherwise

2 Weak and distributional solutions

We consider linear DAE systems of the form (1) with E,A ∈ Rl×n, B ∈ Rl×m,
C ∈ Rp×n, D ∈ Rp×l . The set of these systems is denoted by Σl,n,m,p and we write
[E,A,B,C,D] ∈ Σl,n,m,p.

A trajectory (x,u,y) : R→Rn×Rm×Rp is said to be a (weak) solution of (1) if,
and only if, it belongs to the behavior of (1):

B[E,A,B,C,D] :=
{
(x,u,y) ∈L 1

loc(R;Rn+m+p)

∣∣∣∣ Ex ∈A C (R;Rn) and (x,u,y)
fulfills (1) for almost all t ∈ R

}
.

Recall that Ex ∈ A C (R;Rl) implies continuity of Ex (but x itself may be dis-
continuous). For studying inconsistent initial values and impulsive effects we will

also consider the distributional behaviors BD ′
[E,A,B,C,D], B

D ′pwC ∞

[E,A,B,C,D]
, BITP

[E,A,B,C,D] and

B
δ z0
[E,A,B,C,D]

which are formally introduced below.
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For the analysis of DAE systems in Σl,n,m,p we assume that the states, inputs and
outputs of the system are fixed a priori by the designer, i.e., the realization is given
(but maybe not appropriate). This is different from other approaches based on the
behavioral setting, see [26], where only the free variables in the system are viewed
as inputs; this may require a reinterpretation of states as inputs and of inputs as
states. In the present paper we will assume that such a reinterpretation of variables
has already been done or is not feasible, and the given DAE system is fix.

Next we consider solutions of (1) in the distributional sense. We primarily do for-
mal and arithmetical calculations in the space of distributions; the latter is usually
denoted by D ′ because it is defined as a dual of a certain test function space D . For
a deeper introduction to the mathematical (in particular, analytical) background we
refer to [72, Chap. 6]. Distributions are generalized functions and allow differentia-
tion of arbitrary order. A key role is played by the Dirac impulse (also called the δ

distribution) δt , which corresponds to evaluation of a test function at t ∈ R.
The distributional behavior consists of the distributional solutions, i.e.,

BD ′
[E,A,B,C,D] =

{
(x,u,y) ∈ (D ′)n+m+p

∣∣∣∣∣ Eẋ = Ax+Bu

y =Cx+Du

}
.

Note that B[E,A,B,C,D] can be canonically embedded into BD ′
[E,A,B,C,D]. We also con-

sider a special subspace of the distributions which features further properties. To
this end we utilize the distributional solution framework as introduced in [75, 76],
namely the space of piecewise-smooth distributions

D ′pwC ∞ =


∑
i∈Z

((
α

i
[ti,ti+1]

)
D ′

+Dti

) ∣∣∣∣∣∣∣∣
{ ti ∈ R | i ∈ Z } is locally finite,

∀i ∈ Z : ti < ti+1 ∧ α
i ∈ C ∞(R;R)

∧ Dti ∈ span
{

δ
(k)
ti

∣∣∣ k ∈ N0

}
 .

We clearly have that D ′pwC ∞ is a subspace of D ′ which is invariant under differ-
entiation, i.e., d

dt D
′
pwC ∞ = D ′pwC ∞ . Note that D ′pwC ∞ is not a (topologically) closed

subspace of D ′. The behavior corresponding to D ′pwC ∞ is

B
D ′pwC ∞

[E,A,B,C,D]
=BD ′

[E,A,B,C,D]∩ (D
′
pwC ∞)n+m+p.

Note that B
D ′pwC ∞

[E,A,B,C,D]
6⊆B[E,A,B,C,D] and B[E,A,B,C,D] 6⊆B

D ′pwC ∞

[E,A,B,C,D]
.

Any D∈D ′pwC ∞ has a unique representation D = fD ′+
∑

t∈T Dt , where T ⊆R is
locally finite and f ∈L 1

loc(R;R) is piecewise smooth. The distributional restriction
to some interval M ⊆ R (cf. [76, Def. 8]) is given by

DM = ( fM)D ′ +
∑

t∈M∩T

Dt ∈D ′pwC ∞ .
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Note that the restriction is not well-defined for general distributions [76,
Thm. 2.2.2]. The class D ′pwC ∞ moreover allows to perform point evaluations in some
sense. Namely, for D ∈D ′pwC ∞ as above and t0 ∈ R, the expressions

D(t+0 ) := lim
t↘t0

f (t), D(t−0 ) := lim
t↗t0

f (t)

are well-defined, since f is piecewise smooth. Furthermore, the impulsive part of D
at t0 ∈ R is given by

D[t0] :=

{
0, if t0 /∈ T,
Dt0 , if t0 ∈ T.

(2)

An important property of DAEs is the fact that due to the algebraic constraints
not all initial values x0 ∈Rn for x(0−) are possible (even in the above distributional
solution framework). Indeed, we will call x0 ∈ Rn a consistent initial value, when

there exists (x,u,y) ∈B
D ′pwC ∞

[E,A,B,C,D]
with x(0−) = x0, but there are many reasons that

one wants to consider also inconsistent initial values. The problem of inconsistent
initial values may be formalized in the framework of initial trajectory problems
(ITP) and its corresponding ITP-behavior

BITP
[E,A,B,C,D] =

{
(x,u,y) ∈ (D ′pwC ∞)n+m+p

∣∣∣∣∣ (Eẋ)[0,∞) = (Ax+Bu)[0,∞)

y[0,∞) = (Cx+Du)[0,∞)

}
,

i.e., the DAE is supposed to hold only on the interval [0,∞) and there are no explicit

constraints in the past1. Clearly, B
D ′pwC ∞

[E,A,B,C,D]
⊆ BITP

[E,A,B,C,D], i.e., any “consistent”

solution (x,u,y) ∈B
D ′pwC ∞

[E,A,B,C,D]
is also an ITP-solution, but it should be noted that in

general {
(x,u,y)[0,∞)

∣∣∣∣BD ′pwC ∞

[E,A,B,C,D]

}
6=
{
(x,u,y)[0,∞)

∣∣∣BITP
[E,A,B,C,D]

}
,

because ITP-solutions may exhibit impulsive terms x[0] induced by inconsistent ini-
tial values, which are not present in consistent solutions. In the ODE-case, E = I, this

distinction vanishes, that is on [0,∞) the two behaviors B
D ′pwC ∞

[I,A,B,C,D]
and BITP

[I,A,B,C,D]

are identical.
A different approach (motivated somewhat by the Laplace transform) handles in-

consistent initial values by the consideration of the following behavior parametrized
by the “initial value” z0 ∈ Rl

1 For singular DAEs it is however not true that all x(0−) ∈Rn are feasible for an ITP. For example,
the overdetermined DAE ẋ = 0, 0 = x has no ITP solution with x(0−) 6= 0, because then x(0+) = 0
and 0 = ẋ[0] = (x(0+)− x(0−))δ0 are conflicting.
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B
δ z0
[E,A,B,C,D]

:=

{
(x,u,y) ∈ (D ′pwC ∞)n+m+p

∣∣∣∣∣ Eẋ = Ax+Bu+δ z0

y =Cx+Du

}
.

Indeed, for ODE systems, the addition of δ z0 corresponds to an initializa-
tion x(0+) = z0 (under the assumption that x(0−) = 0). Note that the behavior

B
δ z0
[E,A,B,C,D]

can be seen as a variant of B
D ′pwC ∞

[E,A,B,C,D]
where an additional impulsive

input δ z0 is present. We will need all of the above distributional solution spaces to
define different notions of observability.

Before we begin the investigation of the different observability definitions and
their characterizations, we like to provide a better understanding of the three differ-
ent distributional solution spaces and their relationship with each other.

First, we highlight a fundamental property of general homogeneous DAEs E ż =
A z with E ,A ∈ Rr×s which follows easily from the definition of restriction in
D ′pwC ∞ :

{
z(−∞,0)

∣∣∣ z ∈ (D ′pwC ∞)s, E ż = A z
}

=
{

z(−∞,0)

∣∣∣ z ∈ (D ′pwC ∞)s,(E ż)(−∞,0) = (A z)(−∞,0)

}
, (3)

in other words any solution given on (−∞,0) can be extended to a global solution.
This “causality” property is now essential to prove the following result which allows
us to decouple inhomogeneous DAEs.

Lemma 2.1. Let E ,A ∈ Rr×s and f ∈ (D ′pwC ∞)r. Then

{
z ∈ (D ′pwC ∞)s

∣∣∣ E ż = A z+ f[0,∞)

}
=
{

z ∈ (D ′pwC ∞)s
∣∣∣ E ż = A z

}
+{

z ∈ (D ′pwC ∞)s
∣∣∣ z(−∞,0) = 0, E ż = A z+ f[0,∞)

}
.

Proof. The subspace inclusion⊇ is clear. To show the converse let x be a solution of
E ż=A z+ f[0,∞), then z satisfies (E ż)(−∞,0) = (A z+ f[0,∞))(−∞,0) = (A z)(−∞,0). By
causality (3) we find a solution z̃ of E ż = A z with z̃(−∞,0) = z(−∞,0). Then ẑ := z− z̃
satisfies ẑ(−∞,0) = 0 and E ˙̂z = A z + f[0,∞) −A z̃ = A ẑ + f[0,∞). This shows that
z = z̃+ ẑ can be decomposed as claimed. ut

Note that Lemma 2.1 is a generalization of the well known property of linear
ODEs that the influence from the initial value on the solution can be decoupled from
the influence of the inhomogeneity. However, for DAEs the initial condition z(0)= 0
is not feasible for general inhomogeneous DAEs (with fixed inhomogeneity), that
is why we restrict the influence of the inhomogeneity to the interval [0,∞), because
then a zero initial value (in the past) is feasible.

We are now able to present the relationship between the ITP-behaviors (which
allows for inconsistent initial values implicitly) and the δ z0- behavior which intro-
duces an initial value explicitly.
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Lemma 2.2. For z0 ∈ Rl define[
B

δ z0
[E,A,B,C,D]

	B
D ′pwC ∞

[E,A,B,C,D]

]
:=
{
(x,u,y) ∈B

δ z0
[E,A,B,C,D]

∣∣∣ (x,u,y)(−∞,0) = 0
}
.

Then

B
δ z0
[E,A,B,C,D]

=B
D ′pwC ∞

[E,A,B,C,D]
+

[
B

δ z0
[E,A,B,C,D]

	B
D ′pwC ∞

[E,A,B,C,D]

]
.

Furthermore, for all x0 ∈ Rn:{
(x,u,y)[0,∞)

∣∣∣ (x,u,y) ∈BITP
[E,A,B,C,D] ∧ x(0−) = x0

}
=

{
(x,u,y)[0,∞)

∣∣∣∣ (x,u,y) ∈ [BδEx0
[E,A,B,C,D]

	B
D ′pwC ∞

[E,A,B,C,D]

] }
,

i.e., the response on [0,∞) to the (potentially inconsistent) initial value x0 within
the ITP-framework is the same as the response of the DAE with the additional input
δEx0 and zero initial condition.

Proof. The first equality follows directly from Lemma 2.1 with z = (x,u,y) and
f[0,∞) = δ z0, the second equality was already shown in [77, Thm. 5.3]. ut

Remark 2.3. Note that Bδ z0
[E,A,B,C,D]

is not a vector space for z0 6= 0. It might even be
empty (for instance, consider E = A = B =C = D = 0 ∈R and z0 = 1). Lemma 2.2
shows that it is an affine linear space. More precisely, it is a shifted version of the

distributional behavior B
D ′pwC ∞

[E,A,B,C,D]
, where z0 takes the role of an initial value in

a certain sense. However, the following linearity property holds for any z1
0,z

2
0 ∈ Rl :

(x1,u1,y1) ∈B
δ z1

0
[E,A,B,C,D]

∧ (x2,u2,y2) ∈B
δ z2

0
[E,A,B,C,D]

⇒ (x1 + x2,u1 +u2,y1 + y1) ∈B
δ (z1

0+z2
0)

[E,A,B,C,D]
.

At this point it is not yet clear, why we have introduced the solution set Bδ z0
[E,A,B,C,D]

but it will turn out that this is fruitful for defining some of the observability concepts.

3 Observability concepts

Classically, observability is defined as the absence of indistinguishable states (see
the textbook [78]) or, in a behavioral setting [68], as the absence of nontrivial solu-
tions which generate a trivial output.

In contrast to the observability notions for systems given by ODEs, there are
many conceptually different observability definitions for DAE systems (even in the
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regular case). We first present the most intuitive observability notions and will later
present and discuss the remaining observability concepts.

3.1 Behavioral, impulse and strong observability

For the definition of behavioral observability, we follow [68, Def. 5.3.2] and for
impulse observability we are inspired by [75, Def. 5.2.1].

Definition 3.1. The system [E,A,B,C,D] ∈ Σl,n,m,p is called

(a) behaviorally observable

:⇐⇒ ∀(x1,u,y),(x2,u,y) ∈B[E,A,B,C,D] : x1 a.e.
= x2,

(b) impulse observable

:⇐⇒ ∀(x1,u,y),(x2,u,y) ∈BITP
[E,A,B,C,D] : x1[0] = x2[0],

where D[0] is the impulsive part of D ∈D ′pwC ∞ at t = 0, see (2).
(c) strongly observable

:⇐⇒ ∀(x1,u,y),(x2,u,y) ∈BITP
[E,A,B,C,D] : (x1)[0,∞) = (x2)[0,∞).

The intuition behind these observability notions is as follows: In general, a sys-
tem is called observable if the knowledge of the external signals allows the recon-
struction of the inner state. This idea is directly formalized with the behavioral ob-
servability definition. Note that the forthcoming observability characterization will
yield that the system [E,A,B,C,D] is behaviorally observable (defined for weak
solutions) if, and only if, it is behaviorally observable in a distributional solution
framework, i.e.,

∀(x1,u,y),(x2,u,y) ∈B
D ′pwC ∞

[E,A,B,C,D]
: x1 = x2.

Most physical systems are turned on at some time (i.e., the system does not run
infinitely long already) and it is well known that DAE systems (in contrast to ODE
systems) exhibit new phenomena in response to inconsistent initial values. In par-
ticular, inconsistent initial values may lead to Dirac impulses in the solution and
an important question is, whether these Dirac impulses in the state variable can
uniquely be determined from the measurement of the external signals. This prop-
erty is formalized in the impulse observability definition.

Example 3.2. Consider the DAE[
0 0
1 0

]
ẋ = x, y =Cx.
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The only solution (also in a distributional solution framework) is x≡
(

0
0

)
, in partic-

ular
(

0
0

)
is the only consistent initial value and the DAE is behaviorally observable.

The ITP with initial value x(0−) =
(

x1
0

x2
0

)
leads to the impulsive term x[0] =

(
0

x1
0δ0

)
.

Hence, C = [0,1] makes the DAE impulse observable (because then y[0] = x1
0δ0

uniquely determines x[0]), while C = [1,0] makes the DAE not impulse-observable
(because the impulse in x[0] is not visible in the output y).

The following result is an immediate consequence of Definition 3.1.

Proposition 3.3. The system [E,A,B,C,D] ∈ Σl,n,m,p is strongly observable if, and
only if, it is behaviorally and impulse observable.

Linearity of the system (1) implies that B[E,A,B,C,D] and BITP
[E,A,B,C,D] are vector

spaces. As an immediate consequence, we can characterize the previously intro-
duced notions by the following slightly simpler properties.

Lemma 3.4 (Distinction from zero). The system [E,A,B,C,D] ∈ Σl,n,m,p is

(a) behaviorally observable

⇐⇒ ∀(x,0,0) ∈B[E,A,B,C,D] : x a.e.
= 0,

(b) impulse observable

⇐⇒ ∀(x,0,0) ∈BITP
[E,A,B,C,D] : x[0] = 0,

(c) strongly observable

⇐⇒ ∀(x,0,0) ∈BITP
[E,A,B,C,D] : x[0,∞) = 0.

Corollary 3.5. The DAE system [E,A,B,C,D] ∈ Σl,n,m,p is behaviorally, impulse,
or strongly observable if, and only if, the DAE system [E,A,0l,0,C,0p,0] with corre-
sponding DAE

d
dt Ex = Ax, y =Cx

has the respective property.

The above result justifies to restrict our attention in the following to the system
class

Ol,n,p :=
{
[E,A,C]

∣∣ [E,A,0l,0,C,0p,0] ∈ Σl,n,0,p
}

with the corresponding behaviors

B[E,A,C] :=B[E,A,0l,0,C,0p,0], BITP
[E,A,C] :=BITP

[E,A,0l,0,C,0p,0]

and the question whether a zero output implies a trivial state (behavioral observabil-
ity) or an impulse free response to any inconsistent initial value (impulse observ-
ability). Analogously, we set
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BD ′
[E,A,C] :=BD ′

[E,A,0l,0,C,0p,0]
B

D ′pwC ∞

[E,A,C]
:=B

D ′pwC ∞

[E,A,0l,0,C,0p,0]
,

B
δ z0
[E,A,C]

:=B
δ z0
[E,A,0l,0,C,0p,0]

.

Note that we allow p = 0, i.e., DAE systems without an output. On a first glance
this might look meaningless in the context of observability, however, the DAE 0 = x
(for example) is behaviorally and impulse observable, although there is no output.
This is also related to the fact, that adding or removing zero output equations y = 0
does not change the observability properties.

3.2 Observability at infinity and complete observabilty

Now we introduce two observability notions which will later on prove to be stronger
than impulse and strong observability, resp. To this end we seek a definition in terms
of “observability of excitations” which is related to input observability as in [40].
The idea is, that a Dirac impulse at time t = 0 is applied to the systems equations
weighted by some constants represented by a vector z0 ∈ Rl .

Definition 3.6. The system [E,A,B,C,D] ∈ Σl,n,m,p is called

(a) observable at infinity

:⇐⇒ ∀z1
0,z

2
0 ∈ Rl :[

(x1,u,y) ∈B
δ z1

0
[E,A,B,C,D]

∧ (x2,u,y) ∈B
δ z2

0
[E,A,B,C,D]

∧ Ex1 = Ex2

⇒ z1
0 = z2

0 ∧ x1[0] = x2[0]
]
,

(b) completely observable

:⇐⇒ ∀z1
0,z

2
0 ∈ Rl :[
(x1,u,y) ∈B

δ z1
0

[E,A,B,C,D]
∧ (x2,u,y) ∈B

δ z2
0

[E,A,B,C,D]

⇒ z1
0 = z2

0 ∧ x1[0] = x2[0]
]
.

It is obvious that complete observability implies observability at infinity.
The forthcoming observability characterizations will further yield that a system
[E,A,B,C,D] ∈ Σl,n,m,p is completely observable if, and only if, it is behaviorally
observable and observable at infinity.

By using that for all z1
0,z

2
0 ∈ Rl we have from Remark 2.3 that

B
δ z1

0
[E,A,B,C,D]

+B
δ z1

0
[E,A,B,C,D]

=B
δ (z1

0+z2
0)

[E,A,B,C,D]
,
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we can conclude that observability at infinity and complete observability can be
characterized by the conditions from Definition 3.6 in which z2

0, u and y are trivial
(cf. Lemma 3.4).

Lemma 3.7 (Distinction from zero II). The system [E,A,B,C,D] ∈ Σl,n,m,p is

(a) observable at infinity

⇐⇒ ∀z0 ∈ Rl :
[
(x,0) ∈B

δ z0
[E,A,C]

∧ Ex = 0 ⇒ z0 = 0 ∧ x[0] = 0
]
,

(b) completely observable

⇐⇒ ∀z0 ∈ Rl :
[
(x,0) ∈B

δ z0
[E,A,C]

⇒ z0 = 0 ∧ x[0] = 0
]
.

An immediate consequence is that we can again restrict out attention to systems
in O[E,A,C].

Example 3.8. Consider the DAE[
1 0
0 0

]
ẋ = x+δ z0, y =Cx.

If C = I2, then y = 0 implies x = 0 and thus z0 = 0, i.e., the DAE is completely
observable. If we choose C = [0,1], then x2 = y = 0 implies z0 =

( z1
0
)

and a solution
exists even for z1 6= 0. Therefore, the DAE is not completely observable. However,
if additionally Ex = 0, then x1 = 0 and thus z1 = 0, so we have observability at
infinity. If we choose C = 0, then y = 0 and Ex = 0 imply y = 0, but for z0 =

( 0
z2

)
with z2 6= 0 a solution is given by x =

(
0
−z2δ

)
, whence the DAE is not observable at

infinity.

3.3 Relevant state observability

A classical result of control theory of linear time-invariant ODE systems is that con-
trollability and observability are dual in a certain sense, see e.g. [78, Sec 3.3]. We
will see in Section 5 that for regular systems the concepts of behavioral, impulse,
strong and complete observability and observability at infinity, are indeed dual to
the respective controllability concepts as introduced in [16]. The singular case how-
ever exhibits a certain lack of duality. To account for this we introduce the weaker
concepts of relevant state (RS) behavioral, impulse, strong and complete observ-
ability and RS observability at infinity, which will prove to be dual to the respective
controllability concepts in Section 5. These concepts refer, as their name suggests,
to observability up to “a certain part of the state”, i.e., state variables that are not
uniquely determined by their past, input and output. The reason is that, from a phys-
ical point of view, these states only appear in the model because of “bad design” and
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the system should not be deemed unobservable because it contains free variables.
The precise definitions are presented in the following.

Definition 3.9. The system [E,A,B,C,D] ∈ Σl,n,m,p is called

(a) RS behaviorally observable

:⇐⇒ ∀(x1,u,y),(x2,u,y) ∈B
D ′pwC ∞

[E,A,B,C,D]
∃(x3,u,y) ∈B

D ′pwC ∞

[E,A,B,C,D]
:

(x3)(−∞,0) = (x1)(−∞,0) ∧ (x3)(0,∞) = (x2)(0,∞),

(b) RS impulse observable

:⇐⇒ ∀x1
0,x

2
0 ∈ Rn :[

(x1,u,y) ∈B
δEx1

0
[E,A,B,C,D]

∧ (x2,u,y) ∈B
δEx2

0
[E,A,B,C,D]

∧ Ex1 = Ex2

⇒ Ex1
0 = Ex2

0

]
,

(c) RS strongly observable

:⇐⇒ ∀x1
0,x

2
0 ∈ Rn :[

(x1,u,y) ∈B
δEx1

0
[E,A,B,C,D]

∧ (x2,u,y) ∈B
δEx2

0
[E,A,B,C,D]

⇒ Ex1
0 = Ex2

0

]
,

(d) RS observable at infinity

:⇐⇒ ∀z1
0,z

2
0 ∈ Rl :[

(x1,u,y) ∈B
δ z1

0
[E,A,B,C,D]

∧ (x2,u,y) ∈B
δ z2

0
[E,A,B,C,D]

∧ Ex1 = Ex2

⇒ z1
0 = z2

0

]
,

(e) RS completely observable

:⇐⇒ ∀z1
0,z

2
0 ∈ Rl :[

(x1,u,y) ∈B
δ z1

0
[E,A,B,C,D]

∧ (x2,u,y) ∈B
δ z2

0
[E,A,B,C,D]

⇒ z1
0 = z2

0

]
.
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It is clear that RS strong (complete) observability implies RS impulse observabil-
ity (RS observability at infinity). The forthcoming observability characterizations
will further yield that a system [E,A,B,C,D] ∈ Σl,n,m,p is RS strongly observable
if, and only if, it is RS behaviorally observable and RS impulse observable; it is
RS completely observable if, and only if, it is RS behaviorally observable and RS
observable at infinity.

Remark 3.10. One may wonder why the definition of RS behavioral observability

is given in terms of the distributional behavior B
D ′pwC ∞

[E,A,B,C,D]
instead of the behavior

B[E,A,B,C,D]. The reason is that the concatenation of two solutions will in general
introduce a jump at t = 0. For ODEs any concatenation with a jump in the state
variable cannot be a solution, but for DAEs this is not true in general. However, the
presence of a jump makes it necessary to view the DAE in a distributional solution
space; in particular, Dirac impulses at t = 0 may occur in the solution in response
to the jump. Nevertheless, the definition of RS behavioral observability can also be
given in terms of B[E,A,B,C,D] as follows

∀(x1,u,y),(x2,u,y) ∈B[E,A,B,C,D] ∃T > 0 ∃(x3,u,y) ∈B[E,A,B,C,D] :

(x3)(−∞,0)
a.e.
= (x1)(−∞,0) ∧ (x3)(T,∞)

a.e.
= (x2)(T,∞),

i.e., the concatenation is not instantaneous. Despite the slight technicalities involved,
we find the definition via instantaneous concatenability more appealing because it
does not introduce the additional concatenation time T > 0.

We can conclude that RS behavioral, impulse, strong and complete observability
and RS observability at infinity can be characterized by the conditions from Defini-
tion 3.9 in which x2

0, z2
0, x2, u and y are trivial (cf. Lemma 3.4).

Lemma 3.11 (Distinction from zero III). The system [E,A,B,C,D] ∈ Σl,n,m,p is

(a) RS behaviorally observable

⇐⇒ ∀(x,0) ∈B
D ′pwC ∞

[E,A,C]
∃(x,0) ∈B

D ′pwC ∞

[E,A,C]
:

x(−∞,0) = x(−∞,0) ∧ x(0,∞) = 0,

(b) RS impulse observable

⇐⇒ ∀x0 ∈ Rn :
[
(x,0) ∈B

δEx0
[E,A,C]

∧ Ex = 0 ⇒ Ex0 = 0
]
,

(c) RS strongly observable

⇐⇒ ∀x0 ∈ Rn :
[
(x,0) ∈B

δEx0
[E,A,C]

⇒ Ex0 = 0
]
,
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(d) RS observable at infinity

⇐⇒ ∀z0 ∈ Rl :
[
(x,0) ∈B

δ z0
[E,A,C]

∧ Ex = 0 ⇒ z0 = 0
]
,

(e) RS completely observable

⇐⇒ ∀z0 ∈ Rl :
[
(x,0) ∈B

δ z0
[E,A,C]

⇒ z0 = 0
]
.

As a consequence from Lemma 3.7 and Lemma 3.11 we can further state the
following implications for the so far introduced observability notions.

Corollary 3.12. Then the following implications hold true for a system
[E,A,B,C,D] ∈ Σl,n,m,p:

(i) behaviorally observable =⇒ RS behaviorally observable,
(ii) observable at infinity =⇒ RS observable at infinity =⇒ RS impulse ob-

servable,
(iii) completely observable =⇒ RS completely observable =⇒ RS strongly

observable.

Note that it is still not clear (however true) that impulse (strong) observability im-
plies RS impulse (strong) observability. To show this we need the characterizations
in terms of the output injection form derived in Section 4.

It will later turn out, see Corollary 4.13, that for regular systems the observability
concepts from Subsections 3.1 and 3.2 are equivalent to the respective relevant state
observability concepts from Definition 3.9. In view of this, Examples 3.2 and 3.8
provide some illustrative examples for the RS observability concepts.

3.4 Comparison of the concepts with the literature

We compare the relations of the observability concepts introduced in the present
paper to existing notions in the literature in the following list of remarks.

(i) The observability concepts are not consistently treated in the literature. While
some authors rely on intuitive extensions of the definition known for ODEs [28,
86], others insist on duality to the known controllability concepts [30]. Further-
more, one has to pay attention if it is (tacitly) claimed that [E>,C>] ∈ Rl×(n+p)

or [E>,A>,C>] ∈ Rl×(2n+p) have full rank. Some of the references introduce
the observability by means of certain rank criteria for the matrices E,A,C. The
connection of the observability concepts to linear algebraic properties of E, A
and C are highlighted in Section 6 (and are partly used to derive the following
comparisons).

(ii) For regular systems the number of different observability concepts reduces to
five by Corollary 4.13. We have the following relationships between the observ-
ability notions introduced here and the ones given in the literature:
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concept coincides with called [...] in
behavioral obs. – obs. in [28, 86]; R-obs.

in [31]; jump obs. in [75]

impulse obs. [30, 31, 75] obs. at infinity in [3, 52, 80]

strong obs. [80] –

obs. at infinity [13, 32] dual normalizability in [31]

complete obs. [24] obs. in [30, 31]

(iii) There is also a significant amount of literature dealing with observability for
general DAEs; the relationship to the notions introduced here is as follows:

concept coincides with called [...] in
behavioral obs. – obs. in [68]; right-hand side

obs. in [39]; strong almost
obs. in [65]

impulse obs. [24, 25, 39, 42] obs. at infinity [24, 25]2

strong obs. [65] obs. in [39, 64]

obs. at infinity – –

complete obs. – obs. in [34]; str. obs.
in [64]; str. compl. obs.
in [65]

RS behavioral obs. – –

RS impulse obs. – –

RS strong obs. – obs. in [10,65]; weakly obs.
in [64]

RS obs. at infinity – –

RS complete obs. – strong obs. in [10]; com-
plete obs. in [65]3

Observability concepts for general discrete time DAE systems have been intro-
duced and investigated in [6, 8, 9].

(iv) Impulse observability and observability at infinity are usually defined by consid-
ering distributional solutions of (1) (similar to our definitions), see e.g. [30,42],
sometimes called impulsive modes, see [13, 39, 80]. For regular systems, im-

2 In [24, 25] the notions of impulse observability and observability at infinity are both used for
impulse observability.
3 Note that although the notion of complete observability is used in [65], it is only introduced by a
geometric condition and not by a time domain definition.
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pulse observability has been introduced by VERGHESE et al. [80] (called ob-
servability at infinity in this work) as observability of the impulsive modes of the
system, and later made more precise by COBB [30], see also ARMENTANO [3]
(who also calls it observability at infinity) for a more geometric point of view.
In [80] the authors do also develop the notion of strong observability as impulse
observability with, additionally, “observability in the sense of the regular the-
ory”.
The name “observability at infinity” comes from the claim that the system has
no infinite unobservable modes: Speaking in terms of rank criteria (see also
Section 6) the system [E,A,C] ∈ Ol,n,p is said to have an unobservable mode at
α

β
if, and only if, rk[αE>+βA>,C>] < rk[E>,A>,C>] for some α,β ∈ C. If

β = 0 and α 6= 0, then the unobservable mode is infinite. Observability at infin-
ity has been introduced by ROSENBROCK [71] – although he does not use this
phrase – as the absence of infinite output decoupling zeros. Later, COBB [30]
compared the concepts of impulse observability and observability at infinity,
see [30, Thm. 10]; the notions we use in the present paper go back to the dis-
tinction in this work.

(v) Observability concepts with a distributional solution setup have also been con-
sidered in [30, 65]. Distributional solutions for time-invariant DAEs have al-
ready been considered by COBB [29] and GEERTS [36, 37] and for time-
varying DAEs by RABIER and RHEINBOLDT [70] and by KUNKEL and
MEHRMANN [51]. In the present paper we use the approach by TRENN [75,76].
The latter framework is also the basis for several observability concepts for
switched DAE systems [67].

(vi) Behavioral observability has been first defined by YIP and SINCOVEC [86], al-
though merely called observability, as the dual of R-controllability for regular
DAEs. They define observability essentially as the state x being computable
from the input u, the output y and the system data E,A,C. This is equivalent to
classical observability of the ODE part of the system. Furthermore, it is equiva-
lent to trivial output implying trivial state and hence to behavioral observability.
The same approach is followed in [28] and it is emphasized that this “obvi-
ous extension of observability is not the dual of complete controllability”. We
stress that it is not even the dual of R-controllability when it comes to gen-
eral DAE systems; however, as it will be shown in Corollary 5.1, the dual of
R-controllability is RS behavioral observability.
In the context of the behavioral approach, behavioral observability has been
introduced in [68], but it is different to RS behavioral observability. These con-
cepts are suitable for generalizations in various directions, see e.g. [27, 41, 83].
Having found the behavior of the considered system one can take over the defi-
nition of RS behavioral observability without the need for any further changes.
From this point of view this appears to be the most natural of the observability
concepts. However, this concept also seems to be the least regarded in the DAE
literature.

(vii) The observability theory of DAE systems can also be treated with the theory
of differential inclusions [4, 5] as showed by FRANKOWSKA [34]. However,
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FRANKOWSKA assumes observability at infinity in order to derive duality be-
tween controllability and observability as introduced in [34].

4 Output injection normal form

In this section we recall the concept of output injection for DAE systems and show
that it induces an equivalence relation on Ol,n,p. Then we state a normal form under
this equivalence relation, which we use to characterize the observability concepts
introduced in Section 3.

4.1 Output injection equivalence and normal form

Output injection is usually understood as the addition of the output y of the system,
weighted by some matrix L ∈ Rl×p, to the right hand side of the systems equation.
Since y(t) =Cx(t), the resulting system has the form

d
dt Ex(t) = (A+LC)x(t),

y(t) =Cx(t).
(4)

Output injection can be understood as an algebraic transformation (more precise: a
group operation) within the set Ol,n,p: E

A+LC
C

=

Il 0 0
0 Il L
0 0 Ip

E
A
C

 .
Allowing also for state space and output space transformations leads to the following
notion of output injection equivalence.

Definition 4.1 (Output injection equivalence). Two systems [Ei,Ai,Ci] ∈Ol,n,p, i =
1,2, are called output injection equivalent (OI-equivalent) if, and only if,

∃W ∈Gll(R),T ∈Gln(R),V ∈Glp(R),L ∈ Rl×p :
[E1 , A1 ,C1] = [WE2T ,WA2T −LC2T ,VC2T ];

(5)

we write
[E1 , A1 ,C1]

W,T,V,L∼OI [E2 , A2 ,C2] . (6)

OI-equivalence seems to have been first considered by MORSE [62] for linear
ODE systems, and it has already been termed a “nonphysically realizable trans-
formation”. For DAE systems, OI-equivalence has been first exploited by KARCA-
NIAS [46] using the framework introduced by MORSE.



Observability of linear differential-algebraic systems – a survey 21

Clearly, multiplying the first equation in the DAE (1) from the left with an in-
vertible matrix W does not change the behaviors introduced in Section 2 at all and
a coordinate transformation of the state via T and the output via V does not qualita-
tively change the behaviors. Provided that the output is zero, its addition to the state
equation does certainly not change the behavior as well. This is made precise in the
following.

Lemma 4.2 (Behavior and output injection). For [E1,A1,C1], [E2,A2,C2] ∈ Ol,n,p
and W ∈Gll(R), T ∈Gln(R), V ∈Glp(R), L ∈ Rl×p with (6), we have

(a) (x,0) ∈B[E1,A1,C1] ⇔ (T x,0) ∈B[E2,A2,C2].

(b) (x,0) ∈BD ′
[E1,A1,C1]

⇔ (T x,0) ∈BD ′
[E2,A2,C2]

.

(c) (x,0) ∈B
D ′pwC ∞

[E1,A1,C1]
⇔ (T x,0) ∈B

D ′pwC ∞

[E2,A2,C2]
.

(d) (x,0) ∈BITP
[E1,A1,C1]

⇔ (T x,0) ∈BITP
[E2,A2,C2]

.

(e) ∀z0 ∈ Rl : (x,0) ∈B
δ z0
[E1,A1,C1]

⇔ (T x,0) ∈B
δW−1z0
[E2,A2,C2]

.

In particular, (x,0) ∈B
δ z0
[E1,A1,C1]

satisfies

E1x = 0 ⇔ E2(T x) = 0.

Finally, due to Lemma 3.4, Lemma 3.7 and Lemma 3.11 we can restrict our
attention to the solutions which produce a zero output. In summary we have the
following result.

Proposition 4.3 (Invariance under output injection). On the set Ol,n,p, behavioral,
impulse, strong and complete observability, observability at infinity and the corre-
sponding relevant state RS concepts are all invariant under OI-equivalence.

Proposition 4.3 allows to analyze the observability concepts by means of a nor-
mal form under OI-equivalence. In order to present such a normal form, we need to
introduce the following notation: For k ∈ N let

Nk =

[ 0
1

1 0

]
∈ Rk×k, Kk =

[
1 0

1 0

]
, Lk =

[
0 1

0 1

]
∈ R(k−1)×k.

Further, let e[k]i ∈ Rk be the ith canonical unit vector, and, for some multi-index
α = (α1, . . . ,αr) ∈ Nr, we define

Nα =diag (Nα1 , . . . ,Nαr) ∈ R|α|×|α|,

Kα =diag (Kα1 , . . . ,Kαr) ∈ R(|α|−`(α))×|α|,

Lα =diag (Lα1 , . . . ,Lαr) ∈ R(|α|−`(α))×|α|,

Eα =diag (e[α1]
α1 , . . . ,e[αr ]

αr ) ∈ R|α|×`(α).

We are now in the position to derive a normal form under OI-equivalence for sys-
tems [E,A,C] ∈ Ol,n,p.
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Theorem 4.4 (Normal form under OI-equivalence). Let [E,A,C] ∈ Ol,n,p. Then
there exist W ∈Gll(R),T ∈Gln(R),V ∈Glp(R),L ∈ Rl×p such that

[E,A,C]
W,T,V,L∼OI



I|α| 0 0 0 0 0
0 K>

β
0 0 0 0

0 0 Lγ 0 0 0
0 0 0 Kε 0 0
0 0 0 0 N>κ 0
0 0 0 0 0 Ino

 ,


Nα 0 0 0 0 0
0 L>

β
0 0 0 0

0 0 Kγ 0 0 0
0 0 0 Lε 0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ao

 ,
E>α 0 0 0 0 0

0 0 E>γ 0 0 0
0 0 0 0 0 0


 , (7)

for some multi-indices α,β ,γ,ε,κ and a matrix Ao ∈ Rno×no .

Proof. It is easy to see, that [E1,A1,C1], [E2,A2,C2] ∈ On,m,p are OI-equivalent if,
and only if, [E>1 ,A>1 ,C

>
1 ] and [E>1 ,A>1 ,C

>
1 ] with corresponding DAEs

E>1 ż = A>1 z+C>1 u and E>2 ż = A>2 z+C>2 u

are feedback equivalent in the sense of [16, Def. 3.1]. Hence the transposed feedback
normal form derived in [16, Thm. 3.3] is a normal form under OI-equivalence. ut

Remark 4.5 (Duality for DAEs). It should be noted that although we utilized a “du-
ality” argument in the proof of Theorem 4.4, we have not really defined duality for
DAEs or its corresponding behaviors yet. In fact, the proof of Theorem 4.4 just uti-
lizes a normal form for matrix triples and is not related to certain solution concepts
for DAEs. Further duality results for DAEs are presented in Section 5.

The interpretation of the OI-normal form (7), in terms of solutions of DAEs is as
follows: (x,y) ∈B[E,A,C] if, and only if,(

xco(·)>,xo(·)>,xuo(·)>,xu(·)>,x f (·)>,xo(·)>
)> := T x(·),(

yco(·)>,yuo(·)>,yo(·)>
)> := V y(·),

with
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xco(·) =

 xco[1](·)
...

xco[`(α)](·)

 , yco(·) =

 yco[1](·)
...

yco[`(α)](·)

 , xo(·) =

 xo[1](·)
...

xo[`(β )](·)

 ,

xuo(·) =

 xuo[1](·)
...

xuo[`(γ)](·)

 , yuo(·) =

 yuo[1](·)
...

yuo[`(γ)](·)

 , xu(·) =

 xu[1](·)
...

xu[`(ε)](·)

 ,

x f (·) =

 x f [1](·)
...

x f [`(κ)](·)


solves the decoupled DAEs

d
dt xco[i] = Nαi xco[i],

yco[i] =
(

e[αi]
αi

)>
xco[i], for i = 1, . . . , `(α), (8a)

d
dt K>

βi
xo[i] = L>

βi
xo[i], for i = 1, . . . , `(β ), (8b)

d
dt Lγixuo[i] = Kγixuo[i],

yuo[i] =
(

e[γi]
γi

)>
xuo[i], for i = 1, . . . , `(γ), (8c)

d
dt Kεixu[i] = Lεixu[i], for i = 1, . . . , `(ε), (8d)

d
dt N>κi

x f [i] = x f [i], for i = 1, . . . , `(κ), (8e)

d
dt xo = Ao xo,

yo = 0. (8f)

An analogous interpretation holds for (x,u) ∈BD ′
[E,A,C] and (x,u) ∈B

D ′pwC ∞

[E,A,C]
. For

(x,u) ∈BITP
[E,A,C] the equations in (8) have to be restricted to the interval [0,∞) and

for (x,u) ∈B
δ z0
[E,A,C]

an appropriate term δ z̃0 has to be added to the respective state
space equations in (8).

Remark 4.6 (Regular case). In general, the OI-normal form (7) for a regular system
[E,A,C] ∈ On,n,p, that is a system with a regular pencil sE−A, is not regular. For
example, the regular system

[E,A,C] =

[[
1 0
0 0

]
,

[
0 0
1 1

]
, [0,1]

]
has the nonregular OI-normal form
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1 0
0 0

]
,

[
0 0
1 0

]
, [0,1]

]
which consists of a 2× 1 β -block and a 0× 1 γ-block. However, the OI-normal
form of a regular system cannot have underdetermined DAEs of the form (8d),
i.e., `(ε) = 0, because these DAEs would correspond to underdetermined parts in
the original coordinates as well (because the nonexisting output cannot “fix” this
nonuniqueness).

Remark 4.7 (Canonical and normal form). Recall the definition of a canonical
form: given a group G, a set S , and a group action α : G×S → S which de-
fines an equivalence relation s α∼ s′ if, and only if, ∃U ∈ G : α(U,s) = s′. Then a
map Γ : S →S is called a canonical form for α [22] if, and only if,

∀s,s′ ∈S : Γ (s) α∼ s ∧
[
s α∼ s′⇔ Γ (s) = Γ (s′)

]
.

Therefore, the set S is divided into disjoint orbits (i.e., equivalence classes) and the
mapping Γ picks a unique representative in each equivalence class. In the setup of
OI-equivalence, the group is G=Gll(R)×Gln(R)×Glp(R)×Rl×p, the considered
set is S = Ol,n,p and the group action

α
(
(W,T,V,L), [E,A,C]

)
= [WET,WAT +LCT,VCT ]

corresponds to
W,T,V,L∼OI . However, Theorem 4.4 does not provide a mapping Γ . This

means that the form (7) is not a unique representative within the equivalence class
and hence it is not a canonical form. Nevertheless, we may call it a normal form,
since every entry is (at least) unique up to similarity.

Alternatively, if we apply an additional state space transformation to the block
[Ino ,Ao,0] which puts Ao into Jordan canonical form, and then prescribe the order
of the blocks of each type, e.g. from largest dimension to lowest (what would mean
α1 ≥ α2 ≥ . . .≥ α`(α) for α for instance), then (7) becomes a canonical form.

Remark 4.8 (Canonical form under output injection and state feedback). A com-
bination of the OI-normal form with the feedback form from [55] (see also [16,
Thm. 3.3]) leads to a canonical from of systems [E,A,B,C,D] ∈ Σl,n,m,p under state
space transformation, input space transformation, output space transformation, pro-
portional output injection, proportional state feedback and transformation of the
codomain of the state (i.e., left transformation of E,A,B) which has been derived
in [54]. However, this form is not suitable for either the analysis of controllability
or observability, since it is necessary to apply state feedback and output injection si-
multaneously to obtain the canonical form; but controllability is not invariant under
output injection and observability is not invariant under state feedback.
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4.2 Characterization of behavioral, impulse and strong
observability

Based on the OI-normal form we will now present the characterization of behav-
ioral, impulse and strong observability. Towards this end we first present the ob-
servability properties of each of the individual decoupled DAE systems in (8).

Lemma 4.9. Consider the decoupled DAEs (8) resulting from the OI-normal form.
Then the DAEs

(8a) are always behaviorally, impulse and strongly observable.
(8b) are always behaviorally, impulse and strongly observable.
(8c) are always behaviorally observable; they are impulse and strongly ob-

servable if, and only if, |γ|= `(γ), i.e., γi = 1 for all i = 1, . . . , `(γ).
(8d) are neither behaviorally, impulse nor strongly observable.
(8e) are always behaviorally observable; they are impulse and strongly ob-

servable if, and only if, |κ|= `(κ).
(8f) are never behaviorally and strongly observable and always impulse ob-

servable.

Proof. It suffices to consider behavioral and impulse observability, because the cor-
responding characterization for strong observability follows trivially from the com-
bination of the characterizations of behavioral and impulse observability.

(8a): The solutions of the ODE (size k× k)

ẋ =
[ 0

1

1 0

]
x

y = [0, . . . ,0,1]x

satisfy x= (y(k−1),y(k−2), . . . , ẏ,y)>, hence a zero output implies x= 0. For the
corresponding ODE-ITP it is easy to see (cf. [75, Thm. 3.3]) that all solutions
x exhibit no jumps and no impulses at t = 0, hence (irrespectively of the actual
output) it holds that x[0] = 0.

(8b): DAEs (size k× k−1) of the form[ 1
0

1
0

]
ẋ =

[ 0
1

0
1

]
x (9)

can be interpreted as DAEs of the form (8a) (with size k−1×k−1) where the
last state variable xk−1 is equal to a zero output. Hence the same arguments as
above show behavioral and impulse observability.

(8c): The solutions of the DAE (size k−1× k)[
0 1

0 1

]
ẋ =

[
1 0

1 0

]
x

y = [0, . . . ,0,1]x
(10)
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are given by x a.e.
= (y(k−1),y(k−2), . . . , ẏ,y)>. Hence a zero output implies a zero

state, which shows behavioral observability. If k = 1, then the DAE-ITP re-
duces to the output equation y[0,∞) = x[0,∞) for the free (scalar) variable x, in
particular, y= 0 implies x[0] = 0 and the DAE for k = 1 is impulse observable.
If k > 1 we now have (xk)[0,∞) = y[0,∞) and (xk−1)[0,∞) = (ẋk)[0,∞). In general
xk(0−) 6= 0 = y(0+) = xk(0+), hence there will be a jump in xk at t = 0 and
consequently a Dirac impulse in xk−1. Therefore, a zero output does not imply
that x[0] = 0 and we do not have impulse observability.

(8d): The DAE (size k−1× k)[
1 0

1 0

]
ẋ =

[
0 1

0 1

]
x (11)

contains the free variable xk (unrelated to the output), hence neither x = 0 nor
x[0] = 0 holds true in general and the DAE cannot be behaviorally or impulse
observable.

(8e): The solutions of DAE (size k× k)[ 0 1

1
0

]
ẋ = x (12)

satisfy x a.e.
= 0, hence we have behavioral observability. If k = 1 then the cor-

responding ITP reads as x[0,∞) = 0; in particular x[0] = 0 and impulse observ-
ability follows. For k > 0 we have (xk)[0,∞) = 0 and (xk−1)[0,∞) = (ẋk)[0,∞).
In general xk(0−) 6= 0 and hence there is a jump in xk and consequently a
Dirac impulse in xk−1, i.e., x[0] 6= 0, which shows that the DAE is not impulse
observable.

(8f): The ODE (8f) has nontrivial solutions and a zero output, hence it is not behav-
iorally observable. As already observed for (8a) an ODE-ITP does not exhibit
jumps or impulses at the initial time, hence x[0] = 0 in any case and we have
shown impulse observability. ut

4.3 Characterization of observability at infinity and complete
observability

Here we analyze observability at infinity and complete observability by means of
the OI-normal form.

Lemma 4.10. Consider the decoupled DAEs (8) resulting from the OI-normal form.
Then the DAEs

(8a) are always completely observable and observable at infinity.
(8b) are always completely observable and observable at infinity.
(8c) are completely observable and observable at infinity if, and only if, |γ|=

`(γ), i.e., γi = 1 for all i = 1, . . . , `(γ).
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(8d) are neither observable at infinity nor completely observable.
(8e) are neither observable at infinity nor completely observable.
(8f) are never completely observable and always observable at infinity.

Proof. In the following we use that complete observability implies observability at
infinity.

(8a): Any solution of the ODE (size k× k)

ẋ =
[ 0

1

1 0

]
x+δ z0

y = [0, . . . ,0,1]x

satisfies xi = ẋi+1 on the intervals (−∞,0) and (0,∞) for i = k− 1, . . . ,2,1.
Hence y = xk = 0 implies xi = 0 on (−∞,0) and (0,∞) for i = k,k−1, . . . ,1. It
is easy to see that x[t] = 0 for all t ∈R, hence δ z0 = ẋ[0] = (x(0+)−x(0−))δ =
0, which implies z0 = 0 and x[0] = 0.

(8b): Any solution of the DAE (size k× k−1) of the form[ 1
0

1
0

]
ẋ =

[ 0
1

0
1

]
x+δ z0

satisfies xk−1 = 0 on (−∞,0) and (0,∞). From xi = ẋi+1 on these two in-
tervals for i = k− 2, . . . ,2,1 it follows that x = 0 on (−∞,0) and (0,∞).
Hence ẋ1[0] does not contain a Dirac impulse (because x1 does not have a
jump at t = 0), and ẋ1[0] = δ z0,1 implies z0,1 = 0 which in turn implies that
x1[0] = 0. Hence, inductively, for i = 2,3, . . . ,k−1 we conclude analogously
from ẋi[0] = xi−1[0]+δ z0,i that z0,i = 0 and xi[0] = 0. This gives x[0] = 0 and,
finally, 0 = xk−1[0] + δ z0,k implies z0,k = 0, which shows that also z0 = 0 is
necessary for existence of a solution.

(8c): Consider the DAE (size k−1× k)[
0 1

0 1

]
ẋ =

[
1 0

1 0

]
x+δ z0

y = [0, . . . ,0,1]x.

If k = 1, then complete observability follows from x = y (note that there is no
z0 in this case).
Now we consider the case k ≥ 2: With z0 = e[k−1]

1 ∈ Rk−1 \{0}, a simple cal-
culation shows that for x = δe[k]1 we have (x,0) ∈B

δ z0

[Lk,Kk,(e
[k]
1 )>]

. In particular,

we have Ex = 0 and x[0] = δe[k]1 6= 0, whence the system is not observable at
infinity.

(8d): Consider the DAE (size k−1× k)
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1 0

1 0

]
ẋ =

[
0 1

0 1

]
x+δ z0 (13)

If k = 1, then (δ ,0) ∈ Bδ cot0
[K0,L0,00,1]

and hence the system is not observable

at infinity in this case. If k ≥ 2, then for z0 = e[k−1]
k−1 ∈ Rk−1 \ {0} we have

that x = δe[k]k fulfills (x,0) ∈B
δ z0
[Kk,Lk,00,k]

. In particular, we have Ex = 0 and

x[0] = δe[k]k 6= 0. Hence, the DAE is not observable at infinity.
(8e): The DAE (size k× k) [ 0 1

1
0

]
ẋ = x+δ z0 (14)

has the unique solution

x = x[0] =−
k−1∑
j=0

(N>k ) j
δ
( j)z0.

Hence it can never be observable at infinity.
(8f): The ODE (size k× k)

ẋ = Ax+δ z0

y = 0

has a solution x for any z0 ∈ Rn, hence it is never completely observable. The
additional constraint x = 0 yields ẋ = 0 and hence δ z0 = ẋ−Ax = 0 which
shows observability at infinity. ut

4.4 Characterization of relevant state observability

Finally we consider the observability notions from Section 4.4. First we focus on
RS behavioral, impulse and strong observability.

Lemma 4.11. Consider the decoupled DAEs (8) resulting from the OI-normal form.
Then the DAEs

(8a) are always RS behaviorally, RS impulse and RS strongly observable.
(8b) are always RS behaviorally, RS impulse and RS strongly observable.
(8c) are always RS behaviorally observable; they are RS impulse and RS strongly

observable if, and only if, |γ|= `(γ), i.e., γi = 1 for all i = 1, . . . , `(γ).
(8d) are always RS behaviorally observable; they are RS impulse and RS strongly

observable if, and only if, |ε|= `(ε), i.e., εi = 1 for all i = 1, . . . , `(ε).
(8e) are always RS behaviorally observable; they are RS impulse and RS strongly

observable if, and only if, |κ|= `(κ), i.e., κi = 1 for all i = 1, . . . , `(κ).
(8f) are never RS behaviorally and RS strongly observable and always RS impulse

observable.
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Proof. First we consider RS behavioral and RS impulse observability. The state-
ments for RS behavioral observability in (8a)–(8c) and (8e) follow by a combination
of Corollary 3.12 and Lemma 4.9. Since observability at infinity implies RS impulse
observability by Corollary 3.12, it follows from Lemma 4.10 that (8a), (8b) and (8f)
are RS impulse observable.

We prove the remaining statements for RS behavioral and impulse observability:

(8c): If |γ| = `(γ), then the DAE (8c) is RS impulse observable by a combination
of Corollary 3.12 and Lemma 4.10. If |γ| > `(γ), then we can use the same
counterexample as in the proof of Lemma 4.10 for (8c) by observing that
z0 = e[k−1]

1 = Ee[k]2 . Hence, the system is not RS impulse observable.
(8c): DAEs (size k−1× k) of the form (11) are RS behaviorally observable by the

characterization in Remark 3.10 and the fact that, by [68, Thm. 5.2.10], for any
two solutions x1,x2 we can find some T > 0 and some (x3,u,y) ∈B[E,A,B,C,D]

with
(x3)(−∞,0)

a.e.
= (x1)(−∞,0) ∧ (x3)(T,∞)

a.e.
= (x2)(T,∞).

If |ε|= `(ε), then the DAE (13) is RS impulse observable by Lemma 3.11 (b)
and the fact that Kε = 0 ∈ R0×|ε|. If |ε| > `(ε), then we can use the same
counterexample as in the proof of Lemma 4.10 for (8d) by observing that
z0 = e[k−1]

k−1 = Ee[k]k−1. Hence, the system is not RS impulse observable.
(8c): If |κ|= `(κ), then we have RS impulse observability due to N>κ = 0. If |κ|>

`(κ), then there is a DAE of the form (14) with k ≥ 2. For z0 = N>k e[k]2 ∈
Rk \{0} the unique solution of (14) is x =−δe[k]1 . Since N>k x = 0 and z0 6= 0
the system is not RS impulse observable.

(8c): The ODE (8f) has nontrivial solutions that are uniquely determined by x(0+),
whence it is not RS behaviorally observable.

The characterization of RS strong observability follows from analogous argu-
ments. ut

Now we prove the characterizations for RS complete observability and RS ob-
servability at infinity.

Lemma 4.12. Consider the decoupled DAEs (8) resulting from the OI-normal form.
Then the DAEs

(8a) are always RS completely observable and RS observable at infinity.
(8b) are always RS completely observable and RS observable at infinity.
(8c) are RS completely observable and RS observable at infinity if, and only if,

|γ|= `(γ), i.e., γi = 1 for all i = 1, . . . , `(γ).
(8d) are RS completely observable and RS observable at infinity if, and only if,

|ε|= `(ε), i.e., εi = 1 for all i = 1, . . . , `(ε).
(8e) are neither RS completely observable nor RS observable at infinity.
(8f) are never RS completely observable and always RS observable at infinity.

Proof. The proof is analogous to the proof of Lemma 4.10 with the only difference
that for DAEs (8d) in the case |ε| = `(ε) the system RS observable at infinity (and
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hence RS completely observable) since Kε ,Lε ∈R0×|ε| and hence there is no z0 (the
number of rows is zero). ut

4.5 Summary of observability characterizations

The different observability characterizations derived in the previous subsections in
terms of the OI-normal form are summarized in Table 1.

[Iαi ,Nαi ,
(
e[αi]

αi

)>
] [K>

βi
,L>

βi
,00,βi−1] [Lγi ,Kγi ,

(
e[γi]

γi

)>
] [Kεi ,Lεi ,00,εi ] [N

>
κi
, Iκi ,00,κi ] [In0

,A0,0q,o]

behaviorally
observable

3 3 3 5 3 5

impulse ob-
servable

3 3 ⇔ γi = 1 5 ⇔ κi = 1 3

strongly ob-
servable

3 3 ⇔ γi = 1 5 ⇔ κi = 1 5

observable
at infinity

3 3 ⇔ γi = 1 5 5 3

completely
observable

3 3 ⇔ γi = 1 5 5 5

RS be-
haviorally
observable

3 3 3 3 3 5

RS impulse
observable

3 3 ⇔ γi = 1 ⇔ εi = 1 ⇔ κi = 1 3

RS strongly
observable

3 3 ⇔ γi = 1 ⇔ εi = 1 ⇔ κi = 1 5

RS observ-
able at in-
finity

3 3 ⇔ γi = 1 ⇔ εi = 1 5 3

RS com-
pletely
observable

3 3 ⇔ γi = 1 ⇔ εi = 1 5 5

Table 1: Characterization of the observability concepts in terms of the OI-normal form.

We have separated the concepts into two groups of five concepts each where
the first group consists of the observability notions introduced in Subsections 3.1
and 3.2 and the second group consists of the corresponding relevant state observ-
ability notions introduced in Subsection 3.3.

Table 1 together with Lemma 4.2 allows for a characterization of the observabil-
ity concepts in terms of the OI-normal form.
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In particular, for regular systems we can conclude the following simplifications
from Remark 4.6 and Table 1.

Corollary 4.13. Consider a regular system [E,A,C] ∈ On,n,p. Then the following
equivalences hold for the DAE system:

(i) behaviorally observable ⇐⇒ RS behaviorally observable,
(ii) impulse observable ⇐⇒ RS impulse observable,

(iii) strongly observable ⇐⇒ RS strongly observable,
(iv) observable at infinity ⇐⇒ RS observable at infinity,
(v) completely observable ⇐⇒ RS completely observable.

From Table 1 the dependencies between the different observability concepts can
easily be concluded and are illustrated in Figure 1.

completely
observable

behaviorally
observable

observable
at infinity

strongly
observable

behaviorally
observable

impulse
observable

RS strongly
observable

RS behaviorally
observable

RS impulse
observable

RS completely
observable

RS behaviorally
observable

RS observable
at infinity

= +

= +

= +

= +

Fig. 1: Relationship between the different observability concepts. For each implication, the con-
verse is false in general; dotted implications indicate the regular case.

5 Duality of observability and controllability

The intuitive definitions of behavioral and impulse observability given in Subsec-
tion 3.1 are not satisfying from a duality seeking point of view. Duality means that
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a system [E,A,B,C,D] ∈ Σl,n,m,p has a certain observability property if, and only if,
the “formal dual” system

d
dt E>x(t) = A>x(t)+C>u(t)

y(t) = B>x(t)+D>u(t) ,
(15)

has the corresponding controllability property. Since the controllability properties
of the dual system (15) do not depend on B> and D> it is sufficient to consider the
class Cl,n,m of control systems governed by the equation

d
dt Ex(t) = Ax(t)+Bu(t), (16)

where E,A ∈ Rl×n,B ∈ Rl×m; we write [E,A,B] ∈ Cl,n,m. Each controllability con-
cept (see [14] and the survey [16]) is invariant under the addition of a zero row in
[E,A,B] ∈ Cl,n,m or, equivalently, an equation 0 = 0 in (16). However, if we con-
sider the dual system [E>,A>,B>] ∈ On,l,m, then E>,A>,B> have a common zero
column and hence there exists a free state in the system which is not visible at the
output. This implies that the system is neither impulse nor behaviorally observable,
although [E,A,B] may be both impulse and behaviorally controllable as introduced
in [16]. This means that these observability and controllability concepts or not dual.

As already pointed out in Section 3.3, it is not always reasonable to view a state as
unobservable which actually does not appear in any of the systems equations; it only
appears in the model because of “bad design”. This viewpoint led us to the introduc-
tion of the relevant state observability concepts. This allows us to provide duality
results between the controllability concepts from [16] and the observability concepts
from Sections 3.1–3.3. The RS observability concepts cope with “design errors” as
mentioned above by preserving the physical meaning of observability. The duality
results will provide algebraic characterizations for the observability concepts.

Using the OI-normal form (which is the “dual” of the feedback form derived
in [16]), the characterizations summarized in Table 1 and the respective results
in [16] lead to the following duality results between the RS observability and the
controllability concepts.

Corollary 5.1 (Duality between observability and controllability). Let [E,A,C] ∈
Ol,n,p be given. Then we have the following equivalences:

(a) [E,A,C] is RS behaviorally observable if, and only if, [E>,A>,C>] ∈ Cn,l,p is
behaviorally controllable in the sense of [16],

(b) [E,A,C] is RS impulse observable if, and only if, [E>,A>,C>]∈Cn,l,p is impulse
controllable in the sense of [16],

(c) [E,A,C] is RS strongly observable if, and only if, [E>,A>,C>] ∈ Cn,l,p is
strongly controllable in the sense of [16],

(d) [E,A,C] is RS observable at infinity if, and only if, [E>,A>,C>] ∈ Cn,l,p is con-
trollable at infinity in the sense of [16],

(e) [E,A,C] is RS completely observable if, and only if, [E>,A>,C>] ∈ Cn,l,p is
completely controllable in the sense of [16].
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In particular, for regular DAE systems we have duality between the five remaining
observability concepts and the corresponding controllability concepts. The duality
properties are summarized in Figure 2.

behaviorally
observable

RS behaviorally
observable

behaviorally
controllable

impulse
observable

RS impulse
observable

impulse
controllable

strongly
observable

RS strongly
observable

strongly
controllable

observable
at infinity

RS observable
at infinity

controllable
at infinity

completely
observable

RS completely
observable

completely
controllable

dual

dual

dual

dual

dual

regularity

regularity

regularity

regularity

regularity

Fig. 2: Illustration of duality between observability and controllability.

6 Algebraic criteria

Using the duality results derived in Corollary 5.1, in this section we derive algebraic
criteria for the observability concepts. These criteria are generalizations of the Hau-
tus test (also called Popov-Belevitch-Hautus test, since independently developed by
POPOV [69], BELEVITCH [12] and HAUTUS [38]) in terms of rank and kernel crite-
ria on the involved matrices. Most of these conditions are not new – we refer to the
relevant literature.
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Proposition 6.1 (Algebraic criteria for observability). Let a system [E,A,C]∈Ol,n,p
be given. Then we have the following:

[E,A,C] is if, and only if,

behaviorally
observable ∀λ ∈ C : kerC(λE−A)∩kerCC = {0}.

impulse
observable kerR E ∩A−1(imR E)∩kerRC = {0}.

strongly
observable

kerR E ∩A−1(imR E)∩kerRC = {0}
∧ ∀λ ∈ C : kerC(λE−A)∩kerCC = {0}.

observable at
infinity kerR E ∩kerRC = {0}.

completely
observable

kerR E ∩kerRC = {0}
∧ ∀λ ∈ C : kerC(λE−A)∩kerCC = {0}.

RS behaviorally
observable ∀λ ∈ C : dimkerR(s)

[
sE−A

C

]
= dimkerC

[
λE−A

C

]
.

RS impulse
observable kerR E ∩kerR A∩kerRC = kerR E ∩A−1(imR E)∩kerRC.

RS strongly
observable

kerR E ∩kerR A∩kerRC = kerR E ∩A−1(imR E)∩kerRC

∧ ∀λ ∈ C : kerC E ∩kerC A∩kerCC = kerC(λE−A)∩kerCC.

RS observable
at infinity kerR E ∩kerR A∩kerRC = kerR E ∩kerRC.

RS completely
observable

kerR E ∩kerR A∩kerRC = kerR E ∩kerRC

∧ ∀λ ∈ C : kerC E ∩kerC A∩kerCC = kerC(λE−A)∩kerCC.

Proof. Combining Corollary 5.1 and [16, Cor. 4.3] the criteria for RS behavioral,
impulse, strong and complete observability and RS observability at infinity follow
immediately. From the OI-normal form (7) it can be concluded that

`(ε) = 0 ∧ detA0 6= 0 ⇐⇒ kerR A∩kerRC = {0}.
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Therefore, invoking Table 1, behavioral observability is equivalent to RS behavioral
observability together with the condition kerR A∩kerRC = {0}. Hence, the charac-
terization of RS behavioral observability follows from observing that the conditions
kerR A∩kerRC = {0} and rkR(s)

[
sE−A

C

]
= rkC

[
λE−A

C

]
for all λ ∈ C are equivalent

to kerC(λE−A)∩kerCC = {0} for all λ ∈ C.
Furthermore, it follows from the OI-normal form that

`(ε) = 0 ⇐⇒ `(ε) = |ε| ∧ kerR E ∩kerR A∩kerRC = {0}. (17)

Therefore, invoking Table 1, impulse observability is equivalent to RS impulse ob-
servability together with the condition kerR E∩kerR A∩kerRC = {0}, which yields
the characterization in the statement of the corollary. The characterization of strong
observability then follows from those of behavioral and impulse observability.
Likewise, equation (17) implies that observability at infinity is equivalent to RS ob-
servability at infinity together with the condition kerR E ∩ kerR A∩ kerRC = {0},
which yields the characterization in the statement of the corollary. Finally, the char-
acterization for complete observability then follows from those of behavioral ob-
servability and observability at infinity. ut

In the following we consider further criteria for the observability concepts.

Remark 6.2 (RS observability at infinity). Proposition 6.1 immediately implies that
RS observability at infinity is equivalent to

kerR E ∩kerRC ⊆ kerR A.

In terms of a rank criterion, this is the same as

rkR

E
A
C

= rkR

[
E
C

]
. (18)

Likewise, observability at infinity is equivalent to the rank condition

rkR

[
E
C

]
= n. (19)

As far as the authors are aware, the conditions (18) and (19) have not been derived
before for general DAE systems. In the case of regular sE −A ∈ R[s]n×n, condi-
tion (19) can be found for instance in [30].

Remark 6.3 (RS impulse observability). It follows from Proposition 6.1 that an
equivalent characterization for RS impulse observability is that, for one (and hence
any) matrix Z with imR Z = kerR E>, we have

rkR

E
A
C

= rkR

 E
Z>A

C

 . (20)
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Likewise, impulse observability is equivalent to

rkR

 E
Z>A

C

= n. (21)

This has been first derived in [42]. Furthermore, in [39, 42] it has been shown that
impulse observability is equivalent to

rkR

E A
0 C
0 E

= n+ rkR E, (22)

which is in fact equivalent to (21). If the pencil sE−A is regular, then condition (21)
for impulse observability can also be inferred from [31, Thm. 2-3.4].

Remark 6.4 (RS behavioral observability). The algebraic criterion for RS behav-
ioral observability in Proposition 6.1 is equivalent to the fact that the augmented
matrix pencil

sE −A = s
[

E
0

]
−
[

A
C

]
∈ R[s](l+p)×n

has no eigenvalues. Behavioral observability coincides with observability as defined
in [68, Def. 5.3.2] for the larger class of linear differential behaviors, and the rank
condition for behavioral observability in Proposition 6.1 has already been derived
in [68, Thm. 5.3.3]; it has also been derived in [39] where this concept is called
right-hand side observability. RS behavioral observability for systems with regular
sE −A was considered in [31, Thm. 2-3.2] (called R-observability in this work),
where the condition

∀λ ∈ C : rkC

[
λE−A

C

]
= n

was derived. This is, for regular sE −A, in fact equivalent to the criterion for RS
behavioral observability in Proposition 6.1.

Remark 6.5 (RS complete and strong observability). By Table 1, RS complete ob-
servability of [E,A,C] ∈ Ol,n,p is equivalent to [E,A,C] being RS behaviorally ob-
servable and RS observable at infinity, whereas RS strong observability of [E,A,C]
is equivalent to [E,A,C] being RS behaviorally observable and RS impulse observ-
able.
The algebraic conditions for strong observability in Proposition 6.1 have been first
derived in [39] (called observability in this work). On the other hand, as far as the
authors are aware, the algebraic criterion for RS complete observability has not been
derived before for general DAE systems.
For regular systems, the conditions in Proposition 6.1 for complete observability are
also derived in [31, Thm. 2-3.1].

The above considerations lead to the following alternative formulation of Propo-
sition 6.1 in terms of rank criteria.
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Corollary 6.6. Let [E,A,C] ∈Ol,n,p and Z be a matrix with imR Z = kerR E>. Then
we have the following:

[E,A,C] is if, and only if,

behaviorally
observable ∀λ ∈ C : rkC

[
λE−A

C

]
= n.

impulse
observable rkR

 E
Z>A

C

= n.

strongly
observable ∀λ ∈ C : rkC

[
λE−A

C

]
= rkR

 E
Z>A

C

= n.

observable
at infinity rkR

[
E
C

]
= n.

competely
observable ∀λ ∈ C : rkC

[
λE−A

C

]
= rkR

[
E
C

]
= n.

RS behaviorally
observable ∀λ ∈ C : rkC

[
λE−A

C

]
= rkR(s)

[
sE−A

C

]
.

RS impulse
observable rkR

 E
Z>A

C

= rkR

E
A
C

 .
RS strongly
observable ∀λ ∈ C : rkC

[
λE−A

C

]
= rkR

 E
Z>A

C

= rkR

E
A
C

 .
RS observable
at infinity rkR

[
E
C

]
= rkR

E
A
C

 .
RS completely
observable ∀λ ∈ C : rkC

[
λE−A

C

]
= rkR

[
E
C

]
= rkR

E
A
C

 .
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Remark 6.7 (Kalman criterion for regular systems). For regular systems [E,A,C]∈
On,n,p the usual Hautus and Kalman criteria for observability can be found in a
summarized form e.g. in [31]. Other approaches to derive observability criteria rely
on the expansion of (sE − A)−1 as a power series in s at s0 = 0, which is only
feasible in the regular case. For instance, in [61] the numerator matrices of this
expansion, i.e., the coefficients of the polynomial adj(sE−A), are used to derive a
rank criterion for complete observability. Then again, in [48] Kalman rank criteria
for complete observability, behavioral observability (called R-observability in this
work) and observability at infinity are derived in terms of the coefficients of the
power series expansion of (sE −A)−1. The advantage of these criteria, especially
the last one, is that no transformation of the system needs to be performed as it is
usually necessary in order to derive Kalman rank criteria for DAEs, see e.g. [31].
However, simple criteria can be obtained using only a left transformation of little
impact: if α ∈R is chosen such that det(αE−A) 6= 0, then the system is completely
observable if, and only if, [87, Cor. 2]

rkR


C

C(αE−A)−1E
...

C
(
(αE−A)−1E

)n−1

= n,

and it is impulse observable if, and only if, [87, Thm. 5]

kerR(αE−A)−1E ∩kerRC∩ imR(αE−A)−1E = Rn.

7 Geometric criteria

In this section we derive geometric criteria for the observability concepts. Geometric
theory plays a fundamental role in ODE system theory and has been introduced
independently by WONHAM and MORSE, and by BASILE and MARRO, see the
famous books [11,85] and also [78]. In [53], Lewis provided a survey of the to date
geometric theory of DAEs. As we will do here, he put special emphasis on the two
fundamental sequences (Vi)i∈N0 and (Wi)i∈N0 of subspaces defined as follows:

V0 := Rn, Vi+1 := A−1(EVi)∩kerRC ⊆ Rn, V ∗ :=
⋂

i∈N0

Vi,

W0 := {0}, Wi+1 := E−1(AWi)∩kerRC ⊆ Rn, W ∗ :=
⋃

i∈N0

Wi.

We will call the sequences (Vi)i∈N and (Wi)i∈N restricted Wong sequences. In [15,
18, 19] the Wong sequences for matrix pencils (i.e., C = 0) are investigated, the
name chosen this way since WONG [84] was the first one who used both sequences
for the analysis of matrix pencils. In fact, the Wong sequences (with C = 0) can
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be traced back to DIEUDONNÉ [33], who focused on the first of the two Wong
sequences. BERNHARD [21] and ARMENTANO [3] used the Wong sequences to
carry out a geometric analysis of matrix pencils. They appear also in [1, 2, 50, 73].
The sequences (Vi)i∈N and (Wi)i∈N are no Wong sequences corresponding to any
matrix pencils, that is why we call them restricted Wong sequences with respect to
the system [E,A,C] ∈ Ol,n,p.

For the investigation of observability of DAE systems, that is when C 6= 0, the
restricted Wong sequences have been extensively studied by several authors, see
e.g. [52, 59, 60, 63, 66, 79] for regular systems and [6, 8–10, 23, 53, 54, 64, 65] for
general DAE systems.

For regular systems ÖZÇALDIRAN [63] (see also [64]) showed that V ∗ is the
supremal (A,E)-invariant subspace contained in kerRC and W ∗ is the infimal re-
stricted (E,A;kerRC)-invariant subspace (which is also a subspace of kerRC); note
that by these invariance definitions, W ∗ is not the obvious dual to V ∗, but by the
definition of the restricted Wong sequences this connection becomes more com-
prehensible. The aforementioned invariance concepts, which have also been used
in [1, 7, 52, 60], are defined as follows.

Definition 7.1 ((A,E)- and (E,A;kerRC)-invariance [63]). Let E,A ∈Rl×n. A sub-
space V ⊆ Rn is called (A,E)-invariant, if

AV ⊆ EV .

For C ∈ Rp×n, a subspace W ⊆ Rn is called restricted (E,A;kerRC)-invariant, if

W = kerRC∩E−1(AW ).

It is easy to verify that the proofs given in [63, Lems. 2.1 & 2.2] remain the same
for general E,A ∈ Rl×n and (in the notation of [63]) K = kerRC for C ∈ Rp×n and
B = 0 – this was shown in [7] as well. For V ∗ this can be found in [1], see also [60].
We have the following proposition.

Proposition 7.2 (Restricted Wong sequences as invariant subspaces). Consider
[E,A,C] ∈ Ol,n,p and the limits V ∗ and W ∗ of the restricted Wong sequences. Then
the following statements hold true.

(a) V ∗ is (A,E)-invariant with V ∗ ⊆ kerRC and for any V ⊆ Rn which is (A,E)-
invariant and contained in kerRC it holds V ⊆ V ∗;

(b) W ∗ is restricted (E,A;kerRC)-invariant and for any W ⊆Rn which is restricted
(E,A;kerRC)-invariant it holds W ∗ ⊆W .

In the following we show how the observability concepts can be characterized in
terms of the invariant subspaces V ∗ and W ∗ by using the OI-normal form (7).

Theorem 7.3 (Geometric criteria for observability). Consider [E,A,C] ∈Ol,n,p and
the limits V ∗ and W ∗ of the restricted Wong sequences. Then [E,A,C] is

(a) behaviorally observable if, and only if, V ∗ = {0};
(b) impulse observable if, and only if, W ∗∩A−1(imR E) = {0};
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(c) strongly observable if, and only if, (V ∗+W ∗)∩A−1(imR E) = {0};
(d) observable at infinity if, and only if, W ∗ = {0};
(e) completely observable if, and only if, V ∗+W ∗ = {0};
(f) RS behaviorally observable if, and only if, V ∗ ⊆W ∗;
(g) RS impulse observable if, and only if, AW ∗∩ imR E = {0}.
(h) RS strongly observable if, and only if, (EV ∗+AW ∗)∩ imR E = {0}.
(i) RS observable at infinity if, and only if, AW ∗ = {0};
(j) RS completely observable if, and only if, EV ∗+AW ∗ = {0};

Proof. We prove the assertions by deriving formulas for V ∗ and W ∗ in terms of the
OI-normal form (7) and then connect the geometric conditions to the observability
concepts by Table 1. We proceed in several steps.

Step 1: Let [E1,A1,C1], [E2,A2,C2] ∈ Ol,n,p be such that for some W ∈ Gll(R),
T ∈Gln(R), V ∈Glp(R) and L ∈ Rl×p it holds

[E1 , A1 ,C1 ]
W,T,V,L∼OI [E2 , A2 ,C2 ] .

We show that the restricted Wong sequences V 1
i , W 1

i of [E1,A1,C1] and the re-
stricted Wong sequences V 2

i , W 2
i of [E2,A2,C2] are related by

∀ i ∈ N0 : V 1
i = T−1V 2

i ∧ W 1
i = T−1W 2

i .

We prove the statement by induction. It is clear that V 1
0 = T−1V 2

0 . Assuming that
V 1

i = T−1V 2
i for some i≥ 0 we find that, by (5),

V 1
i+1 = kerRC1∩A−1

1 (E1V
1

i )

=
{

x ∈ Rn ∣∣ ∃y ∈ V 1
i : WA2T x =WE2Ty ∧ VC2Ty = 0

}
=
{

x ∈ Rn ∣∣ ∃z ∈ V 2
i : A2T x = E2z ∧ C2z = 0

}
= T−1 (kerRC2∩A−1

2 (E2V
2

i )
)
= T−1V 2

i+1.

The statement about W 1
i and W 2

i can be proved analogous.
Step 2: By Step 1 we may without loss of generality assume that [E,A,C] is given

in OI-normal form (7). We make the convention that if α ∈Nk is some multi-index,
then α−1 := (α1−1, . . . ,αk−1). It not follows that

∀ i ∈N0 : Vi =

i−1⋂
j=0

kerR E>α N j
α× imR(N>β−1)

i× imR(N>γ )i×R|ε|× imR(N>κ )i×Rno ,

(23)
which is immediate from observing that L>

β
x = K>

β
y for some x,y of appropriate

dimension yields x = N>
ε−1y, and Kγ x = Lγ y with E>γ x = 0 for some x,y yields x =

N>γ y. Note that in the case β j = 1, i.e., we have a 1×0 block, we find that N>
β j−1 is

absent, so these relations are consistent.
On the other hand we find that
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∀ i ∈ N0 :

Wi = {0}|α|×{0}|β |×
(

kerR(N>γ )i∩kerR E>γ
)
×kerR Ni

ε ×kerR(N>κ )i×{0}no .

(24)

Step 3: From (23) and (24) it follows that

V ∗ = {0}|α|×{0}|β |−`(β )×{0}|γ|×R|ε|×{0}|κ|×Rno ,

W ∗ = {0}|α|×{0}|β |−`(β )×kerR E>γ ×R|ε|×R|κ|×{0}no .

and

EV ∗ = {0}|α|×{0}|β |×{0}|γ|−`(γ)×R|ε|−`(ε)×{0}|κ|×Rno ,

AW ∗ = {0}|α|×{0}|β |×Kγ(kerR E>γ )×R|ε|−`(ε)×R|κ|×{0}no ,

imR E = R|α|× imR K>
β
×R|γ|−`(γ)×R|ε|−`(ε)× imR N>κ ×Rno .

The equivalences in (a)–(j) may now be inferred from Table 1. ut

Under the additional assumption that rk[E>,A>,C>] = n, the conditions for
strong and complete observability as in Theorem 7.3 are derived in [10, 64] (which
are called observability and strong observability in these works, resp.). The condi-
tions for strong and complete observability are also derived in [65], as well as those
for behavioral and RS strong observability; in [65] the observability concepts are
defined within a distributional solution setup and other names are used than in the
present work (cf. Subsection 3.4).

8 Kalman decomposition

The famous decomposition of linear ODE control systems derived by Kalman [44] is
one of the most important tools in the analysis of these systems. This decomposition
has later been generalized to regular DAEs by VERGHESE et al. [80], see also [31].
A Kalman decomposition of general discrete-time DAE systems has been provided
by BANASZUK et al. [6] in a very nice way using the restricted/augmented Wong
sequences (cf. Section 7 and [14]). They derive the following result.

Theorem 8.1 (Kalman decomposition [6]). For [E,A,B,C,0] ∈ Σl,n,m,p, there exist
S ∈Gll(R), T ∈Gln(R) such that

[SET,SAT,SB,CT ] =


E11 E12 E13 E14
0 E22 0 E24
0 0 E33 E34
0 0 0 E44

 ,


A11 A12 A13 A14
0 A22 0 A24
0 0 A33 A34
0 0 0 A44

 ,


B1
B2
0
0

 , [0,C2,0,C4]

 , (25)
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where Ei j,Ai j ∈ Rli×n j , Bi ∈ Rli×m, C j ∈ Rp×n j for i, j = 1, . . . ,4, such that

(i)
[[

E11 E12
0 E22

]
,

[
A11 A12
0 A22

]
,

[
B1
B2

]]
∈ Cl1+l2,n1+n2,m is completely controllable and

rk
[

E11 E12 B1
0 E22 B2

]
= l1 + l2.

(ii)
[[

E22 E24
0 E44

]
,

[
A22 A24
0 A44

]
, [C2,C4]

]
∈ Ol2+l4,n2+n4,p is completely observable.

(iii) rkR(s)

[
sE33−A33 sE34−A34

0 sE44−A44

]
= n3 +n4.

(iv) rkR(s)

[
sE11−A11 sE13−A13

0 sE33−A33

]
= l1 + l3.

We like to stress that there are several subtleties of the Kalman decomposi-
tion (25) which are highlighted in [16, Rem. 7.2] for a pure controllability decom-
position and carry over to the general case.

Proposition 8.2 (Uniqueness of the Kalman decomposition). Let [E,A,B,C,0] ∈
Σl,n,m,p be given and assume that, for all i ∈ {1,2}, the systems [Ei,Ai,Bi,Ci] =
[SiETi,SiATi,SiB,CTi] with

sEi−Ai =


sE11,i−A11,i sE12,i−A12,i sE13,i−A13,i sE14,i−A14,i

0 sE22,i−A22,i 0 sE24,i−A24,i
0 0 sE33,i−A33,i sE34,i−A34,i
0 0 0 sE44,i−A44,i

 , Bi =


B1,i
B2,i
0
0

 ,
Ci = [0,C2,i,0,C4,i]

where E f g,i,A f g,i ∈ Rl f ,i×ng,i , B f ,i ∈ Rl f ,i×m, Cg ∈ Rp×ng,i , f ,g = 1, . . . ,4, satisfy the
conditions (i)–(iv) in Theorem 8.1.

Then l j,1 = l j,2 and n j,1 = n j,2 for all j = 1, . . . ,4. Moreover, for some Wi j ∈
Rli,1×l j,1 , Ti j ∈ Rni,1×n j,1 such that detWii 6= 0 and detTii 6= 0, i, j = 1, . . . ,4, we have

W2W−1
1 =


W11 W12 W13 W14

0 W22 0 W24
0 0 W33 W34
0 0 0 W44

 , T−1
1 T2 =


T11 T12 T13 T14
0 T22 0 T24
0 0 T33 T34
0 0 0 T44

 .
Proof. The result can be concluded from [16, Prop. 7.2] applied to [E,A,B] ∈ Cl,n,m
and its dual [E>,A>,C>] ∈ Cn,l,p (invoking Corollary 5.1). ut

Similar to [16, Cor. 7.3] several controllability, stabilizability, observability and
detectability properties (and conditions for them) can be inferred for the subsystems
appearing in the Kalman decomposition (25); we omit the details here.

The Kalman decomposition (25) is not satisfactory from a behavioral point of
view: The trivial DAE 0 = x,y = 0 given by [0, I,0,0,0] is behaviorally controllable
and behaviorally observable, but in the decomposition (25) it is part of the uncontrol-
lable and unobservable subsystem [E33,A33,0,0]. This is an unsatisfactory situation
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and is due to the fact, that for DAE systems (both regular and singular) certain states
can be inconsistent and it does not really make sense to label those controllable or
uncontrollable (observable or unobservable, resp.). In the case of controllability de-
compositions this problem has been treated in [20] and the following more detailed
Kalman controllability decomposition has been proved for [E,A,B] ∈ Cl,n,m:

[SET,SAT,SB] =

E11 E12 E13
0 E22 E23
0 0 E33

 ,
A11 A12 A13

0 A22 A23
0 0 A33

 ,
B1

0
0

 ,

where S and T are invertible matrices and the DAE system given by [E11,A11,B1]
is completely controllable. Furthermore, E22 is invertible and the DAE [E33,A33,0]
is such that it only has the trivial solution. Hence, we now have the decomposi-
tion into a completely controllable part, a classical uncontrollable part (given by
an ODE) and an inconsistent part (which is behaviorally controllable but contains
no completely controllable part). This decomposition seems to be more adequate
for the analysis of DAE control systems as it takes into account the special DAE
feature of possible inconsistent states which play a special role with respect to con-
trollability. Using duality (see Section 5) we may derive the following analogous
observability decomposition.

Theorem 8.3 (Kalman observability decomposition). For [E,A,C] ∈ Ol,n,p there
exist S ∈Gll(R) and T ∈Gln(R) such that

[SET,SAT,CT ] =

E11 E12 E13
0 E22 E23
0 0 E33

 ,
A11 A12 A13

0 A22 A23
0 0 A33

 , [0,0,C3]

 , (26)

where Ei j,Ai j ∈ Rli×n j for i, j = 1, . . . ,4, C1 ∈ Rp×n1 such that

(i) [E11,A11,0] ∈ Ol1,n1,p with l1 ≤ n1 and rkC(λE11−A11) = l1 for all λ ∈ C,
(ii) [E22,A22,0] ∈ Ol2,n2,p with l2 = n2 and E22 is invertible,

(iii) [E33,A33,C3] ∈ Ol3,n3,p is completely observable.

Remark 8.4.

(i) In the decomposition (26) we have an underdetermined and possibly in-
consistent part [E11,A11,0], a classical unobservable part [E22,A22,0] and a
completely observable part [E33,A33,C3]. Note that furthermore[[

E11 E13
0 E33

]
,

[
A11 A13
0 A33

]
, [0,C3]

]
is RS behaviorally observable and[[

E22 E23
0 E33

]
,

[
A22 A23
0 A33

]
, [0,C3]

]
is observable at infinity.

(ii) Similar to [20, Thm. 3.3] it is possible to derive the decomposition (26) with the
help of the restricted Wong sequences which have been introduced in Section 7.
In fact, the subspace decomposition leading to (26) is uniquely determined by
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the restricted Wong sequences. Also note that, especially in the singular case,
the decomposition (26) bears several subtleties which can be analysed similar
to [20, Rem. 3.2].

(iii) It is also possible to extend the pure observability decomposition (26) to a
Kalman decomposition of the form (25) where additionally the classical (ODE)
uncontrollable and unobservable parts are decomposed. However, due to the
complexity of such a decomposition we omit it here.

9 Detectability and stabilization by output injection

In this subsection we introduce detectability concepts for DAE systems. We char-
acterize them in terms of the OI-normal form and derive duality to the respective
stabilizability concepts from [16]. This will enable us to infer algebraic criteria for
the detectability concepts and to finally show that stabilization and index reduction
can be achieved by output injection.

In general, detectability is a weaker version of observability in the sense that the
state x is not exactly determined by the external signals but only asymptotically.
In the following, we will use the simplified notation “x(t)→ 0 as t → ∞” for x ∈
L 1

loc(R;Rn) if, and only if,

lim
t→∞

esssup
τ∈[t,∞)

‖x(τ)‖= 0.

Definition 9.1. The system [E,A,B,C,D] ∈ Σl,n,m,p is called

(a) behaviorally detectable

:⇐⇒ ∀(x1,u,y),(x2,u,y) ∈B[E,A,B,C,D] : x1(t)− x2(t)→ 0 as t→ ∞,

(b) RS behaviorally detectable

:⇐⇒ ∀(x1,u,y),(x2,u,y) ∈B[E,A,B,C,D] ∃(x3,u,y) ∈B[E,A,B,C,D] :

x1
(−∞,0) = x3

(−∞,0) ∧ x2(t)− x3(t)→ 0 as t→ ∞,

(c) strongly detectable, if it is impulse observable and behaviorally detectable,
(d) completely detectable, if it is observable at infinity and behaviorally detectable,
(e) RS strongly detectable, if it is RS impulse observable and RS behaviorally de-

tectable,
(f) RS completely detectable, if it is RS observable at infinity and RS behaviorally

detectable.

The definitions of RS complete and strong detectability are motivated by the cor-
responding characterizations of RS complete and strong observability (see Figure 1)
in terms of RS observability at infinity, RS impulse observability and RS behavioral
observability; where the latter is replaced by RS behavioral detectability. Similar as
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for the observability concepts, the detectability definitions can be simplified due to
linearity.

Lemma 9.2. The system [E,A,B,C,D] ∈ Σl,n,m,p is

(a) behaviorally detectable

⇐⇒ ∀(x,0) ∈B[E,A,C] : x(t)→ 0 as t→ ∞,

(b) RS behaviorally detectable

⇐⇒ ∀(x,0) ∈B[E,A,C] ∃(x,0) ∈B[E,A,C] :

x(−∞,0) = x(−∞,0) ∧ x(t)→ 0 as t→ ∞.

Hence we may restrict our attention to systems in Ol,n,p and we can use the OI-
normal form (7) to obtain (similar to the observability characterizations given in
Table 1) the following characterizations of the detectability concepts.

Corollary 9.3 (Detectability and OI-normal form). Let [E,A,C] ∈ Ol,n,p with OI-
normal form (7). Then [E,A,C] is

(a) behaviorally detectable if, and only if, `(ε) = 0 and σ(Ao)⊆ C−.
(b) RS behaviorally detectable if, and only if, σ(Ao)⊆ C−.
(c) strongly detectable if, and only if, γ = (1, . . . ,1), `(ε) = 0, κ = (1, . . . ,1) and

σ(Ao)⊆ C−.
(d) completely detectable if, and only if, γ = (1, . . . ,1), `(ε) = 0, `(κ) = 0 and

σ(Ao)⊆ C−.
(e) RS strongly detectable if, and only if, γ = (1, . . . ,1), ε = (1, . . . ,1), κ =

(1, . . . ,1) and σ(Ao)⊆ C−.
(f) RS completely detectable if, and only if, γ = (1, . . . ,1), ε = (1, . . . ,1), `(κ) = 0

and σ(Ao)⊆ C−.

Using the OI-normal form, the characterizations in Corollary 9.3 and the respec-
tive results for the feedback form derived in [16, Cor. 3.4], we are able to infer
duality between detectability and stabilizability as follows.

Corollary 9.4 (Duality of detectability and stabilizability). Let [E,A,C] ∈Ol,n,p be
given. Then we have the following equivalences:

(a) [E,A,C] is RS behaviorally detectable if, and only if, [E>,A>,C>] ∈ Cn,l,p is
behaviorally stabilizable in the sense of [16].

(b) [E,A,C] is RS strongly detectable if, and only if, [E>,A>,C>]∈Cn,l,p is strongly
stabilizable in the sense of [16].

(c) [E,A,C] is RS completely detectable if, and only if, [E>,A>,C>]∈Cn,l,p is com-
pletely stabilizable in the sense of [16].

In particular, for regular DAE systems, behavioral, strong and complete detectabil-
ity are dual to behavioral, strong and complete stabilizability. The duality properties
are illustrated in Figure 3.
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Fig. 3: Illustration of duality between detectability and stabilizability.

As a consequence of Corollaries 9.3 and 9.4 and [16, Cor. 4.3] we obtain the
following algebraic criteria of Hautus type for the detectability concepts from Defi-
nition 9.1.

Corollary 9.5 (Algebraic criteria for detectability). Let [E,A,C] ∈ Ol,n,p and Z be
a matrix with imR Z = kerR E>. Then we have the following:

[E,A,C] is if, and only if,

behaviorally
detectable ∀λ ∈ C+ : rkC

[
λE−A

C

]
= n.

RS behaviorally
detectable ∀λ ∈ C+ : rkC

[
λE−A

C

]
= rkR(s)

[
sE−A

C

]
.

strongly
detectable ∀λ ∈ C+ : rkC

[
λE−A

C

]
= rkR

 E
Z>A

C

= n.

completely
detectable ∀λ ∈ C+ : rkC

[
λE−A

C

]
= rkR

[
E
C

]
= n.
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RS strongly
detectable ∀λ ∈ C+ : rkC

[
λE−A

C

]
= rkR

 E
Z>A

C

= rkR

E
A
C

 .
RS completely
detectable ∀λ ∈ C+ : rkC

[
λE−A

C

]
= rkR

[
E
C

]
= rkR

E
A
C

 .
Remark 9.6. Behavioral detectability has been investigated in [31] for regular sys-
tems, where it is called detectability. In this case, the algebraic criteria for RS be-
havioral detectability from Corollary 9.5 have been derived in [31, Thm. 3-1.3].

In the remainder of this section we consider stabilization and index reduction
by output injection. As explained in Section 4, a system [E,A,C] ∈ Ol,n,p can, via
output injection with some L ∈ Rl×p, be turned into a DAE of the form (4), that is
a new system [E,A+LC,C] ∈ Ol,n,p. It is our aim to choose L such that this new
system is stable in a certain sense and its index is at most one. The index ν ∈N0 of a
matrix pencil sE−A ∈R[s]l×n is defined via its (quasi-)Kronecker form [18,19,35]
as in [16, Def. 3.2]: If for some S ∈Gll(R) and T ∈Gln(R)

S(sE−A)T =


sIr− J 0 0 0

0 sNα − I|α| 0 0
0 0 sKβ −Lβ 0
0 0 0 sK>γ −L>γ

 , (27)

then ν = max{0,α1, . . . ,α`(α),γ1, . . . ,γ`(γ)}.

The index is independent of the choice of S,T and can be computed via the Wong
sequences corresponding to sE−A as shown in [18, 19].

The following result can now be inferred from Corollaries 5.1 and 9.4 and [16,
Thm. 5.3].

Proposition 9.7 (Stabilization and index reduction). For a system [E,A,C] ∈ Ol,n,p
the following holds true:

(a) [E,A,C] is RS impulse observable if, and only if, there exists L ∈Rl×p such that
the index of sE>− (A+LC)> is at most one.

(b) [E,A,C] is RS strongly detectable if, and only if, there exists L ∈ Rl×p such
that the index of sE>− (A+ LC)> is at most one and the pair [E,A+ LC] is
behaviorally stabilizable in the sense of [16, Def. 5.1].

If we consider square systems [E,A,C] ∈ On,n,p, then we may obtain an addi-
tional stabilization result via behavioral detectability, which is wrong in general in
the nonregular case. To this end, we call a system [E,A,C] ∈ Ol,n,p behaviorally
stable, if [E,A,0] is behaviorally detectable. From Corollary 9.5 we obtain the char-
acterization

[E,A,C] is behaviorally stable ⇐⇒ ∀λ ∈ C+ : rkC(λE−A) = n. (28)
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Furthermore, under the slightly stronger assumptions of impulse observability and
strong detectability, resp., the results of Proposition 9.7 can be improved for square
systems. It is then possible to show that the output injection leads to a system which
is additionally regular.

Theorem 9.8 (Stabilization and index reduction for square systems). For a system
[E,A,C] ∈ On,n,p the following holds true:

(a) [E,A,C] is impulse observable if, and only if, there exists L ∈ Rn×p such that
sE− (A+LC) is regular and its index is at most one.

(b) [E,A,C] is behaviorally detectable if, and only if, there exists L ∈ Rn×p such
that sE− (A+LC) is regular and [E,A+LC,C] is behaviorally stable.

(c) [E,A,C] is strongly detectable if, and only if, there exists L ∈ Rn×p such that
sE− (A+LC) is regular, its index is at most one and [E,A+LC,C] is behav-
iorally stable.

Proof. (a) Without loss of generality, we may assume that [E,A,C] is in OI-normal
form (7). First let [E,A,C] be impulse observable, and hence it follows from
Table 1 that γ = (1, . . . ,1), `(ε) = 0 and κ = (1, . . . ,1). Since E and A are
square we may further deduce that `(β ) = `(γ), and therefore

E =


I|α| 0 0 0 0
0 K>

β
0 0 0

0 0 0 0 0
0 0 0 0 Ino

 , A=


Nα 0 0 0 0
0 L>

β
0 0 0

0 0 0 I|κ| 0
0 0 0 0 Ao

 , C =

E>α 0 0 0 0
0 0 I|γ| 0 0
0 0 0 0 0

 . (29)

It is easy to see that

s[K>
β
,0]− [L>

β
,Eβ ] = S

(
s
[

I|β−1| 0
0 0

]
−
[

Nβ−1 0
0 I`(β )

])
T

for some invertible matrices S,T , where β −1 = (β1−1, . . . ,β`(β )−1). There-
fore, the pencil s[K>

β
,0]− [L>

β
,Eβ ] is regular and has index at most one. Choos-

ing

L =


0 0 0
0 Eβ 0
0 0 0
0 0 0


we obtain that

sE− (A+LC) =


sI|α|−Nα 0 0 0 0

0 sK>
β
−L>

β
−Eβ 0 0

0 0 0 −I|κ| 0
0 0 0 0 sIno −Ao


is regular and its index is at most one.
To show the opposite implication let L ∈ Rn×p be such that sE − (A+LC) is
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regular and its index is at most one. Then Proposition 9.7 implies that [E,A,C] is
RS impulse observable. To show impulse observability, by Table 1 it remains to
show that `(ε)= 0. Since a OI-normal form of [E,A,C] is also a OI-normal form
of [E,A+LC,C], it follows from the regularity of sE−(A+LC) and Remark 4.6
that `(ε) = 0.

(b) Again, we assume that [E,A,C] is in OI-normal form (7). First let [E,A,C] be
behaviorally detectable, and hence it follows from Corollary 9.3 that `(ε) = 0
and σ(Ao)⊆ C−. Since E and A are square we may further deduce that `(β ) =
`(γ), and therefore

E =


I|α| 0 0 0 0
0 K>

β
0 0 0

0 0 Lγ 0 0
0 0 0 N>κ 0
0 0 0 0 Ino

 , A =


Nα 0 0 0 0
0 L>

β
0 0 0

0 0 Kγ 0 0
0 0 0 I|κ| 0
0 0 0 0 Ao

 , C =

E>α 0 0 0 0
0 0 E>γ 0 0
0 0 0 0 0

 .

By [78, Thm. 4.20] there exists Fα ∈R|α|×`(α) such that σ(Nα +Fα E>α )⊆C−.
Furthermore, choosing

Fβ = diag (e[β1]
1 , . . . ,e

[β`(β )]

1 )

we find that, by the same argument as in the proof of [17, Thm. 3.5],

s
[

K>
β

0
0 Lγ

]
−
[

L>
β

Fβ E>γ
0 Kγ

]
= S

(
s

[
N>

β
0

∗ N>
γ−1

]
−
[

I|β | 0
0 I|γ−1|

])
T

for some invertible matrices S,T , where γ − 1 = (γ1 − 1, . . . ,γ`(γ) − 1).

Therefore, the pencil s
[

K>
β

0
0 Lγ

]
−
[

L>
β

Fβ E>γ
0 Kγ

]
is regular and the system[[

K>
β

0
0 Lγ

]
,

[
L>

β
Fβ E>γ

0 Kγ

]
, [0,E>γ ]

]
is behaviorally stable by (28). Choosing

L =


Fα 0 0
0 Fβ 0
0 0 0
0 0 0
0 0 0

 ,
we obtain that
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sE− (A+LC)

=


sI|α|− (Nα +Fα E>α ) 0 0 0 0

0 sK>
β
−L>

β
−Fβ E>γ 0 0

0 0 sLγ −Kγ 0 0
0 0 0 sN>κ − I|κ| 0
0 0 0 0 sIno −Ao


is regular and [E,A+LC,C] is behaviorally stable by (28).
To show the opposite implication let L∈Rn×p be such that sE−(A+LC) is reg-
ular and [E,A+LC,C] is behaviorally stable. Seeking a contradiction, assume
that [E,A,C] is not behaviorally detectable. Then it follows from Corollary 9.5
that there exist λ ∈ C+ and x ∈ Cn \{0} such that

[
λE−A

C

]
x = 0. This implies

(λE− (A+LC))x = [In,−L]
[

λE−A
C

]
x = 0,

thus rkC(λE− (A+LC))< n, which contradicts behavioral stability of [E,A+
LC,C] by (28).

(c) Again, we assume that [E,A,C] is in OI-normal form (7). First let [E,A,C] be
strongly detectable, and hence it follows from Corollary 9.3 that γ = (1, . . . ,1),
`(ε) = 0, κ = (1, . . . ,1) and σ(Ao) ⊆ C−. Since E and A are square we may
further deduce that `(β ) = `(γ) and (29) holds. Let Fα ∈ R|α|×`(α) be such that
σ(Nα +Fα E>α )⊆ C−. Furthermore, let

a j = [a j0, . . . ,a jβ j−2,1]
> ∈ Rβ j

with the property that the polynomials

p j(s) = sβ j +a jβ j−1sβ j−1 + . . .+a j0 ∈ R[s]

are Hurwitz for j = 1, . . . , `(β ), and let

Bβ = diag (a1, . . . ,a`(β )) ∈ R|β |×`(β ).

Consider the system

d
dt [K

>
β
,0]
(

z(t)
u(t)

)
= [L>

β
,Bβ ]

(
z(t)
u(t)

)
. (30)

We see that the input u is uniquely determined by u = −E>
β−1z, where β −

1 = (β1 − 1, . . . ,β`(β ) − 1) and if β j = 1 for some j, then the respective x-
component does not exist and the equation simply reads u j = 0. With Bβ−1 =

diag (ã1, . . . , ã`(β )), where ã j = [a j0, . . . ,a jβ j−2]
>, a permutation of rows in (30)

and insertion of u gives
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ż(t) = (Nβ−1−Bβ−1E>
β−1)z(t),

u(t) = E>
β−1z(t).

It is now clear, that the pencil s[K>
β
,0]− [L>

β
,Bβ ] in system (30) is regular and

has index at most one. Furthermore, the characteristic polynomial of Nβ−1 +

Bβ−1E>
β−1 (which is a block diagonalization of companion matrices) is given

by

det
(
sI− (Nβ−1 +Bβ−1E>

β−1)
)
=

`(β )∏
j=1

p j(s),

which is Hurwitz, since all p j(s) are Hurwitz. Therefore,[
[K>

β
,0], [L>

β
,Bβ ], [0, I|γ|]

]
is also behaviorally stable. Choosing

L =


Fα 0 0
0 Bβ 0
0 0 0
0 0 0


we obtain that

sE− (A+LC) =


sI|α|− (Nα +Fα E>α ) 0 0 0 0

0 sK>
β
−L>

β
−Bβ 0 0

0 0 0 −I|κ| 0
0 0 0 0 sIno −Ao


is regular, its index is at most one and [E,A + LC,C] is behaviorally stable
by (28).
To show the opposite implication let L ∈ Rn×p be such that sE − (A+LC) is
regular, its index is at most one and [E,A+LC,C] is behaviorally stable. Then
Proposition 9.7 implies that [E,A,C] is RS strongly detectable. To show strong
detectability, by Table 1 and Corollary 9.3 it remains to show that `(ε) = 0. As
in a), this follows from the regularity of sE− (A+LC). ut

Note that in the proof of necessity in Theorem 9.8 (b) regularity of sE−(A+LC)
has not been used explicitly, so one may wonder as to whether this property is nec-
essary here. In fact, it is not: The regularity of sE−(A+LC) is a direct consequence
of behavioral stability of [E,A+LC,C] and the fact that E and A+LC are square.

Remark 9.9.

(i) It is a consequence of Theorem 9.8 that impulse observability and behavioral
detectability in particular imply that the square system [E,A,C]∈On,n,p is regu-
larizable by output injection, i.e., there exists L ∈Rn×p such that sE− (A+LC)
is regular. The dual of this concept is regularizability by state feedback and has
been well-investigated, see [17] and the references therein.
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(ii) Another result on index reduction which is slightly different from both Propo-
sition 9.7 (a) and Theorem 9.8 (a) has been derived in [42, Thm. 5]. It is shown
that [E,A,C] ∈Ol,n,p is impulse observable if, and only if, there exists L ∈Rl×p

such that
(A+LC)−1(imR E)∩kerR E = {0},

which is slightly stronger than requiring sE − (A+LC) to have index at most
one; in fact, it is equivalent to the index being at most one and the absence of
overdetermined γ-blocks in the quasi-Kronecker form (27).

(iii) Stabilization and index reduction by output injection for regular DAE systems
have been investigated in [31]. In particular, under the additional assumption of
regularity of sE−A, Theorem 9.8 (a) and (b) have been derived in [31, Thm. 3-
2.1 & Cor. 3-3.2], resp.
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63. Özçaldiran, K.: A geometric characterization of the reachable and controllable subspaces of
descriptor systems. IEEE Proc. Circuits, Systems and Signal Processing 5, 37–48 (1986) –
Cited on page 39.
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behavior, 6
distributional, 7
ITP, 8
weak, 6

behavioral systems, 3
behaviorally controllable, see controllable
behaviorally detectable, see detectable
behaviorally observable, see observable
behaviorally stable, see stable

canonical form, 24
completely controllable, see controllable
completely detectable, see detectable
completely observable, see observable
controllable

at infinity, 32
behaviorally, 32
completely, 32
impulse, 32
R-, 19
strongly, 32

controllable at infinity, see controllable

DAE, see differential-algebraic equation
DAE system

regular, 23
descriptor system, 2
detectable

behaviorally, 44
completely, 44
RS behaviorally, 44
RS completely, 44
RS strongly, 44
strongly, 44

differential-algebraic equation, 2
distributional evaluation, 8
distributional restriction, 7

distributions
piecewise smooth, 7

duality, 22
of detectability and stabilizability, 45
of observability and controllability, 31

feedback canonical form, 4

Hautus test, 33, 46

impulse controllable, see controllable
impulse observable, see observable
impulsive part, 8
index

of a matrix pencil, 47
reduction, 47

initial trajectory problem, 8
input, 3
ITP-behavior, 8

Kalman criterion, 38
Kalman decomposition, 41
Kronecker canonical form, 4

matrix pencil
regular, 3
singular, 3

normal form, 24

observability, see observable
observable, 2

of zero, 12
at infinity, 13, 35, 40
behaviorally, 11, 36, 39
completely, 13, 36, 40
impulse, 11, 35, 39

57



58 Index

RS at infinity, 15, 40
RS behaviorally, 15
RS completely, 15, 40
RS impulse, 15, 40
RS strongly, 15, 40
strongly, 11, 36, 40
weakly behaviorally, 40

observable at infinity, see observable
ODE, see ordinary differential equation
OI-equivalence, see output injection

equivalence
OI-normal form, 22
ordinary differential equation, 2
output, 3

injection, 20
equivalence, 20
normal form, 22

piecewise smooth distributions, 7
Popov-Belevitch-Hautus test, see Hautus test

R-controllable, see controllable
RS behaviorally detectable, see detectable
RS behaviorally observable, see observable

RS completely detectable, see detectable
RS completely observable, see observable
RS impulse observable, see observable
RS observable at infinity, see observable
RS strongly detectable, see detectable
RS strongly observable, see observable

solution
distributional, 7
weak, 6

stabilization, 48
stable

behaviorally, 47
state, 3
state feedback, 24
strongly controllable, see controllable
strongly detectable, see detectable
strongly observable, see observable

Weierstraß canonical form, 4
Wong sequence, 38

restricted, 39
Wong sequences, 47
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