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© What is an Eulerian space?
Edge-wise Eulerian tours in infinite graphs
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The Koenigsberg Bridge Problem

Schematic drawings of the seven bridges of Koenigsberg, in:

Leonhard Euler (1736): “Solutio problematis ad geometriam situs
pertinentis” (Solution of a problem about the geometry of position)
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Finite Eulerian graphs

Characterisations in terms of vertex degrees, decomposition results and edge-cuts

Theorem: For a finite connected multi-graph G, tfae:

@ G is Eulerian,

@ all vertices of GG have even degree, (Euler)
© G can be decomposed into edge-disjoint cycles, (Veblen)
Q all edge-cuts of G are even. (Nash-Williams)

An edge-cut of G is a set F(A, B) C E(G) of edges crossing a
bipartition (A, B) of V(G).

E(A, B)
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Finite Eulerian graphs

Characterisations in terms of vertex degrees, decomposition results and edge-cuts

Theorem: For a finite connected multi-graph G, tfae:

@ G is Eulerian,

@ all vertices of G have even degree, (Euler)
© G can be decomposed into edge-disjoint cycles, (Veblen)
Q all edge-cuts of G are even. (Nash-Williams)

Question: What about infinite (multi-)graphs?

e Erdés, Griinwald, Vazsonyi (1938) e Rothschild (1965)
e Nash-Williams (1960, 1962) e Laviolette (1997)
@ Sabidussi (1964) @ Diestel & Kiihn (2004)
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The topological viewpoint

Combinatorial vs. topological Eulerian tours

Finite multi-graph G turns naturally into a topological space |G].

A combinatorial Euler tour is a An edge-wise Eulerian map is a
closed walk containing every edge continuous surjection
of G precisely once. f: S — |G| which is injective

for interior points on edges.

€1 €3
o> o>
e es v w T

Tf

W = veqweszesweyav

24



Solution: Add the Ends, and Compactify

The Freudenthal compactification F'G

R. Diestel, Locally finite graphs with ends: a topological approach
I-111, Discrete Math (2010-11).

...turns into...
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Solution: Add the Ends, and Compactify

The Freudenthal compactification F'G

R. Diestel, Locally finite graphs with ends: a topological approach
I-111, Discrete Math (2010-11).

...with edge-wise Eulerian map f: S' - FG
/M\
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Infinite Eulerian graphs

With this definition, the finite characterisation extends best possible

Definition (Diestel & Kiihn): G Eulerian < 3 edge-wise Eulerian
surjection f: S' — FG
Theorem: (DK '04) For a locally finite connected multi-graph G, tfae:

@ G is Eulerian,
@ G can be decomposed into edge-disjoint (finite) cycles
@ all (finite) edge-cuts of G are even.

Euler’s original even-degree condition is no longer sufficient:
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Eulerian problem for infinite topological graphs

What about other naturally occurring compactifications of locally finite graphs?

Do these ‘graphs’ admit edge-wise Eulerian surjections?

[Credit: https://en.wikipedia.org/wiki/Wythoff_symbol]
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Edge-wise Eulerian maps in topological spaces
A general definition of edges in topological spaces
Let X be a metrizable space.

@ An edge (i.e. free arc) of X is an inclusion-maximal open
subset of X homeomorphic to (0,1). Let E(X) be the edge
set of X. The ground space of X is G(X) = X — E(X)

o X is edge-wise Eulerian if 3 edge-wise Eulerian f: ST — X.

| IHH
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Strongly irreducible maps and Eulerian continua

Hahn-Mazurkiewicz: A space X is the continuous image of I or St if
and only if X is a Peano continuum.

Question: What about ‘nice’ space-filling curves?
o Hilbert (1891) e Ward (1977)
e Nobling (1933) e Treybig & Ward (1981)
e Harrold (1940, 1942) e Bula, Nikiel & Tymchatyn (1994)

Definition: A continuous surjection f: S' — X is strongly irreducible if
for all closed proper subsets A C S!, we have f(A) C X.

Problem (Treybig & Ward '81): Characterize the strongly irreducible
images of S'.

Exercise: Every strongly irreducible f: S' — X is edge-wise Eulerian.

Definition: A space X is Eulerian if there exists a strongly irreducible
surjection f: S' — X. Call any such map an Eulerian map.
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Understanding Eulerian maps

What makes a map strongly irreducible?

Observation (Harrold): If E(X) =) and f: S' — X is Eulerian, then
f 1 J never traces out an arc for any time interval J C S'.

Proof: Otherwise, f(S!\ int(.J)) contains a dense subset of X, so
— since compact — must be onto, contradicting strongly irreducible.

Jekyll-Hyde behaviour



Understanding Eulerian maps
What makes a map strongly irreducible?

Observation (Harrold): If E(X) =) and f: S' — X is Eulerian, then
f I J never traces out an arc for any time interval J C S*.

Lemma (GP 19%): If X has dense edges, then f: S' — X is Eulerian
iff f is edge-wise Eulerian & f~1(G(X)) is zero-dimensional.

Admissible trace of an edge-wise Eulerian map on the left, and an
Eulerian map on the right.
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Overview

@ The Eulerianity conjecture
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What is known about Eulerian continua?
Problem (Treybig & Ward, '81): Characterize the Eulerian continua!

Answer known in the following special cases:

v" Peano continua without free arcs (Harrold '42)
— always Eulerian

v Finite graphs (Euler) & Freudenthal compactification of locally
finite graphs (Diestel, Kiihn '04)

v" Continua with zero-dimensional ground space (called
completely regular continua or graph-like continua) (Bula,
Nikiel, Tymchatyn '94) / (Espinoza, Gartside, Pitz '16)

v X with dense edges, G(X) Peano continuum (BNT '94)

— always Eulerian

But: So far, no structural condition describing the Eulerian continua
was even conjectured.
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The Eulerianity Conjecture
Edges and edge-cuts in Peano continua X # S*

o Let E(X) be the set of edges of X. The ground space of X

is G(X) = X — B(X).

e E(X) is a zero-sequence of disjoint open sets.
@ Every edge has at most two boundary points.
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The Eulerianity Conjecture
Edges and edge-cuts in Peano continua X # S*

@ The ground space of X is G(X) = X — E(X).

@ An edge-cut of X is a set (A, B) C E(X) of edges crossing
a clopen partition (A, B) of the ground space G(X).

@ Edge-cuts in Peano continua are finite.
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The Eulerianity Conjecture
Edges and edge-cuts in Peano continua X # S*

@ The ground space of X is G(X) = X — E(X).

@ An edge-cut of X is a set E(A, B) C E(X) of edges crossing
a clopen partition (A, B) of the ground space G(X).
@ Edge-cuts in Peano continua are finite.

Observation: Edge-cuts of edge-wise Eulerian spaces are even.

Eulerianity Conjecture (Gartside & Pitz): A Peano continuum is
Eulerian if and only if all its edge-cuts are even.
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© Affirmative results towards the Eulerianity conjecture
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Results and Evidence towards the Eulerianity Conjecture

Eulerianity Conjecture (Gartside & Pitz): A Peano continuum is
Eulerian if and only if all its edge-cuts are even.

Theorem 1 (GP 197):
A space is Eulerian if and only if it is edge-wise Eulerian.

Theorem 2 (GP 197%): The Eulerianity Conjecture holds for every
Peano continuum whose ground space

@ consists of finitely many Peano continua, or

@ is homeomorphic to a product V' x P, where V is
zero-dimensional and P a Peano continuum, or

@ is at most one-dimensional.

@ says the conjecture holds for all one-dimensional Peano continua.
@ (kind of) answers Problem 3 of Bula, Nikiel, Tymchatyn ('94).
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Overview

@ Proof impressions
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

@ Partition into almost Eulerian tiles. (This step uses Bing's and
Andersen’s Brick Partition Theorem and the combinatorial theory

for Freudenthal compactifications by Diestel et al...).

@ Let Gy be graph on the tiles with edge set all uncovered edges.
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

Gy

@ Carefully add dummy edges to (G; in order to make it Eulerian,

drawing a dummy loop in X for each new dummy edge at the
intersection of corresponding tiles.

O Repeat!

22 /24



Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

T G

Q Partition each tile into (smaller) almost Eulerian tiles.

22/24



Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

9 Obtain a “finer" graph G on the new tiles.

g Add dummy edges to (G2 in order to make it Eulerian—inside
the old tiles!-and add dummy loop for each new dummy edge at
the intersection of corresponding tiles.

Q Repeat!
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

<1

4v.,

=- Obtain a sequence of finite Eulerian graphs G1, G2, Gs, ... such
that every G; is an edge-quotient of G;41.

= Then @Gi is Eulerian projecting ‘nicely’ onto X.

= Every Eulerian map for @Gi projects to an edge-wise Eulerian
map for X.
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Outlook

Eulerianity Conjecture: A Peano continuum is Eulerian if and only if all
its edge-cuts are even.

Open problems / next steps:
@ Prove the conjecture for all hyperbolic graphs with boundary
S™ for n > 2.
@ Can one extend this to deal with n-dimensional spaces?
@ Resolve the full conjecture!
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