Derived categories and stability structures

Paolo Stellari

Derived categories and stability structures

Paolo Stellari

Hamburg, September 2009

Outline

Derived categories and stability structures

Paolo Stellari

Outline

Categories

- Derived categories
- *t*-structures

Outline

Derived categories and stability structures

Paolo Stellari

Outline

- Categories
 - Derived categories
 - t-structures
- Stability structures
 - Bridgeland's definition
 - Example 1: curves
 - Example 2: K3's
 - KS definition

Outline

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition

Example 1: curve: Example 2: K3's KS definition

- Categories
 - Derived categories
 - t-structures
 - Stability structures
 - Bridgeland's definition
 - Example 1: curves
 - Example 2: K3's
 - KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition Example 1: cur

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition Let **A** be an abelian category (e.g., \mathbf{mod} -R, right R-modules, R an ass. ring with unity, and $\mathbf{Coh}(X)$).

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curve Let **A** be an abelian category (e.g., mod-R, right R-modules, R an ass. ring with unity, and Coh(X)).

Define $C(\mathbf{A})$ to be the (abelian) category of complexes of objects in \mathbf{A} . In particular:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

definition

Example 1: curve:

Example 2: K3's

Let **A** be an abelian category (e.g., mod-R, right R-modules, R an ass. ring with unity, and Coh(X)).

Define $C(\mathbf{A})$ to be the (abelian) category of complexes of objects in \mathbf{A} . In particular:

Objects:

$$M^{\bullet} := \{ \cdots \to M^{p-1} \xrightarrow{d^{p-1}} M^p \xrightarrow{d^p} M^{p+1} \to \cdots \}$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Let **A** be an abelian category (e.g., mod-R, right R-modules, R an ass. ring with unity, and Coh(X)).

Define $C(\mathbf{A})$ to be the (abelian) category of complexes of objects in \mathbf{A} . In particular:

Objects:

$$M^{\bullet} := \{ \cdots \to M^{p-1} \xrightarrow{d^{p-1}} M^p \xrightarrow{d^p} M^{p+1} \to \cdots \}$$

• Morphisms: sets of arrows $f^{\bullet} := \{f^i\}_{i \in \mathbb{Z}}$ making commutative the following diagram

$$\begin{array}{c|c} \cdots \xrightarrow{d_{M^{\bullet}}^{i-2}} M^{i-1} \xrightarrow{d_{M^{\bullet}}^{i-1}} M^{i} \xrightarrow{d_{M^{\bullet}}^{i}} M^{i+1} \xrightarrow{d_{M^{\bullet}}^{i+1}} \cdots \\ & \downarrow^{f^{i-1}} & \downarrow^{f^{i}} & \downarrow^{f^{i+1}} \\ \cdots \xrightarrow{d_{L^{\bullet}}^{i-2}} L^{i-1} \xrightarrow{d_{L^{\bullet}}^{i-1}} L^{i} \xrightarrow{d_{L^{\bullet}}^{i}} L^{i+1} \xrightarrow{d_{L^{\bullet}}^{i+1}} \cdots \end{array}$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition Example 1: cur

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

For a complex $M^{\bullet} \in C(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := \frac{\ker(d^{i})}{\operatorname{im}(d^{i-1})} \in \mathbf{A}.$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

For a complex $M^{\bullet} \in C(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := \frac{\ker(d^{i})}{\operatorname{im}(d^{i-1})} \in \mathbf{A}.$$

A morphism of complexes is a **quasi-isomorphisms** (qis) if it induces isomorphisms on cohomology.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition For a complex $M^{\bullet} \in C(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := \frac{\ker(\mathcal{O}^{i})}{\operatorname{im}(\mathcal{O}^{i-1})} \in \mathbf{A}.$$

A morphism of complexes is a **quasi-isomorphisms** (qis) if it induces isomorphisms on cohomology.

Definition 1

The **derived category** $D(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition For a complex $M^{\bullet} \in C(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := \frac{\ker(\mathcal{O}^{i})}{\operatorname{im}(\mathcal{O}^{i-1})} \in \mathbf{A}.$$

A morphism of complexes is a **quasi-isomorphisms** (qis) if it induces isomorphisms on cohomology.

Definition 1

The **derived category** $D(\boldsymbol{A})$ of the abelian category \boldsymbol{A} is such that:

• Objects: $Ob(C(\mathbf{A})) = Ob(D(\mathbf{A}));$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition For a complex $M^{\bullet} \in C(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := \frac{\ker(\mathcal{O}^{i})}{\operatorname{im}(\mathcal{O}^{i-1})} \in \mathbf{A}.$$

A morphism of complexes is a **quasi-isomorphisms** (qis) if it induces isomorphisms on cohomology.

Definition 1

The **derived category** $D(\boldsymbol{A})$ of the abelian category \boldsymbol{A} is such that:

- Objects: $Ob(C(\mathbf{A})) = Ob(D(\mathbf{A}));$
- Morphisms: (very) roughly speaking, obtained 'by inverting qis in C(A)'.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition

Example 1: curve
Example 2: K3's
KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

definition
Example 1: curve
Example 2: K3's

Important!

The category $D(\mathbf{A})$ is triangulated. In particular, it has a shift functor [i], for any $i \in \mathbb{Z}$, and a set of *distinguished or exact* triangles.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: cur

Bridgeland's definition Example 1: curves Example 2: K3's KS definition

Important!

The category $D(\mathbf{A})$ is triangulated. In particular, it has a shift functor [i], for any $i \in \mathbb{Z}$, and a set of *distinguished or exact* triangles.

If we just consider bounded complexes, we get the bounded derived category $D^b(\mathbf{A})$. Other possibilities are $D^-(\mathbf{A})$ (bounded above complexes) and $D^+(\mathbf{A})$ (bounded below complexes).

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition

Important!

The category $D(\mathbf{A})$ is triangulated. In particular, it has a shift functor [i], for any $i \in \mathbb{Z}$, and a set of *distinguished or exact* triangles.

If we just consider bounded complexes, we get the bounded derived category $D^b(\mathbf{A})$. Other possibilities are $D^-(\mathbf{A})$ (bounded above complexes) and $D^+(\mathbf{A})$ (bounded below complexes).

Exercise 2

Describe the bounded derived category of a closed point.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures

Bridgeland's definition

Example 1: curve Example 2: K3's KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structure:

structure

Bridgeland's

Example 1: curves Example 2: K3's KS definition If X is a smooth projective variety over a field k (always assume $k = \overline{k}!$), set $D^b(X) := D^b(\mathbf{Coh}(X))$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures

Bridgeland's definition Example 1: curv Example 2: K3's If X is a smooth projective variety over a field k (always assume $k = \overline{k}!$), set $D^b(X) := D^b(\mathbf{Coh}(X))$.

Exercise 3

Let C be a smooth complex curve. Show that any $\mathcal{E} \in \mathrm{D^b}(C)$ is isomorphic to the direct sum of shifts of sheaves.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's

Bridgeland's definition Example 1: curves Example 2: K3's KS definition If X is a smooth projective variety over a field k (always assume $k = \overline{k}!$), set $D^b(X) := D^b(\mathbf{Coh}(X))$.

Exercise 3

Let C be a smooth complex curve. Show that any $\mathcal{E}\in \mathrm{D}^b(C)$ is isomorphic to the direct sum of shifts of sheaves.

Proposition 4

If X is a smooth projective variety over k, then $\bigoplus_i \operatorname{Hom}_{\operatorname{D^b}(X)}(\mathcal{E},\mathcal{F}[i])$ is finite dimensional, for any $\mathcal{E},\mathcal{F}\in\operatorname{D^b}(X)$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curv If X is a smooth projective variety over a field k (always assume $k = \overline{k}!$), set $D^b(X) := D^b(Coh(X))$.

Exercise 3

Let C be a smooth complex curve. Show that any $\mathcal{E} \in \mathrm{D^b}(C)$ is isomorphic to the direct sum of shifts of sheaves.

Proposition 4

If X is a smooth projective variety over k, then $\bigoplus_i \operatorname{Hom}_{\operatorname{D^b}(X)}(\mathcal{E},\mathcal{F}[i])$ is finite dimensional, for any $\mathcal{E},\mathcal{F}\in\operatorname{D^b}(X)$.

In this case, we say that $D^b(X)$ is **of finite type** over k.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures

Bridgeland's definition

Example 1: curve Example 2: K3's KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structure

definition

Example 1: curve

Example 2: K3's

Define the **Grothendieck group** K(X) of $\mathrm{D}^b(X)$ as the free abelian group generated by the isomorphism classes of objects of $\mathrm{D}^b(X)$ modulo the relation $[\mathcal{E}] = [\mathcal{F}] + [\mathcal{G}]$ for a distinguished triangle $\mathcal{F} \to \mathcal{E} \to \mathcal{G}$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures

Bridgeland's definition Example 1: curv Example 2: K3's Define the **Grothendieck group** K(X) of $D^b(X)$ as the free abelian group generated by the isomorphism classes of objects of $D^b(X)$ modulo the relation $[\mathcal{E}] = [\mathcal{F}] + [\mathcal{G}]$ for a distinguished triangle $\mathcal{F} \to \mathcal{E} \to \mathcal{G}$.

Exercise 5

Show $K(X) = K(\mathbf{Coh}(X))$ (more generally, for any abelian category \mathbf{A} ...)

Derived categories and stability structures

Paolo Stellari

Derived categories

Stability

Define the **Grothendieck group** K(X) of $D^b(X)$ as the free abelian group generated by the isomorphism classes of objects of $D^b(X)$ modulo the relation $[\mathcal{E}] = [\mathcal{F}] + [\mathcal{G}]$ for a distinguished triangle $\mathcal{F} \to \mathcal{E} \to \mathcal{G}$.

Exercise 5

Show $K(X) = K(\mathbf{Coh}(X))$ (more generally, for any abelian category A...)

Using this, define the **Euler-Poincaré pairing**

$$\chi: K(X) \times K(X) \rightarrow \mathbb{Z}$$

by
$$\chi([\mathcal{E}], [\mathcal{F}]) := \sum_{i} (-1)^{i} \dim \operatorname{Hom}_{\mathrm{D}^{b}(X)}(\mathcal{E}, \mathcal{F}[i]).$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition

Example 1: curve
Example 2: K3's
KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures

Bridgeland's definition Example 1: curve: Example 2: K3's Given a functor $F: \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^b(\mathbf{A}) \to D^b(\mathbf{B})$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's

definition

Example 1: curves

Example 2: K3's

KS definition

Given a functor $F: \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^b(\mathbf{A}) \to D^b(\mathbf{B})$.

This is not automatic already for left or right exact functors.

Derived categories and stability structures

Paolo Stellari

Derived categories

Stability

Given a functor $F: \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^b(\mathbf{A}) \to D^b(\mathbf{B})$.

This is not automatic already for left or right exact functors.

Nevertheless, in the geometric setting, all the 'basic functors' can be *derived*, i.e. defined on the level of the bounded derived categories. For example, for X, Y smooth finite-dimensional noetherian schemes:

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
!-structures

Stability structures

Bridgeland's definition

definition
Example 1: curve
Example 2: K3's
KS definition

Given a functor $F: \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^b(\mathbf{A}) \to D^b(\mathbf{B})$.

This is not automatic already for left or right exact functors.

Nevertheless, in the geometric setting, all the 'basic functors' can be *derived*, i.e. defined on the level of the bounded derived categories. For example, for X, Y smooth finite-dimensional noetherian schemes:

• Tensor product: $- \overset{L}{\otimes} - : D^b(X) \times D^b(X) \to D^b(X)$;

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's

definition

Example 1: curve

Example 2: K3's

KS definition

Given a functor $F : \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^b(\mathbf{A}) \to D^b(\mathbf{B})$.

This is not automatic already for left or right exact functors.

Nevertheless, in the geometric setting, all the 'basic functors' can be *derived*, i.e. defined on the level of the bounded derived categories. For example, for X, Y smooth finite-dimensional noetherian schemes:

- Tensor product: $\overset{L}{\otimes} : D^b(X) \times D^b(X) \to D^b(X)$;
- For a proper morphism $f: X \to Y$, $Rf_*: D^b(X) \to D^b(Y)$;

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures

Bridgeland's definition Example 1: cur Example 2: K3 Given a functor $F: \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^b(\mathbf{A}) \to D^b(\mathbf{B})$.

This is not automatic already for left or right exact functors.

Nevertheless, in the geometric setting, all the 'basic functors' can be *derived*, i.e. defined on the level of the bounded derived categories. For example, for X, Y smooth finite-dimensional noetherian schemes:

- Tensor product: $\overset{L}{\otimes} : D^b(X) \times D^b(X) \to D^b(X)$;
- For a proper morphism $f: X \to Y$, $Rf_*: D^b(X) \to D^b(Y)$;
- For f as above, $Lf^* : D^b(Y) \to D^b(X)$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition

Example 1: curve
Example 2: K3's
KS definition

Derived functors

Derived categories and stability structures

Paolo Stellari

Derived categories

Stability

For X, Y smooth projective varieties, special exact functors $D^b(X) \to D^b(Y)$ are those of **Fourier–Mukai type**. That is, those which are isomorphic to the functor

$$\Phi_{\mathcal{E}}(-) := \textit{Rp}_*\left(\mathcal{E} \overset{\textit{L}}{\otimes} q^*(-)\right),$$

for $\mathcal{E} \in D^b(X \times Y)$ and p, q the natural projections.

Derived functors

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curv Example 2: K3's For X, Y smooth projective varieties, special exact functors $D^b(X) \to D^b(Y)$ are those of **Fourier–Mukai type**. That is, those which are isomorphic to the functor

$$\Phi_{\mathcal{E}}(-) := \textit{Rp}_*\left(\mathcal{E} \overset{\textit{L}}{\otimes} \textit{q}^*(-)\right),$$

for $\mathcal{E} \in D^b(X \times Y)$ and p, q the natural projections.

Remark 6

Many classes of functors have been proved to be of Fourier-Mukai type at different levels of generalities. Among the authors who contributed to this, we mention: Orlov (+Bondal-Van den Bergh), Kawamata, Canonaco-S. and Ballard.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition

4□ > 4□ > 4 = > 4 = > = 900

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structure

Bridgeland's definition Example 1: curve Example 2: K3's **Definition 7**

For **A** an abelian category, a **Serre functor** of $D^b(\mathbf{A})$ is an exact equivalence $\mathcal{S}:D^b(\mathbf{A})\to D^b(\mathbf{A})$ such that, for any $\mathcal{E},\mathcal{F}\in D^b(\mathbf{A})$, there is an isomorphism

$$\eta_{\mathcal{E},\mathcal{F}}: \operatorname{Hom}\nolimits_{\operatorname{D^b}(\boldsymbol{A})}(\mathcal{E},\mathcal{F}) \to \operatorname{Hom}\nolimits_{\operatorname{D^b}(\boldsymbol{A})}(\mathcal{F},\boldsymbol{S}(\mathcal{E}))^\vee$$

of k-vector spaces which is functorial in \mathcal{E} and \mathcal{F} .

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structure:

Bridgeland's definition Example 1: curves Example 2: K3's

Definition 7

For **A** an abelian category, a **Serre functor** of $D^b(\mathbf{A})$ is an exact equivalence $S:D^b(\mathbf{A})\to D^b(\mathbf{A})$ such that, for any $\mathcal{E},\mathcal{F}\in D^b(\mathbf{A})$, there is an isomorphism

$$\eta_{\mathcal{E},\mathcal{F}}:\operatorname{Hom}_{\operatorname{D}^b(\mathbf{A})}(\mathcal{E},\mathcal{F}) \to \operatorname{Hom}_{\operatorname{D}^b(\mathbf{A})}(\mathcal{F},\mathcal{S}(\mathcal{E}))^{\vee}$$

of k-vector spaces which is functorial in \mathcal{E} and \mathcal{F} .

Some basic properties of Serre functors are the following:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures

Bridgeland's definition Example 1: curves Example 2: K3's KS definition

Definition 7

For **A** an abelian category, a **Serre functor** of $D^b(\mathbf{A})$ is an exact equivalence $\mathcal{S}:D^b(\mathbf{A})\to D^b(\mathbf{A})$ such that, for any $\mathcal{E},\mathcal{F}\in D^b(\mathbf{A})$, there is an isomorphism

$$\eta_{\mathcal{E},\mathcal{F}}: \operatorname{Hom}\nolimits_{\operatorname{D^b}(\boldsymbol{A})}(\mathcal{E},\mathcal{F}) \to \operatorname{Hom}\nolimits_{\operatorname{D^b}(\boldsymbol{A})}(\mathcal{F},\boldsymbol{S}(\mathcal{E}))^\vee$$

of k-vector spaces which is functorial in \mathcal{E} and \mathcal{F} .

Some basic properties of Serre functors are the following:

• They commute with equivalences (i.e., for $F: \mathrm{D}^{\mathrm{b}}(\mathbf{A}) \to \mathrm{D}^{\mathrm{b}}(\mathbf{B})$ an equivalence, $S_{\mathbf{B}} \circ F \cong F \circ S_{\mathbf{A}}$);

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's

Bridgeland's definition Example 1: curves Example 2: K3's KS definition

Definition 7

For **A** an abelian category, a **Serre functor** of $D^b(\mathbf{A})$ is an exact equivalence $\mathcal{S}:D^b(\mathbf{A})\to D^b(\mathbf{A})$ such that, for any $\mathcal{E},\mathcal{F}\in D^b(\mathbf{A})$, there is an isomorphism

$$\eta_{\mathcal{E},\mathcal{F}}:\operatorname{Hom}_{\operatorname{D}^b(\mathbf{A})}(\mathcal{E},\mathcal{F}) \to \operatorname{Hom}_{\operatorname{D}^b(\mathbf{A})}(\mathcal{F},\mathcal{S}(\mathcal{E}))^{\vee}$$

of k-vector spaces which is functorial in \mathcal{E} and \mathcal{F} .

Some basic properties of Serre functors are the following:

- They commute with equivalences (i.e., for $F: \mathrm{D}^b(\mathbf{A}) \to \mathrm{D}^b(\mathbf{B})$ an equivalence, $S_{\mathbf{B}} \circ F \cong F \circ S_{\mathbf{A}}$);
- For D^b(A) of finite type, a Serre functor, if it exists, is unique up to isomorphism.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability

Bridgeland's definition

4□ > 4□ > 4 = > 4 = > = 900

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structure:

Bridgeland's definition

Example 1: curve

In the geometric setting, we can be more precise:

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's

definition
Example 1: curves
Example 2: K3's
KS definition

In the geometric setting, we can be more precise:

Proposition 8

If X is a smooth projective variety defined over k, then the autoequivalence $S_X : \mathrm{D}^\mathrm{b}(X) \to \mathrm{D}^\mathrm{b}(X)$ such that

$$S_X(-) := (-) \otimes \omega_X[\dim(X)],$$

where ω_X is the dualizing line bundle, is a Serre functor.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition In the geometric setting, we can be more precise:

Proposition 8

If X is a smooth projective variety defined over k, then the autoequivalence $S_X : \mathrm{D}^\mathrm{b}(X) \to \mathrm{D}^\mathrm{b}(X)$ such that

$$S_X(-) := (-) \otimes \omega_X[\dim(X)],$$

where ω_X is the dualizing line bundle, is a Serre functor.

Exercise 9

Use the Serre functor to show that, if X has trivial canonical bundle, then χ is symmetric if $\dim(X)$ is even and is skewsymmetric otherwise.

Outline

Derived categories and stability structures

Paolo Stellari

Derived categor

t-structures

Stability structure Bridgeland's

> definition Example 1: curves Example 2: K3's

- Categories
 - Derived categories
 - t-structures
 - Stability structures
 - Bridgeland's definition
 - Example 1: curves
 - Example 2: K3's
 - KS definition

Derived categories and stability structures

Paolo Stellari

Categories

t-structures

Stability

Bridgeland's

definition
Example 1: cu

Example 2: K3's KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

I-structures

Stability

Bridgeland's definition Example 1: curv

Example 1: curves
Example 2: K3's
KS definition

Question: Given the triangulated category $D^b(\mathbf{A})$, can we produce abelian subcategories $\mathbf{B} \subseteq D^b(\mathbf{A})$, possibly such that $\mathbf{A} \neq \mathbf{B}$?

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures

Bridgeland definition

Example 1: curve
Example 2: K3's
KS definition

Question: Given the triangulated category $D^b(\mathbf{A})$, can we produce abelian subcategories $\mathbf{B} \subseteq D^b(\mathbf{A})$, possibly such that $\mathbf{A} \neq \mathbf{B}$?

Definition 10

A *t*-structure on $D^b(\mathbf{A})$ is a pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ of full subcategories such that, if we put $\mathbf{D}^{\leq n} := \mathbf{D}^{\leq 0}[-n]$ and $\mathbf{D}^{\geq n} := \mathbf{D}^{\geq 0}[-n]$, we have

Derived categories and stability structures

Paolo Stellari

t-structures

Stability

Question: Given the triangulated category $D^b(\mathbf{A})$, can we produce abelian subcategories $\mathbf{B} \subset \mathrm{D}^{\mathrm{b}}(\mathbf{A})$, possibly such that $\mathbf{A} \neq \mathbf{B}$?

Definition 10

A *t*-structure on $D^b(\mathbf{A})$ is a pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ of full subcategories such that, if we put $\mathbf{D}^{\leq n} := \mathbf{D}^{\leq 0}[-n]$ and $\mathbf{D}^{\geq n} := \mathbf{D}^{\geq 0}[-n]$, we have

• Hom
$$_{\mathrm{D}^{\mathrm{b}}(\mathbf{A})}(\mathbf{D}^{\leq 0},\mathbf{D}^{\geq 1})=0;$$

Derived categories and stability structures

Paolo Stellari

t-structures

Stability

Question: Given the triangulated category $D^b(\mathbf{A})$, can we produce abelian subcategories $\mathbf{B} \subset \mathrm{D}^{\mathrm{b}}(\mathbf{A})$, possibly such that $\mathbf{A} \neq \mathbf{B}$?

Definition 10

A *t*-structure on $D^b(\mathbf{A})$ is a pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ of full subcategories such that, if we put $\mathbf{D}^{\leq n} := \mathbf{D}^{\leq 0}[-n]$ and $\mathbf{D}^{\geq n} := \mathbf{D}^{\geq 0}[-n]$, we have

- Hom $_{\mathbf{D}^{\mathrm{b}}(\mathbf{A})}(\mathbf{D}^{\leq 0},\mathbf{D}^{\geq 1})=0;$
- $\mathbf{D}^{\leq 0} \subset \mathbf{D}^{\leq 1}$ and $\mathbf{D}^{\geq 1} \subset \mathbf{D}^{\geq 0}$;

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition

definition
Example 1: curves
Example 2: K3's
KS definition

Question: Given the triangulated category $D^b(\mathbf{A})$, can we produce abelian subcategories $\mathbf{B} \subseteq D^b(\mathbf{A})$, possibly such that $\mathbf{A} \neq \mathbf{B}$?

Definition 10

A *t*-structure on $D^b(\mathbf{A})$ is a pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ of full subcategories such that, if we put $\mathbf{D}^{\leq n} := \mathbf{D}^{\leq 0}[-n]$ and $\mathbf{D}^{\geq n} := \mathbf{D}^{\geq 0}[-n]$, we have

- Hom $_{D^b(\mathbf{A})}(\mathbf{D}^{\leq 0},\mathbf{D}^{\geq 1})=0;$
- $\mathbf{D}^{\leq 0} \subseteq \mathbf{D}^{\leq 1}$ and $\mathbf{D}^{\geq 1} \subseteq \mathbf{D}^{\geq 0}$;
- For any $\mathcal{E}\in \mathrm{D}^{\mathrm{b}}(\mathbf{A})$ there exist $\mathcal{F}\in \mathbf{D}^{\leq 0},\,\mathcal{G}\in \mathbf{D}^{\geq 1}$ and an exact triangle

$$\mathcal{F} \to \mathcal{E} \to \mathcal{G}$$
.

Derived categories and stability structures

Paolo Stellari

Categories

t-structures

Stability

Bridgeland's definition

definition Example 1: cur

Example 2: K3's KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structure

Bridgeland's definition

Example 1: curve Example 2: K3's KS definition

Definition 11

A *t*-structure $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ on $\mathrm{D}^{\mathrm{b}}(\mathbf{A})$ is **bounded** if

$$\mathrm{D}^{\mathrm{b}}(\mathbf{A}) = \cup_{i,j \in \mathbb{Z}} (\mathbf{D}^{\leq 0}[i] \cap \mathbf{D}^{\geq 0}[j]).$$

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures

Structures
Bridgeland's
definition

definition Example 1: curves Example 2: K3's KS definition

Definition 11

A *t*-structure $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ on $\mathrm{D}^b(\mathbf{A})$ is **bounded** if

$$\mathrm{D}^{\mathrm{b}}(\mathbf{A}) = \cup_{i,j \in \mathbb{Z}} (\mathbf{D}^{\leq 0}[i] \cap \mathbf{D}^{\geq 0}[j]).$$

Definition 12

The **heart** of a *t*-structure ($\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0}$) on $D^b(\mathbf{A})$ is the full subcategory $\mathbf{B} := \mathbf{D}^{\leq 0} \cap \mathbf{D}^{\geq 0}$.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

Bridgeland's definition Example 1: curves Example 2: K3's KS definition

Definition 11

A *t*-structure ($\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0}$) on $\mathrm{D}^{\mathrm{b}}(\mathbf{A})$ is **bounded** if

$$\mathrm{D}^{\mathrm{b}}(\mathbf{A}) = \cup_{i,j \in \mathbb{Z}} (\mathbf{D}^{\leq 0}[i] \cap \mathbf{D}^{\geq 0}[j]).$$

Definition 12

The **heart** of a *t*-structure ($\mathbf{D}^{\leq 0}$, $\mathbf{D}^{\geq 0}$) on $D^b(\mathbf{A})$ is the full subcategory $\mathbf{B} := \mathbf{D}^{\leq 0} \cap \mathbf{D}^{\geq 0}$.

Proposition 13

The heart **B** is an abelian category.

Derived categories and stability structures

Paolo Stellari

Categories

t-structures

Stability

Bridgeland's

definition

Example 1: curv

Derived categories and stability structures

Paolo Stellari

t-structures

Stability

For D^b(**A**) we can define the two full subcategories

$$\mathbf{D}^{\leq 0} := \{ \mathcal{E} \in D^{b}(\mathbf{A}) : H^{i}(\mathcal{E}) = 0 \text{ for } i > 0 \}$$

$$\mathbf{D}^{\geq 0} := \{ \mathcal{E} \in D^{b}(\mathbf{A}) : H^{i}(\mathcal{E}) = 0 \text{ for } i < 0 \}.$$

Derived categories and stability structures

Paolo Stellari

t-structures

Stability

For D^b(**A**) we can define the two full subcategories

$$\begin{split} \mathbf{D}^{\leq 0} &:= \{\mathcal{E} \in \mathrm{D^b}(\mathbf{A}) : H^i(\mathcal{E}) = 0 \text{ for } i > 0 \} \\ \mathbf{D}^{\geq 0} &:= \{\mathcal{E} \in \mathrm{D^b}(\mathbf{A}) : H^i(\mathcal{E}) = 0 \text{ for } i < 0 \}. \end{split}$$

The pair ($\mathbf{D}^{\leq 0}$, $\mathbf{D}^{\geq 0}$) defines a bounded *t*-structure whose heart is again A.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition For $\mathrm{D}^b(\mathbf{A})$ we can define the two full subcategories

The pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ defines a bounded *t*-structure whose heart is again **A**.

This is usually called the **standard** t-structure on $D^b(\mathbf{A})$.

Tiltings (after Happel-Reiten-Smalo)

Derived categories and stability structures

Paolo Stellari

Categories

t-structures

Stability

Bridgeland's

definition
Example 1: cur

Example 2: K3's KS definition

Tiltings (after Happel-Reiten-Smalo)

Derived categories and stability structures

Paolo Stellari

Derived categor

t-structures

Stability structures

Bridgeland's definition

Example 1: curve: Example 2: K3's KS definition

Definition 14

A torsion pair in an abelian category **A** is a pair of full subcategories (\mathbf{T},\mathbf{F}) of **A** which satisfy $\operatorname{Hom}_{\mathbf{A}}(\mathcal{T},\mathcal{F})=0$, for $\mathcal{T}\in\mathbf{T}$ and $\mathcal{F}\in\mathbf{F}$, and such that, for every $\mathcal{E}\in\mathbf{A}$, there are $\mathcal{T}\in\mathbf{T}$ and $\mathcal{F}\in\mathbf{F}$ and a short exact sequence

$$0 \to \mathcal{T} \to \mathcal{E} \to \mathcal{F} \to 0.$$

Tiltings (after Happel-Reiten-Smalo)

Derived categories and stability structures

Paolo Stellari

t-structures

Stability

Definition 14

A torsion pair in an abelian category **A** is a pair of full subcategories (\mathbf{T}, \mathbf{F}) of **A** which satisfy $\operatorname{Hom}_{\mathbf{A}}(\mathcal{T}, \mathcal{F}) = \mathbf{0}$, for $\mathcal{T} \in \mathbf{T}$ and $\mathcal{F} \in \mathbf{F}$, and such that, for every $\mathcal{E} \in \mathbf{A}$, there are $\mathcal{T} \in \mathbf{T}$ and $\mathcal{F} \in \mathbf{F}$ and a short exact sequence

$$0 \to \mathcal{T} \to \mathcal{E} \to \mathcal{F} \to 0.$$

Proposition 15

If (\mathbf{T}, \mathbf{F}) is a torsion pair in $D^b(\mathbf{A})$, then the full subcategory

$$\mathbf{B} := \left\{ \mathcal{E} \in \mathrm{D^b}(\mathbf{A}) : \begin{array}{l} \bullet \ \ H^i(\mathcal{E}) = 0 \text{ for } i \not\in \{-1,0\}, \\ \bullet \ \ H^{-1}(\mathcal{E}) \in \mathbf{F} \text{ and } H^0(\mathcal{E}) \in \mathbf{T} \end{array} \right\}$$

is the heart of a bounded t-structure.

Outline

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's KS definition

- Categories
 - Derived categories
 - t-structures
 - Stability structures
 - Bridgeland's definition
 - Example 1: curves
 - Example 2: K3's
 - KS definition

Derived categories and stability structures

Paolo Stellari

Categories

erived categorie

Stability

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Warning: For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Warning: For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

A stability condition on $\mathrm{D}^{\mathrm{b}}(\mathbf{A})$ is a pair $\sigma=(\mathbf{Z},\mathcal{P})$ where

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Warning: For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

A stability condition on $\mathrm{D^b}(\mathbf{A})$ is a pair $\sigma = (\mathbf{Z}, \mathcal{P})$ where

ullet $Z: K(D^b(A)) \to \mathbb{C}$ is a linear map (the central charge)

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Warning: For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

A stability condition on $\mathrm{D^b}(\mathbf{A})$ is a pair $\sigma = (\mathbf{Z}, \mathcal{P})$ where

- $\bullet \ Z : \mathcal{K}(\mathrm{D}^b(\textbf{A})) \to \mathbb{C} \text{ is a linear map (the } \textbf{central charge})$
- $\mathcal{P}(\phi) \subset \mathrm{D^b}(\mathbf{A})$ are full additive subcategories for each $\phi \in \mathbb{R}$

satisfying the following conditions:

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorii structures

Stability

Structures Bridgeland's

definition

Example 1: curve: Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

(B1) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

(B2) $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie I-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's KS definition

- **(B2)** $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .
- **(B3)** Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition

definition Example 1: curves Example 2: K3's KS definition

- **(B2)** $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .
- **(B3)** Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.
- (B4) Any $0 \neq \mathcal{E} \in \mathrm{D^b}(\mathbf{A})$ admits a **Harder–Narasimhan** filtration given by a collection of distinguished triangles

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition

definition Example 1: curves Example 2: K3's KS definition

- **(B2)** $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .
- **(B3)** Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.
- (B4) Any $0 \neq \mathcal{E} \in \mathrm{D}^b(\mathbf{A})$ admits a **Harder–Narasimhan** filtration given by a collection of distinguished triangles

$$\mathcal{E}_{i-1} \to \mathcal{E}_i \to \mathcal{A}_i$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition Example 1: cu

definition Example 1: curves Example 2: K3's KS definition (B1) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

- **(B2)** $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .
- **(B3)** Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.
- (B4) Any $0 \neq \mathcal{E} \in \mathrm{D}^b(\mathbf{A})$ admits a Harder–Narasimhan filtration given by a collection of distinguished triangles

$$\mathcal{E}_{i-1} \to \mathcal{E}_i \to \mathcal{A}_i$$

with $\mathcal{E}_0 = 0$ and $\mathcal{E}_n = \mathcal{E}$ such that $\mathcal{A}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \ldots > \phi_n$.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorie structures

Stability

Bridgeland's

definition Example 1: cui

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures Bridgeland's definition Example 1: curv

Example 1: curves
Example 2: K3's
KS definition

• The non-zero objects in the abelian category $\mathcal{P}(\phi)$ are the **semistable** objects of phase ϕ . The objects \mathcal{A}_i in (B4) are the **semistable factors** of \mathcal{E} .

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability

Bridgeland's definition Example 1: curves Example 2: K3's • The non-zero objects in the abelian category $\mathcal{P}(\phi)$ are the **semistable** objects of phase ϕ . The objects \mathcal{A}_i in (B4) are the **semistable factors** of \mathcal{E} .

• The minimal objects of $\mathcal{P}(\phi)$ (i.e. those with no proper subobjects) are called **stable** of phase ϕ .

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability

structures
Bridgeland's
definition
Example 1: curves
Example 2: K3's
KS definition

- The non-zero objects in the abelian category $\mathcal{P}(\phi)$ are the **semistable** objects of phase ϕ . The objects \mathcal{A}_i in (B4) are the **semistable factors** of \mathcal{E} .
- The minimal objects of $\mathcal{P}(\phi)$ (i.e. those with no proper subobjects) are called **stable** of phase ϕ .
- The category $\mathcal{P}((0,1])$, generated by the semistable objects of phase in (0,1], is called the **heart** of σ .

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorie structures

Stability

Bridgeland's definition

Example 1: curves
Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's KS definition One could alternative start with an abelian category **A** and a **slope function** $Z: K(\mathbf{A}) \to \mathbb{C}$ such that, for $0 \neq \mathcal{E} \in \mathbf{A}$,

$$Z([\mathcal{E}]) \in \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), \, 0 < \phi \le 1\}.$$

Define

$$\phi(\mathcal{E}) := \frac{1}{\pi} \operatorname{arg}(Z(\mathcal{E})) \in (0,1].$$

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: cur

Example 1: curves
Example 2: K3's
KS definition

One could alternative start with an abelian category **A** and a **slope function** $Z: K(\mathbf{A}) \to \mathbb{C}$ such that, for $0 \neq \mathcal{E} \in \mathbf{A}$,

$$Z([\mathcal{E}]) \in \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), \, 0 < \phi \le 1\}.$$

Define

$$\phi(\mathcal{E}) := \frac{1}{\pi} \operatorname{arg}(Z(\mathcal{E})) \in (0,1].$$

An object $\mathcal{E} \in \mathbf{A}$ is **semistable** if

$$\phi(\mathcal{F}) \leq \phi(\mathcal{E})$$

for any proper subobject $\mathcal{F} \subseteq \mathcal{E}$.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition Example 1: curv Example 2: K3's One could alternative start with an abelian category **A** and a **slope function** $Z : K(\mathbf{A}) \to \mathbb{C}$ such that, for $0 \neq \mathcal{E} \in \mathbf{A}$,

$$Z([\mathcal{E}]) \in \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), \, 0 < \phi \le 1\}.$$

Define

$$\phi(\mathcal{E}) := \frac{1}{\pi} \operatorname{arg}(Z(\mathcal{E})) \in (0,1].$$

An object $\mathcal{E} \in \mathbf{A}$ is **semistable** if

$$\phi(\mathcal{F}) \leq \phi(\mathcal{E})$$

for any proper subobject $\mathcal{F} \subseteq \mathcal{E}$.

A slope function has the **Harder–Narasimhan property** if it has HN-filtrations with semistable factors.

Derived categories and stability structures

Paolo Stellari

Categories

rived categorie tructures

Stability

Bridgeland's

definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structure

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Proposition 16

To exhibit a stability condition on $\mathrm{D}^b(\boldsymbol{\mathsf{A}}),$ it is enough to give

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structure: Bridgeland's

Bridgeland's definition

Example 1: curve

Example 1: curves
Example 2: K3's

Proposition 16

To exhibit a stability condition on $D^b(\mathbf{A})$, it is enough to give

• a bounded *t*-structure on D^b(**A**) with heart **B**;

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: cu

Example 1: curves
Example 2: K3's
KS definition

Proposition 16

To exhibit a stability condition on $D^b(\mathbf{A})$, it is enough to give

- a bounded *t*-structure on D^b(**A**) with heart **B**;
- a group homomorphism $Z:K(\mathbf{B})\to\mathbb{C}$ such that $Z(\mathcal{E})\in\mathbb{H}$, for all $0\neq\mathcal{E}\in\mathbf{B}$, and with the Harder–Narasimhan property.

(Here
$$\mathbb{H}:=\{z\in\mathbb{C}\setminus\{0\}:z=|z|\exp(i\pi\phi),\,0<\phi\leq 1\}.$$
)

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability

structures
Bridgeland's
definition
Example 1: curve
Example 2: K3's

Proposition 16

To exhibit a stability condition on $D^b(\mathbf{A})$, it is enough to give

- a bounded *t*-structure on $D^b(\mathbf{A})$ with heart \mathbf{B} ;
- a group homomorphism $Z:K(\mathbf{B})\to\mathbb{C}$ such that $Z(\mathcal{E})\in\mathbb{H}$, for all $0\neq\mathcal{E}\in\mathbf{B}$, and with the Harder–Narasimhan property.

(Here $\mathbb{H} := \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), \ 0 < \phi \le 1\}.$)

All stability conditions are assumed to be **locally finite**. Hence every object in $\mathcal{P}(\phi)$ has a finite **Jordan–Hölder filtration**.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition

Proposition 16

To exhibit a stability condition on $D^b(\mathbf{A})$, it is enough to give

- a bounded *t*-structure on $D^b(\mathbf{A})$ with heart **B**;
- a group homomorphism $Z:K(\mathbf{B})\to\mathbb{C}$ such that $Z(\mathcal{E})\in\mathbb{H}$, for all $0\neq\mathcal{E}\in\mathbf{B}$, and with the Harder–Narasimhan property.

(Here $\mathbb{H} := \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), \ 0 < \phi \le 1\}.$)

All stability conditions are assumed to be **locally finite**. Hence every object in $\mathcal{P}(\phi)$ has a finite **Jordan–Hölder filtration**.

 $Stab(D^b(\mathbf{A}))$ is the set of locally finite stability conditions.

Derived categories and stability structures

Paolo Stellari

Categories

rived categorie tructures

Stability

Bridgeland's

definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

 $Stab(D^b(\textbf{A}))$ carries a natural topology with the following important property:

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition

definition
Example 1: curves
Example 2: K3's
KS definition

 $Stab(D^b(\mathbf{A}))$ carries a natural topology with the following important property:

Theorem 17 (Bridgeland)

For each connected component $\Sigma \subseteq \operatorname{Stab}(D^b(\mathbf{A}))$, there is a linear subspace $V(\Sigma) \subseteq \operatorname{Hom}(K(D^b(\mathbf{A})), \mathbb{C})$ with a well defined topology and a local homeomorphism $\mathcal{Z}: \Sigma \to V(\Sigma)$ which maps a stability condition $(\mathcal{Z}, \mathcal{P})$ to its central charge \mathcal{Z} .

Derived categories and stability structures

Paolo Stellari

Stability Bridgeland's

definition

Stab(D^b(**A**)) carries a natural topology with the following important property:

Theorem 17 (Bridgeland)

For each connected component $\Sigma \subseteq \operatorname{Stab}(D^b(\mathbf{A}))$, there is a linear subspace $V(\Sigma) \subseteq \operatorname{Hom}(K(D^b(\mathbf{A})), \mathbb{C})$ with a well defined topology and a local homeomorphism $\mathcal{Z}: \Sigma \to V(\Sigma)$ which maps a stability condition (Z, \mathcal{P}) to its central charge Z.

As explained later in the examples, for $\mathbf{A} = \mathbf{Coh}(X)$, (up to some modifications...) $Stab(D^b(X))$ is a finite dimensional complex manifold.

Derived categories and stability structures

Paolo Stellari

Categories

erived categorie structures

Stability

Bridgeland's

definition Example 1: cur

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability structures Bridgeland's

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

There are two groups acting naturally on $Stab\left(D^b(\boldsymbol{A})\right)$ (and whose actions commute):

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

I-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's KS definition There are two groups acting naturally on $Stab(D^b(\mathbf{A}))$ (and whose actions commute):

• The left action of the group $\operatorname{Aut}(D^b(\mathbf{A}))$ of exact autoequivalences of $D^b(\mathbf{A})$. Indeed, $\Phi \in \operatorname{Aut}(D^b(\mathbf{A}))$ sends (Z, \mathcal{P}) to (Z', \mathcal{P}') , where

$$Z'([\mathcal{E}]) = Z([\Phi^{-1}(\mathcal{E})])$$
 $\mathcal{P}'(\phi) = \Phi(\mathcal{P}(\phi)).$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition There are two groups acting naturally on $Stab(D^b(\mathbf{A}))$ (and whose actions commute):

• The left action of the group $\operatorname{Aut}(D^b(\mathbf{A}))$ of exact autoequivalences of $D^b(\mathbf{A})$. Indeed, $\Phi \in \operatorname{Aut}(D^b(\mathbf{A}))$ sends (Z, \mathcal{P}) to (Z', \mathcal{P}') , where

$$Z'([\mathcal{E}]) = Z([\Phi^{-1}(\mathcal{E})])$$
 $\mathcal{P}'(\phi) = \Phi(\mathcal{P}(\phi)).$

• The right action of the universal cover $\widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$ of $\operatorname{Gl}_2^+(\mathbb{R})$. $\widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$ is the set of pairs (T,f) where $f:\mathbb{R}\to\mathbb{R}$ is an increasing map with $f(\phi+1)=f(\phi)+1$, and $T:\mathbb{R}^2\to\mathbb{R}^2$ is an orientation-preserving linear isomorphism, such that the induced maps on $S^1=\mathbb{R}/2\mathbb{Z}=(\mathbb{R}^2\setminus 0)/\mathbb{R}>0$ are the same. So $Z'=T^{-1}\circ Z$ and $\mathcal{P}'(\phi)=\mathcal{P}(f(\phi))$.

Outline

Derived categories and stability structures

Paolo Stellari

Derived categories

t-structures

Stability structures Bridgeland's

Example 1: curves
Example 2: K3's
KS definition

Categories

- Derived categories
- t-structures
- Stability structures
 - Bridgeland's definition
 - Example 1: curves
 - Example 2: K3's
 - KS definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

rived categorie tructures

Stability structures

Bridgeland's

Example 1: curves

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's

Example 1: curves
Example 2: K3's
KS definition

For X a smooth projective variety (defined over \mathbb{C}), define the **numerical Grothendieck group** to be the quotient

$$\mathcal{N}(X) := K(X)/K(X)^{\perp},$$

where \perp is with respect to the pairing χ .

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

For X a smooth projective variety (defined over \mathbb{C}), define the **numerical Grothendieck group** to be the quotient

$$\mathcal{N}(X) := K(X)/K(X)^{\perp},$$

where \perp is with respect to the pairing χ .

A stability condition is **numerical** if Z factors through $v(-) := \operatorname{ch}(-) \cdot \sqrt{\operatorname{td}(x)} : K(X) \to \mathcal{N}(X)$. Stab $\mathcal{N}(D^b(X))$ is the finite dimensional complex manifold parametrizing numerical stability conditions and $\dim_{\mathbb{C}} \operatorname{Stab}_{\mathcal{N}}(D^b(X)) = \dim_{\mathbb{C}}(\mathcal{N}(X) \otimes \mathbb{C})$.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

For X a smooth projective variety (defined over \mathbb{C}), define the **numerical Grothendieck group** to be the quotient

$$\mathcal{N}(X) := K(X)/K(X)^{\perp},$$

where \perp is with respect to the pairing χ .

A stability condition is **numerical** if Z factors through $v(-) := \operatorname{ch}(-) \cdot \sqrt{\operatorname{td}(x)} : K(X) \to \mathcal{N}(X)$. Stab $\mathcal{N}(D^b(X))$ is the finite dimensional complex manifold parametrizing numerical stability conditions and $\dim_{\mathbb{C}} \operatorname{Stab}_{\mathcal{N}}(D^b(X)) = \dim_{\mathbb{C}}(\mathcal{N}(X) \otimes \mathbb{C})$.

Example 18

If X is a smooth curve than $\mathcal{N}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$ and so $\operatorname{Stab}_{\mathcal{N}}(\mathrm{D}^{\mathrm{b}}(X))$ has dimension 2.

Examples of stability conditions (Bridgeland)

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability structures Bridgeland's

definition

Example 1: curves

Example 2: K3's

Examples of stability conditions (Bridgeland)

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability

Bridgeland's definition Example 1: curves Let C be a smooth curve of genus g > 0 defined over \mathbb{C} . The abelian category $\mathbf{Coh}(C)$ is the heart of a bounded t-structure.

Examples of stability conditions (Bridgeland)

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Let C be a smooth curve of genus g > 0 defined over \mathbb{C} . The abelian category $\mathbf{Coh}(C)$ is the heart of a bounded t-structure.

As
$$\mathcal{N}(C)=H^0(C,\mathbb{Z})\oplus H^2(C,\mathbb{Z})$$
, define $Z:\mathcal{N}(C)\to\mathbb{C}$ as
$$\mathcal{E}\mapsto -\mathrm{deg}(\mathcal{E})+i\operatorname{rk}(\mathcal{E}).$$

Examples of stability conditions (Bridgeland)

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

I-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Let C be a smooth curve of genus g > 0 defined over \mathbb{C} . The abelian category $\mathbf{Coh}(C)$ is the heart of a bounded t-structure.

As
$$\mathcal{N}(C)=H^0(C,\mathbb{Z})\oplus H^2(C,\mathbb{Z}),$$
 define $Z:\mathcal{N}(C)\to\mathbb{C}$ as

$$\mathcal{E} \mapsto -\mathrm{deg}(\mathcal{E}) + i\,\mathrm{rk}\,(\mathcal{E}).$$

Exercise 19

Show that Z as above is a slope function.

Examples of stability conditions (Bridgeland)

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

!-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

Let C be a smooth curve of genus g > 0 defined over \mathbb{C} . The abelian category $\mathbf{Coh}(C)$ is the heart of a bounded t-structure.

As
$$\mathcal{N}(C)=H^0(C,\mathbb{Z})\oplus H^2(C,\mathbb{Z})$$
, define $Z:\mathcal{N}(C)\to\mathbb{C}$ as $\mathcal{E}\mapsto -\mathrm{deg}(\mathcal{E})+i\operatorname{rk}(\mathcal{E})$.

Exercise 19

Show that Z as above is a slope function.

The HN-property follows easily from the existence of HN-filtrations for the slope stability (recall that $\mu(\mathcal{E}) = \frac{\deg(\mathcal{E})}{\operatorname{rk}(\mathcal{E})}$).

The space of stability conditions

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorie: structures

Stability structure

Structure:

definition

Example 1: curves
Example 2: K3's

The space of stability conditions

Derived categories and stability structures

Paolo Stellari

Stability

Example 1: curves

Theorem 20 (Bridgeland, Macri)

If C is a curve of genus g > 0 defined over \mathbb{C} , then the action of $\widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$ on $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D}^b(X))$ is free and transitive. In particular, Stab $_{\mathcal{N}}(\mathrm{D}^{\mathrm{b}}(X))\cong\widetilde{\mathrm{Gl}}_{2}^{+}(\mathbb{R}).$

The space of stability conditions

Derived categories and stability structures

Paolo Stellari

Stability

Example 1: curves

Theorem 20 (Bridgeland, Macri)

If C is a curve of genus g > 0 defined over \mathbb{C} , then the action of $\widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$ on $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D}^b(X))$ is free and transitive. In particular, Stab $_{\mathcal{N}}(\mathrm{D}^{\mathrm{b}}(X))\cong \widetilde{\mathrm{Gl}}_{2}^{+}(\mathbb{R}).$

Note: The case of \mathbb{P}^1 was treated independently by Okada and Macrì.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures

definition

Example 1: curves
Example 2: K3's
KS definition

Derived categories and stability structures

Paolo Stellari

Stability

Example 1: curves

• Gorodentsev–Kuleshov–Rudakov: If $\mathcal{E} \in \mathbf{Coh}(C)$ sits in a triangle

$$\mathcal{F} \to \mathcal{E} \to \mathcal{G}$$
,

with $\mathcal{F}, \mathcal{G} \in D^b(C)$ and $\operatorname{Hom}^{\leq 0}(\mathcal{F}, \mathcal{G}) = 0$, then $\mathcal{E}, \mathcal{G} \in \mathbf{Coh}(C)$ as well.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: cu

Example 1: curves
Example 2: K3's
KS definition

• Gorodentsev–Kuleshov–Rudakov: If $\mathcal{E} \in \mathbf{Coh}(C)$ sits in a triangle

$$\mathcal{F} \to \mathcal{E} \to \mathcal{G},$$

with $\mathcal{F},\mathcal{G}\in \mathrm{D}^b(\mathcal{C})$ and $\mathrm{Hom}^{\leq 0}(\mathcal{F},\mathcal{G})=0$, then $\mathcal{E},\mathcal{G}\in \textbf{Coh}(\mathcal{C})$ as well.

• From this one deduces that the skyscraper sheaves \mathcal{O}_X are all stable in any stability condition. Indeed, one proves that \mathcal{O}_X is semistable and all its stable factors are isomorphic. By the above results they are in $\mathbf{Coh}(C)$ and so isomorphic to \mathcal{O}_X .

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: cur

definition

Example 1: curves

Example 2: K3's

KS definition

• Gorodentsev–Kuleshov–Rudakov: If $\mathcal{E} \in \mathbf{Coh}(C)$ sits in a triangle

$$\mathcal{F} \to \mathcal{E} \to \mathcal{G},$$

with $\mathcal{F}, \mathcal{G} \in \mathrm{D}^{\mathrm{b}}(C)$ and $\mathrm{Hom}^{\leq 0}(\mathcal{F}, \mathcal{G}) = 0$, then $\mathcal{E}, \mathcal{G} \in \mathbf{Coh}(C)$ as well.

- From this one deduces that the skyscraper sheaves \mathcal{O}_X are all stable in any stability condition. Indeed, one proves that \mathcal{O}_X is semistable and all its stable factors are isomorphic. By the above results they are in $\mathbf{Coh}(C)$ and so isomorphic to \mathcal{O}_X .
- By the same argument it follows that all line bundles are stable in all stability conditions.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures

definition

Example 1: curves
Example 2: K3's
KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

• Take $\sigma = (Z, \mathcal{P})$ and a line bundle L. Let ϕ and ψ be the phases of the stable objects L and \mathcal{O}_x .

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's

- Take $\sigma = (Z, P)$ and a line bundle L. Let ϕ and ψ be the phases of the stable objects L and \mathcal{O}_X .
- The existence of the maps $L \to \mathcal{O}_X$ and $\mathcal{O}_X \to L[1]$ gives the inequalities $\psi 1 \le \phi \le \psi$. This implies that Z (seen as a map $\mathcal{N}(C) \otimes \mathbb{R} \to \mathbb{R}^2 \cong \mathbb{C}$) is an orientation preserving isomorphism.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's KS definition

- Take $\sigma = (Z, P)$ and a line bundle L. Let ϕ and ψ be the phases of the stable objects L and \mathcal{O}_X .
- The existence of the maps $L \to \mathcal{O}_X$ and $\mathcal{O}_X \to L[1]$ gives the inequalities $\psi 1 \le \phi \le \psi$. This implies that Z (seen as a map $\mathcal{N}(C) \otimes \mathbb{R} \to \mathbb{R}^2 \cong \mathbb{C}$) is an orientation preserving isomorphism.
- Hence by acting by $\widetilde{\mathrm{Gl}}_2^+(\mathbb{R})$, we can assume that $Z = -\mathrm{deg}(\mathcal{E}) + i \operatorname{rk}(\mathcal{E})$ and that all skyscraper sheaves are stable of phase 1. This implies that $\mathcal{P}((0,1])$, the heart of the stability condition, is $\operatorname{\mathbf{Coh}}(C)$.

Outline

Derived categories and stability structures

Paolo Stellari

Stability

Example 2: K3's

- - Derived categories
 - t-structures
- Stability structures

 - Example 1: curves
 - Example 2: K3's
 - KS definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

tructures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures

Structure:
Bridgeland's

Example 1: curve
Example 2: K3's

Definition 21

A **K3 surface** is a smooth Kähler (complex) surface *X* such that:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures

Bridgeland's definition Example 1: curv Example 2: K3's

Definition 21

A **K3 surface** is a smooth Kähler (complex) surface *X* such that:

X is simply connected.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures

Bridgeland's
definition
Example 1: curve
Example 2: K3's

Definition 21

A **K3 surface** is a smooth Kähler (complex) surface *X* such that:

- X is simply connected.
- The canonical bundle ω_X is trivial.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures

Bridgeland's definition

Example 1: curve:
Example 2: K3's
KS definition

Definition 21

A **K3 surface** is a smooth Kähler (complex) surface *X* such that:

- X is simply connected.
- The canonical bundle ω_X is trivial.

Some examples are

Derived categories and stability structures

Paolo Stellari

Stability

Example 2: K3's

Definition 21

A K3 surface is a smooth Kähler (complex) surface X such that:

- X is simply connected.
- The canonical bundle ω_X is trivial.

Some examples are

• Quartics in \mathbb{P}^3 and double covers of \mathbb{P}^2 ramified along a sextic.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curve: Example 2: K3's KS definition

Definition 21

A **K3 surface** is a smooth Kähler (complex) surface *X* such that:

- X is simply connected.
- The canonical bundle ω_X is trivial.

Some examples are

- Quartics in \mathbb{P}^3 and double covers of \mathbb{P}^2 ramified along a sextic.
- Kummer surfaces (i.e. crepant resolutions of the quotient of an abelian surface by the involution $a \mapsto -a$).

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curve: Example 2: K3's KS definition

Definition 21

A **K3 surface** is a smooth Kähler (complex) surface *X* such that:

- X is simply connected.
- The canonical bundle ω_X is trivial.

Some examples are

- Quartics in \mathbb{P}^3 and double covers of \mathbb{P}^2 ramified along a sextic.
- Kummer surfaces (i.e. crepant resolutions of the quotient of an abelian surface by the involution $a \mapsto -a$).

Note: We restrict ourselves to projective ones!

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Stability

Example 2: K3's

For X a K3, $\mathcal{N}(X) \cong \mathbb{Z}^{\oplus \rho}$, with $3 \leq \rho \leq$ 22. All values are realized!

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curv

Example 2: K3's

For X a K3, $\mathcal{N}(X) \cong \mathbb{Z}^{\oplus \rho}$, with $3 \leq \rho \leq$ 22. All values are realized!

 $\mathcal{N}(X)$ is actually the algebraic part of the total cohomology.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition For X a K3, $\mathcal{N}(X) \cong \mathbb{Z}^{\oplus \rho}$, with $3 \leq \rho \leq$ 22. All values are realized!

 $\mathcal{N}(X)$ is actually the algebraic part of the total cohomology.

 $H^*(X,\mathbb{Z})$ is endowed with a natural symmetric bilinear form, called **Mukai pairing**:

$$\langle \alpha, \beta \rangle := \alpha_2 \cup \beta_2 - \alpha_0 \cup \beta_4 - \alpha_4 \cup \beta_0,$$

for $\alpha = (\alpha_0, \alpha_2, \alpha_4)$ and $\beta := (\beta_0, \beta_2, \beta_4)$ in $H^0 \oplus H^2 \oplus H^4$.

Derived categories and stability structures

Paolo Stellari

Categories

erived categorie structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structure:

Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

The main difference with the curve case is:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures

Bridgeland definition

Example 1: curve
Example 2: K3's
KS definition

The main difference with the curve case is:

Proposition 22

If X is a smooth complex projective variety of dimension $d \ge 2$, then there are no numerical stability conditions on $D^b(X)$ with heart $\mathbf{Coh}(X)$.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

t-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's The main difference with the curve case is:

Proposition 22

If X is a smooth complex projective variety of dimension $d \ge 2$, then there are no numerical stability conditions on $\mathrm{D}^\mathrm{b}(X)$ with heart $\mathbf{Coh}(X)$.

Reason: After reducing to the case d = 2, one observes that it is already impossible to have a slope function on Coh(X).

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorie structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability structures Bridgeland's

definition
Example 1: curves
Example 2: K3's

Let X be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's

Let X be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Define $Z_{eta,\omega}:K(X) o\mathbb{C}$ as

$$Z(\mathcal{E}) := \langle \exp(\beta + i\omega), v(\mathcal{E}) \rangle.$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures

Bridgeland definition

Example 1: curve
Example 2: K3's
KS definition

Let X be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Define $Z_{eta,\omega}:K(X) o\mathbb{C}$ as

$$Z(\mathcal{E}) := \langle \exp(\beta + i\omega), v(\mathcal{E}) \rangle.$$

Let $T, F \subseteq Coh(X)$ be full additive subcategories:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Let X be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Define $Z_{eta,\omega}:K(X) o\mathbb{C}$ as

$$Z(\mathcal{E}) := \langle \exp(\beta + i\omega), v(\mathcal{E}) \rangle.$$

Let $T, F \subseteq Coh(X)$ be full additive subcategories:

• The non-trivial objects in **T** are the sheaves such that their torsion-free part have μ_{ω} -semistable Harder–Narasimhan factors of slope $\mu_{\omega} > \beta \cdot \omega$.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Let X be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Define $Z_{eta,\omega}:K(X) o\mathbb{C}$ as

$$Z(\mathcal{E}) := \langle \exp(\beta + i\omega), v(\mathcal{E}) \rangle.$$

Let $T, F \subseteq Coh(X)$ be full additive subcategories:

- The non-trivial objects in **T** are the sheaves such that their torsion-free part have μ_{ω} -semistable Harder–Narasimhan factors of slope $\mu_{\omega} > \beta \cdot \omega$.
- A non-trivial sheaf $\mathcal E$ is an object in $\mathbf F$ if $\mathcal E$ is torsion-free and every μ_ω -semistable Harder–Narasimhan factor of $\mathcal E$ has slope $\mu_\omega \leq \beta \cdot \omega$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Let X be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Define $Z_{eta,\omega}:K(X) o\mathbb{C}$ as

$$Z(\mathcal{E}) := \langle \exp(\beta + i\omega), v(\mathcal{E}) \rangle.$$

Let T, $F \subseteq Coh(X)$ be full additive subcategories:

- The non-trivial objects in **T** are the sheaves such that their torsion-free part have μ_{ω} -semistable Harder–Narasimhan factors of slope $\mu_{\omega} > \beta \cdot \omega$.
- A non-trivial sheaf $\mathcal E$ is an object in $\mathbf F$ if $\mathcal E$ is torsion-free and every μ_ω -semistable Harder–Narasimhan factor of $\mathcal E$ has slope $\mu_\omega \leq \beta \cdot \omega$.

One shows that (\mathbf{T}, \mathbf{F}) defines a torsion pair.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorie structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's

definition
Example 1: curves
Example 2: K3's

Define the heart of the induced *t*-structure as the abelian category

$$\mathbf{A}_{\beta,\omega} := \left\{ \begin{split} &\bullet \quad H^i(\mathcal{E}) = 0 \text{ for } i \not\in \{-1,0\}, \\ &\bullet \quad H^{-1}(\mathcal{E}) \in \mathbf{F}, \\ &\bullet \quad H^0(\mathcal{E}) \in \mathbf{T} \end{split} \right\}.$$

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Define the heart of the induced *t*-structure as the abelian category

$$\mathbf{A}_{\beta,\omega} := \left\{ \begin{split} & \bullet \quad H^i(\mathcal{E}) = 0 \text{ for } i \not \in \{-1,0\}, \\ & \bullet \quad H^{-1}(\mathcal{E}) \in \mathbf{F}, \\ & \bullet \quad H^0(\mathcal{E}) \in \mathbf{T} \end{split} \right\}.$$

Lemma 23

Assume $\beta, \omega \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ and ω ample such that $\omega \cdot \omega > 2$. The map $Z_{\beta,\omega}$ is a stability function on $\mathbf{A}_{\beta,\omega}$ with the HN property. Moreover, it defines a numerical locally finite stability condition $\sigma_{\beta,\omega}$.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Define the heart of the induced *t*-structure as the abelian category

$$\mathbf{A}_{\beta,\omega} := \left\{ \begin{split} &\bullet \quad H^i(\mathcal{E}) = 0 \text{ for } i \not\in \{-1,0\}, \\ \mathcal{E} \in \mathrm{D}^\mathrm{b}(X) : &\bullet \quad H^{-1}(\mathcal{E}) \in \mathbf{F}, \\ &\bullet \quad H^0(\mathcal{E}) \in \mathbf{T} \end{split} \right\}.$$

Lemma 23

Assume $\beta, \omega \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ and ω ample such that $\omega \cdot \omega > 2$. The map $Z_{\beta,\omega}$ is a stability function on $\mathbf{A}_{\beta,\omega}$ with the HN property. Moreover, it defines a numerical locally finite stability condition $\sigma_{\beta,\omega}$.

Note: one could impose a weaker condition on $Z_{\beta,\omega}$.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorii structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability

Bridgeland's

definition Example 1: curv

Example 2: K3's KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curve: Example 2: K3's

Define:

• $\mathcal{P}(X) \subseteq \mathcal{N}(X) \otimes \mathbb{C}$ consisting of those vectors whose real and imaginary parts span positive definite two-planes in $\mathcal{N}(X) \otimes \mathbb{R}$;

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability

structures
Bridgeland's
definition
Example 1: curves
Example 2: K3's

- $\mathcal{P}(X) \subseteq \mathcal{N}(X) \otimes \mathbb{C}$ consisting of those vectors whose real and imaginary parts span positive definite two-planes in $\mathcal{N}(X) \otimes \mathbb{R}$;
- $\mathcal{P}^+(X) \subset \mathcal{P}(X)$ denote the connected component containing vectors of the form $\exp(\beta + i\omega)$, where $\omega \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ is ample;

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition

- $\mathcal{P}(X) \subseteq \mathcal{N}(X) \otimes \mathbb{C}$ consisting of those vectors whose real and imaginary parts span positive definite two-planes in $\mathcal{N}(X) \otimes \mathbb{R}$;
- $\mathcal{P}^+(X) \subset \mathcal{P}(X)$ denote the connected component containing vectors of the form $\exp(\beta + i\omega)$, where $\omega \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ is ample;
- $\Delta(X) = \{ \delta \in \mathcal{N}(X) : \langle \delta, \delta \rangle = -2 \};$

- $\mathcal{P}(X) \subseteq \mathcal{N}(X) \otimes \mathbb{C}$ consisting of those vectors whose real and imaginary parts span positive definite two-planes in $\mathcal{N}(X) \otimes \mathbb{R}$;
- $\mathcal{P}^+(X) \subset \mathcal{P}(X)$ denote the connected component containing vectors of the form $\exp(\beta + i\omega)$, where $\omega \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ is ample;
- $\Delta(X) = \{\delta \in \mathcal{N}(X) : \langle \delta, \delta \rangle = -2\};$
- $\mathcal{P}_0^+(X) = \mathcal{P}^+(X) \setminus \bigcup_{\delta \in \Delta(X)} \delta^{\perp} \subseteq \mathcal{N}(X) \otimes \mathbb{C}$.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition

- $\mathcal{P}(X) \subseteq \mathcal{N}(X) \otimes \mathbb{C}$ consisting of those vectors whose real and imaginary parts span positive definite two-planes in $\mathcal{N}(X) \otimes \mathbb{R}$;
- $\mathcal{P}^+(X) \subset \mathcal{P}(X)$ denote the connected component containing vectors of the form $\exp(\beta + i\omega)$, where $\omega \in \operatorname{Pic}(X) \otimes \mathbb{Q}$ is ample;
- $\Delta(X) = \{\delta \in \mathcal{N}(X) : \langle \delta, \delta \rangle = -2\};$
- $\mathcal{P}_0^+(X) = \mathcal{P}^+(X) \setminus \bigcup_{\delta \in \Delta(X)} \delta^{\perp} \subseteq \mathcal{N}(X) \otimes \mathbb{C}$.
- Any autoequivalence of $D^b(X)$ induces an Hodge isometry on cohomology. Denote by $\operatorname{Aut}^0(D^b(X))$ the subgroup acting trivially.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categorie structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories

Stability structures Bridgeland's

definition
Example 1: curve
Example 2: K3's

Theorem 24 (Bridgeland)

There is a connected component $\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))$ of $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D}^b(X))$ mapped by \mathcal{Z} onto $\mathcal{P}_0^+(X)$. Moreover, the induced map $\mathcal{Z}:\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))\to \mathcal{P}_0^+(X)$ is a covering map, and the subgroup of $\operatorname{Aut}^0(\operatorname{D}^b(X))$ which preserves the connected component $\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))$ acts freely on $\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))$ and is the group of deck transformations of \mathcal{Z} .

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curv Example 2: K3's

Theorem 24 (Bridgeland)

There is a connected component $\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))$ of $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D}^b(X))$ mapped by \mathcal{Z} onto $\mathcal{P}_0^+(X)$. Moreover, the induced map $\mathcal{Z}:\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))\to\mathcal{P}_0^+(X)$ is a covering map, and the subgroup of $\operatorname{Aut}^0(\operatorname{D}^b(X))$ which preserves the connected component $\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))$ acts freely on $\operatorname{Stab}^{\dagger}(\operatorname{D}^b(X))$ and is the group of deck transformations of $\mathcal{Z}.$

Conjecture 25 (Bridgeland)

The action of $\operatorname{Aut}(\operatorname{D}^b(X))$ on $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D}^b(X))$ preserves the connected component $\operatorname{Stab}^\dagger(\operatorname{D}^b(X))$. Moreover $\operatorname{Stab}^\dagger(\operatorname{D}^b(X))$ is simply-connected.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

structures

Stability

Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

Stability structures

Bridgeland's definition

Example 1: curve

Huybrechts-Macri-S.: The conjecture has been verified for

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Structures
Bridgeland's
definition
Example 1: curves
Example 2: K3's

Stability

Huybrechts-Macrì-S.: The conjecture has been verified for

• Generic non-algebraic K3 surfaces (i.e. such that Pic(X) = 0);

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's Huybrechts-Macri-S.: The conjecture has been verified for

- Generic non-algebraic K3 surfaces (i.e. such that Pic(X) = 0);
- Generic projective twisted K3 surfaces (the twist is given by an element of the Brauer group of the surface).

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Huybrechts-Macri-S.: The conjecture has been verified for

- Generic non-algebraic K3 surfaces (i.e. such that Pic(X) = 0);
- Generic projective twisted K3 surfaces (the twist is given by an element of the Brauer group of the surface).

Bridgeland: As a consequence of the conjecture we get the following short exact sequence

$$1 \to \pi_1(\mathcal{P}_0^+(X)) \to \operatorname{Aut}\left(\operatorname{D}^b(X)\right) \to \operatorname{O}_+(\widetilde{H}(X,\mathbb{Z})) \to 1,$$

where $O_+(\widetilde{H}(X,\mathbb{Z}))$ is the group of orientation preserving Hodge isometries of the total cohomology of X.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

structures
Bridgeland's

definition

Example 2: K3's

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

I-structures

Stability structures Bridgeland's definition

definition
Example 1: curve:
Example 2: K3's

The morphism $\Pi: \operatorname{Aut}(\operatorname{D}^b(X)) \to \operatorname{O}(\widetilde{H}(X,\mathbb{Z}))$ sends an autoequivalence to the induced Hodge isometry.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition The morphism $\Pi: \operatorname{Aut}(\operatorname{D}^b(X)) \to \operatorname{O}(\widetilde{H}(X,\mathbb{Z}))$ sends an autoequivalence to the induced Hodge isometry.

The fact that Π should factor through a surjective morphism onto $\mathrm{O}_+(\widetilde{H}(X,\mathbb{Z}))$ was previously conjectured by Szendoi based on some results by Orlov, Mukai,...

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition The morphism $\Pi: \operatorname{Aut}(\operatorname{D}^b(X)) \to \operatorname{O}(\widetilde{H}(X,\mathbb{Z}))$ sends an autoequivalence to the induced Hodge isometry.

The fact that Π should factor through a surjective morphism onto $\mathrm{O}_+(\widetilde{H}(X,\mathbb{Z}))$ was previously conjectured by Szendoi based on some results by Orlov, Mukai,...

Huybrechts-Macri-S.: Szendroi's conjecture holds true.

Derived categories and stability structures

Paolo Stellari

Categories
Derived categorie
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition The morphism $\Pi: \operatorname{Aut}(\operatorname{D}^b(X)) \to \operatorname{O}(\widetilde{H}(X,\mathbb{Z}))$ sends an autoequivalence to the induced Hodge isometry.

The fact that Π should factor through a surjective morphism onto $\mathrm{O}_+(\widetilde{H}(X,\mathbb{Z}))$ was previously conjectured by Szendoi based on some results by Orlov, Mukai,...

Huybrechts-Macrì-S.: Szendroi's conjecture holds true.

Warning: To prove this, we need anyhow a (tiny) part of Bridgeland's theory of stability conditions!

Outline

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structure:

Bridgeland's definition

Example 1: curves Example 2: K3's

Example 2: K3's KS definition

Categories

- Derived categories
- t-structures
- Stability structures
 - Bridgeland's definition
 - Example 1: curves
 - Example 2: K3's
 - KS definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie

erived categorie structures

Stability

Bridgeland's

Example 1: curve

KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability structures Bridgeland's

Example 1: curves
Example 2: K3's
KS definition

Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field k.

Derived categories and stability structures

Paolo Stellari

Stability

KS definition

Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field k.

A data **stability structure** is given by the data:

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curr Example 2: K3's

KS definition

Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field k.

A data **stability structure** is given by the data:

• An ind-constructible homomorphism $\mathrm{cl}: K(\mathbf{C}) \to \Gamma$, where $\Gamma \cong \mathbb{Z}^n$ is a free abelian group of finite rank endowed with a bilinear form $\langle -, - \rangle : \Gamma \times \Gamma \to \mathbb{Z}$ such that for any two objects $\mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbf{C})$,

$$\langle \operatorname{cl}(\mathcal{E}), \operatorname{cl}(\mathcal{F}) \rangle = \chi(\mathcal{E}, \mathcal{F});$$

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: cur Example 2: K3'

KS definition

Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field k.

A data **stability structure** is given by the data:

• An ind-constructible homomorphism $\mathrm{cl}: K(\mathbf{C}) \to \Gamma$, where $\Gamma \cong \mathbb{Z}^n$ is a free abelian group of finite rank endowed with a bilinear form $\langle -, - \rangle : \Gamma \times \Gamma \to \mathbb{Z}$ such that for any two objects $\mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbf{C})$,

$$\langle \operatorname{cl}(\mathcal{E}), \operatorname{cl}(\mathcal{F}) \rangle = \chi(\mathcal{E}, \mathcal{F});$$

• An additive map $Z : \Gamma \to \mathbb{C}$, called the **central charge**;

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field k.

A data **stability structure** is given by the data:

• An ind-constructible homomorphism $\mathrm{cl}: K(\mathbf{C}) \to \Gamma$, where $\Gamma \cong \mathbb{Z}^n$ is a free abelian group of finite rank endowed with a bilinear form $\langle -, - \rangle : \Gamma \times \Gamma \to \mathbb{Z}$ such that for any two objects $\mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbf{C})$,

$$\langle \operatorname{cl}(\mathcal{E}), \operatorname{cl}(\mathcal{F}) \rangle = \chi(\mathcal{E}, \mathcal{F});$$

- An additive map $Z : \Gamma \to \mathbb{C}$, called the **central charge**;
- A collection C^{ss} of (isomorphism classes of) non-zero objects in C called semistable, such that Z(E) ≠ 0 for any E ∈ C^{ss};

Derived categories and stability structures

Paolo Stellari

Stability

KS definition

Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field k.

A data **stability structure** is given by the data:

• An ind-constructible homomorphism c1 : $K(\mathbf{C}) \to \Gamma$, where $\Gamma \cong \mathbb{Z}^n$ is a free abelian group of finite rank endowed with a bilinear form $\langle -, - \rangle : \Gamma \times \Gamma \to \mathbb{Z}$ such that for any two objects $\mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbf{C})$,

$$\langle \operatorname{cl}(\mathcal{E}), \operatorname{cl}(\mathcal{F}) \rangle = \chi(\mathcal{E}, \mathcal{F});$$

- An additive map $Z: \Gamma \to \mathbb{C}$, called the **central charge**;
- A collection C^{ss} of (isomorphism classes of) non-zero objects in **C** called semistable, such that $Z(\mathcal{E}) \neq 0$ for any $\mathcal{E} \in \mathbf{C}^{ss}$:
- A choice of a phase for $Z(\mathcal{E})$, where $\mathcal{E} \in \mathbf{C}^{ss}$.

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie

erived categorie structures

Stability

Bridgeland's

Example 1: curve

KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categorie

Stability structure

structure Bridgeland's

Example 1: curves

Example 2: K3's KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition

Example 1: curves
Example 2: K3's
KS definition

(KS1) For all
$$\mathcal{E} \in \mathbf{C}^{ss}$$
 and for all $n \in \mathbb{Z}$, $\mathcal{E}[n] \in \mathbf{C}^{ss}$ and $\phi(Z(\mathcal{E}[n])) = \phi(Z(\mathcal{E})) + n$;

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability

structures
Bridgeland's
definition
Example 1: curves
Example 2: K3's
KS definition

- (KS1) For all $\mathcal{E} \in \mathbf{C}^{ss}$ and for all $n \in \mathbb{Z}$, $\mathcal{E}[n] \in \mathbf{C}^{ss}$ and $\phi(Z(\mathcal{E}[n])) = \phi(Z(\mathcal{E})) + n$;
- (KS2) For all $\mathcal{E}_1, \mathcal{E}_2 \in \mathbf{C}^{ss}$ with $\phi(\mathcal{E}_1) > \phi(\mathcal{E}_2)$ we have $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E}_2) = 0$;

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition

- (KS1) For all $\mathcal{E} \in \mathbf{C}^{ss}$ and for all $n \in \mathbb{Z}$, $\mathcal{E}[n] \in \mathbf{C}^{ss}$ and $\phi(\mathcal{Z}(\mathcal{E}[n])) = \phi(\mathcal{Z}(\mathcal{E})) + n$;
- (KS2) For all $\mathcal{E}_1, \mathcal{E}_2 \in \mathbf{C}^{ss}$ with $\phi(\mathcal{E}_1) > \phi(\mathcal{E}_2)$ we have $\operatorname{Hom}(\mathcal{E}_1, \mathcal{E}_2) = 0$;
- **(KS3)** For any $\mathcal{E} \in \mathrm{Ob}(\mathbf{C})$, there exist $n \geq 0$ and a chain of morphisms $0 = \mathcal{E}_0 \to \mathcal{E}_1 \to \cdots \to \mathcal{E}_n = \mathcal{E}$ (HN filtration) such that $\mathcal{F}_i := \mathrm{Cone}(\mathcal{E}_{i-1} \to \mathcal{E}_i)$, for $i = 1, \ldots, n$ are semistable and $\phi(\mathcal{F}_1) > \phi(\mathcal{F}_2) > \cdots > \phi(\mathcal{F}_n)$;

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie

erived categorie structures

Stability

Bridgeland's

Example 1: curve

KS definition

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition

definition
Example 1: curve
Example 2: K3's
KS definition

(KS4) For each $\gamma \in \Gamma \setminus \{0\}$, the set of isomorphism classes of a $\mathbf{C}_{\gamma}^{ss} \subset \mathrm{Ob}(\mathbf{C})_{\gamma}$ consisting of semistable objects \mathcal{E} defined over \overline{k} and such that $\mathrm{cl}(\mathcal{E}) = \gamma$ and $\phi(\mathcal{E})$ is fixed, is a constructible set;

Derived categories and stability structures

Paolo Stellari

Categories
Derived categories
t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's (KS4) For each $\gamma \in \Gamma \setminus \{0\}$, the set of isomorphism classes of a $\mathbf{C}_{\gamma}^{ss} \subset \mathrm{Ob}(\mathbf{C})_{\gamma}$ consisting of semistable objects \mathcal{E} defined over \overline{k} and such that $\mathrm{cl}(\mathcal{E}) = \gamma$ and $\phi(\mathcal{E})$ is fixed, is a constructible set;

(KS5) (Support Property) For a norm $\|-\|$ on $\Gamma \otimes \mathbb{R}$, there exists C > 0 such that for all $\mathcal{E} \in \mathbf{C}^{ss}$ one has $\|\operatorname{cl}(\mathcal{E})\| \le C|Z(\mathcal{E})|$.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories

erived categories structures

Stability

definition

Example 1: curve

KS definition

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's • The forgetting map $\operatorname{Stab}(\mathbf{C}) \to \operatorname{Hom}(\Gamma, \mathbb{C})$ sending a stability structure to Z is a local homeomorphism.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition

- The forgetting map $\operatorname{Stab}(\mathbf{C}) \to \operatorname{Hom}(\Gamma, \mathbb{C})$ sending a stability structure to Z is a local homeomorphism.
- Hence, Stab (C) is a complex manifold, not necessarily connected.

Derived categories and stability structures

Paolo Stellari

Categories

Derived categories

t-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition

- The forgetting map $\operatorname{Stab}(\mathbf{C}) \to \operatorname{Hom}(\Gamma, \mathbb{C})$ sending a stability structure to Z is a local homeomorphism.
- Hence, Stab (C) is a complex manifold, not necessarily connected.
- Due to the support property, all stability structures are locally finite.