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The Koenigsberg Bridge Problem

Schematic drawings of the seven bridges of Koenigsberg, in:

Leonhard Euler (1736): “Solutio problematis ad geometriam situs
pertinentis” (Solution of a problem about the geometry of position)
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Finite Eulerian graphs

Characterisations in terms of vertex degrees, decomposition results and edge-cuts

Theorem: For a finite connected multi-graph G, tfae:

1 G is Eulerian,
2 all vertices of G have even degree, (Euler)
3 G can be decomposed into edge-disjoint cycles, (Veblen)
4 all edge-cuts of G are even. (Nash-Williams)

An edge-cut of G is a set E(A,B) ✓ E(G) of edges crossing a
bipartition (A,B) of V (G).

A

B
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Finite Eulerian graphs

Characterisations in terms of vertex degrees, decomposition results and edge-cuts

Theorem: For a finite connected multi-graph G, tfae:

1 G is Eulerian,

2 all vertices of G have even degree, (Euler)

3 G can be decomposed into edge-disjoint cycles, (Veblen)

4 all edge-cuts of G are even. (Nash-Williams)

Question: What about infinite (multi-)graphs?

Erdős, Grünwald, Vàzsonyi (1938)

Nash-Williams (1960, 1962)

Sabidussi (1964)

Rothschild (1965)

Laviolette (1997)

Diestel & Kühn (2004)
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The topological viewpoint

Combinatorial vs. topological Eulerian tours

Finite multi-graph G turns naturally into a topological space |G|.

A combinatorial Euler tour is a
closed walk containing every edge

of G precisely once.

e1

e4

e3

e2
v w x

W = ve1we2xe3we4v

An edge-wise Eulerian map is a
continuous surjection

f : S1 ⇣ |G| which is injective
for interior points on edges.

" f

v w x
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Solution: Add the Ends, and Compactify

The Freudenthal compactification FG

R. Diestel, Locally finite graphs with ends: a topological approach
I-III, Discrete Math (2010–11).

...turns into...
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Solution: Add the Ends, and Compactify

The Freudenthal compactification FG

R. Diestel, Locally finite graphs with ends: a topological approach
I-III, Discrete Math (2010–11).

...with edge-wise Eulerian map f : S1 ⇣ FG
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Infinite Eulerian graphs

With this definition, the finite characterisation extends best possible

Definition (Diestel & Kühn): G Eulerian , 9 edge-wise Eulerian
surjection f : S1 ⇣ FG

Theorem: (DK ’04) For a locally finite connected multi-graph G, tfae:

1 G is Eulerian,

2 G can be decomposed into edge-disjoint (finite) cycles

3 all (finite) edge-cuts of G are even.

Euler’s original even-degree condition is no longer su�cient:
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Eulerian problem for infinite topological graphs

What about other naturally occurring compactifications of locally finite graphs?

Do these ‘graphs’ admit edge-wise Eulerian surjections?

[Credit: https://en.wikipedia.org/wiki/Wythoff_symbol]
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Edge-wise Eulerian maps in topological spaces

A general definition of edges in topological spaces

Let X be a metrizable space.

An edge (i.e. free arc) of X is an inclusion-maximal open
subset of X homeomorphic to (0, 1). Let E(X) be the edge
set of X. The ground space of X is G(X) = X � E(X)
X is edge-wise Eulerian if 9 edge-wise Eulerian f : S1 ⇣ X.
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Strongly irreducible maps and Eulerian continua

Hahn-Mazurkiewicz: A space X is the continuous image of I or S1 if
and only if X is a Peano continuum.

Question: What about ‘nice’ space-filling curves?

Hilbert (1891)

Nöbling (1933)

Harrold (1940, 1942)

Ward (1977)

Treybig & Ward (1981)

Bula, Nikiel & Tymchatyn (1994)

Definition: A continuous surjection f : S1 ⇣ X is strongly irreducible if
for all closed proper subsets A ( S1, we have f(A) ( X.

Problem (Treybig & Ward ’81): Characterize the strongly irreducible
images of S1.

Exercise: Every strongly irreducible f : S1 ⇣ X is edge-wise Eulerian.

Definition: A space X is Eulerian if there exists a strongly irreducible
surjection f : S1 ⇣ X. Call any such map an Eulerian map.
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Understanding Eulerian maps

What makes a map strongly irreducible?

Observation (Harrold): If E(X) = ; and f : S1 ⇣ X is Eulerian, then
f � J never traces out an arc for any time interval J ⇢ S1.

Proof: Otherwise, f(S1 \ int(J)) contains a dense subset of X, so
– since compact – must be onto, contradicting strongly irreducible.

Jekyll-Hyde behaviour
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Understanding Eulerian maps

What makes a map strongly irreducible?

Observation (Harrold): If E(X) = ; and f : S1 ⇣ X is Eulerian, then
f � J never traces out an arc for any time interval J ⇢ S1.

Lemma (GP 19+): If X has dense edges, then f : S1 ⇣ X is Eulerian
i↵ f is edge-wise Eulerian & f�1(G(X)) is zero-dimensional.

Admissible trace of an edge-wise Eulerian map on the left, and an
Eulerian map on the right.
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What is known about Eulerian continua?

Problem (Treybig & Ward, ’81): Characterize the Eulerian continua!

Answer known in the following special cases:

X Peano continua without free arcs (Harrold ’42)
! always Eulerian

X Finite graphs (Euler) & Freudenthal compactification of locally
finite graphs (Diestel, Kühn ’04)

X Continua with zero-dimensional ground space (called
completely regular continua or graph-like continua) (Bula,
Nikiel, Tymchatyn ’94) / (Espinoza, Gartside, Pitz ’16)

X X with dense edges, G(X) Peano continuum (BNT ’94)
! always Eulerian

But: So far, no structural condition describing the Eulerian continua
was even conjectured.
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The Eulerianity Conjecture

Edges and edge-cuts in Peano continua X 6= S1

Let E(X) be the set of edges of X. The ground space of X
is G(X) = X � E(X).
E(X) is a zero-sequence of disjoint open sets.
Every edge has at most two boundary points.
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Edges and edge-cuts in Peano continua X 6= S1

The ground space of X is G(X) = X � E(X).

An edge-cut of X is a set E(A,B) ⇢ E(X) of edges crossing
a clopen partition (A,B) of the ground space G(X).

Edge-cuts in Peano continua are finite.

Observation: Edge-cuts of edge-wise Eulerian spaces are even.

Eulerianity Conjecture (Gartside & Pitz): A Peano continuum is
Eulerian if and only if all its edge-cuts are even.

17 / 24



Overview

1 What is an Eulerian space?
Edge-wise Eulerian tours in infinite graphs

... vs ...
irreducible images of I and S1

2 The Eulerianity conjecture

3 A�rmative results towards the Eulerianity conjecture

4 Proof impressions

18 / 24



Results and Evidence towards the Eulerianity Conjecture

Eulerianity Conjecture (Gartside & Pitz): A Peano continuum is
Eulerian if and only if all its edge-cuts are even.

Theorem 1 (GP 19+):
A space is Eulerian if and only if it is edge-wise Eulerian.

Theorem 2 (GP 19+): The Eulerianity Conjecture holds for every
Peano continuum whose ground space

1 consists of finitely many Peano continua, or

2 is homeomorphic to a product V ⇥ P , where V is
zero-dimensional and P a Peano continuum, or

3 is at most one-dimensional.

3 says the conjecture holds for all one-dimensional Peano continua.
2 (kind of) answers Problem 3 of Bula, Nikiel, Tymchatyn (’94).
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

G1

1 Partition into almost Eulerian tiles. (This step uses Bing’s and
Andersen’s Brick Partition Theorem and the combinatorial theory
for Freudenthal compactifications by Diestel et al...).
2 Let G1 be graph on the tiles with edge set all uncovered edges.
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

G1

3 Carefully add dummy edges to G1 in order to make it Eulerian,
drawing a dummy loop in X for each new dummy edge at the
intersection of corresponding tiles.
4 Repeat!
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

G1

1’ Partition each tile into (smaller) almost Eulerian tiles.

22 / 24



Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

G2

2’ Obtain a “finer” graph G2 on the new tiles.

3’ Add dummy edges to G2 in order to make it Eulerian–inside
the old tiles!–and add dummy loop for each new dummy edge at
the intersection of corresponding tiles.
4’ Repeat!
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Framework: Approximating by finite Eulerian graphs

Step-by-step approximations towards a cyclic order for the hyperbolic 4-regular tree X

G2

) Obtain a sequence of finite Eulerian graphs G1, G2, G3, . . . such
that every Gi is an edge-quotient of Gi+1.
) Then lim �Gi is Eulerian projecting ‘nicely’ onto X.
) Every Eulerian map for lim �Gi projects to an edge-wise Eulerian
map for X.
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Outlook

Eulerianity Conjecture: A Peano continuum is Eulerian if and only if all
its edge-cuts are even.

Open problems / next steps:
Prove the conjecture for all hyperbolic graphs with boundary
Sn for n � 2.
Can one extend this to deal with n-dimensional spaces?
Resolve the full conjecture!
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