Derived categories and stability structures

Paolo Stellari

Derived categories and stability structures

Paolo Stellari

Hamburg, September 2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and stability structures

Paolo Stellari

Outline

1 Categories

Derived categories

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• *t*-structures

Derived categories and stability structures

Paolo Stellari

Outline

Categories

- Derived categories
- t-structures

Stability structures

Bridgeland's definition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Example 1: curves
- Example 2: K3's
- KS definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition Example 1: curve Example 2: K3's KS definition

Categories

- Derived categories
- t-structures

Stability structures

Bridgeland's definition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Example 1: curves
- Example 2: K3's
- KS definition

The definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

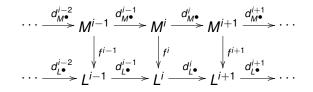
Bridgeland's definition Example 1: curve Example 2: K3's KS definition Let **A** be an abelian category (e.g., **mod**-R, right R-modules, R an ass. ring with unity, and **Coh**(X)).

Define $C(\mathbf{A})$ to be the (abelian) category of complexes of objects in **A**. In particular:

• Objects:

$$M^{\bullet} := \{ \cdots \to M^{p-1} \xrightarrow{d^{p-1}} M^p \xrightarrow{d^p} M^{p+1} \to \cdots \}$$

Morphisms: sets of arrows f[●] := {fⁱ}_{i∈ℤ} making commutative the following diagram



The definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition Example 1: curv For a complex $M^{\bullet} \in C(\mathbf{A})$, its *i*-th cohomology is

$$\mathcal{H}^{i}(M^{\bullet}) := rac{\ker\left(\mathcal{d}^{i}
ight)}{\operatorname{im}\left(\mathcal{d}^{i-1}
ight)} \in \mathbf{A}.$$

A morphism of complexes is a **quasi-isomorphisms** (qis) if it induces isomorphisms on cohomology.

Definition 1

The **derived category** $D(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

- Objects: $Ob(C(\mathbf{A})) = Ob(D(\mathbf{A}));$
- Morphisms: (very) roughly speaking, obtained 'by inverting qis in C(A)'.

Remarks

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition Example 1: curves Example 2: K3's KS definition Important!

The category $D(\mathbf{A})$ is triangulated. In particular, it has a shift functor [*i*], for any $i \in \mathbb{Z}$, and a set of *distinguished or exact* triangles.

If we just consider bounded complexes, we get the bounded derived category $D^b(\mathbf{A})$. Other possibilities are $D^-(\mathbf{A})$ (bounded above complexes) and $D^+(\mathbf{A})$ (bounded below complexes).

Exercise 2

Describe the bounded derived category of a closed point.

Geometry

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition Example 1: curves Example 2: K3's KS definition If X is a smooth projective variety over a field k (always assume $k = \overline{k}!$), set $D^{b}(X) := D^{b}(Coh(X))$.

Exercise 3

Let *C* be a smooth complex curve. Show that any $\mathcal{E} \in D^b(C)$ is isomorphic to the direct sum of shifts of sheaves.

Proposition 4

If *X* is a smooth projective variety over *k*, then $\bigoplus_{i} \operatorname{Hom}_{D^{b}(X)}(\mathcal{E}, \mathcal{F}[i])$ is finite dimensional, for any $\mathcal{E}, \mathcal{F} \in D^{b}(X)$.

In this case, we say that $D^{b}(X)$ is of finite type over *k*.

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Geometry

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's KS definition Define the **Grothendieck group** K(X) of $D^b(X)$ as the free abelian group generated by the isomorphism classes of objects of $D^b(X)$ modulo the relation $[\mathcal{E}] = [\mathcal{F}] + [\mathcal{G}]$ for a distinguished triangle $\mathcal{F} \to \mathcal{E} \to \mathcal{G}$.

Exercise 5

Show K(X) = K(Coh(X)) (more generally, for any abelian category **A**...)

Using this, define the Euler-Poincaré pairing

$$\chi: \mathsf{K}(\mathsf{X}) imes \mathsf{K}(\mathsf{X})
ightarrow \mathbb{Z}$$

(日) (日) (日) (日) (日) (日) (日)

by $\chi([\mathcal{E}], [\mathcal{F}]) := \sum_{i} (-1)^{i} \dim \operatorname{Hom}_{D^{b}(X)}(\mathcal{E}, \mathcal{F}[i]).$

Derived functors

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curves Example 2: K3's KS definition Given a functor $F : \mathbf{A} \to \mathbf{B}$ between abelian categories, it is not straightforward to 'extend' it to $D^{b}(\mathbf{A}) \to D^{b}(\mathbf{B})$.

This is not automatic already for left or right exact functors.

Nevertheless, in the geometric setting, all the 'basic functors' can be *derived*, i.e. defined on the level of the bounded derived categories. For example, for X, Y smooth finite-dimensional noetherian schemes:

• Tensor product: $-\overset{L}{\otimes} - : \mathrm{D}^{\mathrm{b}}(X) \times \mathrm{D}^{\mathrm{b}}(X) \to \mathrm{D}^{\mathrm{b}}(X);$

(日) (日) (日) (日) (日) (日) (日)

- For a proper morphism $f: X \to Y$, $Rf_*: D^b(X) \to D^b(Y)$;
- For f as above, $Lf^* : D^{b}(Y) \rightarrow D^{b}(X)$.

Derived functors

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition Example 1: curves Example 2: K3's KS definition For *X*, *Y* smooth projective varieties, special exact functors $D^{b}(X) \rightarrow D^{b}(Y)$ are those of **Fourier–Mukai type**. That is, those which are isomorphic to the functor

$$\Phi_{\mathcal{E}}(-):= {\it Rp}_{*}\left(\mathcal{E}\stackrel{{\it L}}{\otimes} {\it q}^{*}(-)
ight),$$

for $\mathcal{E} \in D^{b}(X \times Y)$ and p, q the natural projections.

Remark 6

Many classes of functors have been proved to be of Fourier-Mukai type at different levels of generalities. Among the authors who contributed to this, we mention: Orlov (+Bondal-Van den Bergh), Kawamata, Canonaco-S. and Ballard.

Serre functor

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition Example 1: curves Example 2: K3's KS definition

Definition 7

For **A** an abelian category, a **Serre functor** of $D^b(\mathbf{A})$ is an exact equivalence $S : D^b(\mathbf{A}) \to D^b(\mathbf{A})$ such that, for any $\mathcal{E}, \mathcal{F} \in D^b(\mathbf{A})$, there is an isomorphism

$$\eta_{\mathcal{E},\mathcal{F}}: \operatorname{Hom}_{\operatorname{D^b}(\mathbf{A})}(\mathcal{E},\mathcal{F}) \to \operatorname{Hom}_{\operatorname{D^b}(\mathbf{A})}(\mathcal{F}, \mathcal{S}(\mathcal{E}))^{\vee}$$

of k-vector spaces which is functorial in \mathcal{E} and \mathcal{F} .

Some basic properties of Serre functors are the following:

- They commute with equivalences (i.e., for $F : D^{b}(\mathbf{A}) \rightarrow D^{b}(\mathbf{B})$ an equivalence, $S_{\mathbf{B}} \circ F \cong F \circ S_{\mathbf{A}}$);
- For D^b(**A**) of finite type, a Serre functor, if it exists, is unique up to isomorphism.

Serre functor

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition Example 1: curves Example 2: K3's KS definition In the geometric setting, we can be more precise:

Proposition 8

If X is a smooth projective variety defined over k, then the autoequivalence $S_X : D^b(X) \to D^b(X)$ such that

$$S_X(-) := (-) \otimes \omega_X[\dim(X)],$$

where ω_X is the dualizing line bundle, is a Serre functor.

Exercise 9

Use the Serre functor to show that, if *X* has trivial canonical bundle, then χ is symmetric if dim (*X*) is even and is skewsymmetric otherwise.

(1

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition Example 1: curve Example 2: K3's KS definition

Categories

Derived categories

t-structures

Stability structures

Bridgeland's definition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Example 1: curves
- Example 2: K3's
- KS definition

The definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition Question: Given the triangulated category $D^b(A)$, can we produce abelian subcategories $B \subseteq D^b(A)$, possibly such that $A \neq B$?

Definition 10

A *t*-structure on $D^{b}(\mathbf{A})$ is a pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ of full subcategories such that, if we put $\mathbf{D}^{\leq n} := \mathbf{D}^{\leq 0}[-n]$ and $\mathbf{D}^{\geq n} := \mathbf{D}^{\geq 0}[-n]$, we have

• Hom
$$_{\mathrm{D^b}(\mathbf{A})}(\mathbf{D}^{\leq 0},\mathbf{D}^{\geq 1})=0;$$

- $\mathbf{D}^{\leq 0} \subseteq \mathbf{D}^{\leq 1}$ and $\mathbf{D}^{\geq 1} \subseteq \mathbf{D}^{\geq 0}$;
- For any $\mathcal{E} \in D^b(\mathbf{A})$ there exist $\mathcal{F} \in \mathbf{D}^{\leq 0}$, $\mathcal{G} \in \mathbf{D}^{\geq 1}$ and an exact triangle

$$\mathcal{F} \to \mathcal{E} \to \mathcal{G}.$$

The definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's

definition Example 1: curves Example 2: K3's KS definition

Definition 11

A *t*-structure $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ on $D^b(\mathbf{A})$ is **bounded** if

$$\mathsf{D}^{\mathrm{b}}(\mathsf{A}) = \cup_{i,j\in\mathbb{Z}} (\mathsf{D}^{\leq 0}[i] \cap \mathsf{D}^{\geq 0}[j]).$$

Definition 12

The heart of a *t*-structure ($D^{\leq 0}$, $D^{\geq 0}$) on $D^{b}(A)$ is the full subcategory $B := D^{\leq 0} \cap D^{\geq 0}$.

Proposition 13

The heart **B** is an abelian category.

The standard *t*-structure

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition For $D^{b}(\mathbf{A})$ we can define the two full subcategories

$$\begin{split} \mathbf{D}^{\leq 0} &:= \{ \mathcal{E} \in \mathrm{D}^{\mathrm{b}}(\mathbf{A}) : H^{i}(\mathcal{E}) = 0 \text{ for } i > 0 \} \\ \mathbf{D}^{\geq 0} &:= \{ \mathcal{E} \in \mathrm{D}^{\mathrm{b}}(\mathbf{A}) : H^{i}(\mathcal{E}) = 0 \text{ for } i < 0 \} \end{split}$$

The pair $(\mathbf{D}^{\leq 0}, \mathbf{D}^{\geq 0})$ defines a bounded *t*-structure whose heart is again **A**.

This is usually called the **standard** *t*-structure on $D^{b}(\mathbf{A})$.

Tiltings (after Happel-Reiten-Smalo)

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

definition Example 1: curves Example 2: K3's KS definition

Definition 14

A torsion pair in an abelian category **A** is a pair of full subcategories (\mathbf{T}, \mathbf{F}) of **A** which satisfy $\operatorname{Hom}_{\mathbf{A}}(\mathcal{T}, \mathcal{F}) = 0$, for $\mathcal{T} \in \mathbf{T}$ and $\mathcal{F} \in \mathbf{F}$, and such that, for every $\mathcal{E} \in \mathbf{A}$, there are $\mathcal{T} \in \mathbf{T}$ and $\mathcal{F} \in \mathbf{F}$ and a short exact sequence

$$\mathbf{0}
ightarrow \mathcal{T}
ightarrow \mathcal{E}
ightarrow \mathcal{F}
ightarrow \mathbf{0}.$$

Proposition 15

If (\mathbf{T}, \mathbf{F}) is a torsion pair in $D^b(\mathbf{A})$, then the full subcategory

$$\mathbf{B} := \begin{cases} \mathcal{E} \in \mathrm{D}^{\mathrm{b}}(\mathbf{A}) : & \bullet \ H^{i}(\mathcal{E}) = 0 \text{ for } i \notin \{-1, 0\}, \\ \bullet \ H^{-1}(\mathcal{E}) \in \mathbf{F} \text{ and } H^{0}(\mathcal{E}) \in \mathbf{T} \end{cases}$$

is the heart of a bounded *t*-structure.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition 2

Categories

- Derived categories
- t-structures

Stability structures

Bridgeland's definition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Example 1: curves
- Example 2: K3's
- KS definition

The definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition **Warning:** For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

A stability condition on $D^{b}(\mathbf{A})$ is a pair $\sigma = (Z, \mathcal{P})$ where

• $Z: K(D^b(\mathbf{A})) \to \mathbb{C}$ is a linear map (the central charge)

P(φ) ⊂ D^b(A) are full additive subcategories for each φ ∈ ℝ

satisfying the following conditions:

The definition

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie *t*-structures

Stability structures

Bridgeland's definition

Example 1: curve Example 2: K3's KS definition (B1) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

(B2) $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .

(B3) Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.

(B4) Any $0 \neq \mathcal{E} \in D^{b}(\mathbf{A})$ admits a Harder–Narasimhan filtration given by a collection of distinguished triangles

$$\mathcal{E}_{i-1} \to \mathcal{E}_i \to \mathcal{A}_i$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

with $\mathcal{E}_0 = 0$ and $\mathcal{E}_n = \mathcal{E}$ such that $\mathcal{A}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \ldots > \phi_n$.

Further definitions

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition

- The non-zero objects in the abelian category P(φ) are the semistable objects of phase φ. The objects A_i in (B4) are the semistable factors of E.
- The minimal objects of P(φ) (i.e. those with no proper subobjects) are called stable of phase φ.
- The category P((0, 1]), generated by the semistable objects of phase in (0, 1], is called the heart of σ.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Basic properties

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition One could alternative start with an abelian category **A** and a **slope function** $Z : K(\mathbf{A}) \to \mathbb{C}$ such that, for $0 \neq \mathcal{E} \in \mathbf{A}$,

$$Z([\mathcal{E}]) \in \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), \, 0 < \phi \leq 1\}.$$

Define

$$\phi(\mathcal{E}) := \frac{1}{\pi} \arg(Z(\mathcal{E})) \in (0, 1].$$

An object $\mathcal{E} \in \mathbf{A}$ is semistable if

 $\phi(\mathcal{F}) \leq \phi(\mathcal{E})$

for any proper subobject $\mathcal{F} \subseteq \mathcal{E}$.

A slope function has the **Harder–Narasimhan property** if it has HN-filtrations with semistable factors.

Basic properties

Proposition 16

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition To exhibit a stability condition on $D^b(\mathbf{A})$, it is enough to give

- a bounded *t*-structure on D^b(**A**) with heart **B**;
- a group homomorphism $Z : K(\mathbf{B}) \to \mathbb{C}$ such that $Z(\mathcal{E}) \in \mathbb{H}$, for all $0 \neq \mathcal{E} \in \mathbf{B}$, and with the Harder–Narasimhan property. (Here $\mathbb{H} := \{z \in \mathbb{C} \setminus \{0\} : z = |z| \exp(i\pi\phi), 0 < \phi \leq 1\}$.)

All stability conditions are assumed to be **locally finite**. Hence every object in $\mathcal{P}(\phi)$ has a finite **Jordan–Hölder** filtration.

 $Stab(D^b(\mathbf{A}))$ is the set of locally finite stability conditions.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Basic properties

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition $\operatorname{Stab}(D^{b}(\mathbf{A}))$ carries a natural topology with the following important property:

Theorem 17 (Bridgeland)

For each connected component $\Sigma \subseteq \operatorname{Stab}(D^{b}(\mathbf{A}))$, there is a linear subspace $V(\Sigma) \subseteq \operatorname{Hom}(K(D^{b}(\mathbf{A})), \mathbb{C})$ with a well defined topology and a local homeomorphism $\mathcal{Z} : \Sigma \to V(\Sigma)$ which maps a stability condition (Z, \mathcal{P}) to its central charge Z.

As explained later in the examples, for $\mathbf{A} = \mathbf{Coh}(X)$, (up to some modifications...) $\mathrm{Stab}(\mathrm{D}^{\mathrm{b}}(X))$ is a finite dimensional complex manifold.

Group actions

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition There are two groups acting naturally on $\mathrm{Stab}\left(\mathrm{D}^{b}(\boldsymbol{A})\right)$ (and whose actions commute):

• The left action of the group $\operatorname{Aut}(D^b(\mathbf{A}))$ of exact autoequivalences of $D^b(\mathbf{A})$. Indeed, $\Phi \in \operatorname{Aut}(D^b(\mathbf{A}))$ sends (Z, \mathcal{P}) to (Z', \mathcal{P}') , where

$$Z'([\mathcal{E}]) = Z([\Phi^{-1}(\mathcal{E})]) \qquad \mathcal{P}'(\phi) = \Phi(\mathcal{P}(\phi)).$$

• The right action of the universal cover $\widetilde{Gl}_2^+(\mathbb{R})$ of $Gl_2^+(\mathbb{R})$. $\widetilde{Gl}_2^+(\mathbb{R})$ is the set of pairs (T, f) where $f: \mathbb{R} \to \mathbb{R}$ is an increasing map with $f(\phi + 1) = f(\phi) + 1$, and $T: \mathbb{R}^2 \to \mathbb{R}^2$ is an orientation-preserving linear isomorphism, such that the induced maps on $S^1 = \mathbb{R}/2\mathbb{Z} = (\mathbb{R}^2 \setminus 0)/\mathbb{R} > 0$ are the same. So $Z' = T^{-1} \circ Z$ and $\mathcal{P}'(\phi) = \mathcal{P}(f(\phi))$.

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's

2

Categories

- Derived categories
- t-structures

Stability structures

Bridgeland's definition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Example 1: curves
- Example 2: K3's
- KS definition

Preliminaries

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition Example 1: curves

Example 1: curves Example 2: K3's KS definition For *X* a smooth projective variety (defined over \mathbb{C}), define the **numerical Grothendieck group** to be the quotient

$$\mathcal{N}(\mathbf{X}) := \mathbf{K}(\mathbf{X})/\mathbf{K}(\mathbf{X})^{\perp},$$

where \perp is with respect to the pairing χ .

A stability condition is **numerical** if Z factors through $v(-) := ch(-) \cdot \sqrt{td(x)} : K(X) \to \mathcal{N}(X)$. Stab_{\mathcal{N}}(D^b(X)) is the finite dimensional complex manifold parametrizing numerical stability conditions and dim_{\mathbb{C}} Stab_{\mathcal{N}}(D^b(X)) = dim_{\mathbb{C}}($\mathcal{N}(X) \otimes \mathbb{C}$).

Example 18

If X is a smooth curve than $\mathcal{N}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$ and so $\operatorname{Stab}_{\mathcal{N}}(D^{b}(X))$ has dimension 2.

Examples of stability conditions (Bridgeland)

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

definition Example 1: curves Example 2: K3's

. KS definition Let *C* be a smooth curve of genus g > 0 defined over \mathbb{C} . The abelian category **Coh**(*C*) is the heart of a bounded *t*-structure.

As $\mathcal{N}(\mathcal{C}) = H^0(\mathcal{C},\mathbb{Z}) \oplus H^2(\mathcal{C},\mathbb{Z})$, define $\mathcal{Z}: \mathcal{N}(\mathcal{C}) \to \mathbb{C}$ as

$$\mathcal{E} \mapsto -\mathrm{deg}(\mathcal{E}) + i\,\mathrm{rk}\,(\mathcal{E}).$$

Exercise 19

Show that Z as above is a slope function.

The HN-property follows easily from the existence of HN-filtrations for the slope stability (recall that $\mu(\mathcal{E}) = \frac{\deg(\mathcal{E})}{\operatorname{rk}(\mathcal{E})}$).

The space of stability conditions

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition

Example 1: curves Example 2: K3's

Theorem 20 (Bridgeland, Macri)

If *C* is a curve of genus g > 0 defined over \mathbb{C} , then the action of $\widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$ on $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D^b}(X))$ is free and transitive. In particular, $\operatorname{Stab}_{\mathcal{N}}(\operatorname{D^b}(X)) \cong \widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$.

Note: The case of \mathbb{P}^1 was treated independently by Okada and Macrì.

Sketch of the proof

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition Gorodentsev–Kuleshov–Rudakov: If *E* ∈ Coh(*C*) sits in a triangle

$$\mathcal{F} \to \mathcal{E} \to \mathcal{G},$$

with $\mathcal{F}, \mathcal{G} \in D^{b}(\mathcal{C})$ and $\operatorname{Hom}^{\leq 0}(\mathcal{F}, \mathcal{G}) = 0$, then $\mathcal{E}, \mathcal{G} \in \mathbf{Coh}(\mathcal{C})$ as well.

- From this one deduces that the skyscraper sheaves O_x are all stable in any stability condition. Indeed, one proves that O_x is semistable and all its stable factors are isomorphic. By the above results they are in Coh(C) and so isomorphic to O_x.
 - By the same argument it follows that all line bundles are stable in all stability conditions.

Sketch of the proof

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures

Bridgeland's definition

Example 1: curves Example 2: K3's KS definition Take σ = (Z, P) and a line bundle L. Let φ and ψ be the phases of the stable objects L and O_x.

The existence of the maps L → O_x and O_x → L[1] gives the inequalities ψ − 1 ≤ φ ≤ ψ. This implies that Z (seen as a map N(C) ⊗ ℝ → ℝ² ≅ ℂ) is an orientation preserving isomorphism.

• Hence by acting by $\widetilde{\operatorname{Gl}}_2^+(\mathbb{R})$, we can assume that $Z = -\operatorname{deg}(\mathcal{E}) + i\operatorname{rk}(\mathcal{E})$ and that all skyscraper sheaves are stable of phase 1. This implies that $\mathcal{P}((0, 1])$, the heart of the stability condition, is **Coh**(*C*).

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curv Example 2: K3's

2

Categories

- Derived categories
- t-structures

Stability structures

Bridgeland's definition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Example 1: curves
- Example 2: K3's
- KS definition

Geometry

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition

Definition 21

A K3 surface is a smooth Kähler (complex) surface X such that:

- X is simply connected.
- The canonical bundle ω_X is trivial.

Some examples are

• Quartics in \mathbb{P}^3 and double covers of \mathbb{P}^2 ramified along a sextic.

Kummer surfaces (i.e. crepant resolutions of the quotient of an abelian surface by the involution a → -a).

Note: We restrict ourselves to projective ones!

Geometry

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition For X a K3, $\mathcal{N}(X) \cong \mathbb{Z}^{\oplus \rho}$, with $3 \le \rho \le 22$. All values are realized!

 $\mathcal{N}(X)$ is actually the algebraic part of the total cohomology.

 $H^*(X,\mathbb{Z})$ is endowed with a natural symmetric bilinear form, called **Mukai pairing**:

$$\langle \alpha, \beta \rangle := \alpha_2 \cup \beta_2 - \alpha_0 \cup \beta_4 - \alpha_4 \cup \beta_0,$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

for $\alpha = (\alpha_0, \alpha_2, \alpha_4)$ and $\beta := (\beta_0, \beta_2, \beta_4)$ in $H^0 \oplus H^2 \oplus H^4$.

Stability - Bad news

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition The main difference with the curve case is:

Proposition 22

If *X* is a smooth complex projective variety of dimension $d \ge 2$, then there are no numerical stability conditions on $D^{b}(X)$ with heart **Coh**(*X*).

Reason: After reducing to the case d = 2, one observes that it is already impossible to have a slope function on **Coh**(*X*).

Stability - Examples

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition Let *X* be a K3 surface and let $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$. Assume moreover ω to be ample.

Define $Z_{\beta,\omega}: K(X) \to \mathbb{C}$ as

$$Z(\mathcal{E}) := \langle \exp(\beta + i\omega), \mathbf{v}(\mathcal{E}) \rangle.$$

Let $\mathbf{T}, \mathbf{F} \subseteq \mathbf{Coh}(X)$ be full additive subcategories:

- The non-trivial objects in T are the sheaves such that their torsion-free part have μ_ω-semistable Harder–Narasimhan factors of slope μ_ω > β · ω.
- A non-trivial sheaf *E* is an object in **F** if *E* is torsion-free and every μ_ω-semistable Harder–Narasimhan factor of *E* has slope μ_ω ≤ β · ω.

One shows that (T, F) defines a torsion pair.

Stability - Examples

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition Define the heart of the induced *t*-structure as the abelian category

$$\mathbf{A}_{\beta,\omega} := \left\{ \begin{array}{ll} \bullet & H^i(\mathcal{E}) = 0 \text{ for } i \notin \{-1,0\}, \\ \mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X) : & \bullet & H^{-1}(\mathcal{E}) \in \mathbf{F}, \\ \bullet & H^0(\mathcal{E}) \in \mathbf{T} \end{array} \right\}$$

Lemma 23

Assume $\beta, \omega \in \text{Pic}(X) \otimes \mathbb{Q}$ and ω ample such that $\omega \cdot \omega > 2$. The map $Z_{\beta,\omega}$ is a stability function on $\mathbf{A}_{\beta,\omega}$ with the HN property. Moreover, it defines a numerical locally finite stability condition $\sigma_{\beta,\omega}$.

(日) (日) (日) (日) (日) (日) (日)

Note: one could impose a weaker condition on $Z_{\beta,\omega}$.

The main result

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition Define:

- *P*(X) ⊆ *N*(X) ⊗ C consisting of those vectors whose real and imaginary parts span positive definite two-planes in *N*(X) ⊗ ℝ;
- *P*⁺(X) ⊂ *P*(X) denote the connected component containing vectors of the form exp(β + iω), where ω ∈ Pic (X) ⊗ Q is ample;
- $\Delta(X) = \{\delta \in \mathcal{N}(X) : \langle \delta, \delta \rangle = -2\};$
- $\mathcal{P}^+_0(X) = \mathcal{P}^+(X) \setminus \bigcup_{\delta \in \Delta(X)} \delta^\perp \subseteq \mathcal{N}(X) \otimes \mathbb{C}.$
- Any autoequivalence of D^b(X) induces an Hodge isometry on cohomology. Denote by Aut ⁰(D^b(X)) the subgroup acting trivially.

The main result

Derived categories and stability structures

Paolo Stellari

Categories Derived categorie t-structures

Stability structures Bridgeland's definition Example 1: curve: Example 2: K3's KS definition

Theorem 24 (Bridgeland)

There is a connected component $\operatorname{Stab}^{\dagger}(D^{b}(X))$ of $\operatorname{Stab}_{\mathcal{N}}(D^{b}(X))$ mapped by \mathcal{Z} onto $\mathcal{P}_{0}^{+}(X)$. Moreover, the induced map \mathcal{Z} : $\operatorname{Stab}^{\dagger}(D^{b}(X)) \to \mathcal{P}_{0}^{+}(X)$ is a covering map, and the subgroup of $\operatorname{Aut}^{0}(D^{b}(X))$ which preserves the connected component $\operatorname{Stab}^{\dagger}(D^{b}(X))$ acts freely on $\operatorname{Stab}^{\dagger}(D^{b}(X))$ and is the group of deck transformations of \mathcal{Z} .

Conjecture 25 (Bridgeland)

The action of Aut $(D^{b}(X))$ on $\operatorname{Stab}_{\mathcal{N}}(D^{b}(X))$ preserves the connected component $\operatorname{Stab}^{\dagger}(D^{b}(X))$. Moreover $\operatorname{Stab}^{\dagger}(D^{b}(X))$ is simply-connected.

Remarks

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition

Huybrechts-Macri-S.: The conjecture has been verified for

- Generic non-algebraic K3 surfaces (i.e. such that Pic (X) = 0);
- Generic projective twisted K3 surfaces (the twist is given by an element of the Brauer group of the surface).

Bridgeland: As a consequence of the conjecture we get the following short exact sequence

 $1 \to \pi_1(\mathcal{P}_0^+(X)) \to \operatorname{Aut}\left(\operatorname{D^b}(X)\right) \to \operatorname{O_+}(\widetilde{H}(X,\mathbb{Z})) \to 1,$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

where $O_+(\widetilde{H}(X,\mathbb{Z}))$ is the group of orientation preserving Hodge isometries of the total cohomology of *X*.

Remarks

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition Example 1: curve: Example 2: K3's KS definition The morphism Π : Aut $(D^b(X)) \to O(\widetilde{H}(X,\mathbb{Z}))$ sends an autoequivalence to the induced Hodge isometry.

The fact that Π should factor through a surjective morphism onto $O_+(\widetilde{H}(X,\mathbb{Z}))$ was previously conjectured by Szendoi based on some results by Orlov, Mukai,...

Huybrechts-Macri-S.: Szendroi's conjecture holds true.

Warning: To prove this, we need anyhow a (tiny) part of Bridgeland's theory of stability conditions!

(日) (日) (日) (日) (日) (日) (日)

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition

2

Categories

- Derived categories
- t-structures

Stability structures

Bridgeland's definition

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Example 1: curves
- Example 2: K3's
- KS definition

The definition (after Kontsevich-Soibelman)

Derived categories and stability structures

Paolo Stellari

Categories Derived categories *t*-structures

Stability structures Bridgeland's definition Example 1: curve: Example 2: K3's KS definition Denote by **C** an ind-constructible weakly unital triangulated A_{∞} -category over a field *k*.

A data **stability structure** is given by the data:

 An ind-constructible homomorphism cl : K(C) → Γ, where Γ ≅ Zⁿ is a free abelian group of finite rank endowed with a bilinear form (-, -) : Γ × Γ → Z such that for any two objects *E*, *F* ∈ Ob(C),

$$\langle \mathrm{cl}(\mathcal{E}),\mathrm{cl}(\mathcal{F})
angle = \chi(\mathcal{E},\mathcal{F});$$

- An additive map $Z : \Gamma \to \mathbb{C}$, called the central charge;
- A collection C^{ss} of (isomorphism classes of) non-zero objects in C called semistable, such that Z(E) ≠ 0 for any E ∈ C^{ss};
- A choice of a phase for $Z(\mathcal{E})$, where $\mathcal{E} \in \mathbf{C}^{ss}$.

The definition (after Kontsevich-Soibelman)

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition The data must satisfy the following axioms:

(KS1) For all $\mathcal{E} \in \mathbf{C}^{ss}$ and for all $n \in \mathbb{Z}$, $\mathcal{E}[n] \in \mathbf{C}^{ss}$ and $\phi(Z(\mathcal{E}[n])) = \phi(Z(\mathcal{E})) + n;$

(KS2) For all $\mathcal{E}_1, \mathcal{E}_2 \in \mathbf{C}^{ss}$ with $\phi(\mathcal{E}_1) > \phi(\mathcal{E}_2)$ we have Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$;

(KS3) For any $\mathcal{E} \in Ob(\mathbb{C})$, there exist $n \ge 0$ and a chain of morphisms $0 = \mathcal{E}_0 \rightarrow \mathcal{E}_1 \rightarrow \cdots \rightarrow \mathcal{E}_n = \mathcal{E}$ (HN filtration) such that $\mathcal{F}_i := Cone(\mathcal{E}_{i-1} \rightarrow \mathcal{E}_i)$, for $i = 1, \dots, n$ are semistable and $\phi(\mathcal{F}_1) > \phi(\mathcal{F}_2) > \cdots > \phi(\mathcal{F}_n)$;

The definition (after Kontsevich-Soibelman)

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition

Example 1: curve Example 2: K3's

KS definition

(KS4) For each $\gamma \in \Gamma \setminus \{0\}$, the set of isomorphism classes of a $\mathbf{C}_{\gamma}^{ss} \subset \operatorname{Ob}(\mathbf{C})_{\gamma}$ consisting of semistable objects \mathcal{E} defined over \overline{k} and such that $\operatorname{cl}(\mathcal{E}) = \gamma$ and $\phi(\mathcal{E})$ is fixed, is a constructible set;

(KS5) (Support Property) For a norm $\|-\|$ on $\Gamma \otimes \mathbb{R}$, there exists C > 0 such that for all $\mathcal{E} \in \mathbf{C}^{ss}$ one has $\|\operatorname{cl}(\mathcal{E})\| \leq C|Z(\mathcal{E})|$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Remarks

Derived categories and stability structures

Paolo Stellari

Categories Derived categories t-structures

Stability structures Bridgeland's definition Example 1: curve Example 2: K3's KS definition

- The forgetting map Stab (C) → Hom (Γ, C) sending a stability structure to Z is a local homeomorphism.
- Hence, Stab (**C**) is a complex manifold, not necessarily connected.
- Due to the support property, all stability structures are locally finite.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●