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Funnel control via funnel pre-compensator for
minimum phase systems with relative degree two

Thomas Berger and Timo Reis

Abstract—We consider tracking control for linear minimum phase
single-input, single-output systems with relative degree two. For a class of
sufficiently smooth reference signals we introduce a dynamic controller
which achieves that the tracking error evolves within a prespecified
performance funnel. This controller is based on the recently developed
funnel pre-compensator combined with a proportional-derivative funnel
controller. Altogether, this yields a dynamic controller which satisfies the
control objective and uses only the output of the system and NOT the
derivative of the output. The system parameters do not have to be known
for the controller design.

Index Terms—Linear systems, funnel control, funnel pre-compensator,
relative degree, minimum phase.

I. INTRODUCTION

In the present paper we consider output tracking for linear mini-
mum phase systems with relative degree two by funnel control. The
concept of funnel control has been developed in [1], see also the sur-
vey [2] and the references therein. In particular, the funnel controller
proved to be the appropriate tool for tracking problems in various
applications, such as chemical reactor models [3], industrial servo-
systems [4], [5] and rigid, revolute joint robotic manipulators [6],
voltage and current control of electrical circuits [7], and control of
peak inspiratory pressure [8].

An obstacle for high-gain adaptive controllers are systems of
relative degree higher than one [2], [9]. In [10], [11], Ilchmann et
al. introduce a funnel controller for higher relative degree systems by
implementing a “backstepping” procedure in conjunction with a filter.
The controller achieves tracking with prescribed transient behavior
for a large class of systems governed by nonlinear (functional)
differential equations, however the backstepping procedure is quite
complicated and impractical since it involves high powers of a gain
function which typically takes large values, cf. [12, Sec. 4.4.3].
Backstepping is also used for an adaptive λ -tracker in an earlier
work by Ye [13].

In the case of relative degree two systems, an alternative funnel
controller has been proposed in [4] (see also the modification in [14]),
where the backstepping procedure is avoided by using a linear combi-
nation of the output and its derivative instead. Generalizations of this
approach to systems with higher relative degree are the bang-bang
funnel controller introduced in [15] and the recent funnel controller
developed in [16]. However, the incorporation of output derivatives
means in practice that measurements have to be differentiated. The
latter is an ill-posed problem in particular in the presence of noise,
see e.g. [12, Sec. 1.4.4].

In [17], a “Prescribed Performance Controller” for systems with
higher strict relative degree is introduced. Though this controller is
applicable to a large class of systems, its drawback is that it requires
the full information of the state. In [18], an adaptive λ -tracker is
introduced by composing a high-gain observer, a high-gain observer-
state feedback and a common adaptation scheme for both high-
gain parameters. The controller achieves tracking with prescribed
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asymptotic accuracy λ > 0 for a class of systems which are affine in
the control, of known relative degree, and with affine linearly bounded
drift term. The advantage of this controller is that no derivatives of
the output are required due to the high-gain observer, however the
transient behavior of the tracking error cannot be influenced.

In the present paper we overcome the drawbacks of [4] by
incorporating a funnel pre-compensator, which resembles an adaptive
high-gain observer, so that derivatives of the output are not required
anymore. The combination of the funnel pre-compensator with the
funnel controller from [4] results in a dynamic controller achieving
prescribed transient behavior of the tracking error.

A. Nomenclature
R≥0 = [0,∞)
L ∞

loc(I→Rn) the set of locally essentially bounded functions
f : I→Rn, I ⊆ R an interval

L ∞(I→Rn) the set of essentially bounded functions f : I→Rn

∥ f∥∞ = ess supt∈I∥ f (t)∥
W k,∞(I→Rn) the set of k-times weakly differentiable functions

f : I→Rn such that f , . . . , f (k) ∈ L ∞(I→Rn)
C (V →Rn) the set of continuous functions f :V→Rn, V ⊆Rm

f |W restriction of the function f : V →Rn to W ⊆V

B. System class

In the present paper we consider linear single-input, single-output
systems given by

ẋ(t) = Ax(t)+bu(t), x(0) = x0,

y(t) = cx(t),
(1)

where A ∈ Rn×n and b,c⊤,x0 ∈ Rn. The functions u,y : R≥0 → R
are called input and output of the system (1), resp. We assume
that (1) has relative degree two, positive high-frequency gain and is
minimum phase (equivalently, the zero dynamics are asymptotically
stable, cf. [19]), that is

(A1) cb = 0 and cAb > 0;

(A2) det
[

λ In −A b
c 0

]
̸= 0 for all λ ∈ C with Reλ ≥ 0.

Adaptive control of minimum phase linear systems (1) is well-
studied, see e.g. [20]–[23]. We formulate our control objective in
the following.

C. Control objective

The objective is to design a dynamic output feedback

ż(t) = F
(
t,z(t),y(t),yref(t)

)
,

u(t) = G
(
t,z(t),y(t),yref(t)

)
,

(2)

where yref is a sufficiently smooth reference signal, such that in the
closed-loop system the tracking error e(t) = y(t)− yref(t) evolves
within a prescribed performance funnel

Fφ := { (t,e) ∈ R≥0 ×R | φ(t)|e|< 1 } , (3)

which is determined by a function φ belonging to

Φ :=

φ ∈W 1,∞(R≥0→R)

∣∣∣∣∣∣
φ(s)> 0 for all s > 0 and
for all ε > 0:
φ−1

∣∣
[ε,∞)

∈W 1,∞([ε,∞)→R)

 .
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Furthermore, all involved signals should remain bounded.
The funnel boundary is given by the reciprocal of φ , see Fig. 1.

The case φ(0) = 0 is explicitly allowed and puts no restriction on the
initial value since φ(0)|e(0)| < 1; in this case the funnel boundary
1/φ has a pole at t = 0.

λ

b

(0,e(0))
φ(t)−1

t

Fig. 1: Error evolution in a funnel Fφ with boundary φ(t)−1.

An important property is that each performance funnel Fφ with
φ ∈Φ is bounded away from zero, i.e., due to boundedness of φ there
exists λ > 0 such that 1/φ(t)≥ λ for all t > 0. The funnel boundary
is not necessarily monotonically decreasing, while in most situations
it is convenient to choose a monotone funnel. However, there are
situations where widening the funnel over some later time interval
might be beneficial, e.g., when the reference trajectory changes
strongly or the system is perturbed by some calibration so that a
large tracking error would enforce a large input action.

In the present paper we show that the control objective can be
achieved by the combination of a funnel pre-compensator (see Sec. II)
with a proportional-derivative funnel controller for relative degree two
systems (see Sec. I-D).

D. Funnel control without pre-compensator

For relative degree two systems of the form (1) a funnel controller
has been developed in [4]. However, it is not of type (2), since it
uses derivative feedback of the form

u(t)=−k0(t)2e(t)−k1(t)ė(t)+ud(t), e(t)=y(t)− yref(t),

ki(t)=
φi(t)

1−φi(t)|e(i)(t)|
, i=0,1,

(4)

where ud ∈L ∞(R≥0 →R) is an input disturbance and (φ0,φ1)∈Φ2;
the latter class is defined by

Φ2 :=
{
(φ0,φ1) ∈ Φ×Φ

∣∣∣∣ ∃δ > 0 for a.a. t > 0 :
(1/φ1)(t)+ d

dt (1/φ0)(t)≥ δ

}
.

The motivation for the definition of Φ2 is that the derivative funnel
Fφ1 must be large enough to allow the error to follow the funnel
boundaries; for more details see [4].

The controller (4) even works for a large class of nonlinear systems
governed by functional differential equations of the form

ÿ(t) = f
(
d(t),T (y, ẏ)(t)

)
+g
(
d(t),T (y, ẏ)(t)

)
u(t),

y|[−h,0] = y0 ∈ W 1,∞([−h,0]→ R),
(5)

where h > 0 is the “memory” of the system, and
• d ∈ L ∞(R≥0 → Rp), p ∈ N, is a disturbance;
• f ∈C (Rp×Rq →R),g∈C (Rp×Rq →R), q∈N, and g(v,w)>

0 for all (v,w) ∈ Rp ×Rq;
• T : C ([−h,∞) → R)2 → L ∞

loc(R≥0 → Rq) is an operator with
the following properties:
a) there exists ψ ∈ C (R≥0 ×R≥0 → R≥0) such that for all

bounded (ζ1,ζ2)∈C ([−h,∞)→R)2 we have that T (ζ1,ζ2)
is bounded with ∥T (ζ1,ζ2)∥∞ ≤ ψ (∥ζ1∥∞,∥ζ2∥∞);

b) T is causal, i.e., for all t ≥ 0 and all ζ ,ξ ∈C ([−h,∞)→R)2:

ζ |[−h,t) = ξ |[−h,t) =⇒ T (ζ )|[0,t]
a.e.
= T (ξ )|[0,t] ;

c) T is “locally Lipschitz” continuous in the following sense:
for all t ≥ 0 there exist τ,δ ,c > 0 such that for all ζ ,∆ζ ∈
C ([−h,∞)→R)2 with ∆ζ |[−h,t] = 0 and ∥ ∆ζ |[t,t+τ] ∥∞ < δ
we have∥∥∥(T (ζ +∆ζ )−T (ζ )

)∣∣
[t,t+τ]

∥∥∥
∞
≤ c∥ ∆ζ |[t,t+τ] ∥∞.

In [4], the existence of global solutions of the closed-loop sys-
tem (5), (4) is investigated. To this end, y : [−h,ω) → R is called
a solution of (5), (4) on [−h,ω), ω ∈ (0,∞], if y|[−h,0] = y0 and
y|[0,ω) is twice weakly differentiable and satisfies (5), (4) for almost
all t ∈ [0,ω); y is called maximal, if it has no right extension that is
also a solution. Note that uniqueness of solutions of (5), (4) is not
guaranteed in general.

The following result is in [4, Thm. 3.1].

Theorem I.1. Consider a system (5) with initial trajectory y0 ∈
W 1,∞([−h,0] → R), a reference signal yref ∈ W 2,∞(R≥0 → R),
an input disturbance ud ∈ L ∞(R≥0 → R) and a pair of funnels
(φ0,φ1) ∈ Φ2 such that

φ0(0)|y0(0)− yref(0)|< 1 and φ1(0)|ẏ0(0)− ẏref(0)|< 1.

Then the controller (4) applied to (5) yields a closed-loop system
which has a solution, and every maximal solution y : [0,ω)→R has
the properties:

(i) ω = ∞;
(ii) all involved signals y(·), ẏ(·),k0(·) and k1(·) are bounded;

(iii) the tracking error and its derivative evolve uniformly within the
respective performance funnels in the sense

∀ i ∈ {0,1} ∃εi > 0 ∀ t > 0 : |e(i)| ≤ φi(t)−1 − εi.

E. Contribution of the present paper

The drawback of the funnel controller (4) is that it involves
derivative feedback and thus it does not satisfy the control objective.
The derivative of the output is usually not available or very hard to
compute [12, Sec. 1.4.4]. Therefore, a dynamic error feedback of the
form (2) is sought.

In the present paper we resolve this drawback by first applying the
funnel pre-compensator developed in [24] to system (1) to obtain an
interconnection with certain properties so that the controller (4) may
be applied to it. In the end, the combination of the pre-compensator
and (4) yields a new funnel control design which achieves the control
objective. For the precise controller structure see Sec. III.

II. THE FUNNEL PRE-COMPENSATOR

An integral part of the controller that we propose in the present
paper is the funnel pre-compensator developed in [24]. We like
to point out that in [24] it is called “funnel observer” since it
resembles an (adaptive) high-gain observer, however it does not have
the corresponding properties. The funnel pre-compensator is of the
form

ż1(t) = z2(t)+
(
q1 + p1k2(t)

)
(y(t)− z1(t)),

ż2(t) = γ̃ u(t)+
(
q2 + p2k2(t)

)
(y(t)− z1(t)),

k2(t) =
1

1−φ2(t)2|y(t)− z1(t)|2
,

(6)

with initial conditions

zi(0) = z0
i ∈ R, i = 1,2, (7)
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where φ2 ∈ Φ, γ̃ > 0 and qi > 0, pi > 0 for all i = 1,2. The
functions zi : R≥0 → R, i = 1,2, are the pre-compensator states and
k2 : R≥0 → [1,∞) is the pre-compensator gain. Note that the matrix
Q :=

[
−q1 1
−q2 0

]
∈R2×2 is Hurwitz, i.e., all its eigenvalues have negative

real part. The constants pi depend on the choice of the qi in the
following way: Let

P =

[
P1 P2
P2 P4

]
, P1,P2,P4 ∈ R

be such that
Q⊤P+PQ+ I2 = 0, P > 0.

The matrix P depends only on the choice of the constants qi. The
constants pi are defined by

p1 = 1, p2 =−P2
P4
. (8)

Then (
1,−P2

P4

)
P
(

1
−P2

P4

)
= P1 −

P2
2

P4
> 0 (9)

and we will see later that (9) guarantees that P defines a quadratic
Lyapunov function for the pre-compensator error dynamics.

The pre-compensator (6) is a nonlinear and time-varying system,
nevertheless it is simple in its structure and only two-dimensional.
Similar to an observer, the funnel pre-compensator (6) only requires
the input signal u(t) and the output signal y(t), see Fig. 2; no further
knowledge of system parameters is required.

..ẋ(t) = Ax(t)+bu(t)
y(t) = cx(t)

.....

Funnel
Pre-Compensator

....
u(t)

.
y(t)

.

z(t)

Fig. 2: Interconnection of (1) with funnel pre-compensator (6).

Note that by the design of the pre-compensator (6), the gain k2(t)
increases if the norm of the error |y(t)− z1(t)| approaches the funnel
boundary 1/φ2(t), and decreases if a high gain is not necessary.
This guarantees prescribed transient behavior of the error e1(t) =
y(t)− z1(t) as shown in [24, Thm. 4.1].

III. CONTROLLER STRUCTURE

We propose a novel and simple funnel controller for trajectory
tracking with prescribed transient behavior for relative degree two
systems such that a derivative of the output is not required. The first
part of the controller is a funnel pre-compensator (6). Considering
the interconnection of system (1) with the funnel pre-compensator (6)
we treat the state z1 as an output of this system and apply the
controller (4) to it. We stress that the controller (4) requires the
derivative of this artificial output, which however is available since
ż1 = z2 +

(
q1 + p1k2

)
(y− z1) and k2 only depends on the available

variables y,z1 and the funnel function φ2 ∈ Φ. Therefore, we arrive
at a controller of the form (2), namely

ż1(t) = z2(t)+
(
q1 + p1k2(t)

)
(y(t)− z1(t)),

ż2(t) = γ̃ u(t)+
(
q2 + p2k2(t)

)
(y(t)− z1(t)),

u(t) =−k0(t)2(z1(t)− yref(t)
)

− k1(t)
(
ż1(t)− ẏref(t)

)
+ud(t),

k0(t) =
φ0(t)

1−φ0(t)|z1(t)−yref(t)| ,

k1(t) =
φ1(t)

1−φ1(t)|ż1(t)−ẏref(t)| ,

k2(t) = 1
1−φ2(t)2|y(t)−z1(t)|2 ,

(10)

where γ̃ > 0, yref ∈W 2,∞(R≥0 →R) is the reference trajectory, ud ∈
L ∞(R≥0 → R) is an input disturbance, (φ0,φ1) ∈ Φ2 and φ2 ∈ Φ
define the funnel boundaries, and q1,q2, p1, p2 > 0 are such that (8) is
satisfied for corresponding matrices P and Q. The controller structure
is depicted in Fig. 3.

IV. MAIN RESULT

The intuition for the funnel controller (10) to work for system (1) is
that the error dynamics of the funnel pre-compensator act as internal
dynamics of the interconnection of system (1) with the funnel pre-
compensator (6) when the state z1 is taken as output. These internal
dynamics are bounded-input, bounded-output stable since, as we will
show, all signals involved in this interconnection are bounded and
can hence be modeled by an operator which maps bounded signals
to bounded signals, thus allowing the application of Theorem I.1.
Since ż1 in (6) does not require derivatives of y and y− z1 evolves
in Fφ2 we obtain prescribed performance of the tracking error e =
y− yref.

Theorem IV.1. Consider a linear system (1) which satisfies (A1) and
(A2) with initial value x0 ∈Rn, a reference signal yref ∈W 2,∞(R≥0 →
R), an input disturbance ud ∈ L ∞(R≥0 → R) and a pair of funnels
(φ0,φ1) ∈ Φ2 such that

φ0(0)|cx0 − yref(0)|< 1 and φ1(0)|cAx0 − ẏref(0)|< 1.

Further choose initial values (7) and φ2 ∈ Φ such that

φ2(0)|cx0 − z0
1|< 1,

γ̃ > 0 and q1,q2, p1, p2 > 0 such that (8) is satisfied for corresponding
matrices P and Q.
Then the controller (10) applied to (1) yields a closed-loop system
which has a unique maximal solution (x,z1,z2) : [0,ω)→R with the
properties:

(i) ω = ∞;
(ii) all involved signals x(·),z1(·),z2(·),k0(·),k1(·),k2(·) are

bounded;
(iii) the errors evolve uniformly within the respective performance

funnels in the sense

∃ε0,ε1,ε2 > 0 ∀ t > 0 : |z1(t)− yref(t)| ≤ φ0(t)−1 − ε0,

|ż1(t)− ẏref(t)| ≤ φ1(t)−1 − ε1,

|y(t)− z1(t)| ≤ φ2(t)−1 − ε2.

(11)

In particular, the tracking error satisfies

∀ t > 0 : |y(t)− yref(t)| ≤ φ0(t)−1 +φ2(t)−1 − ε0 − ε2. (12)

Proof. Since system (1) has relative degree two by (A1), we may
without loss of generality assume that it is in Byrnes-Isidori form:

ÿ(t) = r1y(t)+ r2ẏ(t)+ sη(t)+ γu(t),

η̇(t) = wy(t)+V η(t),
(13)

where r1,r2 ∈ R, w,s⊤ ∈ Rn−2, V ∈ R(n−2)×(n−2) and γ = cAb > 0.
See [25] and [11, Lem. 3.5] for an explicit derivation of the transfor-
mation which leads to (13). By the minimum phase assumption (A2)
we further obtain that all eigenvalues of V have negative real part.
We proceed in several steps.

Step 1: We show existence and uniqueness of a local solution of the
closed-loop system consisting of the controller (10) applied to (13).
Define
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..ẋ(t) = Ax(t)+bu(t)

y(t) = cx(t)
.

ż1(t) = z2(t)+
(
q1 + p1k2(t)

)
(y(t)− z1(t))

ż2(t) = γ̃ u(t)+
(
q2 + p2k2(t)

)
(y(t)− z1(t))

.

u(t) =−k0(t)2(z1(t)−yref(t))

− k1(t)
(
z2(t)+

(
q1 + p1k2(t)

)
(y(t)−z1(t))−ẏref(t)

)

....................
u(t)

.
y(t)

.

z2(t)

.

z1(t)

.

yref(t)

.

ẏref(t)

Fig. 3: The funnel controller (10) applied to system (1) consisting, indicated by the grey box, of a funnel pre-compensator (6) and a
controller (4).

D :=

 (t,y0,y1,η ,z1,z2) ∈ R≥0 ×Rn+2

∣∣∣∣∣∣∣
φ0(t)|z1 − yref(t)|< 1

φ1(t)
∣∣∣z2 +

(
q1 +

p1
1−φ2(t)2|y0−z1|2

)
(y0 − z1)− ẏref(t)

∣∣∣< 1

φ2(t)|y0 − z1|< 1


and F : D → Rn+2 by

F(t,y0,y1,η ,z1,z2) =

y1

r1y0 + r2y1 + sη − γ

 z1−yref(t)
1−φ0(t)2|z1−yref(t)|2 +

z2+

(
q1+

p1
1−φ2(t)2|y0−z1|2

)
(y0−z1)−ẏref(t)

1−φ1(t)2

∣∣∣∣z2+

(
q1+

p1
1−φ2(t)2|y0−z1|2

)
(y0−z1)−ẏref(t)

∣∣∣∣2 −ud(t)


wy0 +V η

z2 +
(

q1 +
p1

1−φ2(t)2|y0−z1|2
)
(y0 − z1)

−γ̃

 z1−yref(t)
1−φ0(t)2|z1−yref(t)|2 +

z2+

(
q1+

p1
1−φ2(t)2|y0−z1|2

)
(y0−z1)−ẏref(t)

1−φ1(t)2

∣∣∣∣z2+

(
q1+

p1
1−φ2(t)2|y0−z1|2

)
(y0−z1)−ẏref(t)

∣∣∣∣2 −ud(t)

+
(

q2 +
p2

1−φ2(t)2|y0−z1|2
)
(y0 − z1)


.

Then the closed-loop system (13), (10) is equivalent to
ẏ(t)
ÿ(t)
η̇(t)
ż1(t)
ż2(t)

= F

t,


y(t)
ẏ(t)
η(t)
z1(t)
z2(t)


 ,


y(0)
ẏ(0)
η(0)
z1(0)
z2(0)

=


cx0

cAx0

η0

z0
1

z0
2

=: X0, (14)

where η0 ∈ Rn−2 is chosen in terms of x0 and the transformation
to the form (13). Thus, (0,X0) ∈ D and F is measurable in t and
locally Lipschitz in (y0,y1,η ,z1,z2). Hence, by the theory of ordinary
differential equations (see e.g. [26, § 10, Thm. VI]) there exists
a unique maximal absolutely continuous solution (y, ẏ,η ,z1,z2) :
[0,ω) → Rn+2, ω ∈ (0,∞], of (14) satisfying the initial conditions.
Further, the closure of the graph of this solution is not a compact
subset of D .

Step 2: We aim to reformulate the interconnection of (13) with the

funnel pre-compensator (6) as an initial value problem

z̈1(t) = f
(
d(t),T (z1, ż1)(t)

)
+ γ̃u(t),

z1(0) = z0
1, ż1(0) = z0

2 +(q1 + p1)(cx0 − z0
1)

(15)

so that Theorem I.1 can be applied. Define the new variables

v1(t) :=y(t)− z1(t),

v2(t) := ẏ(t)− γ
γ̃ z2(t)− r2

(
y(t)− z1(t)

)
.

Then we obtain

v̇1(t) =− γ
γ̃

(
q1 − γ̃

γ r2 + p1k2(t)
)

v1(t)+ v2(t)+
γ−γ̃

γ̃ ż1(t),

v̇2(t) =− γ
γ̃

(
q2 − γ̃

γ r1 + p2k2(t)
)

v1(t)+ sη(t)+ r1z1(t)

+ r2ż1(t),

η̇(t) = wv1(t)+V η(t)+wz1(t),

k2(t) = 1
1−φ2(t)2v1(t)2 .

(16)
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To put the system (13), (6) into an equation of the form (15) we define
the operator T : C ([0,∞)→ R)2 → L ∞

loc(R≥0 → Rn+2) (essentially)
as the solution operator of (16), i.e., for ζ1,ζ2 ∈ C ([0,∞)→ R) let
(v1,v2,η) : [0,β )→ Rn, β ∈ (0,∞], be the unique maximal solution
of (16) for z1 = ζ1, ż1 = ζ2 corresponding to the initial values v1(0) =
cx0 − z0

1, v2(0) = cAx0 − γ
γ̃ z0

2 − r2v1(0), η(0) = η0, and define

T (ζ1,ζ2)(t) :=
(
ζ2(t),v1(t),v2(t),η(t)⊤,k2(t)

)⊤
, t ∈ [0,β ).

We now show that T is well-defined, i.e., β = ∞, and has the proper-
ties a)–c) as defined in Sec. I-D. Note that (t,v1(t),v2(t),η(t)) ∈ D̃
for all t ∈ [0,β ), where

D̃ := { (t,v1,v2,η) ∈ R≥0 ×Rn | φ2(t)|v1|< 1 }

and the closure of the graph of the solution (v1,v2,η) is not a compact
subset of D̃ .

Step 2a: Assume that ζ1 and ζ2 are bounded on [0,β ). We
show that v1,v2 and η are bounded as well. As φ2(t)|v1(t)| < 1
for all t ∈ [0,β ) it is clear that v1 is bounded and thus, as all
eigenvalues of V have negative real part, η is bounded as well. Let
v(t) := (v1(t),v2(t))⊤ and observe that

v̇(t) = Qv(t)− k2(t)
γ
γ̃

(
p1
p2

)
v1(t)

+

( γ−γ̃
γ̃ (ζ2(t)−q1v1(t))+ r2v1(t)

q2
γ̃−γ

γ̃ v1(t)+ sη(t)+ r1ζ1(t)+ r2ζ2(t)+ r1v1(t)

)
for almost all t ∈ [0,β ). Boundedness of v1,ζ1,ζ2 and η gives that,
for some M1 > 0 and for all t ∈ [0,β ),∥∥∥∥∥

( γ−γ̃
γ̃ (ζ2(t)−q1v1(t))+ r2v1(t)

q2
γ̃−γ

γ̃ v1(t)+ sη(t)+ r1ζ1(t)+ r2ζ2(t)+ r1v1(t)

)∥∥∥∥∥≤ M1.

We now find that, for almost all t ∈ [0,β ),
d
dt v(t)⊤Pv(t)

= v(t)⊤
(

Q⊤P+PQ
)

v(t)−2k2(t)
γ
γ̃ v(t)⊤P

(
p1
p2

)
v1(t)

+2v(t)⊤P

( γ−γ̃
γ̃ (ζ2(t)−q1v1(t))+ r2v1(t)

q2
γ̃−γ

γ̃ v1(t)+ sη(t)+ r1ζ1(t)+ r2ζ2(t)+ r1v1(t)

)
≤−v(t)⊤v(t)−2k2(t)

γ
γ̃ (P1 −P2

2 /P4)v1(t)2

+2M1∥P∥∥v(t)∥.

With M2 := 2M1∥P∥> 0 and µ := ∥P∥−1 we have, using (9),

d
dt v(t)⊤Pv(t)≤−µv(t)⊤Pv(t)+M2∥v(t)∥.

Let λmin(P) denote the smallest eigenvalue of P and δ := 1
2 µλmin(P).

Then, using that ab ≤ 1
2 (a

2 +b2) for all a,b ≥ 0, it follows that

d
dt v(t)⊤Pv(t)≤−µv(t)⊤Pv(t)+

(√
2δ∥v(t)∥

)( M2√
2δ

)
≤−µv(t)⊤Pv(t)+δ∥v(t)∥2 +

M2
2

4δ

≤−µ
2

v(t)⊤Pv(t)+
M2

2
2µλmin(P)

for almost all t ∈ [0,β ). Gronwall’s lemma now implies that

v(t)⊤Pv(t)≤ v(0)⊤Pv(0)e−
µ
2 t +

M2
2

µ2λmin(P)
,

and hence

∀ t ∈ [0,β ) : ∥v(t)∥2 ≤ λmax(P)
λmin(P)

e−
µ
2 t∥v(0)∥2 +

M2
2

µ2λmin(P)
.

In particular, we obtain v ∈ L ∞ ([0,β )→ R2).

Step 2b: We show that k2 ∈ L ∞ ([0,β )→ R), still provided that
ζ1 and ζ2 are bounded on [0,β ). Let κ ∈ (0,β ) be arbitrary but
fixed and λ := inft∈(0,β ) φ2(t)−1 > 0. Since φ2 ∈ Φ we find that
φ̇2 and φ2|[κ,∞) (·)−1 are bounded and hence d

dt φ2|[κ,∞) (·)−1 is
bounded, thus there exists a Lipschitz bound L > 0 of φ2|[κ,∞) (·)−1.
By Step 2a, v2 is bounded and we may choose ε > 0 small enough
so that

ε ≤ min
{

λ
2
, inf
t∈(0,κ]

(φ2(t)−1 −|v1(t)|)
}

and

L ≤−S+
γ
γ̃

(
q̃1λ

2
+

λ 2

4ε

)
, (17)

where

S = sup
t∈[0,β )

|v2(t)|+ |γ−γ̃|
γ̃ sup

t∈[0,β )
|ζ2(t)|, q̃1 = q1 − γ̃

γ r2. (18)

We show that

∀ t ∈ (0,β ) : φ2(t)−1 −|v1(t)| ≥ ε. (19)

By definition of ε , (19) holds on (0,κ]. Seeking a contradiction
suppose that

∃ t1 ∈ [κ,β ) : φ2(t1)−1 −|v1(t1)|< ε.

Then for t0 := max
{

t ∈ [κ, t1)
∣∣ φ2(t)−1 −|v1(t)|= ε

}
, we have

for all t ∈ [t0, t1] that

φ2(t)−1 −|v1(t)| ≤ ε,
|v1(t)| ≥ φ2(t)−1 − ε ≥ λ − ε ≥ λ

2 ,

k2(t) = 1
1−φ2(t)2v1(t)2 ≥ 1

2εφ2(t)
≥ λ

2ε .

(20)

Now we calculate, for all t ∈ [t0, t1],

1
2

d
dt v1(t)2 (16)

= v1(t)
(

v2(t)− γ
γ̃ (q̃1 + k2(t))v1(t)+

γ−γ̃
γ̃ ζ2(t)

)
(18)
≤ − γ

γ̃ (q̃1 + k2(t))v1(t)2 +S|v1(t)|
(20)
≤ − γ

γ̃

(
q̃1λ

2 + λ 2

4ε

)
|v1(t)|+S|v1(t)|

(17)
≤ −L|v1(t)|.

Therefore, using 1
2

d
dt v1(t)2 = |v1(t)| d

dt |v1(t)|, and that |v1(t)|> 0 for
all t ∈ [t0, t1], we find that

|v1(t1)|− |v1(t0)|=
∫ t1

t0

1
2 |v1(t)|−1 d

dt v1(t)2 dt

≤−L(t1 − t0)≤−|φ2(t1)−1 −φ2(t0)−1|
≤ φ2(t1)−1 −φ2(t0)−1,

and hence

ε = φ2(t0)−1 −|v1(t0)| ≤ φ2(t1)−1 −|v1(t1)|< ε,

a contradiction. As a consequence, (19) holds and this implies
boundedness of k2.

Step 2c: We show β = ∞ (not requiring boundedness of ζ1,ζ2).
Seeking a contradiction, assume that β < ∞. Then ζ1 and ζ2 are
bounded on [0,β ) and hence v1, v2, η and k2 are bounded by Steps 2a
and 2b. Therefore, it follows that the closure of the graph of the
solution (v1,v2,η) is a compact subset of D̃ , a contradiction, thus
β = ∞.

Step 2d: We show that the interconnection of (13) with (6) can
be reformulated in the form (15). By Steps 2a–2c the operator
T : C ([0,∞) → R)2 → L ∞

loc(R≥0 → Rn+1) is well-defined. Further-
more, it clearly has properties b) and c) as defined in Sec. I-D and
property a) is an immediate consequence of Step 2a. Differentiating
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the first equation in (6), we may write the interconnection (13), (6)
in the form

z̈1(t)= γ̃u(t)+
(
q2 + p2k2(t)

)
v1(t)+2p1k2(t)2φ2(t)φ̇2(t)v1(t)3

+
(

2p1k2(t)2φ2(t)2v1(t)2 +q1 + p1k2(t)
)
×

×
(

v2(t)− γ
γ̃

(
q1 − γ̃

γ r2 + p1k2(t)
)

v1(t)+
γ−γ̃

γ̃ ż1(t)
)
,

and hence it takes the form (15) for some appropriate function f ∈
C (R2 ×Rn+2 → R) and

d :=
(

φ2
φ̇2

)
∈ L ∞

(
R≥0 → R2

)
.

Step 3: We show (i)–(iii). From Theorem I.1 we may conclude that
the application of the control

u(t)=−k0(t)2(z1(t)− yref(t)
)
− k1(t)

(
ż1(t)− ẏref(t)

)
+ud(t),

k0(t)=
φ0(t)

1−φ0(t)|z1(t)−yref(t)| ,

k1(t)=
φ1(t)

1−φ1(t)|ż1(t)−ẏref(t)|
(21)

to the system (15) yields a closed-loop system where every solution z1
can be extended to a global solution, the signals z1, ż1,k0 and k1 are
bounded and the first two conditions in (11) are satisfied.

In particular, the unique maximal solution (y, ẏ,η ,z1,z2) of (14)
obtained in Step 1 constitutes a maximal solution of (15), (21) by
observing that

T (z1, ż1) =
(
ż1,y− z1, ẏ− r2(y− z1)− z2,η⊤,k2

)⊤
.

Therefore, ω = ∞ and z1, ż1,k0 and k1 are bounded, and by invoking
Steps 2a and 2b it follows that v1,v2 and k2 are bounded. This
implies boundedness of z2 and hence of ẏ. We have thus shown (i)
and (ii), and (iii) follows from the boundedness of k0,k1 and k2 which
completes the proof of the theorem.

Remark IV.2. We stress that the original control objective as stated in
Sec. I-C was prescribed transient behavior of the tracking error e(t) =
y(t)−yref(t). The funnel controller (10) is indeed able to achieve this:
Given φ ∈ Φ with the aim that (t,e(t)) ∈ Fφ for all t ≥ 0, we may
set φ0 = φ2 = 2φ and choose φ1 ∈ Φ such that (φ0,φ1) ∈ Φ2. By
Theorem IV.1 an application of the funnel controller (10) yields the
error evolution (12) and we calculate

|e(t)| ≤ φ0(t)−1 +φ2(t)−1 − ε0 − ε2 = φ(t)−1 − ε0 − ε2,

thus e(t) evolves uniformly within the funnel Fφ .

Remark IV.3. We discuss some extensions of Theorem IV.1.

(i) It is a straightforward modification of the proof of Theorem IV.1
to show that its statement remains valid when a nonlinear
perturbation affects system (1). More precise, we may consider
the nonlinearly perturbed system

ẋ(t) = Ax(t)+bu(t)+∆
(
t,x(t)

)
, x(0) = x0,

y(t) = cx(t)
(22)

where, additionally to (A1) and (A2), we assume that the
perturbation ∆ satisfies

(A3) ∆ ∈ C (R≥0 ×Rn → Rn) is locally Lipschitz continuous
w.r.t. x and there exists ϑ ∈ C (R→ R≥0) such that

∀(t,x) ∈ R≥0 ×Rn : ∥∆(t,x)∥ ≤ ϑ(cx).

Tracking in the presence of perturbations has been studied
in [27] for relative degree one systems and in [10], [13], [28] for
systems of arbitrary relative degree. As discussed before, in the

latter works the control law requires derivatives of the output
and/or a complicated backstepping procedure.

(ii) As shown in [12], [14] the equation for u(t) in the controller (4)
can be modified such that

u(t) =−k0(t)2e(t)− k0(t)k1(t)ė(t)+ud(t)

and Theorem I.1 is still true; in [12], [14] this is shown for a
certain class of linear systems, but the extension to nonlinear
systems (5) is straightforward. As a consequence, a careful
inspection of the proof of Theorem IV.1 reveals that it is still
true when we modify u(t) in (10) to

u(t) =−k0(t)2(z1(t)− yref(t)
)

− k0(t)k1(t)
(
ż1(t)− ẏref(t)

)
+ud(t).

(23)

The modification (23) is advantageous compared to (4), since the
latter yields a badly damped closed-loop system response and
may lead to admissibility problems in applications since speed
measurement is usually very noisy; for more details see [12],
[14].

V. SIMULATIONS

We illustrate Theorem IV.1 and compare our controller to the
funnel controller proposed in [10]. To this end, we consider the same
situation as in [10]: The controller is applied to a controlled pendulum
modelled by the nonlinearly perturbed relative degree two system

ÿ(t)+asiny(t) = bu(t), (24)

with parameters a,b ∈ R, b ̸= 0. For the simulation, the parameters
are chosen as a = 1/2, b = 1, the initial values as y(0) = 0, ẏ(0) = 0
and the reference trajectory is yref(t) = (1/2)cos t. Obviously, the
system can be reformulated in the form (22), cf. also [10], and
satisfies the assumptions (A1)–(A3). We use the controller (10) with
the modification (23) as discussed in Remark IV.3, and choose the
funnel functions

φ0(t) = φ2(t) =
{

20(1− (0.1t −1)2), 0 ≤ t < 10,
20, t ≥ 10,

φ1(t) =
(
e−t +1

)−1
.

This guarantees that the tracking error remains in the same funnel as
suggested in [10]; in particular, a tracking accuracy of |e(t)|< 0.1 is
guaranteed for t ≥ 10. Furthermore, we choose γ̃ = 2(̸= γ = b) and
q1 = q2 = p1 = 1, p2 = 1/3 which satisfy (8). Remark IV.3 together
with Theorem IV.1 yields that the application of the controller (10)
with the modification (23) to the system (24) is feasible. We compare
the simulation to that of the controller in [10].

The simulation of the controller (10) with the modification (23)
applied to (24) over the time interval [0,20] has been performed
in MATLAB (solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10)
and is depicted in Fig. 4. Fig. 4a shows the tracking error, while
Fig. 4b shows the input function generated by the controller. The
corresponding gain functions are depicted in Fig. 4c. It can be seen
that our proposed funnel controller requires much less input action
than the controller in [10] when compared to [10, Fig. 3 & 4] and
provides an excellent performance.

VI. CONCLUSION

In the present paper we have proposed a new dynamic funnel
controller for tracking of linear minimum phase single-input, single-
output systems (1) with relative degree two. Our controller is based on
the funnel pre-compensator from [24] combined with a proportional-
derivative funnel controller from [4] or [14]; we stress that in the
resulting dynamic controller (10) no derivative feedback is involved,
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Fig. 4a: Funnel and tracking error
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Fig. 4: Simulation of the controller (10) with the modification (23)
for the system (24).

i.e., derivatives of the output of (1) are not used by (10). The
controller (10) achieves, for a given sufficiently smooth reference
signal, that the tracking error evolves within a prespecified perfor-
mance funnel. Furthermore, no knowledge of the system parameters
is required for the controller design.

We have shown that feasibility of the funnel controller (10) is
not limited to linear systems; a straightforward extension to certain
nonlinearly perturbed systems is possible. The extension of the
proposed controller methodology to more general classes of nonlinear
systems and systems with higher relative degree, based on the recent
results obtained in [16], is the topic of future research.
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[18] E. Bullinger and F. Allgöwer, “Adaptive λ -tracking for nonlinear higher
relative degree systems,” Automatica, vol. 41, no. 7, pp. 1191–1200,
2005.

[19] A. Ilchmann and F. Wirth, “On minimum phase,” Automatisierungstech-
nik, vol. 12, pp. 805–817, 2013.

[20] C. I. Byrnes and J. C. Willems, “Adaptive stabilization of multivariable
linear systems,” in Proc. 23rd IEEE Conf. Decis. Control, pp. 1574–
1577, 1984.

[21] H. K. Khalil and A. Saberi, “Adaptive stabilization of a class of nonlinear
systems using high-gain feedback,” IEEE Trans. Autom. Control, vol. 32,
pp. 1031–1035, 1987.

[22] I. M. Y. Mareels, “A simple selftuning controller for stably invertible
systems,” Syst. Control Lett., vol. 4, no. 1, pp. 5–16, 1984.

[23] A. S. Morse, “Recent problems in parameter adaptive control,” in Outils
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