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Abstract

We consider tracking control for nonlinear multi-input, multi-output systems which have arbitrary strict relative degree and input-
to-state stable internal dynamics. For a given sufficiently smooth reference signal, our aim is to design a controller which achieves
that the tracking error evolves within a prespecified performance funnel. To this end, we introduce a new controller which involves
the first r − 1 derivatives of the tracking error, where r is the strict relative degree of the system. We derive an explicit bound
for the resulting input and discuss the influence of the controller parameters. We further present some simulations where our
funnel controller is applied to a mechanical system with higher relative degree and a two-input, two-output robot manipulator. The
controller is also compared with other approaches.
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1. Introduction

In the present article we consider output trajectory tracking
for nonlinear systems by funnel control. We assume knowl-
edge of the strict relative degree of the system and that the
internal dynamics are, in a certain sense, input-to-state stable,
resembling the concept introduced by Sontag [32]. The con-
cept of funnel control has been developed in [18] for systems
with relative degree one, see also the survey [16] and the refer-
ences therein. The funnel controller is an output-error feedback
of high-gain type; it is an adaptive controller since the gain
is adapted to the actual needed value by a time-varying (non-
dynamic) adaptation scheme1. Note that no exact tracking is
pursued, but a tracking error with prescribed transient behavior.
Controllers of high-gain type have various advantages when it
comes to “real world” applications; we like to quote from [7]:

“Since only structural assumptions on the system are re-
quired, high-gain adaptive control is inherently robust
and makes it attractive for industrial application.”

In particular, the funnel controller proved to be the appropri-
ate tool for tracking problems in various applications, such as
temperature control of chemical reactor models [23], control
of industrial servo-systems [12, 22] and rigid, revolute joint
robotic manipulators [13], speed control of wind turbine sys-
tems [9, 11], current control for synchronous machines [10],
DC-link power flow control [31], voltage and current control
of electrical circuits [2], oxygenation control during artificial
ventilation therapy [28] and control of peak inspiratory pres-
sure [29].
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Hoàng), timo.reis[at]math.uni-hamburg.de (Timo Reis)

1Note that often only controllers with dynamic gain adaptation are viewed
as adaptive controllers of high-gain type.

A longstanding open problem in high-gain adaptive control
is the treatment of systems with relative degree larger than one,
see [14, 16, 27]. In [1], a “Prescribed Performance Controller”
for systems with higher strict relative degree has been intro-
duced by Bechlioulis and Rovithakis (and in [34] the influence
of disturbances is discussed), however trivial internal dynamics
are assumed. In [5], Bullinger and Allgöwer introduce an adap-
tive λ -tracker which achieves tracking with prescribed asymp-
totic accuracy λ > 0 for a class of systems which are affine in
the control, of known relative degree, and with affine linearly
bounded drift term. However, the drawback of this controller
is that the transient behavior of the tracking error cannot be
influenced. Ilchmann et al. [19, 20] developed a funnel con-
troller for systems with higher strict relative degree by intro-
ducing a “backstepping” procedure in conjunction with a prec-
ompensator. This controller achieves tracking with prescribed
transient behavior for a large class of systems governed by non-
linear (functional) differential equations. Unfortunately, this
backstepping procedure is quite impractical, especially since it
involves high powers of a gain function which typically takes
very large values, cf. [8, Sec. 4.4.3]. Backstepping is also used
for an adaptive λ -tracker in an earlier work by Ye [35].

For systems with relative degree two, a proportional-
derivative (PD) funnel controller has been introduced in [12]
(see also the modification in [7]), where the backstepping pro-
cedure is avoided. The only available generalization of this ap-
proach to systems with higher relative degree is the bang-bang
funnel controller introduced by Liberzon and Trenn [26]. How-
ever, this controller is restricted to single-input, single-output
systems and the involved compatibility conditions on the fun-
nel boundaries, the safety distances and the settling times are
quite complicated.

In the present paper we introduce a simple funnel controller
for systems with arbitrary known relative degree r and (in a
suitable sense) input-to-state stable internal dynamics. The con-
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troller is based on a simple recursion law and involves the first
r−1 derivatives of the tracking error.

1.1. Nomenclature
R≥0 := [0,∞)
∥x∥ the Euclidean norm of x ∈ Rn

L ∞
loc(I→Rn) the set of locally essentially bounded

functions f : I→Rn, I ⊆ R an interval
L ∞(I→Rn) the set of essentially bounded functions

f : I→Rn with norm
∥ f∥∞ := ess supt∈I∥ f (t)∥
W k,∞(I→Rn) the set of k-times weakly differen-

tiable functions f : I → Rn such that
f , . . . , f (k) ∈ L ∞(I→Rn)

C k(V →Rn) the set of k-times continuously differen-
tiable functions f : V → Rn, V ⊆ Rm;
C (V →Rn) = C 0(V →Rn)

f |W restriction of the function f : V →Rn to
W ⊆V

1.2. System class

In the present paper we consider a class of non-linear sys-
tems described by functional differential equations of the form

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm),

(1)

where h > 0 is the “memory” of the system, r ∈ N is the strict
relative degree, and

(P1): the “disturbance” satisfies d ∈ L ∞(R≥0 → Rp), p ∈ N;

(P2): f ∈ C (Rp ×Rq → Rm), q ∈ N,

(P3): the “high-frequency gain matrix function” Γ ∈ C (Rp ×
Rq →Rm×m) takes values in the set of positive (negative)
definite matrices2;

(P4): T : C ([−h,∞)→Rrm)→L ∞
loc(R≥0 →Rq) is an operator

with the following properties:

a) T maps bounded trajectories to bounded trajectories,
i.e, for all c1 > 0, there exists c2 > 0 such that for all
ζ ∈ C ([−h,∞)→ Rrm),

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥T (ζ )(t)∥ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ ,ξ ∈
C ([−h,∞)→ Rrm),

ζ |[−h,t) = ξ |[−h,t) ⇒ T (ζ )|[0,t)
a.a.
= T (ξ )|[0,t),

where “a.a.” stands for “almost all”.

2One may wonder why Γ is not assumed to be uniformly bounded away
from zero. The reason is that in the closed-loop system this is established any-
way due to the boundedness of the involved signals.

c) T is locally Lipschitz continuous in the following
sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that
for all ζ ,∆ζ ∈ C ([−h,∞)→ Rrm) with ∆ζ |[−h,t) = 0
and ∥∆ζ |[t,t+τ]∥∞ < δ we have∥∥(T (ζ +∆ζ )−T (ζ )) |[t,t+τ]

∥∥
∞ ≤ c∥∆ζ |[t,t+τ]∥∞.

The functions u : R≥0 → Rm and y : [−h,∞) → Rm are called
input and output of the system (1), resp. Systems similar to (1)
have been studied e.g. in [12, 17, 18, 20]. In the aforemen-
tioned references it is shown that the class of systems (1) en-
compasses linear and nonlinear systems with strict relative de-
gree and input-to-state stable internal dynamics (zero dynam-
ics in the linear case) and the operator T allows for infinite-
dimensional linear systems, systems with hysteretic effects or
nonlinear delay elements, and combinations thereof. Note that
the operator T is usually the solution operator of the differential
equation describing the internal dynamics of the system and its
property (P4a) thus amounts to the input-to-state stability of the
internal dynamics. One important subclass of systems (1) are
minimum-phase linear time-invariant systems

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ Rn

y(t) =Cx(t),
(2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, which have strict rela-
tive degree r ∈N and positive (negative) definite high-frequency
gain matrix, i.e, CB = CAB = . . . = CAr−2B = 0 and Γ :=
CAr−1B ∈ Rm×m is positive (negative) definite. The minimum-
phase assumption (equivalently, asymptotic stability of the zero
dynamics, see [24]) is characterized by the condition

∀λ ∈ C with Reλ ≥ 0 : det
[

λ In −A B
C 0

]
̸= 0.

It is known that systems of this type can be transformed into
Byrnes-Isidori normal form, see [20],

y(r)(t) =
r
∑

i=1
Riy(i−1)(t)+Sη(t)+Γu(t), y(0) =Cx0

η̇(t) = Py(t)+Qη(t), η(0) = η0∈Rn−rm

where Ri ∈ Rm×m for i = 1,2, . . . ,r, S⊤,P ∈ R(n−rm)×m, and
Q ∈ R(n−rm)×(n−rm) is a Hurwitz matrix, i.e., all eigenvalues
of Q have negative real part. This is a system of type (1) with
Γ ≡CAr−1B and

f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
= T (y, ẏ, . . . ,y(r−1))(t)

=
r
∑

i=1
Riy(i−1)(t)+SeQtη0 +

t∫
0

SeQ(t−τ)Py(τ)dτ.

T is clearly causal, locally Lipschitz, and the Hurwitz prop-
erty of Q implies that T has the bounded-input-bounded-output
property (P4a). Note that T is parameterized by η0 ∈ Rn−rm.
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Finally, we like to stress that systems of the form

y(r)(t) = f
(
d1(t),T1(y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d2(t),T2(y, ẏ, . . . ,y(r−1))(t)

)
u(t),

where di is as in (P1) and Ti is as in (P4) for i= 1,2 are included
in the class (1). This can be achieved by setting d := (d1,d2),
T := (T1,T2) and a suitable adjustment of f and Γ.

1.3. Control objective
The objective is to design an output error feedback u(t) =

F(t,e(t), ė(t), . . . ,e(r−1)(t)), where e(t) = y(t) − yref(t) for
some reference trajectory yref ∈ W r,∞(R≥0 → Rm), such that
in the closed-loop system the tracking error e(t) evolves within
a prescribed performance funnel

Fφ := { (t,e) ∈ R≥0 ×Rm | φ(t)∥e∥< 1 } , (3)

which is determined by a function φ belonging to

Φr :=

φ ∈ C r(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇, . . . ,φ(r) are bounded,
φ(τ)> 0 for all τ > 0,
and liminfτ→∞ φ(τ)> 0

 .

(4)
Furthermore, all signals u,e, ė, . . . ,e(r−1) should remain
bounded.

The funnel boundary is given by the reciprocal of φ , see
Fig. 1. It is explicitly allowed that φ(0) = 0, meaning that no
restriction on the initial value is imposed since φ(0)∥e(0)∥< 1;
the funnel boundary 1/φ has a pole at t = 0 in this case.

λ

b
(0,e(0))

φ(t)−1

t

Figure 1: Error evolution in a funnel Fφ with boundary φ(t)−1 for t > 0.

An important property of the class Φr is that the boundary
of each performance funnel Fφ with φ ∈ Φr is bounded away
from zero, i.e., because of boundedness of φ there exists λ > 0
such that 1/φ(t) ≥ λ for all t > 0. The funnel boundary is not
necessarily monotonically decreasing, while in most situations
it is convenient to choose a monotone funnel. However, there
are situations where widening the funnel over some later time
interval might be beneficial, e.g., when the reference trajectory
changes strongly or the system is perturbed by some calibration
so that a large tracking error would enforce a large input action.
Therefore, a variety of different funnel boundaries are possible,
see e.g. [15, Sec. 3.2].

1.4. Organization of the present paper
The paper is structured as follows. In Section 2, we in-

troduce the funnel controller for the system class presented in

Section 1.2. Feasibility of the control is proved in the main
result in Section 3; in particular we show that our proposed
funnel controller achieves the control objective described in
Section 1.3. Additionally we derive an explicit bound on the
input generated by the controller and discuss the influence of
the design parameters. The performance of the funnel con-
troller is illustrated by means of several examples in Section 4,
where also our approach is compared to the feedback strategies
in [12, 19, 20, 26].

2. Controller structure

We introduce the below funnel controller for systems of
type (1):

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) · e0(t),
e2(t) = ė1(t) + k1(t) · e1(t),

...
er−1(t) = ėr−2(t) + kr−2(t) · er−2(t),

ki(t) = 1
1−φ2

i (t)∥ei(t)∥2 , i = 0, . . . ,r−1,

u(t) =

{
−kr−1(t) · er−1(t), if Γ is pointwise pos. def.,

kr−1(t) · er−1(t), if Γ is pointwise neg. def.,

(5)
where the reference signal and funnel functions have the fol-
lowing properties:

yref ∈ W r,∞(R≥0 → Rm),

φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1.
(6)

In the sequel we investigate existence of solutions of the
initial value problem resulting from the application of the fun-
nel controller (5) to a system (1). Even if (1) is a linear sys-
tem derived from (2), some care must be exercised with the
existence of a solution of (2), (5) since ki introduces a pole
on the right hand side of the closed-loop differential equa-
tion. By a solution of (1), (5) on [−h,ω) we mean a func-
tion y ∈ C r−1([−h,ω) → Rm), ω ∈ (0,∞], with y|[−h,0] = y0

such that y(r−1)|[0,ω) is absolutely continuous and satisfies the
differential equation in (1) with u defined in (5) for almost all
t ∈ [0,ω); y is called maximal, if it has no right extension that is
also a solution. Existence of solutions of functional differential
equations has been investigated in [18] for instance.

Remark 2.1 (Funnel control for systems with r ∈ {1,2,3}). In
the following we determine the funnel controllers explicitly for
the cases r = 1,2,3. We assume for convenience that the high-
frequency gain matrix function Γ is pointwise positive definite.

r = 1: The control law (5) reduces to the “classical” funnel
controller u(t) = −k(t)e(t) with k(t) = 1

1−φ2(t)∥e(t)∥2 .
Moreover, our assumptions on the reference signal and
the funnel function φ reduce to those made in [18].
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r = 2: We obtain the controller

u(t) =−k1(t)(ė(t)+ k0(t)e(t)),
k0(t) = 1

1−φ2
0 (t)∥e(t)∥2 ,

k1(t) = 1
1−φ2

1 (t)∥ė(t)+k0(t)e(t)∥2 .

r = 3: Here the controller (5) takes the form

u(t) = − k2(t) ·
[
ë(t)+2k0(t)2(φ2

0 (t)e
⊤(t)ė(t)

+φ0(t)φ̇0(t)∥e(t)∥2)e(t)

+ k0(t)ė(t)+ k1(t)(ė(t)+ k0(t)e(t))
]
,

k0(t) = 1
1−φ2

0 (t)∥e(t)∥2 ,

k1(t) = 1
1−φ2

1 (t)∥ė(t)+k0(t)e(t)∥2 ,

k2(t) = 1
1−φ2

2 (t)∥ë(t)+2k0(t)2(φ2
0 (t)e

⊤(t)ė(t)+φ0(t)φ̇0(t)∥e(t)∥2)e(t)

+k0(t)ė(t)+k1(t)(ė(t)+k0(t)e(t))∥2 .

Remark 2.2 (The intuition behind the funnel controller (5)).
The classical funnel controller for systems with relative degree
one and input-to-state stable internal dynamics uses the “high
gain property” [6], which states that such systems can can be
stabilized by a proportional feedback law u(t) = −ky(t) with
a sufficiently large constant k > 0. This gives rise to the intu-
ition of the funnel controller for relative degree one: If the error
approaches the funnel boundary at t0, then k(t0) takes a large
value which stabilizes the error system.
To illustrate the functioning of the controller (5), we employ
the following thought experiment for the single-input, single-
output case m = 1, see Fig. 2: Assume that the error e = e0 ap-
proaches the upper funnel boundary 1/φ0 at time t0 > 0. Then
k0(t0), and consequently k0(t0) · e(t0) will be very large. Since
e1 = ė+ k0 · e evolves in the performance funnel Fφ1 , we may
infer that ė(t0) = e1(t0)−k0(t0) ·e(t0) will take a large negative
value. In other words, e will be decreasing enormously. That
is, whenever the error e approaches the funnel boundary 1/φ0,
the controller ensures a repelling effect.
This argumentation can be repeated for the functions
e1, . . . ,er−2. Finally, since er−1 includes the first r− 1 deriva-
tives of e, the system with artificial output er−1 has relative de-
gree one, and the classical high gain property applies to er−1.

.. t..

φ(t)−1

.
t0

.

e(t0)φ(t0)≈ 1 =⇒ k0(t0)≫ 1

(t0,e1(t0))∈Fφ1=⇒ ė(t0) = e1(t0)− k0(t0)e(t0)≪ 0

.

e(t)

Figure 2: Error in the performance funnel Fφ1

Remark 2.3 (Funnel control by backstepping). The works [19,
20] introduce a funnel controller based on a filter and backstep-
ping construction for systems with higher relative degree. First
consider a filter with

ξ̇i(t) = −ξi(t)+ξi+1(t), i = 1, . . . ,r−2,

ξ̇r−1(t) = −ξr−1(t)+u(t).

Introduce the projections

πi : R(r−1)m → Rim, ξ = (ξ1, . . . ,ξr−1) 7→ (ξ1, . . . ,ξi)

for i = 1, . . . ,r−1 and functions

γ1(k,e) = k · e
γi(k,e,πi−1ξ ) := γi−1(k,e,πi−2ξ )

+∥Dγi−1(k,e,πi−2ξ )∥2k4 · (1+∥πi−1ξ∥2)

· (ξi−1 + γi−1(k,e,πi−2ξ ))

The controller in [20] takes the form

u(t) = −γr(k(t),e(t),ξ (t)),
k(t) = 1

1−φ(t)2∥e(t)∥2 .

We stress that in [20] a much smaller class of systems than in-
troduced in Section 1.2 is considered; in [20] T may only de-
pend on y and Γ is assumed to be constant. The above presented
controller works provided that Γ ∈ Rm×m is positive definite.
However, this approach can be modified such that it also works
for systems in which it is not known whether Γ is positive or
negative definite. In this case, the function γ1 has to be mod-
ified by γ1(k,e) = ν(k) · e, where ν : R≥0 → R is smooth and
satisfies the “Nussbaum property” [20]. In the following we
discuss the cases of relative degree two and three.

r = 2 : Here the controller takes the form

u = − ke− (∥e∥2 + k2) · k4(1+∥ξ∥2)(ξ + ke),

where we omit the argument t. This feedback law is
dynamic and the gain occurs with k(t)7. The pres-
ence of such a large power of the funnel gain k(t) is
problematic in practice; the controller produces inputs
which might be impractical, cf. [8, Sec. 4.4.3].

r = 3 : Here the controller reads, for m = 1,

u =− ke− k4(e2+ k2)(1+ξ 2
1 )(ξ1 + ke)−

{[
e+(1+ξ 2

1 )

·
[
2k5(ξ1 + ke)+4k3(e2+ k2)(ξ1 + ke)+ k4(e2+ k2)e

]]2
+
[
k+ k4(1+ξ 2

1 )
[
2e(ξ1 + ke)+ k(e2+ k2)

]]2
+
[
k4(e2+ k2)

[
2ξ1(ξ1 + ke)+(1+ξ 2

1 )
]]2}k4(1+ξ 2

1 +ξ 2
2 )

·
[
ξ2 + ke+ k4(e2+ k2)(1+ξ 2

1 )(ξ1 + ke)
]
. (7)

An expansion of the above product gives that this con-
troller contains the 25th power (!) of the funnel gain
k(t), and the problems depicted for r = 2 are present
here a fortiori.
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Remark 2.4 (Proportional-derivative funnel control for relative
degree two). Consider a system (1) with the properties (P1)–
(P4) as in Section 1.2. Further assume that m = 1 and the high-
frequency gain function Γ is pointwise positive definite. The
work [12] introduces a funnel controller which feeds back the
error e and its derivative. More precise, this controller reads

u(t) =−k2
0(t)e(t)− k1(t)ė(t),

k0(t) =
φ0

1−φ0(t)|e(t)|
, k1(t) =

φ1
1−φ1(t)|ė(t)|

.
(8)

Note that ki(t) in (8) is different from ki(t) in (5). The funnel
functions φ0 for the error and φ1 for the derivative of the error
have to satisfy φ0 ∈ Φ2, φ1 ∈ Φ1, and they have to fulfill the
compatibility condition

∀ t > 0 ∃δ > 0 : 1/φ1(t)≥ δ − d
dt (1/φ0(t)) ∀ t > 0. (9)

This controller is simple and its practicability has been verified
experimentally. However, there is no straightforward extension
to systems with relative degree larger than two. We further em-
phasize that the funnel functions φ0, . . . ,φr−1 in the funnel con-
troller (5) do not have to satisfy any compatibility condition.

3. Main result

We show feasibility of the funnel controller (5).

Theorem 3.1. Consider a system (1) with strict relative degree
r ∈ N and properties (P1)-(P4). For Φi as defined in (4), let

φi ∈ Φr−i for i = 0, . . . ,r−1.

Let yref ∈ W r,∞(R≥0 → Rm) be a reference signal, and
y|[−h,0] = y0 ∈W r−1,∞([−h,0]→Rm) an initial value such that
e0, . . . ,er−1 as defined in (5) fulfill

φi(0)∥ei(0)∥< 1 for i = 0, . . . ,r−1. (10)

Then the application of the funnel controller (5) to (1) yields
an initial-value problem, which has a solution, and every max-
imal solution y : [−h,ω) → Rm, ω ∈ (0,∞], has the following
properties3:

(i) The solution is global (i.e., ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions k0, . . . ,kr−1 :
R≥0 → R and y, . . . ,y(r−1) : R≥0 → Rm are bounded.

(iii) The functions e0, . . . ,er−1 : R≥0 → Rm evolve in their re-
spective performance funnels and are uniformly bounded
away from the funnel boundaries in the following sense:

∀ i = 0, . . . ,r−1 ∃εi > 0 ∀ t > 0 :

∥ei(t)∥ ≤ φi(t)−1 − εi. (11)

3Note that maximal solutions are not unique in general.

In particular, the error e(t) = y(t)−yref(t) evolves in the
funnel Fφ0 as in (3) and stays uniformly away from its
boundary.

Proof. We may, without loss of generality, assume that the
high-frequency gain matrix function Γ of system (1) is point-
wisely positive definite. We proceed in several steps.

Step 1: We show that a maximal solution y : [−h,ω)→Rm,
ω ∈ (0,∞], of (1), (5) exists. We aim at reformulating (1), (5)
as an initial value problem

ẋ(t) = F
(
t,x(t),T (x)(t)

)
,

x|[−h,0] =
(
y0, ẏ0, . . . ,( d

dt )
r−1y0)|[−h,0],

(12)

where
x =

(
y, ẏ, . . . ,y(r−1))

and F is some suitable continuous function.
Step 1a: Define, for i = 0, . . . ,r−1, the sets

Di :=
{
(t,e0, . . . ,ei) ∈ R≥0 ×Rm ×·· ·×Rm

∣∣∣∣ (t,e j) ∈ Fφ j ,

j = 0, . . . , i

}
,

where Fφ j is as in (3), and the functions Ki : Di → Rm recur-
sively by

K0(t,e0) := e0
1−φ2

0 (t)∥e0∥2 ,

Ki(t,e0, . . . ,ei)

:= ei
1−φ2

i (t)∥ei∥2 +
∂Ki−1

∂ t (t,e0, . . . ,ei−1)

+
i−1

∑
j=0

∂Ki−1
∂e j

(t,e0, . . . ,ei−1)

(
e j+1 −

e j

1−φ2
j (t)∥e j∥2

)
.

Choose some interval I ⊆R≥0 with 0 ∈ I and let (e0, . . . ,er−1) :
I →Rrm be such that, for all t ∈ I,

(
t,e0(t), . . . ,er−1(t)

)
∈Dr−1

and (e0, . . . ,er−1) satisfies the relations in (5). Then e = e0 sat-
isfies, on the interval I,

e(i) = ei −
i−1

∑
j=0

( d
dt

)i− j−1
(k je j) for all i = 1, . . . ,r−1. (13)

Step 1b: We show by induction that for all i = 0, . . . ,r− 1
we have

∀ t ∈ I :
i

∑
j=0

( d
dt

)i− j (
k j(t)e j(t)

)
= Ki

(
t,e0(t), . . . ,ei(t)

)
. (14)

Equation (14) is obviously true for i = 0. Assume that i ∈
{1, . . . ,r−1} and the statement holds for i−1. Then

i

∑
j=0

( d
dt

)i− j (
k j(t)e j(t)

)
= ki(t)ei(t)+ d

dt

(
i−1

∑
j=0

( d
dt

)i− j−1 (
k j(t)e j(t)

))

5



= ki(t)ei(t)+ d
dt Ki−1

(
t,e0(t), . . . ,ei−1(t)

)
= Ki

(
t,e0(t), . . . ,ei(t)

)
.

Step 1c: Define

K̃0 : R≥0 ×Rm → Rm, (t,y) 7→ y− yref(t)

and the set

D̃0 :=
{
(t,y) ∈ R≥0 ×Rm ∣∣ (t, K̃0(t,y)

)
∈ D0

}
.

Furthermore, recursively define for i = 1, . . . ,r−1 the maps

K̃i :D̃i−1 ×Rm → Rm, (t,y0, . . . ,yi)

7→ yi − y(i)ref(t)+Ki−1
(
t, K̃0(t,y0), . . . , K̃i−1(t,y0, . . . ,yi−1)

)
and the sets

D̃i :=
{
(t,y0, . . . ,yi) ∈ D̃i−1 ×Rm

∣∣∣∣(t, K̃0(t,y0), . . . ,
K̃i(t,y0, . . . ,yi)

)
∈Di

}
.

It now follows from a simple induction, invoking (13) and (14)
that, for all t ∈ I and all i = 0, . . . ,r−1,

ei(t) = y(i)(t)− y(i)ref(t)+Ki−1
(
t,e0(t), . . . ,ei−1(t)

)
= K̃i

(
t,y(t), ẏ(t), . . . ,y(i)(t)

)
.

Therefore, the feedback u in (5) reads

u(t) =
−K̃r−1

(
t,y(t), . . . ,y(r−1)(t)

)
1−φ2

r−1(t)∥K̃r−1
(
t,y(t), . . . ,y(r−1)(t)

)
∥2

, t ∈ I.

Step 1d: Define

F :D̃r−1 ×Rq → Rrm, (t,y0,y1, . . . ,yr−1,η)

7→
(

y1, . . . ,yr−1, f
(
d(t),η

)
− Γ(d(t),η)K̃r−1(t,y0,...,yr−1)

1−φ2
r−1(t)∥K̃r−1(t,y0,...,yr−1)∥2

)
.

Then the initial value problem (1), (5) is equivalent to (12).
In particular, (0,x(0)) ∈ D̃r−1 and F is measurable in t, con-
tinuous in (y0,y1, . . . ,yr−1,η) and locally essentially bounded.
Hence an application of [17, Thm. B.1]4 yields existence of
solutions to (12) and every solution can be extended to a
maximal solution. Furthermore, for a maximal solution x =(

y, ẏ, . . . ,y(r−1)
)

: [−h,ω)→ Rrm, ω ∈ (0,∞], of (12), the clo-
sure of the graph of this solution is not a compact subset
of D̃r−1. As a consequence, for (e0, . . . ,er−1) : [0,ω) → Rrm

defined by

ei(t) := K̃i
(
t,y(t), ẏ(t), . . . ,y(i)(t)

)
, t ∈ [0,ω),

it follows that the closure of the graph of (e0, . . . ,er−1) is not a
compact subset of Dr−1.

Step 2: We show that k0, . . . ,kr−1 as in (5) are bounded
on [0,ω). For all i ∈ {0, . . . ,r − 1}, set ψi(t) := φi(t)−1 for

4In [17] a domain D ⊆R≥0 ×R is considered, but the generalization to the
higher dimensional case is straightforward.

t ∈ (0,ω), let τi ∈ (0,ω) be arbitrary but fixed and set λi :=
inft∈(0,ω) ψi(t)> 0. Since φ̇i is bounded and liminft→∞ φi(t)>
0 we find that d

dt ψi|[τi,∞) is bounded and hence there exists a
Lipschitz bound Li > 0 of ψi|[τi,∞).

Step 2a: We show that ki is bounded for i ∈ {0, . . . ,r− 2}.
Choose εi > 0 small enough so that

εi ≤ min
{

λi
2 , inf

t∈(0,τi]
(ψi(t)−∥ei(t)∥)

}
and Li ≤

λ 2
i

4εi
− sup

t∈[τi,∞)

|ψi+1(t)|. (15)

Using a standard procedure in funnel control, see e.g. [15], we
show that for all t ∈ (0,ω) holds ψi(t)−∥ei(t)∥≥ εi. By defini-
tion of εi this holds on (0,τi]. Seeking a contradiction suppose
that there exists some ti1 ∈ [τi,ω) with ψi(ti1)−∥ei(ti1)∥ < εi.
Set ti0 = max{ t ∈ [τi, ti1) | ψi(t)−∥ei(t)∥= εi }. Then, for all
t ∈ [ti0, ti1], we have that

ψi(t)−∥ei(t)∥ ≤ εi,

∥ei(t)∥ ≥ ψi(t)− εi ≥ λi
2 ,

ki(t) = 1
1−φ2

i (t)∥ei(t)∥2 ≥ ψi(t)
2εi

≥ λi
2εi

.

Therefore, we find that by (5)

1
2

d
dt ∥ei(t)∥2 = e⊤i (t)(ei+1(t)− ki(t)ei(t))

=−ki(t)∥ei(t)∥2 + e⊤i (t)ei+1(t)

≤

(
− λ 2

i
4εi

+ sup
t∈[τi,∞)

|ψi+1(t)|

)
∥ei(t)∥

(15)
≤ −Li∥ei(t)∥

for all t ∈ [ti0, ti1]. Then

∥ei(ti1)∥−∥ei(ti0)∥=
ti1∫

ti0

1
2∥ei(t)∥−1 d

dt ∥ei(t)∥2 dt

≤−Li(ti1 − ti0)

≤−|ψi(ti1)−ψi(ti0)|
≤ ψi(ti1)−ψi(ti0),

and thus we obtain εi =ψi(ti0)−∥ei(ti0)∥≤ψi(ti1)−∥ei(ti1)∥<
εi, a contradiction.

Step 2b: We show that kr−1 is bounded. By (13) and Step 1
we have, invoking x = (y, ẏ, . . . ,y(r−1)),

ėr−1(t) = f
(
d(t),T (x)(t)

)
− kr−1(t)Γ

(
d(t),T (x)(t)

)
er−1(t)

− y(r)ref(t)+
r−2

∑
i=0

( d
dt

)r−i−1
[ki(t)ei(t)] .

In the following we will prove by induction that there exist con-
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stants Mi, j,Ni, j,Ki, j > 0 such that, for all t ∈ [0,ω),∥∥∥( d
dt

) j
[ki(t)ei(t)]

∥∥∥≤ Mi, j,
∥∥∥( d

dt

) j
ei(t)

∥∥∥≤ Ni, j,∣∣∣( d
dt

) j
ki(t)

∣∣∣≤ Ki, j,

for i = 0, . . . ,r−2, j = 0, . . . ,r−1− i.

(16)

First, we may infer from Step 2a that k0, . . . ,kr−2 are bounded.
Furthermore, e0, . . . ,er−1 are bounded since they evolve in the
respective performance funnels, cf. (5). Therefore, (16) is true
whenever j = 0. We prove (16) for i = r−2 and j = 1: We find
that

ėr−2(t) = er−1(t)− kr−2(t)er−2(t),

k̇r−2(t) = 2k2
r−2(t)

(
φ2

r−2(t)e
⊤
r−2(t)ėr−2(t)

+φr−2(t)φ̇r−2(t)∥er−2(t)∥2),
d
dt [kr−2(t)er−2(t)] = k̇r−2(t)er−2(t)+ kr−2(t)ėr−2(t),

and all of these signals are bounded since
kr−2,φr−2, φ̇r−2,er−2,er−1 are bounded. Now let
p ∈ {0, . . . ,r − 3} and q ∈ {0, . . . ,r − 1 − p} and as-
sume that (16) is true for all i = p + 1, . . . ,r − 2 and all
j = 0, . . . ,r−1− i as well as for i = p and all j = 0, . . . ,q−1.
We show that it is true for i = p and j = q:( d

dt

)q
ep(t) =

( d
dt

)q−1
[ep+1(t)− kp(t)ep(t)]

=
( d

dt

)q−1
ep+1(t)−

( d
dt

)q−1
[kp(t)ep(t)] ,

( d
dt

)q
kp(t) =

( d
dt

)q−1
(

2k2
p(t)
(
φ2

p(t)e
⊤
p (t)ėp(t)

+φp(t)φ̇p(t)∥ep(t)∥2)),( d
dt

)q
[kp(t)ep(t)] =

( d
dt

)q−1 (
k̇p(t)ep(t)+ kp(t)ėp(t)

)
.

Then, successive application of the product rule and using the
induction hypothesis as well as the fact that φp, φ̇p, . . . ,φ

(r−p)
p

are bounded, yields that the above terms are bounded. There-
fore, the proof of (16) is complete.
By (16) and (13) it follows that e(i) is bounded on [0,ω)

and hence, invoking boundedness of yref, . . . ,y
(r−1)
ref , also y(i)

is bounded on [0,ω) for all i = 0, . . . ,r − 1. By the bounded-
input, bounded-output property (P4a) of the operator T it fol-
lows that T (x) is bounded, where x =

(
y, ẏ, . . . ,y(r−1)

)
. Since f

is continuous and d is bounded, we may further infer that
f (d(·),T (x)(·)) is bounded on [0,ω), i.e., there exists MF > 0
such that

for almost all t ∈ [0,ω) : ∥ f
(
d(t),T (x)(t)

)
∥ ≤ MF .

Define the compact set

M :=

(δ ,η ,e) ∈ Rp ×Rq ×Rm

∣∣∣∣∣∣
∥δ∥ ≤ ∥d|[0,ω)∥∞
∥η∥ ≤ ∥T (x)|[0,ω)∥∞
∥e∥= 1.

 ,

then, since Γ is pointwise positive definite and the map

M ∋ (δ ,η ,e) 7→ e⊤Γ(δ ,η)e ∈ R>0

is continuous, it follows that there exists γ > 0 such that

∀(δ ,η ,e) ∈ M : e⊤Γ(δ ,η)e ≥ γ.

Therefore, we have

er−1(t)⊤Γ
(
d(t),T (x)(t)

)
er−1(t)

=
(

er−1(t)⊤

∥er−1(t)∥
Γ
(
d(t),T (x)(t)

) er−1(t)
∥er−1(t)∥

)
∥er−1(t)∥2

≥ γ∥er−1(t)∥2

for all t ∈ [0,ω). Now, choose εr−1 > 0 small enough so that

εr−1 ≤ min
{

λr−1
2 , inf

t∈(0,τr−1]
(ψr−1(t)−∥er−1(t)∥)

}
and

Lr−1 ≤
λ 2

r−1
4εr−1

γ −MF − sup
t∈[0,ω)

∥y(r)ref(t)∥−
r−2

∑
i=0

Mi,r−1−i. (17)

We show that

∀ t ∈ (0,ω) : ψr−1(t)−∥er−1(t)∥ ≥ εr−1.

By definition of εr−1 this holds on (0,τr−1]. Seeking a contra-
diction suppose that

∃ tr−1,1 ∈ [τr−1,ω) : ψr−1(tr−1,1)−∥er−1(tr−1,1)∥< εr−1.

Define

tr−1,0 =max{ t ∈ [τr−1, tr−1,1) | ψr−1(t)−∥er−1(t)∥= εr−1 } ,

then, for all t ∈ [tr−1,0, tr−1,1], we have that

ψr−1(t)−∥er−1(t)∥ ≤ εr−1,

∥er−1(t)∥ ≥ ψr−1(t)− εr−1 ≥ λr−1
2 ,

kr−1(t) = 1
1−φ2

r−1(t)∥er−1(t)∥2 ≥ ψr−1(t)
2εr−1

≥ λr−1
2εr−1

.

We obtain, for all t ∈ [tr−1,0, tr−1,1], that

1
2

d
dt ∥er−1(t)∥2 = e⊤r−1(t)ėr−1(t)

= e⊤r−1(t)
(

f
(
d(t),T (x)(t)

)
− kr−1(t)Γ

(
d(t),T (x)(t)

)
er−1(t)

− y(r)ref(t)+
r−2

∑
i=0

( d
dt

)r−1−i
[ki(t)ei(t)]

)
≤

(
MF − λ 2

r−1
4εr−1

γ + sup
t∈(0,ω)

∥y(r)ref(t)∥+
r−2

∑
i=0

Mi,r−1−i

)
∥er−1(t)∥

≤ −Lr−1∥er−1(t)∥,
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and therefore,

∥er−1(tr−1,1)∥−∥er−1(tr−1,0)∥=
tr−1,1∫

tr−1,0

1
2∥er−1(t)∥−1 d

dt ∥er−1(t)∥2 dt

≤−Lr−1(tr−1,1 − tr−1,0)

≤−|ψr−1(tr−1,1)−ψr−1(tr−1,0)|
≤ ψr−1(tr−1,1)−ψr−1(tr−1,0),

and thus we obtain εr−1 = ψr−1(tr−1,0) − ∥er−1(tr−1,0)∥ ≤
ψr−1(tr−1,1)−∥er−1(tr−1,1)∥< εr−1, a contradiction.

Step 3: We show that ω = ∞. Assume that ω < ∞. Then,
since ei,ki, i = 0, . . . ,r − 1 are bounded by Step 2, it follows
that the closure of the graph of (e0,e1, . . . ,er−1) is a compact
subset of Dr−1, a contradiction. Hence ω = ∞ which shows (i).
Statements (ii) and (iii) are then immediate consequences of
Step 2.

Note that it follows from Theorem 3.1 that the funnel con-
troller 5 solves the Prescribed Performance Control Problem as
formulated for the system class in [34]. Furthermore, the fun-
nel controller 5 is of much lower complexity than the controller
proposed in [34].

In the following we derive explicit formulas for the εi ap-
pearing in (11) and bounds for the input u and the deriva-
tives e(i) of the tracking error. We use the notation and assump-
tions from Theorem 3.1. For simplicity we assume that we have
“finite” funnel boundaries, i.e., φi(0)> 0 for i = 0, . . . ,r−1.

For all i ∈ {0, . . . ,r − 1}, set ψi(t) := φi(t)−1 for all
t ≥ 0 and λi := inft≥0 ψi(t) > 0. Since φ̇i is bounded and
liminft→∞ φi(t)> 0 we find that ψ̇i is bounded and hence there
exists a Lipschitz bound Li > 0 of ψi. For i = 0, . . . ,r−2 set

εi :=
λ 2

i

4max
{

λi
2 ,Li +∥ψi+1∥∞

} .
Then εi satisfies (15) and hence ψi(t)−∥ei(t)∥ ≥ εi for all t > 0
and i = 0, . . . ,r−2 as shown in the proof of Theorem 3.1.

For i = r−1 we first need to define the following constants
in an iterative way. Set Ni,0 := ∥ψi∥∞ for i = 0, . . . ,r−1 and

Ki,0 :=
Ni,0

εi
, Mi,0 := Ni,0 ·Ki,0

for i = 0, . . . ,r−2. Therefore, (16) holds for i = 0, . . . ,r−2 and
j = 0 since

ki(t) =
1

(1−φi(t)∥ei(t)∥)(1+φi(t)∥ei(t)∥)
≤ 1

1−φi(t)∥ei(t)∥

=
ψi(t)

ψi(t)−∥ei(t)∥
≤ ψi(t)

εi
, t ≥ 0.

Define, for i = 0, . . . ,r−2 and j = 0, . . . ,r− i−1

Ni, j := Ni+1, j−1 +Mi, j−1,

Li,0 := N2
i,0,

Li, j := 2
j−1

∑
l=0

(
j−1

l

)
Ni,l ·Ni, j−l ,

Φi,0 := ∥φi∥2
∞,

Φi, j := 2
j−1

∑
l=0

(
j−1

l

)
∥φ(l)

i ∥∞ · ∥φ( j−l)
i ∥∞,

Σi, j := 1
2

(
Φi,0 ·Li, j+1 +Φi,1 ·Li, j +Φi, j ·Li,1 +Li,0 ·Φi, j+1

)
+

j−1

∑
l1=1

(
j

l1

)(
Φi,l1

j−l1

∑
l2=0

(
j− l1

l2

)
Ni,l2 ·Ni, j−l1−l2

+Li, j−l1

l1

∑
l2=0

(
l1
l2

)
∥φ(l2)

i ∥∞ · ∥φ(l1−l2)
i ∥∞

)
,

Ki, j := K2
i,0 ·Σi, j−1

+
j−1

∑
l1=1

(
j−1

l1

)
Σi, j−l1−1

(
l1−1

∑
l2=0

(
l1 −1

l2

)
Ki,l2+1 ·Ki,l1−l2−1

)
,

Mi, j :=
j

∑
l=0

(
j
l

)
Ki,l ·Ni, j−l .

Then cumbersome but straightforward calculations show that
the above defined constants Ni, j, Ki, j, Mi, j satisfy (16). Set

K̂−1 := 0, K̂i :=
i

∑
j=0

M j,i− j for i = 0, . . . ,r−2.

Using the notation from the proof of Theorem 3.1 we see that
any maximal solution y : [−h,∞)→ Rm of (5), (1) satisfies

y(i)(t) = ei(t)+ y(i)ref(t)−Ki−1
(
t,e0(t), . . . ,ei−1(t)

)
, t ≥ 0.

Therefore, using (14), it follows that

∥e(i)(t)∥ ≤ ψi(t)+ K̂i−1, t ≥ 0,

and
∥y(i)∥∞ ≤ ∥ψi∥∞ +∥y(i)ref∥∞ + K̂i−1

for i = 0, . . . ,r−1. Define the compact set

B :=

{
ζ ∈C ([−h,∞)→Rm)r

∣∣∣∣∣∥ζi∥∞≤∥ψi−1∥∞+∥y(i−1)
ref ∥∞

+K̂i−2, i = 1, . . . ,r

}

and
M1 := sup

ζ∈B
∥T (ζ )∥∞.

With this we may set

MF := sup{ ∥ f (δ ,z)∥ | ∥z∥ ≤ M1, ∧ ∥δ∥ ≤ ∥d∥∞ } .
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Furthermore, let the set M be as in Step 2b of the proof of
Theorem 3.1 and set

γ := min
(δ ,η ,e)∈M

e⊤Γ(δ ,η)e > 0.

Now we are in the position to define

εr−1 :=
γ ·λ 2

r−1

4max
{

λr−1
2 ,Lr−1 +MF +∥y(r)ref∥∞ +∑r−2

i=0 Mi,r−i−1

}
and

ubd :=
∥ψr−1∥2

∞
εr−1

,

which is an upper bound for the input u in the closed-loop
system as can be concluded from the proof of Theorem 3.1.
Then εr−1 satisfies (17) and εr−1 ≤ λr−1

2 and hence ψr−1(t)−
∥er−1(t)∥ ≥ εr−1 for all t > 0. We may now also extend the
definitions of the constants Ki,0, Mi,0 to i = r−1; in particular,
Kr−1,0 := Nr−1,0

εr−1
is a bound for kr−1. We summarize our findings

in the following result.

Proposition 3.2. Use the notation and assumptions from Theo-
rem 3.1 and assume that φi(0) > 0 for i = 0, . . . ,r − 1. Then
the following statements are true for any maximal solution
y : [−h,∞)→ Rm of (5), (1):

(i) (11) holds with

εi =
λ 2

i

4max
{

λi
2 ,Li +∥ψi+1∥∞

} , i = 0, . . . ,r−2,

εr−1 =
γ ·λ 2

r−1

4max
{

λr−1
2 ,Lr−1 +MF +∥y(r)ref∥∞ +∑r−2

i=0 Mi,r−i−1

} ,
(ii) ki(t) ≤ Ki,0 and ∥e(i)(t)∥ ≤ φi(t)−1 + K̂i−1 for all t ≥ 0

and all i = 0, . . . ,r−1,

(iii) ∥u∥∞ ≤ ubd.

Proposition 3.2 may be exploited for the design of suitable
funnel functions φ0, . . . ,φr−1 in the presence of control con-
straints in the following way: If a bound û is given so that
the desired control u(·) (of the form as in (5)) must satisfy
∥u(t)∥ ≤ û for all t ≥ 0, then, if possible, φ0, . . . ,φr−1 must
be chosen such that ubd ≤ û. Of course, there is a minimum
feasibility requirement on the control depending on the system
parameters, i.e., a lower bound for ubd. For instance, if r = 1
and we choose φ0 to be constant, then L0 = 0,

ε0 =
γφ2

0

4max
{φ0

2 ,MF +∥ẏref∥∞
} ,

MF = MF(φ0)

=sup

∥ f (δ ,z)∥

∣∣∣∣∣∣∥δ∥ ≤ ∥d∥∞ ∧∥z∥ ≤ sup
∥ζ∥∞≤φ−1

0 +∥yref∥∞

∥T (ζ )∥∞



and hence

ubd =
φ2

0
ε0

=
4max

{φ0
2 ,MF(φ0)+∥ẏref∥∞

}
γ

≥
4
(
M∗

F +∥ẏref∥∞
)

γ
,

where

M∗
F := sup

{
∥ f (δ ,z)∥

∣∣∣∣∣∥z∥ ≤ sup
∥ζ∥∞≤∥yref∥∞

∥T (ζ )∥∞ ∧∥δ∥ ≤ ∥d∥∞

}
.

Obviously, φ0
2 is monotonically increasing in φ0 and MF(φ0)

is monotonically non-increasing in φ0, thus in the choice of φ0
there is trade-off between these two quantities.

4. Simulations

4.1. Mass on car system

To demonstrate the application of our controller, we con-
sider an example of a mass-spring system mounted on a car
from [30], see Fig. 3. The mass m2[kg] moves on a ramp
which is inclined by the angle α [rad] and mounted on a car
with mass m1[kg], for which it is possible to control the force
u = F [N] acting on it. The equations of motion for the system
are given by[

m1 +m2 m2 cosα
m2 cosα m2

](
ẍ(t)
s̈(t)

)
+

(
0

ks(t)+dṡ(t)

)
=

(
u(t)

0

)
,

(18)
where x[m] is the horizontal car position and s[m] the rela-
tive position of the mass on the ramp. The constants k[N/m],
d[Ns/m] are the coefficients of the spring and damper, resp. The
output of the system is given by the horizontal position of the
mass on the ramp,

y(t) = x(t)+ s(t)cosα.

F

y

a=const

x

s

Figure 3: Mass on car system.

The reference trajectory is yref(t) = cos t[m]. System (18) can
be reformulated such that it belongs to the class (1), see [30],
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with a relative degree r depending on the angle α[rad] and the
damping d[Ns/m]. We consider two cases.

Case 1: If 0 < α < π
2 , see Fig. 3, then system (18) has

relative degree r = 2 and the high-frequency gain matrix reads
Γ = sin2 α

m1+m2 sin2 α > 0; for the simulation, we choose the parame-
ters m1 = 4[kg],m2 = 1[kg],k= 2[N/m],d = 1[Ns/m], the initial
values x(0) = 0, ẋ(0) = 0, s(0) = 0, ṡ(0) = 0 and α = π

4 . For
the controller (5) we choose the funnel functions

φ0(t) = (5e−2t +0.1)−1, φ1(t) = (10e−2t +0.5)−1,

and obviously the initial errors lie within the respective fun-
nel boundaries, i.e., (10) is satisfied, thus Theorem 3.1 yields
that funnel control is feasible. We compare the controller (5)
with the proportional-derivative funnel controller (8) proposed
in [12], which has been explained in Remark 2.4, and choose
the same funnel functions φ0,φ1 for it. These functions satisfy
the compatibility condition (9) and hence the controller (8) may
be applied to (18) by [12].
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]

 

 
y(t)! yref(t) from (5)
y(t)! yref(t) from (8)
1/ϕ0

Fig. 4a: Funnel and tracking errors
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Fig. 4b: Input functions

Figure 4: Simulation of the controllers (5) and (8) for the mass on car sys-
tem (18) with α = π

4 .

The simulation of the controllers (5) and (8) applied to (18)
over the time interval [0,10] has been performed in MATLAB
(solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10) and is de-

picted in Fig. 4. Fig. 4a shows the tracking errors correspond-
ing to the two different controllers applied to the system, while
Fig. 4b shows the respective input functions generated by them.
It can be seen that our proposed funnel controller (5) requires
less input action than the controller (8), both in magnitude and
over time. For instance, in the time interval [3,5.5] there is no
input action generated by (5), but several (large) oscillations
generated by (8). It seems that the controller (5) better exploits
the inherent system properties and thus requires less input ac-
tion than the controller proposed in [12].

Case 2: If α = 0 and d ̸= 0, see Fig. 5, then system (18)
has relative degree r = 3 and high-frequency gain matrix Γ =

d
m1m2

> 0. For the simulation, we choose the parameters m1 =

4[kg],m2 = 1[kg],k = 2[N/m],d = 1[Ns/m] and the initial val-
ues x(0) = 0, ẋ(0) = 0, s(0) = 0, ṡ(0) = 0.

F

y
x

s

Figure 5: Mass on car system with α = 0.

For the illustration of the controller (5) we choose the funnel
functions

φ0(t) = (5e−2t +2)−1, φ1(t) = φ2(t) = (ae−t +b)−1

with the three sets of parameter values

C1 : a = 1.4, b = 0.05,
C2 : a = 5, b = 0.05,
C3 : a = 1.4, b = 0.5;

the initial errors lie within the respective funnel boundaries, i.e.,
conditions (10) are satisfied, thus Theorem 3.1 yields that fun-
nel control is feasible.

The simulation of the controller (5) with the different pa-
rameter sets C1–C3 applied to the relative degree 3 system (18)
with α = 0 over the time interval [0,10] has been performed in
MATLAB (solver: ode45, rel. tol.: 10−14, abs. tol.: 10−10)
and is depicted in Fig. 6. Fig. 6a shows the tracking errors cor-
responding to the different controllers applied to the system,
while Fig. 6b shows the respective input functions generated by
them. The difference in the performance of the controllers is
discussed in the next subsection.

We did not provide the comparison of the controller (5) with
the backstepping funnel controller (7) proposed in [20] here. A
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Fig. 6a: Funnel and tracking errors
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Figure 6: Simulation of the controllers (5) for the mass on car system (18) with
α = 0 and different sets of funnel functions φ1,φ2.

simulation of (7) for the system (18) with funnel function φ =
φ0 is not feasible due to numerical issues, cf. the explanation in
Remark 2.3.

4.2. Influence of design parameters

In this section we discuss the influence of the design param-
eters of the funnel controller (5). Of particular interest is the
influence of the choice of the funnel functions φi in (5) on the
controller performance, that means the maximal absolute value
of the input u and its oscillation behavior. We assume that the
choice of φ0 is done by the designer based on specific objectives
for the transient behavior of the tracking error such as desired
tracking accuracy, and the choice of φi is free apart from the
initial conditions (10) for i = 1, . . . ,r−1. In principle, based on
the explicit formula for ubd derived in Proposition 3.2, a mini-
mization of this bound over all possible funnel functions could
be performed. This is a highly complicated venture left for fu-
ture research. However, as a rule of thumb, we may conclude
that the performance funnels Fφi corresponding to φi should be
chosen as tight as possible, i.e., starting as close to ∥ei(0)∥ as
possible and then decaying to a small value.

In order to illustrate this we consider Case 2 of the mass
on car system (18) and discuss the resulting controller perfor-
mance for the choices of parameter values C1–C3. The case C1
represents an “optimal” choice of the parameters as far as the
experiments show. It can be see in Fig. 6b that increasing the
value of a as in C2 results in a peaking behavior of the input u
for small t, while increasing the value of b as in C3 leads to
possible peaks at later time instants, but smaller maximal input
values than in C2 in general. Furthermore, the distance of the
tracking error to the funnel boundary seems to depend on the
parameter b; in case C3 (for larger b), the error gets closer to
the boundary than in cases C1 and C2. These observations have
been confirmed in several other experiments.

In order to improve the performance of the controller and
reduce unnecessary large control actions one may use alterna-
tive gain functions in (5) as discussed e.g. in [21]. For instance,
using the future distance to the future funnel boundary instead
of the vertical distance to the funnel boundary as in (5) may
increase the ability of the controller (5) to avoid large control
values.

4.3. Nonlinear MIMO system

To illustrate the funnel controller (5) for a nonlinear
multi-input, multi-output system we consider an example
of a robotic manipulator from [13], see also [25, p. 77],
as depicted Fig.7. The robotic manipulator is planar,
rigid, with revolute joints and has two degrees of freedom.

u1

l1

m1u2

y1

l2
m2

y2

Figure 7: Planar rigid revolute joint robotic manipulator.

The two joints are actuated by u1[Nm] and u2[Nm]. We assume
that the links are massless, have lengths l1[m] and l2[m], resp.,
and point masses m1[kg] and m2[kg] are attached to their ends.
The two outputs are the joint angles y1[rad] and y2[rad] and
the equations of motion are given by (see also [33, pp. 259])

M(y(t))ÿ(t)+C(y(t), ẏ(t))ẏ(t)+g(y(t)) = u(t) (19)

with initial value (y(0), ẏ(0)) = (0,0), inertia matrix

M : R2 → R2×2, (y1,y2) 7→ M(y1,y2) :=[
m1l2

1 +m2(l2
1 + l2

2 +2l1l2 cos(y2)) m2(l2
2 + l1l2 cos(y2))

m2(l2
2 + l1l2 cos(y2)) m2l2

2

]
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centrifugal and Coriolis force matrix

C : R2 ×R2 → R2×2, (y1,y2,v1,v2) 7→C(y1,y2,v1,v2) :=[
−2m2l1l2 sin(y2)v1 −m2l1l2 sin(y2)v2
−m2l1l2 sin(y2)v1 0

]
,

and gravity vector

g : R2 → R2, (y1,y2) 7→ g(y1,y2) :=

g
(

m1l1 cos(y1)+m2(l1 cos(y1)+ l2 cos(y1 + y2))
m2l2 cos(y1 + y2)

)
where g = 9.81[m/s2] is the acceleration of gravity. If we mul-
tiply system (19) with M(y(t))−1, which is pointwise positive
definite, from the right we see that the resulting system belongs
to the class (1) with r = m = 2.

For the simulation, we choose the parameters m1 = m2 =
1[kg], l1 = l2 = 1[m] and the reference trajectories yref,1(t) =
sin t[rad] and yref,2(t) = sin2t[rad]. For the controller (5) we
choose the funnel functions

φ0(t) = (e−2t +0.1)−1, φ1(t) = (3e−2t +0.1)−1.

The initial errors lie within the respective funnel boundaries,
i.e., conditions (10) are satisfied, thus Theorem 3.1 yields that
funnel control is feasible. We compare the controller (5) with
the MIMO funnel controller proposed in [13], that is (already
fixing the gain scaling functions)

u(t) =−M(y(t))
(
K0(t)2e(t)+K0(t)K1(t)ė(t)

)
,

Ki(t) = diag
(

1
1−φi(t)|e

(i)
1 (t)|

, 1
1−φi(t)|e

(i)
2 (t)|

)
, i = 0,1

(20)

and we choose the same funnel functions φ0,φ1 for it. The con-
troller (20) is a modification of (8), first introduced in [7] for
SISO systems and tailored to MIMO systems with mass ma-
trix in [13]. We remark that there is a typo in the controller
formula [13, (8)], the sign of the input u must be the opposite.

The simulation of the controllers (5) and (20) applied to (19)
over the time interval [0,10] has been performed in MATLAB
(solver: ode45, rel. tol: 10−14, abs. tol: 10−10) and is depicted
in Fig. 8 (tracking error components) and Fig. 9 (input compo-
nents). It can be seen that the funnel controller (5) outperforms
the controller (20) as it generates a smaller maximal control
action and does not “oscillate” as (20) does e.g. in the inter-
val [4,6]. Moreover, we stress that the controller (20) requires
knowledge of the mass matrix M(·) of the system (19) and is
specifically constructed for systems with strict relative degree
two. On the other hand, knowledge of M(·) is not necessary for
the control strategy (5).

4.4. Comparison with the bang-bang funnel controller

We finally compare the funnel controller (5) with the bang-
bang funnel controller developed in [26]. We consider the aca-
demic example presented in [26], that is the nonlinear relative

0 2 4 6 8 10
-1

-0.5

0

0.5

1

[s]

[r
a
d
]

 

 
y1(t)! yref,1(t) from (5)
y1(t)! yref,1(t) from (20)
1/ϕ0

Fig. 8a: Funnel and first tracking error components
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Fig. 8b: Funnel and second tracking error components

Figure 8: Funnel and tracking errors for the controllers (5) and (20) applied
to (19).

degree 4 system

y(4)(t) = z(t)y(3)(t)2 + ez(t) u(t),
ż(t) = z(t)

(
a− z(t)

)(
z(t)+b

)
− cy(t)

(21)

with initial values

z(0) = 0, y(i)(0) = y(i)ref(0), i = 0, . . . ,3,

where we choose the reference signal yref(t) = 5sin t. For the
simulation we choose the parameters

a = 0.09, b = 0.05, c = 0.008.

For the controller (5) we choose the constant funnel functions

φ0(t) = 1, φ1(t) = 10, φ2(t) = 10, φ3(t) = 10.

The funnel φ0 for the tracking error is the same as in [26], but
apart from that we have chosen φ1, . . . ,φ3 so that the corre-
sponding performance funnels are tighter than in [26]; this is
allowed in our framework, but in [26] several complicated com-
patibility assumptions require the funnel boundaries to be large
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Fig. 9a: First input components
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Figure 9: Input functions for the controllers (5) and (20) applied to (19).

enough. We also stress that the controller design (5) is quite
different from the bang-bang funnel controller in [26].

The simulation of the controller (5) applied to (21) over the
time interval [0,10] has been performed in MATLAB (solver:
ode15s, rel. tol: 10−14, abs. tol: 10−10), see Fig. 10.

It can be seen that the funnel controller (5) generates a max-
imal control action of approximately 5, while for the bang-bang
funnel controller in [26] the value is around 254. Obviously, the
controller (5) achieves a better performance than the controller
proposed in [26].

5. Conclusion

In the present paper, we proposed a new funnel controller
for nonlinear systems with arbitrary known relative degree and
input-to-state stable internal dynamics. We proved that this
controller, which involves derivatives of the tracking error,
achieves tracking of a sufficiently smooth reference trajectory
with prescribed transient performance. An explicit upper bound
for the input function resulting from the control law was derived
and based on that the influence of the controller parameters was
briefly discussed. We have illustrated the performance of our
controller in comparison with other approaches by simulations
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Fig. 10a: Funnel and tracking error
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Figure 10: Simulation of the controller (5) for the system (21).

of practically relevant mechanical systems. We stress that, al-
though the backstepping funnel controller presented in [20] is
proved to work for systems with arbitrary relative degree, it
does not seem to be practically realizable for systems with rel-
ative degree larger than three, cf. [8, Sec. 4.4.3]. Furthermore,
compared to the bang-bang funnel controller developed in [26],
our approach is not restricted to SISO systems and does not
involve complicated compatibility assumptions; additionally,
the simulations reveal that our controller outperforms the bang-
bang funnel controller. Therefore, the controller (5) seems to be
a favorable choice for tracking with prescribed transient behav-
ior for systems where the derivatives of the output are available.

Of course, in several applications the latter condition is not
satisfied, and it may even be hard to obtain suitable estimates of
the output derivatives. The solution of this issue is a topic of fu-
ture research and a first approach to circumvent these problems
using a “funnel pre-compensator” has been developed in [3, 4]
for systems with relative degree r = 2 or r = 3.
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