Updates on the Ubiquity Conjecture

Max Pitz

With N. Bowler, C. Elbracht, J. Erde, P. Gollin, K. Heuer and
M. Teegen

University of Hamburg, Germany

9 June 2018

15

The ubiquity question

Potential infinity vs. actual infinity

The Ubiquity Question:
@ Fix your favourite connected graph G.

@ Suppose have a host graph I which contains arbitrarily many
disjoint copies of G

@ Can you find infinitely many disjoint copies of G in I'?

If yes for all possible host graphs I', we say G is ubiquitous.

Small detour: What do we mean by ‘copies of G in I''?

Embeddings as subgraph, topological minor and minor
When saying ‘a copy of G in I'", written G < I", we could mean:
e G embeds as subgraph (G CT')

/15

Small detour: What do we mean by ‘copies of G in I''?

Embeddings as subgraph, topological minor and minor

When saying ‘a copy of G in I'", written G < I", we could mean:
e G embeds as subgraph (G CT')
e G embeds as topological minor (G < T")

15

Small detour: What do we mean by ‘copies of G in I''?

Embeddings as subgraph, topological minor and minor
When saying ‘a copy of G in I'", written G < I", we could mean:
e G embeds as subgraph (G CT')

e G embeds as topological minor (G < T")
e G embeds as a minor (G < I')

o

PN

15

Finite graphs are ubiquitous w.r.t. all relations
We simply pick copies greedily.

Hy

= |

© Pick first copy H; C I' of G.

Finite graphs are ubiquitous w.r.t. all relations
We simply pick copies greedily.

Wy ()

© Pick first copy H; C I' of G.

@ Know that I' contains |H;| + 1 disjoint copies of G. Pick
second copy Hy C I of G disjoint from H;.

15

Finite graphs are ubiquitous w.r.t. all relations
We simply pick copies greedily.

W ()

© Pick first copy H; C I' of G.

@ Know that I' contains |H;| + 1 disjoint copies of G. Pick
second copy Hy C I of G disjoint from H;.

15

Finite graphs are ubiquitous w.r.t. all relations
We simply pick copies greedily.

o

Hy|

© Pick first copy H; C I' of G.

@ Know that I' contains |H;| + 1 disjoint copies of G. Pick
second copy Hy C I of G disjoint from H;.

© Know that I" contains |H;| + |Hz| + 1 disjoint copies of G....

Q@ Continue...

15

Halin (1965): The ray is subgraph-ubiquitous.

Non-trivial, as we can no longer pick copies greedily.

5/15

Halin (1965): The ray is subgraph-ubiquitous.

Non-trivial, as we can no longer pick copies greedily.

]

5/15

Halin (1965): The ray is subgraph-ubiquitous.

Non-trivial, as we can no longer pick copies greedily.

5/15

Halin (1965): The ray is subgraph-ubiquitous

Non-trivial, as we can no longer pick copies greedily.

\"

'll' “

f,_
\14;1/"' wrn‘ 2
u,.‘ &o"'("l

@

5/15

Halin (1965): The ray is subgraph-ubiquitous

Non-trivial, as we can no longer pick copies greedily.

M¢ w,

_.'

@ Any ray from a given /ayer might intersect all rays from all
other layers.

5/15

Halin (1965): The ray is subgraph-ubiquitous.

Non-trivial, as we can no longer pick copies greedily.

@ Any ray from a given /ayer might intersect all rays from all
other layers.

@ Halin's idea:
If rays don't intersect — pick greedily.
If rays do intersect — re-route onto the next layer.

Halin (1965): The ray is subgraph-ubiquitous.

Non-trivial, as we can no longer pick copies greedily.

"‘
‘/

\ ’II’ \"l/ﬁ‘ X
u,:g \.""I“l

5/15

Halin (1965): The ray is subgraph-ubiquitous.

Non-trivial, as we can no longer pick copies greedily.

Lt el

@ Our infinitely many rays use finite subpaths from the layers,
but otherwise have little in common with our original rays!

5/15

Bad news for subgraph and topological minor relation

Counterexamples due to Andreae, Lake and Woodall.

Figure: A graph which is not C-ubiquitous.

Figure: A graph which is not <-ubiquitous.

15

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)
X Uncountable graph (uses non-wgqo of inf. graphs) (Andreae, '01)

15

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)
X Uncountable graph (uses non-wgqo of inf. graphs) (Andreae, '01)

The Ubiquity Conjecture (Andreae, '01): All locally finite connected
graphs are minor-ubiquitous.

15

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles
s All trees, all cardinalities (BEEGHPT '187)

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)
X Uncountable graph (uses non-wgqo of inf. graphs) (Andreae, '01)

The Ubiquity Conjecture (Andreae, '01): All locally finite connected
graphs are minor-ubiquitous.

15

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles
s All trees, all cardinalities (BEEGHPT '187)

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)
X Uncountable graph (uses non-wgqo of inf. graphs) (Andreae, '01)
i All graphs of bounded treewidth (BEEGHPT '187)

The Ubiquity Conjecture (Andreae, '01): All locally finite connected
graphs are minor-ubiquitous.

15

Overview of known ubiquity results

C-Ubiquity: v Finite graphs v Ray / Double ray (Halin, '65/'70)
X Infinite comb

<-Ubiquity: v Finite graphs v Trees with A < 3 (Halin, '75)
v Locally finite trees (Andreae, '79)
X Infinite comb with triangles
s All trees, all cardinalities (BEEGHPT '187)

<-Ubiquity: v Finite graphs v Countable trees (Halin, '75)
v Locally finite graphs with bounded sized blocks (Andreae, '13)
X Uncountable graph (uses non-wgqo of inf. graphs) (Andreae, '01)
i All graphs of bounded treewidth (BEEGHPT '187)

The Ubiquity Conjecture (Andreae, '01): All locally finite connected
graphs are minor-ubiquitous.

15

Plan: Show ubiquity ideas in a simple class of examples

@ Let's take an infinite graph G which is glued together from a
sequence of finite connected graphs (G,)nen along
1-separators.

15

Plan: Show ubiquity ideas in a simple class of examples

@ Let's take an infinite graph G which is glued together from a
sequence of finite connected graphs (G,)nen along
1-separators.

@ We may also fix a representative ray R C G for later use.
Note that R passes through each 1-separator precisely once.

15

Concentrated families

A simple yet crucial new idea:

@ Your task is to hide copies of G in I' such that

e n-G <TI forall n €N, and such that
e not easy for me to find infinitely many copies of G in T'.

(e
o

Concentrated families

A simple yet crucial new idea:

@ Your task is to hide copies of G in I' such that

e n-G <TI forall n €N, and such that
e not easy for me to find infinitely many copies of G in T'.

15

Concentrated families

A simple yet crucial new idea:

@ Your task is to hide copies of G in I' such that
e n-G «T forall n € N, and such that
e not easy for me to find infinitely many copies of G in T'.

o For every finite vertex set X C V(I"), at most | X| graphs
from each layer can meet X.

o Stilln-G<aT' — X foralln € N.

o If 3 components C of I' — X with G <1 C' then gameover.

e Ow/, 3 component C of I' — X with n-G < C for all n € N
(pigeon hole).

15

Concentrated families

A simple yet crucial new idea:

@ Your task is to hide copies of G in I' such that
o n-G T forall n €N, and such that
e not easy for me to find infinitely many copies of G in T'.

@ For every finite vertex set X

from each layer can meet X.

|-

C V(T'), at most |X| graphs

o Stilln-G<l'— X forall n € N.
o If 3, components C of I' — X with G < C then gameover.

e Ow/, 3 component C of I" —

(pigeon hole).

X withn-G<CforallneN

15

Concentrated families

A simple yet crucial new idea:

| now apply the following strategy:
o If possible, pick finite X1 C I' s.t. in ' — X there exist
components C7 # Dq with

oen-G<1(C;forallneN,
e D; contains a copy H; of G.

10/15

Concentrated families
A simple yet crucial new idea:

| now apply the following strategy:

o If possible, pick finite X1 C I' s.t. in ' — X there exist
components C7 # Dq with

oen-G<1(C;forallneN,
e D; contains a copy H; of G.

o If possible, pick finite Xo C C] s.t. in C7 — X7...

Ca

| %]

=
i

10/15

Concentrated families

A simple yet crucial new idea:

| now apply the following strategy:

o If possible, pick finite X1 C I' s.t. in ' — X there exist
components C7 # Dq with

oen-G<1(C;forallneN,
e D; contains a copy H; of G.

o If possible, pick finite Xo C C] s.t. in C7 — X7...

¢y

10/15

Concentrated families

A simple yet crucial new idea:

| now apply the following strategy:
o If possible, pick finite X1 C I' s.t. in ' — X there exist
components C7 # Dq with
oen-G<1(C;forallneN,
e D; contains a copy H; of G.

o If possible, pick finite Xo C C] s.t. in C7 — X7...

10/15

Concentrated families

A simple yet crucial new idea:

| now apply the following strategy:
o If possible, pick finite X1 C I' s.t. in ' — X there exist
components C7 # Dq with
oen-G<1(C;forallneN,
e D; contains a copy H; of G.

o If possible, pick finite Xo C C] s.t. in C7 — X7...

o If this process doesn't stop, then {H,,: n € N} — gameover.

10/15

Concentrated families

A simple yet crucial new idea:

Lesson: Place G-copies in I' s.t. VX C V(I') finite, 3! component Cx
of I' — X such that ‘almost all' copies of GG are contained in Cx.

11/15

Concentrated families

A simple yet crucial new idea:

Lesson: Place G-copies in I' s.t. VX C V(I') finite, 3! component Cx
of I' — X such that ‘almost all' copies of GG are contained in Cx.

\\.\ / _— Cy

Observation: The family (Cx)x satisfies
XQX’%C’XQCX/
Such a choice of components (Cx)x is called a direction in T.

11/15

Concentrated families

A simple yet crucial new idea:

Lesson: Place G-copies in I' s.t. VX C V(I') finite, 3! component Cx
of I' — X such that ‘almost all' copies of GG are contained in Cx.

U/ —

—] c Cy!
=’ g
an

Observation: The family (Cx)x satisfies
XQX/%CXQCX/.
Such a choice of components (Cx)x is called a direction in I
(Diestel and Kiihn have shown that directions and ends are the
same thing.)

11/15

Concentrated families

A simple yet crucial new idea:

Lesson: Place G-copies in I' s.t. VX C V(I') finite, 3! component Cx
of I' — X such that ‘almost all' copies of GG are contained in Cx.

e Aray S C T agrees with (Cx)x if S has a tail in every Cx.

11/15

Concentrated families

A simple yet crucial new idea:

Lesson: Place G-copies in I' s.t. VX C V(I') finite, 3! component Cx
of I' — X such that ‘almost all' copies of GG are contained in Cx.

Y

e Aray S C T agrees with (Cx)x if S has a tail in every Cx.

11/15

Concentrated families

A simple yet crucial new idea:

Lesson: Place G-copies in I' s.t. VX C V(I') finite, 3! component Cx
of I' — X such that ‘almost all' copies of GG are contained in Cx.

Y =

A >

e Aray S C T agrees with (Cx)x if S has a tail in every Cyx.

o Fix aray R in our graph G.

e For every G-copy H in T, the lifted ray H(R) either agrees
with (Cx)x or not.

@ Pigeon hole: May assume that H(R) either agrees with
(Cx)x always or never, uniformly for all G-copies H in T'.

11/15

In the never-agree case, can again pick copies greedily

@ Pick first copy H; C I' of G.

12/15

In the never-agree case, can again pick copies greedily

Xa

@ Pick first copy Hy C I of G.
@ Find X where H;(R) disagrees with Cj,.

12 /15

In the never-agree case, can again pick copies greedily

© Pick first copy H; C I of G.
@ Find X; where H(R) disagrees with Cx,.
© Pick second copy Hy C Cx, of G.

12 /15

In the never-agree case, can again pick copies greedily

K l:f:fﬁ)- Mz”z)/;cxi C)(l_l

X

@ Pick first copy H; C I' of G.

@ Find X; where H(R) disagrees with C,.

@ Pick second copy Hs C Cx, of G.

Q Find X3 D X, where Hy(R) disagrees with CYx,.

12 /15

In the never-agree case, can again pick copies greedily

K Hi®)

© Pick first copy H; C I' of G.

@ Find X; where H(R) disagrees with C;,.

© Pick second copy Hy C Cx, of G.

© Find X3 D X; where Hy(R) disagrees with Cx, .
@ Pick third copy Hs C Cx, of G.

12 /15

In the never-agree case, can again pick copies greedily

K Hi®)

fh

X

@ Pick first copy H; C T of G.

@ Find X, where H(R) disagrees with Cx;,.

© Pick second copy Ha C Cx, of G.

Q Find Xy D X, where Hy(R) disagrees with Cx,.
@ Pick third copy H3 C Cy, of G.

O Continue....

12 /15

In the always-agree case, use well-quasi-ordering theory

Using the Robertson-Seymour result on wqo of finite graphs

@ Colour the left cut-vertex of each GG, with 1 and the right
cut-vertex with 2.

SO888

@ Labelled wqo of finite graphs (Robertson-Seymour): N € N
s.t. every G, for n > N embeds into infinitely many G;.

13/15

In the always-agree case, use well-quasi-ordering theory

Using the Robertson-Seymour result on wqo of finite graphs

@ Colour the left cut-vertex of each GG, with 1 and the right
cut-vertex with 2.

SO888

@ Labelled wqo of finite graphs (Robertson-Seymour): N € N
s.t. every G, for n > N embeds into infinitely many G;.

@ May assume N =1, i.e. can find every blob but the first again
and again.

13 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

14/15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

(

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

?;

14/15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

O——

14/15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

> ks

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

/C"”J “f G

Co——

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

(Jo—
o=

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

o
(o

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

S=S =

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

(o~

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

W

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

SS,

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

{
r[{.
@

Lesson 1: As with Halin's rays, our G-copies use finite blobs from the
layers, but otherwise have little in common with original copies!

14 /15

In the always-agree case, use well-quasi-ordering theory

The construction — a picture proof for a one-ended example

i
W
@

Lesson 1: As with Halin’s rays, our G-copies use finite blobs from the
layers, but otherwise have little in common with original copies!

Lesson 2: If you place your G-copies all over the host graph I, then
easy for me to win. And if you place them so that they are
concentrated, you will inadvertently create lots of new G-copies
due to wqgo which | may exploit.

14 /15

For the details see....

Bowler, Elbracht, Erde, Gollin, Heuer, Pitz, Teegen:

@ Ubiquity in graphs I: Topological ubiquity of trees, submitted.

@ Ubiquity in graphs II: Ubiquity of graphs with non-linear end
structure, submitted.

e Ubiquity in graphs Ill: Ubiquity of a class of locally finite
graphs, preprint available soon.

@ Ubiquity in graphs IV: Ubiquity of graphs of bounded
tree-width, at some point.

15/15

