Sapienza Universita di Roma

A.A. 2010-2011

SEMILINEAR PARABOLIC EQUATIONS
IN THE
HYPERBOLIC SPACE

Advisor: Candidate:
Prof. Alberto Tesei Camilla Nobili

ID number: 1143900



A Valentina e Valerio



Contents

Introduction

1

Riemannian Geometry, Semigroups and Heat kernel

1.1 Riemannian manifolds . . . . ... .. ... ... ... ....

1.2 Laplace-Beltrami operator on manifolds . . . ... ... ...

1.2.1  Form of the Laplace-Beltrami operator on model man-

ifolds . . . . . ..

1.3 The hyperbolicspace . . . . . . . . ... ... ... ... ...

1.4 Heat kernel on Riemannian manifolds . . . .. ... ... ..

1.5 The principal eigenvalue . . . . . . .. ... ... ... ...

2 Blow-Up for the Cauchy Problem in H"
2.1 Classical, mild and weak solutions . . . . .. ... ... ...
2.2 Localexistence . . .. ... ... .. .. ... .
2.3 Blow-up . . . . ..
2.3.1 Instantaneous blow-up . . . . . ... ... ... ....
2.3.1.1  Principal eigenvalue in annuli . . . . . . . ..
2.3.2  Finite time blow-up . . . . . .. ... ... ... ...
2.4 Global existence . . . . .. .. ... ... .
2.4.1 Groundstates . . . . . . ... ... L.
2.5 Awgeneralresult . . . . ... ..o
3 Front Propagation of Semilinear Diffusion Equations in H"
3.1 Preliminary results . . . . . . ... ... L.
3.2 Behavior of disturbances: extinction or propagation? . . . . .
321 TheKPPecase ... ... ... . ... .........
3.2.2 The Allen-Cahn case . . . . . ... ... ... .....
3.3 Speed of propagation . . . . . ... ..o
3.4 Asymptotical symmetry . . . .. ...

Bibliography

69



Introduction

Nature uses as little as possible
of anything.

KEPLER, JOHANNES
(1571-1630)

In this thesis we address two well-known problems concerning semilinear
parabolic equations yet in a new framework: the hyperbolic space H"™.
Both problems are of the type

{ut =Au+ f(u) in H" xRy, (1)

u = ug in H" x {0}

considered under different assumptions on the function f.

The first problem is the blow-up of solutions while the second deals with
front propagation.

The main reason of interest to address the above problems is, roughly speak-
ing, to study how geometry affects diffusion properties. Expectedly, these two
aspects are related by the spectral properties of the Laplace-Beltrami oper-
ator in H™. These properties (specifically the fact that the infimum of the
L?—spectrum of this operator in H" is strictly positive) give rise to estimates
of the heat kernel in H", different from those valid in R™ with interesting
consequences on the qualitative properties of solutions to problem (1).

Chapter 1 of the thesis is devoted to preliminaries. We review a number of
models of H" which play a role in our study.

In particular properties and estimates of the heat kernel in H™ are given (see
Section (1.4)).

In Chapter 2 we study the following Cauchy problem:

{ut = Agu+h®)|[ulPlu in H® x Ry, (P1)

u = ug in H" x {0}.

The weight h is a positive, continuous and locally integrable function in R,
p>1and ug > 0.
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This problem is studied considering the Poincaré disk D™ as a model of the
hyperbolic space (compare section 1.3).
The companion problem in R™, namely

ur = Au+ h(t)|u/P~'u  in R® x R,
u = up in R” x {0}

has been widely investigated.

Let ug € L>®(R™) be a positive continuous function in R™ and p > 1.
Assuming h = 1, in [11] H.Fujita proved that if 1 < p < p* =1 +% the
problem (2) does not have any nontrivial, non-negative global solutions in
R™ x [0,00). On the other hand if p > p* and vy is suitably small there exist
global, positive solutions.

Fujita observed that intuitively, if p is large and the data ug is small, then
diffusion suppresses the tendency of the solution to blow up. Therefore the
“size” of the nonlinearity plays a big part in determining whether of not the
blow-up occurs.

fl<p<1l+ % we say that the exponent p belongs to the “blow-up case”
whereas if p > 1 —&—% it belongs to the “global case”. The exponent p* := 1 —i—%
is called the Fujita exponent and the existence of p* € (1, 00) is often referred
to as the Fujita phenomenon.

The results of Fujita stimulated a great deal of investigations. In particular,
in [14] P. Meier showed that in the case h(t) = t? (for large t and ¢ > —1)
the Fujita exponent of (2) becomes p* =1+ @.

He also addressed the Dirichlet initial-boundary value problem on a bounded
domain 2 C R™

ug = Au + h(t)|ulP~'u in Qx (0,7),
u=0 in 90 x (0,7), (3)
u=ug >0 in Q x {0}

Here something very interesting happens: if h(t) = €% (8 > 0) then the
critical exponent becomes p* = 1+ )\% where )\g is the first eigenvalue of the
Laplacian in € with homogeneous Dirichlet boundary conditions . On the
other hand, if h(t) = 1 or h(t) = t¢ (¢ sufficiently large and ¢ > —1), and wug
is sufficiently small then global solutions always exist.

This means that a “very large” weight function is needed to produce the
Fujita phenomenon.

Observe that the heat kernel of problem (3) behaves like e~ for large time.
Hence, a large weight function is needed to balance the effect of diffusion,
which is stronger than for the Cauchy problem (2).

As proven in [15] and shown below a similar situation holds for the Cauchy
problem (P1) in H".
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Here the role of the principal eigenvalue )¢ of problem (3) is played by the
strictly positive infimum X\; of the L?—spectrum of the Laplace-Beltrami
operator, namely A\; = w.

The techniques used for the proof are usual comparison and monoticity re-

sults for parabolic equations.

Chapter 3 deals with the following Cauchy problem

{ut = Agu+ f(u) in H" xRy, (P2)
u = ug in H" x {0}.
The initial data ug is chosen to fulfill the following assumptions:
up is continuous , 0<wup<1 forany xe€H" (H)
The following hypotheses are made on the forcing term :
feci(o.1), f0)=f1=o. (Ho)

Two type of functions f, which are suggested by some applications in popu-
lation genetics, are treated:

e KPP type!
f(0) >0, f(u)>0 forany u € (0,1), (Hy)
or

e Allen-Cahn type

(¢) there exists a € (0,1) such that
f(u) <0 for any u € (0,a), f(u) > 0 for any u € (a,1);

1 (Ho)
(i) £(0) < 0, /0 F(u)du > 0.

£(u) £(u)

u 0 2 1

KPP type function Allen-Cahn type function

KPP stands for Kolmogorov,Petrovsky and Piskunov who first addressed problem (4)
under these assumptions.
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Under assumptions (H) and (Hp) it is known that existence and uniqueness
are ensured; moreover every solution u of problem (P2) satisfies

0<u<l inH"xR,.

Solution are always meant in the classical sense and we adopt the following
notation: a solution u(x,t) of (P2) is said to propagate when

tlim u(z,t) = 1, uniformly on compact subsets of H",
—00

while it is said to get extinct when

tlim u(z,t) = 0, uniformly in H".

The companion problem of (P2) in R™, namely
ur = Au+ f(u) in R™ x Ry, (1)
u = ug in R” x {0}

was studied by D.G.Aronson and H.F Weinberger in the seminal paper [1],
with f satisfying assumption (Hp).

As explained in [1], problem (4) is suggested by the following problem of
population genetics.

Suppose we are given a population of diploid individuals split in three classes:
the heterozigote intermediate (genotype Aa), the heterozygote superior (geno-
type AA) and heterozygote inferior (genotype aa).

The forcing term f is chosen according to the genetic model under study:
the KPP-type function describes the model of heterozygote intermediate
case whereas the Allen-Cahn-type function mathematically describes the
heterozygote inferior case.

Assuming birth rate, death rate and diffusion coefficient to be constant in
time, the paper addressed the following questions:

e How does a given initial distribution of the allele A evolve in time?
e Is the allele A wiped out, or does it persist for large time?

o [f the allele A does persist, is the allele a eliminated? Otherwise, do
they coexist in an equilibrium distribution?

In mathematical terms the problem is to investigate the stability of the
equilibrium states v = 0 and u = 1 of problem (4).

The results established by Aronson and Weinberger can be summarized as
follows.

(a) If the forcing term f is KPP type, then propagation always occurs for
every solution u # 0 of problem (4). This follows from the hair trigger effect
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which concerns the instability of the rest state u = 0 with respect to any
nontrivial perturbation. More specifically,

(z) if there exists an a € (0, 1] such that f(u) > 0 for any u € (0, a)

and

(i) if iminfu ) f(w) > 0,

then for any solution u # 0 of problem (4)

tlim infu(z,t) > a uniformly on compact subsets of R" (5)
— 00

[[1] Theorem 3.1 pg 41].
Clearly, hypothesis (H;) implies (i) and (¢i) with a = 1, thus (5) follows.
If f(u) = O(uP) as u — 0T and if 1 < p < 1+ 2 then (i) is satisfied while
ifp>1+ % then

lim w(z,t) =0 uniformly in R"

t—00
[see [1], Theorem 3.2].
Observe that 1+ % is the Fujita exponent of problem (2) with h = 1.
(b) If f is Allen-Cahn type then a threshold effect occurs. In fact extinction
prevails when the initial data function ug is sufficiently small, while we have
propagation when wy is large enough.[[1] Proposition 6.1 and Theorem 6.2]
(¢) The existence of plane wave solutions of problem (4), namely solutions
of the form

u(z,t) = q(z - v —ct)

is investigated.

It is proven that for both the KPP and the Allen-Cahn case there exists an
asymptotic speed of propagation ¢* > 0 which is uniquely determined by the
following properties

1. no solution with compact support of problem (4) can propagate with
speed greater than ¢*. In fact, for any ¢ > ¢* and y € R"

lim sup wu(x,t) =0;

t=00 | —y|>ct

2. if a solution of problem (4) propagates, then its speed is no smaller
than ¢*. In fact, if

litm infu(z,t) > a uniformly on compact subsets of R"
—00

for some a € (0, 1], then for any ¢ < ¢* and y € R"

liminf inf w(zx,t) > a.
t—oo |z—y|<ct
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Under the additional assumption

there holds

=2/ 1(0),
thus the asymptotic speed of propagation ¢* only depends on the forcing
term f.
As proven in [17] and discussed below, the situation in H" is the following.
(a') If the function f is KPP-type then, under the additional assumption
(H3) a new threshold effect occurs: if ¢* = 24/f'(0) < n — 1 and wug has
compact support then extinction prevails, whereas there is propagation if
c¢* > n — 1. This is the content of Theorem 3.1.
It is important to notice that under assumption (Hs) the condition ¢* > n—1
becomes ( )2
! n-—-
71(0) > ==
Once again, like in the case of blow-up, A; plays a crucial role.
No hair-trigger effect holds in H™; in fact this would contrast with the fact
that extinction prevails for ¢* < n — 1 when f is KPP.
Therefore, differently from the Euclidean case, in the hyperbolic space we can
have eztinction even in the KPP case, depending on the sign of the difference
& —(n—1).
Furthermore, if f/(0) = 0, at variance from the Euclidean case, we cannot
have propagation. However, if f(u) = O(uP) as u — 0 with p > 1, then
extinction occurs (see Theorem 3.2).
(b') If the function f is Allen-Cahn then extinction prevails when the initial
data wug is sufficiently small and propagation occurs when wug is sufficiently
large and if ¢* > n — 1. So once again the sign of the difference ¢* — (n — 1)
is important.
(') When propagation prevails over extinction, then the asymptotic speed of
propagation in H™ is ¢* — (n — 1), differently from the case of R™ where it is
cr.
The above differences are related to the fact that in H"™ there is a kind of
“drift from infinity” that affects the propagation of disturbances. Consider
the equation

= )\1(> 0).

ug = Apu+ f(u) in M™ xRy

and the form it takes in polar coordinates (r,6) and (p, #) respectively in R"
and H™ (see Section 1.2.1).
In M = R™ the equation reads

ou 0%u n—10u 1
oot ar Tt



10 Introduction

while in M = H" it reads

2
Ou za—g—k(n—l)co‘chp@—i—

1
— ——A .
ot Op dp  (sinhp)? ou+ f(u)

Now, if we compare the coefficients of the first order term in the right-hand
side of the above expressions then in the first case it tends to 0 as r — oo.
In the second case, instead, it tends to (n — 1) as p — oo.

This heuristically explain the presence of the term (n — 1) in the speed of
propagation in the case of H".

Therefore, in order to obtain propagation, in H", the drift from infinity must
be overcome. Hence the condition ¢* > n — 1 arises.

A major tool used to prove the above results is the maximum principle in R™,
which can be applied thanks to the ellipticity of the Laplace-Beltrami oper-
ator in the half space model and in the disk model (see (1.11)). Therefore,
standard comparison principles can be used as in the case of R™.

In order to prove propagation in the KPP case, the condition (Hs) is in-
strumental to construct a suitable family of lower solutions to problem (P2).
On the other hand, to prove extinction in the Allen Cahn case, heat kernel

estimates from above are used to build up a family of upper solutions of
problem (P2).



Chapter 1

Riemannian Geometry,
Semigroups and Heat kernel

1.1 Riemannian manifolds

Let M be a Hausdorff topological space such that any point of M admits a
neighborhood homeomorphic to an open set in R"”.

A CP atlas on a Hausdorff topological space M is given by an open cover Uj,
1 € I, of M and a family of homeomorphisms ¢; : U; — €; C R™, such that
for any 4,7 € I the homomorphism ¢; o ¢; " : ¢;(U; NU;) — ¢;(U; N U;) is
a CP diffeomorphism. We call transition functions the maps {¢; o gb;l} and
differentiable structure of class CP on M an equivalence class of CP atlas.
The pairs (U, ¢;) are called charts for M.

A differentiable manifold M is an Hausdorff topological space together
with an atlas.

Henceforth we will deal only with C*° connected manifolds.

The coordinates of a point = € 2, related to ¢, are the coordinates of the
point ¢(z) € R™.

A tangent vector at © € M is amap X : f — X(f) € R defined on the set of
functions which are differentiable in a neighborhood of z , where X satisfies:

L if A\, u € R then X(\f 4 pg) = AX(f) + pX(9);

2. X(f)=0if f is constant;

3. X(fg) = f(x)X(g) + g(x)X(f);

The tangent space T,M at x € M is the set of tangent vectors and has a
natural vector-space structure: if {z'} is a set of local coordinates, then a

basis for T, M is {% }
vl

The tangent bundle T(M) is the vector bundle on M having the tangent

space T, M as its fibre over the point x € M. The dual of T(M) is the

11
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cotangent bundle; its fibres are the cotangent spaces TiM. A section of
the tangent bundle is called a wvector field over M, while a section of the
cotangent bundle is called a differential form.
The bracket [X,Y] of two vector fields X and Y is the vector field defined
by

(X, Y](f) = XY (H)] = YIX ().

We set I'(M) the space of differentiable vector fields and with AP(M) the
space of differential p-forms, the latter being a section of the p-th exterior
power of the cotangent bundle. In a local chart a differential p-form 7 may
be written as

n=_> Ay, jpda? N Nt
1<j1 << jp<n

where each ay, . ;, is a C°° function. Its exterior differential is defined as

p

dn = Z dag, ..., N dzd' A - A da?P
1<j1 < <gp<n

where if f is a C* function (or equivalently a 0-form) we define
N

A connection! is a map D: I'(M) x I'(M) — I'(M) such that:
e D is bilinear;
e if f is a differentiable function and X, Y are vector fields then

DX, fY)=X(f)Y + fD(X,Y).

For fixed X € I'(M), we call
Dyx:T(M) —T(M), Y D(X,Y)

the covariant derivative along X.

When X = %, we denote by V; = %. The functions Ffj defined by the re-

lation V; ( 821) = nga%k are called the Christoffel symbols of the connection
D with respect to the local coordinates system. If a collection of functions
I‘fj is given for all 7,7,k and all local charts, then these specify a unique

connection D having these functions as its Christoffel symbols.

!The meaning of this term lies in the fact that one seeks a “connection” between different
tangent spaces, which are disjoint by definition.
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The torsion of the connection is the map T : T'(M) xI'(M) — I'(M) defined
as

T(X,Y) = DxY — Dy(X) — [X,Y].
In local coordinates this reads Tk(a?c“ %) = I‘f”j — Ffz
The curvature of the connection is the 2-form with values in End(I'(M))
defined by

R(X,Y) = DxDy — DyDx — Dixy).

R(X,Y)Z at x depends only upon the values of X,Y and Z in x.
In local charts, if we define

o 0
I _ pl 9\ 9
Ry = R <83:i781‘j) Ok

then

VAR A VA A VA A
It follows that

A C* Riemannian manifold is a pair (M, g) where M is a C*° differen-
tiable manifold and g = { gz }zens is a section of T*(M)®T*(M ) such that at
each point x € M g, is a positive definite bilinear symmetric form; namely
92(X,Y) = ¢, (Y, X) (symmetry) and ¢,(X,X) > 0 for all X # 0 (positive
definiteness). The section g is called Riemannian metric or metric tensor.
To every Riemannian metric is associated a matrix g;; = (e;,e;) where
{e;}ier is a local frame of the tangent bundle. Then g can be written

I :Zgijd:ﬁu@dfcﬂx (1.1)
ij

where every coefficient (g);; is a C* function of x. It is worth recalling
that by Whitney’s Theorem? we can always find a C* Riemannian metric
on a paracompact C* differentiable manifold. As a matter of fact if M
is a submanifold of R” we can define a Riemmannian metric on M which
is induced by the standard Euclidean metric on R™ (compare the following
Example).
A Riemannian metric g defines at every point x and inner product on T, M
and this determines the notion of angles and length between tangent vectors
at x € M. The norm of the vector is ||z|| = /¢(X,X) and the angle
between X and Y is uniquely determined by the formula

9(X,Y) = [[X|[[[Y [} cos 5

2Every differentiable manifold M, has an immersion in R?>" and an embedding in
R27+L
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Furthermore we recall(see [10]) that g defines a map
g(x) : To(M) — T (M)
which is injective and also bijective. The inverse map
g (@) : TE (M) — To(M)
has components ¢¥/ = gigl.

Example 1.1. e The most trivial example of a Riemannian manifold is
R™ with the canonical Euclidean metric g such that (go);; = d;; is the
identity matrix. In the standard chart of R™ z', ..., 2" we can write

grn = (dz')? + ... + (dz™)?

e S"={X € R"™|(X,X) = >, 27 = 1} with the metric inherited by
the stereographic projection is a Riemannian manifold.

Let us recall the concept of Riemannian connection, also called Levi Civita
connection that is a particular case of covariant derivative. Here though we
require compatibility with the Riemannian metric.

A Riemannian connection V is a connection on T'(M) satisfying compatibility
with the metric, namely

X(g(Y, 2)) = g(VxY, Z) + g(Y,VxZ) for all X,Y, Z € I(M),
and which has null torsion, i.e.
VxY +VyX —[X,Y]=0 forall X,Y € I'(M).

Example 1.2. e In the Euclidean space (R", g) where ¢ is the standard
metric we can set V = D where D is the directional derivative 3. This
means that the directional derivative is a Riemannian connection.

e InR3set VxY := DxY + £(X x Y) where X x Y is the usual cross
product of vectors. This V is not a Riemannian connection, as a matter
of fact it satisfies all the properties except that of having vanishing
torsion since it results

VxY = VyX =DxY —DyX + X xY =[X,Y]+ X x Y.

Theorem 1.1. [13/ On every Riemannian manifold (M,g) there exists a
uniquely determined Riemannian connection V.

3Let Y be a differentiable vector field defined on an open set of R®™! and let X
be a fixed directional vector at some fixed point x of this open set. The expression
DxY|s = DY |o(X) = limy—o (Y (z + tX) — Y (z)) is called the directional derivative of
Y into the direction X
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In local coordinates we get that the Christoffel symbols of the Levi-Civita
connection are
k

where

km -1

g = (gkm)
and 1
Tijk = 5(=0kgij + Ojgik + Dign.).

o 0
<vi8$j’ W> = Fij,k:,

0 g O
Vig— = Z Lo s Ok
2

Notice that

or equivalently

fxX=> &2 57 and Y = E 773 -~ then an easy computation shows that

) o . 0
VXY:VZ%% Zn]@ ZZ Z&anz +Zl“fj€z77] Dk
j k i ij

and for X = % we have
Zq

0
VxY =V o zj:”]axa‘ :zk: Zr’f J W

If we consider, instead of vector fields on the manifold itself, vector fields
along a curve v, then the coordinate functions 7' are not to be viewed as
functions of z1,---,z,, but rather as functions of the curve parameter ¢.
In this case, the following equation may be taken as a definition, where
~v1(t), -+, (t) are the coordinates of ~:

vy =% s + A Oy | -

k . .
=S (0™ LS s ororkom) | 2
2 i ij

We say that a vector field Y is parallel if VxY = 0 for every X.
A vector field Y along a regular curve « is said parallel along the curve if
V4Y =0, independently from the parametrization of the curve itself.



16 1. Riemannian Geometry, Semigroups and Heat kernel

A regular curve v is called geodesic if V4 = 0, where v is parametrized by
arc length.
The equation that Y'(t) = 3_; n(t ) - satisfies if it is parallel along v is

+Z () TK((t) =0 k=1,---,n.

On the other hand the system of equations which ~ satisfies if it is a geodesic
is

dek k
5 +Zx TE((t) =0 k=1,---,n. (1.2)

A Riemannian manlfold M is said to be (geodesically) complete, if every
geodesic which is parametrized by arc length is defined on all of R as a map
v:R— M.

Example 1.3. e In R" the geodesics are the straight lines parametrized
with constant velocity;

D:y=0<= =0 7(t) =a0+tv

e In S? the circle passing through the North and the South pole is a
geodesic; then acting with the group of isometries of S?2, SO(3), we
have that all the maximal circles are geodesics. This can be easily
generalized to S”.

We have already defined the curvature tensor associated to the connec-
tion V as a map RV = R : ['(TM) x T(TM) x T(E) — I'(E) : Rxy =
VxVy = VyVx = Vixy]. The curvature tensor gives a measure how much
the manifold differs from 7, M in a neighbor of x.

The tensor R has the following properties: it is C'*° linear in X, Y and C* lin-
ear in s , namely R(X,Y)(fs) = fR(X,Y)(s); R(X,Y)(s) = —R(Y, X)(s);
R(FX,Y)(s) = FR(X,Y)(s).

If E =TM then we have some more properties:

e if TV = 0 then R(X,Y)Z + R(Z,X)Y + R(Y,Z)X = 0 (Bianchi’s
identity),

o if V = VLC then g(R(X,Y)Z,T) = —g(R(X,Y)T, Z).

With respect to a given Riemannian metric (,) 4, the standard curvature
tensor R is defined by the relation

RIX,Y)Z = (Y,Z)X — (X,2)Y.

i,j=1
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We then can set
FUXY) = (Ri(X, Y)Y, X) = (X, X) (V,Y) — (X,Y)?,

K(X,Y) = (R(X,Y)Y, X).

Let ¢ C T;M be a 2-dimensional subspace, spanned by X,Y. Then the
quantity
r(X,Y)

K,=—~—2"7
7 ki(X,Y)

is called the sectional curvature of the Riemannian manifold with respect to
the plane o.

It is interesting to notice that the knowledge of the sectional curvature and
of the metric allow to reconstruct the curvature tensor.

Theorem 1.2. Any two Riemannian metrics with the same constant sec-
tional curvature (and the same dimension) are locally isometric to one an-
other.

If M is a surface in R® then K, coincides with the Gaussian curvature
[13]sec.4E.

Fixing a mobile normal unite vector N then we define the symmetric Wein-
garten operator LX = —Dx N then the second fundamental form I7(X) =
(LX,X) and eventually if we call I(X) = || X||? then Ky(X) = ﬂggg —
I1(X) .

1(X)
If on a Riemannian manifold K is a constant or, equivalently, if R = KR,
where R; denotes the curvature of the unit space and K is a constant, the
manifold is called a space of constant curvature.

We conclude this section recalling that the Ricci Tensor of the metric g is

defined by

is the normal curvature.

n
Ric(X,Y) =Y (R(E;, X)Y,E;)
=1

where {E;}i=1,. n is any orthonormal frame for g. The Ricci tensor is sym-
metric, and we can also define the scalar curvature as

n

S = zn:RiC(Eij) =Y (R(E;, E))E};,Ey).

j=1 4,j=1

A Riemannian manifold (M, g) is called an Einstein space if the Ricci Tensor
is a multiple of g, namely

Ric(X,Y) = A\g(X,Y)
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for all X,Y, where A is a function A : M — R. In this case we say that g is
an Finstein metric. The expression

. Rie(X, X)
ric(X) = 79()(’ X)

is called the Ricci curvature in the direction X.

Example 1.4. e The curvature tensor R(X,Y)Z of R" vanishes identi-
cally. Metrics for which this holds are called flat.

e For a sphere of radius r $"(r) = {X € R*"™!| Y 22 = r?} the curvature
tensor is R = T%Rl and K, = %2 for every plane o C T,S".

1.2 Laplace-Beltrami operator on manifolds

Let us recall that any Riemannian manifold M features a canonical measure
V', defined on the o-algebra of all measurable sets in M, which we denote
by A(M). This canonical measure is called the Riemannian measure (or
volume) and it is defined by the following Theorem.

Theorem 1.3. For any Riemannian manifold M, there exists a unique mea-
sure V. on A(M) such that, in any chart U,

dV = +/det gd\,

where g = (gij)ij is the matriz of the Riemannian metric g in U, and X is
the Lebesgue measure in U.

Let us record the following simple property of the measure V', which will be
used in the next Theorem.

Lemma 1.1. If f € C(M) and

/ fodV =0
M
for all ¢ € CF°, then f =0.

For any smooth f on M we define its gradient V f(x) at a point x € M as
follows

Vi(x) =g~ (x)df (x).

It is easy to check that the gradient in local coordinates x',--- , 2" has the
form of

Vi) =g¥—.

(V) =g"5"

For any smooth vector field X on a Riemannian manifold M its divergence
div X is a smooth function on M defined by means of the following statement
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Theorem 1.4. For any C* vector field X on a Riemannian manifold M,
there exists a unique smooth function on M, denoted by div X, such that the
following identity holds

/ (div X)udV = — / (X, Vu), dV (1.3)
M M

for all uw € C§°.

Proof. Uniqueness: if (div X)" and (div X)” are two candidates then , for
all u € C§° we have

/ (div X) udV :/ (div X)"udV.
M M

By Lemma 1.1 we conclude that (div X)" = (div X)".

Existence: Firstly, we show that div X exists in any chart.

If U is a chart of M with coordinates z',--- ,2" , X = X'0; € TM ® and
u € C3°(U) then we have

(X,0u) = / (X,Vu)dz' - da™ =

M

_ / (X101, "0 ) da’ -+ da” =
M

- / X (Opu) <8i,gkj8j>d:v1---dxn =
U

= / X (Opu) gk (0;,05) dat - - - da™ =
U

= / X' (Oku)g" gij\/det g (9;,0;) dxt - - - da™ =
U

:/1u-8i (Xi detg) Vdet gdat - - - da™ =
U

det g

= <u, _\/dleitgai (Xi detg)> .

Comparing with (1.3) we see that the divergence in U can be defined as

1 .
divX = 0;(X"\/det g). 1.4
v X = s 0)(Xdetg) (14)
Now, if U and V are two charts then (1.4) defines the divergence in U and
in V, which agree in U NV by the uniqueness statement. Hence, (1.4)
defines div X as a function on the entire manifold M satisfying (1.3) for
all test functions u compactly supported in one of the charts. In order to

5 9
0 = 5o
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extend (1.3) to all functions u € C§° (M) we consider a family of charts {2, }
covering M. It can be shown (see [10], Corollary 3.6 p.52) that u € C§° can
be represented as a sum u; + - - - + ug, where each u; is compactly supported
in some Q4. So (1.3) holds for each u; and thus, adding up all such identities,
we obtain that u € C§° satisfies (1.3). O

It follows by (1.4) that

Xk:
div X = a— +Xk%log \/det g.
z

Oxk
In particular, if det ¢ = 1 then we obtain the same formula as in R™:
. oxk
leX = W

Corollary 1.1. The identity (1.3) holds also if u is any smooth function on
M and X is a compactly supported smooth vector field on M.

Proof. Let K = supp X. There exists a cutoff function on K (see [10],
Theorem 3.5,pg 51), that is, a function ¢ € C5°(M) such that ¢ =1 in a
neighborhood of K. Then u¢ € C3°(M) and applying Theorem (1.4) we
have

/M div XudV = /M div X (ug)dV = — /M (X, V(ug)) dV = — /M (X, V) dV
O

We can now introduce the Laplace-Beltrami operator on any Riemannian
manifold M. It is defined as follows

A = divoV. (1.5)
For any smooth function f on M
Af =div(Vf); (1.6)

therefore Af is a smooth function on M.
In local coordinates the Laplace-Beltrami operator reads

1 < 9 " du
A= — — | Vdet YV—
Vdetg ; ox? ¢ g;g Oxd
Lastly, it is important to recall the Green formula

Theorem 1.5. If u and v are smooth functions on a Riemannian manifold
M and one of them has a compact support then

/ uAvdV = —/ (Vu, Vv) dV:/ vAudV.
M M M
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Proof. Consider the vector field Vv. Since supp Vv C suppv then either
supp Vo or supp u is compact. Thus, by definition (1.5) and Corollary (1.1)
we have

/ uAvdV:/ udiv(Vv)dV:—/ (Vu, Vv) dV.
M M M

O]

1.2.1 Form of the Laplace-Beltrami operator on model man-
ifolds

Firstly, we want to define polar coordinates on a Riemannian manifold .
Let x be a point on M and denote by ~ the uniquely determined geodesic,
parametrized by arc length ¢, passing through x and having the unit vector
v as its tangent vector at time t = 0. It may be proved that for a suitable
neighborhood U of the origin 0 € T, (M) there is a well-defined map

exp, U CT,(M)— M
tv = g (1),

Note that, by definition, exp,(0) = z. The above map is called the exponen-
tial mapping and it is a diffeomorphism on its image.

One of its main properties is stated in the next Lemma (see [13|[Lemma
7.13]).

Lemma 1.2 (Gauss). Let exp, : U — exp,(U) be a diffeomorphism. Let
w € T,(M) be an arbitrary vector which is orthogonal to the line t — tv in
some fized direction v € T,(M), ||v|| = 1. Then dexp,(w) is orthogonal to
the geodesic ;.

If we introduce polar coordinates on T,(M)® then, under the exponential
mapping exp,, these yield coordinates on M around x. These are called
geodesic polar coordinates on M and we denote them with r, 01,605, --.
In this coordinates we have
o) =
or’ Or

and 5 8
—,— =0
<8T789]‘>
whence
1 0 0
0 = *
gij =
0 * --- %

Snamely, the usual polar coordinates on R™.
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where the submatrix, denoted by *’s, is of order 2 for r — 0.
For n = 2 we thus have

9:i(r,0) = ((1) 7“27)(07“, 9))

where 7 is a bounded, positive function on R .

In polar coordinates r denotes the distance of a point from the origin and
there are n — 1 coordinates which are orthogonal to this.

In polar coordinates we have the following metric representation:

e grn = dr? 4+ r2ggn—1 where the parameter 7 runs through the interval
(0,00). In this case polar coordinates are not well defined at r = 0.

o gsn = dr?+sin® rggn—1 where the parameter 7 runs through the interval
(0, 7). In this case polar coordinates are not well defined in » = 0 (north
pole) and in r = 7 (south pole).

Figure 1.1: Polar coordinates on S™

An n-dimensional Riemannian manifold (M, g) is called a Riemannian model
if the following two conditions are satisfied:

(i) There is a chart on M that covers all M and the image of this chart in
R™is a ball B,, = {z € R : |z| < o} of radius ry € [0,00) (if 9 = o0
then B,, = R").

(ii) The metric g in polar coordinates (r, #) in the above chart has the form
g=dr’ +¢*(r)gsn1,

where 1) (r) is a smooth positive function on (0, rg) 7 such that 1(0) = 0
and ¢/(0) = 1.

"ro is called the radius of the model M



1.3 The hyperbolic space 23

Example 1.5. (a) R"™ is a model with radius ro = oo and ¥(r) =r,
(b) S™ without the pole is a model with radius ro = 7 and ¥(r) = sinr.
On a Riemannian manifold (M,g) with metric g = dr? + ¥2(r)gsn—1 the
Riemannian measure dv = +/det gd\ is given in polar coordinates by

dv = (r)" " Ldrdb, (1.7)

where df stands for the Riemannian measure on S*~! and the Laplace op-
erator on (M, g) has the form

_ 2 d —1) 0 1

Example 1.6. In R™ we have ¢(r) = r thus dv = r"~!drdf and the Lapla-
cian takes the form

0?2 n—1\ 0 1
A n = —/—& —_ 7A n—1.
R Or? + ( r ) or + p2 st

In S™ we have ¥(r) = sinr thus dv = sin® ! rdrdf, and the Laplacian takes
the form )
0 0 1
n — —— 4 - 1 t D 7A n—1>1.
s 6r2+(n ) co 7687"—1_si1[127' st

A

1.3 The hyperbolic space

The hyperbolic space, denoted by H", is the unique, simply connected, non-
compact n—dimensional Riemannian manifold with sectional curvature —1.
Like R™ and S™ also H" is a Riemannian model with the radius ro = co and
1(r) = sinhr. The hyperbolic metric in polar coordinate has the following
form

grn = dr? + sinh? rggn-1,

where the variable r runs through the interval (0, c0).

Although being diffeomorphic to R™ , the hyperbolic space has very different
properties. We denote the distance between two point z,y in H" by d(z,y)
and by 0H" the boundary of the Hyperbolic space, whose points can be re-
garded as the points at infinity of H". In H" the geodesics are defined on
the whole real line and there exists exactly one geodesic passing through any
two of its points.

Thanks to the notion of geodesics in H" we can give other definitions that
will be fundamental for the development of future arguments.

A subset A C H" is a hyperbolic subspace if it contains the entire geodesic
passing through any two of its points. A hyperbolic hyperplane is a hyper-
bolic subspace of codimension 1.
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Figure 1.2: Polar coordinates on H"

Firstly we observe that for any = € H” there exists a £ € 7 that realizes the
minimal distance, namely d(z, z) = minyer d(z,y).

A subset K € H" is said to be convex if for any z,y € K the geodesic arc
joining x to y lies in K.

A convex hull of A € H™ is the smallest convex set of H"™ containing A.

A subset m C D" is an hyperbolic hyperplane if and only if it is the intersection
of D™ either with a hyperplane of R or with an (n — 1)-dimensional sphere
orthogonal to oD™.

Moreover let m C H"™ be an hyperplane and v : R — H" be the unique entire
geodesic joining x and & such that v(0) = Z, v(t9) = = for some ¢y, > 0, then
the reflection through a hyperplane m C H" is a function

R :H" — H" such that Ri(z):=~y(—tp) with = e H" (1.8)
where g = det(g;;), 9" = (gi) "
The Hyperbolic space can be represented by using different models, all iso-
metrically diffeomorphic to each other.

The hyperboloid model
In R™*! we can consider the following bilinear form:

n
q(z,y) = Z%yz — ZoYo-
i=1

Then
I, = {x = (20, ..., 2n) € R" : g(z,2) = —1 with zo > 0}

is the upper fold of a two-sheeted hyperboloid (which can formally be inter-
preted as a sphere with imaginary radius i in R™*1).

Since it is the pre-image of a regular value of a differentiable function, by
Dini’s Theorem we can state that I, is a differentiable oriented hypersurface
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Figure 1.3: The Hyperboloid model

in R"*! and, in particular, it is endowed with a differentiable structure which
makes it a manifold of dimension n. For each point z in this upper fold there
is a naturally defined metric® on the tangent space to each point of I,

Tpln = {y € R, q(xvy) = 0} = {‘T}J_

It is not difficult to verify that this metric is globally differentiable and
therefore I,, is endowed with a Riemannian structure. We will call I" the
manifold I,, endowed with this structure.

In the Hyperboloid model I" of H" the general geodesic starting from x € 1"
with tangent vector y (€ T,I") is of the form

v(t) = zcosh(t) + ysinh(t) with t € R.

The disk model

Let m(z1,...,2y) = %7”?;) be the restriction to I" of the stereographic
projection with respect to (0,0,---,0,—1) of {zz € R™ : g > 0} onto R™ x
{0}.

The map 7 is a bijection of I" onto the Euclidean unit ball By = {z €
R"||z| < 1} 9 of R™.

In Cartesian coordinates z',--- ,x
has the form

" in Bj, the canonical hyperbolic metric

4
gHr = (1 — ’x‘2)2gR"

8Since g(z,z) = —1, the restriction of ¢(-,-) is a scalar product on {z}*
9| - | denotes the Euclidean norm of R™
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Figure 1.4: Two dimensional model of the hyperbolic space: the hyperboloid and
its projection into the disk

where |z|?> = Y, (2")? and grn = (da')?+(dz?)?+- - -+(da™)? is the canonical
Fuclidean metric that we can also express as

ds =

[l = e,

where r = |z|.

The ball By with this metric is called the disk model of the hyperbolic space
and is denoted by D".

We denote by d(z,y) the hyperbolic distance between two points z and y in
B;. The hyperbolic distance between x € H" and the origin O € H" in the
geodesic coordinates (p,#) can be written as

o2 147
= d :1 .
p() /0 1— 2 y 0g<1—r>

We have .
p 1 1+7r 14+7\2
— = =1 =1
2 20g<1—r> Og(l—r>
and
1) 1 1+7r 1+7r 2
——=—=1lo = log
2 2 1—r 1—r
Thus,
+1
eigz 1+7‘ 2
1—r
and
L _L 1+r—1+4r
R s =
tanh5_65+6_5 Tiril—r o |
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Moreover

2 2 2cosh2§ P\ 2
Y= T2 T T (ramn 2)2 1 Sy

Recalling (see (1.7)) that the volume element of H" has the following form:

dV = [(r)]"dz = [(r)]" " Ldrdd.

then we can compute the term [1(r)]"r"~! in geodesic polar coordinates.
We have
2 d (sinh%
[ ()] " drdf = 2 cosh (g) (sinh p)"_ld—p <:Z;hz> dpdf =
2p : 2p
P\2 . _4 [ cosh §—s1nh 5
— 2cosh (£ (sinh )" dpd6 =
cosh { 3 (sinh p) ( ol ’ 0
— 2cosh (B)Q (sinh p)" ! dpdf = 2 sinh™!
2 p cosh? g p p

If we define the ball of radius r > 0
By ={zx e H"|p(z) <r} (1.9)
in D" then for any r € (0,1) the relation

B, =B

log(%%)

holds.
It is important for us to recall (compare Lamma((2.1))) that in H" there is
an isometry 7, : By — By of the form

= A=) @ —y) — |z — gy
O P — 2 (o)) 10

with (z,y) = > 1" | =y
It can be proved that 7—y = 7, L. moreover,

_ |x_y| T n
W= R 2wy Y

For any x,y € D" we have

1+ ‘Tx(y)|

d(z,y) = d(1(x), 72(y)) = d(0, 72(y)) = log =)

The Laplace-Beltrami operator in D" reads

1 " 0% n-—2 " ou
A= (1~ |x\2)22@+ (1= |2 win— (1.11)
i=1 % i v

2
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O e

Figure 1.5: The disk model

and it can be regarded as a linear elliptic operator on B; with bounded
coefficient degenerating at the boundary in 0Bj.
In polar coordinates (p,8) ! the Laplace-Beltrami operator in D" takes the
form )
0 0 1

+ (n—1)cothr— +

Apn = ——
H or? Or  sinh®r

Agn-1. (1.12)

denoting with Ay the Laplace-Beltrami operator on S*1.
Geodesics in D™ are either diameters of D™ or circles orthogonal to 0D™.

The half space model

Consider the half plane {(z,y)|y > 0} C R? with the metric g = y%(dazQ—de?)
( gij(z,y) = y% <(1) ?) ). This is a Riemannian manifold called the half
space model of H? and we denote it by U2. In this metric the length is given
by i and there holds

1
1
/dt:—log(n)—>oo
n t

n—0

10T he operator

H = aij(z1-+ Tn
D o en) g o
i,j=1 ? J
with a;; = aj; is called elliptic at a point © = (x1,- - , x,) if there exists a positive quantity
u such that
n n
D ai(@)6& > plx) Y&
i,5=1 i=1
for all n-tuples of real numbers (£1,&2,- - ,&n). The operator H is said to be elliptic in a

domain D if it is elliptic at each point of D. In our case the operator Ay~ is elliptic with
p(x) = (1 —[zf*)%
Here we have 9 (r) = sinhr and thus dv = sinh” ™! rdrdf (compare example 1.6).
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m1
/ ;dt = log(n) ——
1

n—00

Bearing in mind the equation of geodesics (1.2), we can compute the geodesics
equation with respect to the Levi Civita connection associated to the metric
g of the half space model:

1
9

m=gn= 22 g2=g =0,

gi2=gn1 =0 then g''=¢"2=9¢% g

thus the Christoffel symbols are
1 1 2 1
Tl — 2022 (902 8102 — §o0tl) = —Zg2(— 2y = =
11 29(19 + 019 29) 2y(y3) ’
1
F%Z = F%l = F§2 = —g and F%Q = F%l = F%2 = Fh-

Hence the equations of geodesics are

i —2iy =0,

j+ L@ —g%) =0.
By definition of geodesics we know that the length of a velocity vector is
preserved .Therefore the value

if2 + y?
Y2
(the square of this length) is a first integral.
As we can easily verify, the quantity

I =

IQ:w—i-gy
X

is another first integral.
Suppose that © = z(t) is constant along the geodesic v(t) = (x(t),y(t)); then
the equation of geodesics reduce to

j=
Yy

By substitution we find that the solution is y = ce! with ¢ > 0. These
considerations suggest that, if the vertical lines are parametrized in this
way, we obtain geodesics for the Levi-Civita connection of the half space
model.

Suppose that « is a geodesic and its velocity vector v(t) = 4(t) at a point
is not vertical. We draw the staight line [ = (£,n) through the point ~(t) =
(z(t),y(t)), in the Euclidean metric of R?, which is orthogonal to the vector
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vIt=(x(t),y(t)

V(E)=(x(t),y(t)

1(t)=(§(t),n(t))

7%

Figure 1.6: Construction of geodesics in U?

v = (&,9). Then the x—coordinate of the intersection point of [ and the
x—axis is equal to Is. In fact if we solve the system

{n—y(t) o ()] L1

n=20

we find )
Y
=yt t
€= Sut) + (0
which is a conserved quantity since the right hand side of the equality is the
first integral I5.
We found that, in term of the Euclidean metric on R?, the geodesics of the

half space are

(1) rays orthogonal to the x-axis.

(2) half circles lying in the upper half space.

It follows that arbitrary pairs of points of H? are joined by a unique geodesic.
The half space model U? of H? is a complete manifold because, as we observed
before, every geodesic is defined for all ¢ € R.

We can easily generalize the previous construction to R™ by defining U™ as
the upper half-space {x € R"|z,, > 0} endowed with the metric

1 n
2 2
ds” = > E dz;.
=1

The Laplace-Beltrami operator on U™ has the following form

ou

Anu = 22 Au + (2 — )z, —L
Hu =z Au+ (2 —n)z T

(1.14)
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Figure 1.7: Geodesics in the half space model

where A stands for the usual Laplacian in R™.

For the sake of completeness we introduce another model of the hyperbolic
space.

The Klein model

The Klein model K" of H™ is the unit ball By equipped with the metric
obtained by carrying the hyperbolic metric of I" along the following bijective
map

1
B CR" 1", 4(z) = (=1
V1= a2
In the Klein model K™ of H™ the geodesics are the traces of ordinary affine
lines in K™.
It is worth observing two more features of K:

(a) for any convex subset A of K™ and any point ¢ € K" \ A there exists a
hyperplane 7 such that € mw and 7 N A = ();

(b) for any convex subset A of K™ and any entire geodesic v C K" such
that vy N A = (), there exists a hyperplane m C K" such that v C 7 and
TNA=0.

Finally, we consider the bijective and isometric map

(22,1 + |2[?)
1—[zf?

¢:D" —=1" o(x):=
and the composition
n=¢ Loy : K" — D"

It is easy to prove that 7 is a bijective map which transforms geodesics of
K" on geodesics of D", and the properties (a) — (b) are still valid.
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Klein model Disk model

1.4 Heat kernel on Riemannian manifolds

Let us first recall for further reference some well-known facts and definitions
of semigroup theory (e.g, see [19])

Let X be a Banach space. We denote with B(X) the Banach space of
bounded linear operators from X to X, endowed with the uniform norm.

Definition 1.1. A family {T'(t)}+>0 C B(X) is called a strongly continuous
semigroup on X if it satisfies the following properties:

(a) T(s+t)=T(s)T(t) =T(t)T(s) for every s,t > 0.
(b) T(0) =I;
(c) for all z € X the map t — T'(t)x is continuous.
Definition 1.2. The operator A defined as follows
{D(A) = {z € X : there exists lim,_,o+ b~ T(h)x — ]},
Az :=limj,_o+ R T (h)x — 2] (z € D(A))
is called the infinitesimal generator of the semigroup {7T'(t)}+>0.

Some relevant properties of the infinitesimal generator of strongly continuous
semigroups are contained in the following Theorem.

Theorem 1.6. Let A be the infinitesimal generator of the strongly continu-
ous semigroup {T'(t) }+>0. Then

i) D(A) is dense in X;

it) for allx € D(A) and t € Ry, T(t)x € D(A). Moreover t — T (t)x is in
C(Ry, X) and there holds
d

aT(t)J: = AT (t)x = T(t)Awx;



1.4 Heat kernel on Riemannian manifolds 33

ii1) A is closed.

Necessary and sufficient conditions for the generation of strongly continuous
semigroups are given by the Hille-Yosida Theorem (e.g, see [19]).

Definition 1.3. A semigroup {7'(t)}+>0 is said to be contractive if there
hold
|T(t)]| <1 forall t>0.

Let M be a smooth connected non-compact (geodesically) complete Rieman-
nian manifold, of dimension n > 2.

The heat kernel or, alternatively, the fundamental solution of the heat equa-
tion is a function p(x,y,t):M x M x Ry — M, which satisfies the following
conditions:

(a) pis C? with respect to z and y and C' with respect to t,
(b)
bt — Apr = 07

where A) is the Laplace-Beltrami operator with respect to x;

()

t—0t J s

for any compactly supported function on M.

Its importance stems from the fact that it is the smallest positive solution
of the heat equation
up = Apyu  in M. (1.15)

The heat kernel exists and is unique for a compact Riemannian manifold
(see [3]) . However, in [6] , existence and uniqueness are proven also for
non-compact Riemannian manifold.

The heat kernel p(z,y,t) possesses the following general properties:

(i) positivity
p(z,y,t) = 0.

(ii) total mass inequality:
/ p(z,y,t)dVy < 1;
M
(iii) semigroup property:

Py, 1) = / (@2, Op(zyst — 7)AV, (wy € M, 0 <7 < t).
M
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(iv) symmetry:
p(z,y,t) = p(y, ©, t);

(v) approzimation of identity: for any ug € L*(M)
u(-,t) = / p(t, -, y)uo(y)dVy —— ug in L*(M). (1.16)
M t—0t+

By (1.15) and (1.16) above and the regularity of p, the function defined in
(1.16) is C*° smooth in (z,t) € M x R4 and it is the unique solution of the
Cauchy problem

{ut:AMu in M xR, (1.17)

U = ug in M x {0}

(the initial condition being satisfied as in (1.16)).
The solution if (1.17) is given by

(1) = /Mp(:ﬂ,y,t)f(?/)d‘@-

Let us prove property (i), referring the reader to [3] for the proofs of other
properties.
On the one hand we have

(st + 1) = / D@, t + 1) (y)dV,.
M

On the other hand,

w(yt+ 1) = / p(z, 2, ty)u(z, £)dV, =
M

~ [ pteantn) ([ vl ptatuav, ) av.

Thanks to property (i) we can apply Tonelli’s Theorem and write

wwt+t)= [ ( /Mpm,z,tl)p(x,y,t)dvz) uo(y)dv,

Hence, by uniqueness of the solution of (1.17) we have

[ st s tutav, = | ( | stz tpto t)dvz> uo(y)dv,

whence the conclusion

Pl 2t 4+ 1) = / p(@,, )ply, 2, 01)dV,.
M
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follows by the arbitrariness of ug.
In view of the above remarks, any heat kernel gives rise to the strongly
continuous semigroup {K;}¢>o on L?(M) defined by

&mm=Aﬁ@wWMW% (x € M)

for any ug € L2(M).
Properties i) — i) ensure that {IC;}1>0 is a Markov semigroup, namely

0<up<1l = 0<Kuy<1 aeinM.

The symmetry property (iv) implies that the operator K; is symmetric and
hence self-adjoint.

It can be proved that the infinitesimal generator £ of the semigroup {/;}+>0
is the minimal self-adjoint extension of —A in L?(M), Ajs denoting the
Laplace-Beltrami operator on M (e.g., see [5])

Example 1.7. It is well known that in R™

1 —|z—y|?

p 'rayvt =7t %
( ) (4t)"/?

Example 1.8. In H? | the heat kernel is (see [9])

1 d(x7 y) e—idz(ﬁ’y) —t

P& 9:8) = a7 smb(d(z, )

In general the heat kernel in H™ is computed by using a recursive formula.

In H™ we have a bilateral estimate of the heat kernel which plays an impor-
tant role in the following (see Chapter 2).

Theorem 1.7. [5/For all n > 1 there exists a positive constant ¢, such that

L ha(d(z,9),1) < pl, 5 1) < cnhn(d(z,9), ) (1.18)

Cn
for allt >0 and d > 0, where

1

“t-nsta- 4t n—3
—e z T (l+d+t) 2 (1+d).
T8 (+d+0)T (1 +d)

hn(d,t) =

If we fix d > 0 then Theorem 1.7 implies that

t

N 3 as t—0,
p(ﬂij,t) ~ tgei/\lt

as t — o0.
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1.5 The principal eigenvalue

Consider ) C M a compact open set and the eigenvalue problem

A Au=0 in
{ MU+ AU s (1.19)

u=20 in 09

In [3] it is proved that there exists a complete orthonormal basis {¢1, ¢2, - - - }
of L?(Q) consisting of Dirichlet eigenfunctions of Ajs, with ¢; having eigen-
value \; satisfying

D<M <A< A3<- T +o0.
In particular, each eigenvalue has finite multiplicity and
pj € C(Q)N cHQ).

If po denotes the heat kernel in €2 subject to the Dirichlet boundary condi-
tions then the eigenvalue expansion is

n

Y49 (CE, Y, t) = Z 6_>\k (Q)t¢k ("E)gbk (y) (120)

k=1

where A is the k—th Dirichlet eigenvalue of Q and ¢y is the corresponding
eigenfunction.

The eigenvalue A\; = A\1(2) is called the first Dirichlet eigenvalue of problem
(1.19).

Equality (1.20) derives by the application of the spectral Theorem [19] to
the semigroup {K}+>0, defined previously.

The same results can be generalized to precompact open sets of Q (see 3]
for details).

In a general manifold M the quantity Ay = A;(M) is defined by means of
the Rayleigh variational principle

2
M(M) = in 7fM Vel dﬂ.
peCe(M),6£0 [y d?dp
Equivalently, A;(M) can be defined as the infimum of the spectrum of the
operator —A in L*(M) with domain C°(M).
If {Q,} is a family of precompact open sets which exhaust'? M then pg — p
and A\ (Q2) — A\ (M) as Q exhausts M (see [8]).

2The collection of precompact open set {Qi}ier C M is said to ezhaust M if
Qi C Qi+1 for all 7= 1,2...

and
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In particular, if B, is the geodesic ball of H" defined in (1.9) then

M(Br) NN A1 oas r— o0 (1.21)
where A1 (B;) is the first eigenvalue for —Ap in Br with Dirichlet zero bound-
ary conditions ( e.g. (1.19) with Q = B,).

If \i(M) > 0 as for the case of the hyperbolic space then

PR e—)\l(M)t

as t — oo. For more details the reader is referred to Chavel [3].

Theorem 1.8 (McKean). (/8]) Let M be a geodesically complete, simply
connected manifold of dimension n which has non-positive sectional curva-
ture; if its sectional curvature is bounded from above by —k2, then

1
AL > Z(n —1)%k2. (1.22)
There is relation between A\;(M) and the volume growth of a geodesically

complete manifold 13: if

logV
v:= lim sup logV(w,r) (1.23)
r—00 r
is the volume of the ball of radius r 4 then
2
M(M) < T (1.24)

In particular, A; (M) = 0 for manifold with subexponential volume growth.

Example 1.9. R” and H" both satisfy the hypotheses of Mc Kean’s Theo-
rem so that (1.22) and (1.24) holds true for them. Besides, for them, both
(1.22) and (1.24) become equalities.

We can find easily:

e )\ (R™) =0. In fact on one hand x = 0 and on the other hand

V(z,r) = / / ¢ lde = cn_lT—.
Sp—1J0 n

o )\ (H™ %. In fact on one side k = —1 so that Ay > f(n —1)?

) pr—
by (1.22) and on the other side on H" the volume has the form (see

(1.7)) )
V(z,r) = / / sinh™ ™! ¢dédf.
sn—1.Jo

13Gee R.Brook in “A relation between growth and the spectrum of the Laplacian”, Math-
ematische Zeitschrift Volume 178, Number 4, 501 — 508.
MNotice that the volume is independent of the center of the ball
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10g [gu1 [y sinh™ "' &dgdf

v = lim sup

r—00 r
log Q1 [ sinh™~ ! ¢dedo
= lim sup o8 1f0 — §dg =
r—00 r
, log Qy,—1 + log [ sinh™ ! £dédo
= lim sup =
r—00 r
logQn_1 log [0 sinh™ ! £d¢do
= lim sup{og ° 1+ ngo — S }
r—00 r r

Applying De L’Hospital’s rule twice we obtain

sinh”~1r
. T sinh™~ 1 £dedo
v = lim sup Jo sinb™ 7" §dedd =

7—00 1

— lim sup (n — 1) cosh” ! rsinhr _
r—00 (sinhr)n—1

— lim sup (n — 1) cosh" 27 _
700 (sinh rr)7—2

= Tlilgo(n — 1) cotgh" 27 = (n —1).

Remark 1.1. In R", the L?—spectrum of —A is (0,00); therefore A\; =
Instead, in H", the L?—spectrum of —Agn is [(”11)27()0) : thus A\ = (n—41

(seel5]).

0.
)2




Chapter 2

Blow-Up for the Cauchy
Problem in H"

As explained in Chapter 1 the heat kernel in H" has a different behavior for
large times compared to the one in R™.

In this chapter we will investigate the effect of the heat kernel in H" on the
positive solutions of the following Cauchy problem with power nonlinearities.

up = Agu+ h(t)[ulP~lu  in H" x Ry,
u = ug in H" x {0}

where h is a positive, continuous and locally integrable function in Ry, p > 1
and ug > 0.

A local (weak or classical) solution of (P1) is a solution that exists in R™ x
[0,T), T < oo, and the maximal time of existence T}q, is the supremum of
all such T”s for which a solution exists. If T},,, = oo the solution is global
and if T},q, < oo then the solution is said to blow up in finite time. The
blow-up phenomenon is connected to the time in which the solution (or its
derivative) become unbounded in (some) norm.

We will now face three problems:

1. Local existence: does the solution exist in H" x [0,T") for some T' €
(0,00)?

2. Finite time blow-up: if we have local existence then is the maximal
time of existence finite? In this case we will say that the solution blows

up in finite time.

3. Global existence: if we have local existence, when does the maximal
time of existence become infinite ?

39
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2.1 Classical, mild and weak solutions

Since no growth conditions are imposed at infinity, a precise definition of
solution is required. We now compare different type of solutions of problem
(P1) under the following hypotheses

(1)) h: Ry — Ry is continuous and h € L} (R.);

loc
(i1) p > 1; (2.1)
(131) up € C(H™),n > 2.
For any 7 > 0 we set Q, := H" x (0, 7].
Definition 2.1. A function u € C*Y(Q,) N C(Q,) is called a classical solu-
tion of problem (P1) in [0, 7] if

{ut = Agu+ h(®)|ulPlu in Q, (2.9)

u(z,0) = ug(x) >0 for any e H"

Making use of the following notation :

(€%29) (2) = [ plaptiolw)av,

where ¢ € C(H") , we can define a weaker concept of solution, based on the
heat kernel (compare section 1.4) in H".

Definition 2.2. A function u € C(Q,) is called a mild solution of the
problem (P1) for ¢ € [0, 7] if

w(z,t) = (") (z t eF=Ru () |ulP~ u) (z)ds .
(@) = () (@) + [ (I h ) (@ds (23)

for any ¢t € [0, 7].
Since

(e"Mug) (z) = /np(a:,y,t)uo(y)dvy
and
(@ ~tu) @) = [ [ ooyt = s~ vy,

we can express the solution as
uwt) = [ vl Ow@av, + [ /Q Pyt — $)h(s) ul " u(y)dVyds.
" t

Using classical regularity results and the estimate on the heat kernel (1.18)
it can be proved that
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Proposition 2.1. A mild solution is a classical solution.
The concept of weak solution is expressed in the next definition:

Definition 2.3. A function u € C(Q,) is called a continuous weak solution
of problem (P1) in [0, 7] if for any 7 € (0, 7]

—// u{AHw—Fwt}dth:/ uow(-,O)dV—i—// h(t)|u|P~ urpdV dt
Qry H™ Qry

(2.4)
where 1) € C%1(Q,,) is an arbitrary function such that for any ¢ € [0,71)
supp (-, t) CC H" and ¢ (-, 1) = 0.

Moreover,

Definition 2.4. The function @ is called an upper solution of (P1) if

_//QT u{Agty + P }dVdt > /H uoz/J(~,0)dV+//QT h(t)|ulP~ urpdV dt

(2.5)
holds for positive 1. Reversing the sign in (2.5) we have the definition of
lower solution and we denote it with u.

Lastly, we define the blow-up for a solution of (P1).

Definition 2.5. Let u be a continuous weak solution of (P1) for ¢ € [0,7)
where 7' is the maximal time of existence.
If T"'< oo and

Tim (1)l = 00

then wu is said to blow up in finite time. T is the blow-up time.
If T' = oo then the solution v is said to be global.

Since any classical solution is a continuous weak solution, Proposition 2.1
implies that a mild solution is a continuous weak solution as well. The
opposite implication is clarified in the next Lemma.

Lemma 2.1. Let u be a continuous weak solution of problem (P1) in [0, 7],
satisfying the growth condition

0 <u(zx,t) < A0 (2.6)

for some positive A,c and 0 < B < 2. Then w is a mild solution of the
problem (P1) in Q.

Proof. Firstly, we consider the problem

I?:AHIO in QT
10 = ug in H" x {0}
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whose classical solution is already known to be (compare 1.4)

z,1) = / a(@,, uo(y)dV,.
Our claim is that the function
1@ ) = [ [ ot - bl 9dvds  @0)

is a weak solution of the problem

I = Agl + h(t)|ulP~'u  in Q,
I=0 in H" x {0}.

We prove this claim by considering the function fu(-,t) := xa|u[P~ u(-, 1),
where X, = xpz is the characteristic function of the geodesic ball B of
radius a, and its mollification fq (-, ¢). Then by classical results

Ine(z,t) = // q(x,y,t — s)h(s) fa,c(y, s)dVydsds (2.8)
is a classical solution of the problem

It = AHI + h(t)fa,e in QT7
I=0 in H" x {0}

This last solution, being classical, is also a weak solution satisfying

// I {Amt) + ¢ }dV,dt = / / t) fa,cpdV,dt

for any 71 € [0, 7] and for any test function ¥'. We now observe that for any
g >1,as e — 0, we have fo — f, in LY(Q;). It follows from L7 estimates
for parabolic equation and embedding results that

I(x,t) ::// p(x,y,t — s)h(s)|ulP " udV (y)ds

is Hoelder continuous in ) and satisfies

To{Aut) + Yy }dV (y)di = t)XalulP~ updV (y)dt
/1., [

Letting a — oo and passing the limit under the integral sign applying the
dominate convergence Theorem

// Jim To{Agyp+ipr }dV (y)dt = // lim h( t)Xa|uP updV (y)dt
Qn

see the definition of mild solution in the previous chapter
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we have
- / / H{ A+ vn}dV (y)dt — / / ROl updV () dt
QTl QTl

so I(z,t) is a weak solution of the problem (2.1).
Thus we deduce that the function

v(x,t) = I%(z) + I(z,t) = / q(z, y, t)uo(y)dV,+
o

+ // q(x,y, t — s)h(s)|ulP~ u(y, s)dV,ds.
is a continuous weak solution of problem

v = Agv + h(t)|[ulP~lu in H® x [0, 7],
v = U in H" x {0}

so that the difference w = u—wv is a continuous weak solution of the problem

wy = AH’U) in QTv
w(z,0) = 0.

We would like to conclude that u is a mild solution of problem (P1) so that
we need to show that the hypothesis (2.6) is satisfied. Thanks to inequality
(1.18) we deduce that

(1) = / 4y, uodV < cn / h(d(w, ), Duo(y)dV,  (2.9)

n

and inserting the definition of h(d(x,y),t) we have

I%x,t) = cn(47rt)_ge_>‘1t/ (1+d(z,y))x

n

n—3 _ (n=Dd(z,y) _d*(z,y)
2

x (1+d(z,y)+71)2e 1w ug(y)dV,. (2.10)
If 7, is the isometry defined in (1.10) and we set z := 7,y ( y = 7—»(2)) then
d(x,y) = d(1e, 7 (y)) = d(72(2), T2(7-22)) = d(0, 2)

and applying the property that 7_, = 7,1 and the triangular inequality we
have

d(y,0) = d(7-4(2),0) = d(1-0(2), T-a(~2)) = d(7; " (2), 7, ' (~x)) <
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We thus can write
uo(y) < Aecd’®0) < 427 eld’ @0)+d?(z,0)]
and inserting this last estimate in (2.10) we obtain
I%(z,t) <
< ealam) BT [ (L4 d(0)(1+ d(e10) +7)F x
- IO B0 9810 (2,0)+d0 Mav, <

o0
n

<ec CQd (2,0)4 2/ (1+p+71) 2z e 4t+c2p sinh™™ 1,Odp—
0

czd (z O)t—f

= c1e 1—|—p—|—7) Te ~rerp? sinh" ! pdp+

+/ (1+p+7)7T T e 4t+‘32” sinh™~ 1pdp}
1

Now we estimate the two integral separately:
if p > 1 then sinh p < c3p; setting p = 2v/1p we get

1 e 2
t_Q/ (1+p+7)"7 e~ T2 sinh" ! pdp <
0
L
< C4/ e Prrest” 5nlap < g,
0

where ¢4, c5 and cg depend only on 7.
Observing that if t < 7 then a coefﬁc1ent c7 depending on 7 exists and
satisfies 172 < cge s and that sinh p < & we can estimate the other integral

0o e 2
/ (1+p+ T)Tle_%ﬂ?pﬁ sinh" ! pdp <
1
oo 2
< C7/ eé_%“%’ﬁﬂ”_l)pdp < csg.
1

Thus we obtain
I°(z,t) < 12 @0) (g + cg) = cge?’ @0,

We can repeat the same estimates for I and therefore for v = I° + I. Thus
we have shown that v and therefore w satisfy (1.18). Applying the previous
Lemma we can conclude that (0 <)w < 0 thus w = 0 and so v = u.

O

As a consequence we have the following
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Corollary 2.1.

A classical solution u satisfying
0 <u(zx,t) < Aecd(@0)?
for some positive A,c and 0 < 3 < 2 is a mild solution

Remark 2.1. If a classical solution satisfies the estimate (2.6) for f = 2
then it is a mild solution for t € [0, ﬁ)

The following Lemma is an important tool for the application of comparison
techniques.

Lemma 2.2. Le w be a continuous function satisfying

/ w(y + Apd)dVdt > 0 (2.11)

T

for all positive ¢ € C§°(Qr) and w(z,0) = 0. Suppose in addition that w
satisfies the growth condition

w(z,t) < Ae“d®0)? (2.12)

for some positive A, c.
Then w <0 in Q.

o 2
Proof. We set n = e5-1 8 Where a, 3,7 will be chosen later and v := w/n.
If w = nv is regular then it is a lower solution of the heat problem and
satisfies in @,

0 < Agw —wy = A(nv) — (nv) =

n
= n(Agv — vr) + v(Agn —ne) + 2p Z VN =
1=1

n
=0 | (Agv —v) + 0 w( Ay —n) + 207 'p D e
=1

so that

(Agv —v) + 0 w(Arn —n) + 207 'p 2D Vg, > 0. (2.13)
=1

Deriving we have

~ 2ap B 2ap 2ap 2 - ap?
= S npp—n[,y_tJr(,y_t ;M= + 8.
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Ifa:= ﬁ then

1 0 . _1{ 2ap
Agn= ——— — hp)y» ! | == =
H sinh®~ 1 dp <(s1n ) <7 — tn)>

1 . 9 2ap
smhﬁ{(n — 1)(sinh p)"~“ cosh pﬁn—i-

+ (sinh p)" ! [j_o‘ + (mﬂﬂ n} =

t v—1
1
- W{(Sinh p)" 22an [(n—1)pcoshp+1+ 2ap2}} =
= {2an[(n — 1)pcoth p + 1 + 2ap*]} =
= n[2ap(n — 1) coth p + 2a + 4a*p?],

so that

2
Agn—mn =1 (4a2p2+2a+2a,0(n— 1) cothp — P at —5> —
v —

= [,02 <4a2 — i) — B+ 2ap(n — 1) coth p + 2a] =
:=nC(p,1).

Since pcoth p <1+ p it follows that

C(p,t) < p*a® (4clz) +2a(n—1)(14+p) +2a— =
= p*a® <4—i)+2an(1+p)—2a(1+,0)+2a—5:
= p%a? (4—;)+2an1+2anp—2a—2ap—|—2a—ﬁ:
= p*a? (4—(1) +2a(n —1)p + 2an — .

If we take o < i then we have that the function

f(p) := p*a? <4 — 1) +2a(n—1)p+2an —f

!
achieves its maximum at the point p* = —ﬁ where it takes the value of
. (n —1)2 (n —1)2 a
o)== =1 +2e-f="7— -+ — -0

« «
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Hence C(p,t) is bounded from above and it is clear then

Clp,t) <

Now, let v < ¢ and 71 := min{v/2,7} where c is the constant met in the
assumption (2.12). As d(z,0) - 00 v=w/n— 0 (n— oo) for t € [0, 71].

Finally we take § = (z_jf +2n-2%; in order to have C(p,t) < 0in Ry x (0, 71].

Applying the parabol?c maximum principle to v in the region
Er ={(z,t) : d(z,0) < R, te(0,71)}

then it follows that v achieves its maximum on the parabolic boundary of Fy.
By assumption w(z,0) = 0 so that v(z,0) = 0 and, as we observed before, v
converge to 0 as the distance from the origin tends to infinity. Thus, letting
R — 0o we can conclude that v < 0.

We have proved that w < 0 when ¢ € [0,71]. If 71 < 7 we repeat the same
argument starting at ¢ = 7; and we obtain the assertion in a finite number
of iterations. O

Remark 2.2. We observe that at the beginning of the proof we had made
the assumption that w is reqular. If we weaken this hypothesis and we take
w only continuous then v satisfies (2.13) in the weack sense. It is a weakly
subparabolic function in the sense of Friedman (see [7]). In this case a strong
mazimum principle for subparabolic functions has to be applied and the con-
clusion easily follows.

2.2 Local existence

Theorem 2.1 (Existence and uniqueness of a L% solution). Let ug be a
positive function in L (H™) N C(H™). Then there exists T > 0 such that the
problem (P1) has a unique continuous weak solution u € L>°(Q). Fither the
solution is global or there is a maximal existence interval [0,T)(0 < T < o0)
such that [|ul|pe(g,) — 00 as 7 — T~.

Proof. o Existence: We set
H(t) = /0 hs)ds (2 e [0,00) (2.14)
and let 7 be uniquely determined implicitly by the following relation
Hi)=—
(p = D)lluoll5

We set the following problem:
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w = Agu+h(t)u? in B;_1 x[0,00),
u=0 in B1—Z x (0,7), (2.15)
u = up in Bk; x {0}
where |
Bl_% ={rzeR%|z|<1- ﬁ}
(neN,n>2).

It is very easy to check that

(1) = [Juol oo 1 — (p — 1)l uol B H ()] 77

is a classical upper solution of both problem (P1) and (2.15).

In fact, since
AHﬂ(t) =0

then

= ol (=25 ) [ (0= Dllaall HO) P HOG-D

and so

Auoll (<25 ) [1= = Dllal % O] )= Dl >

> 1= (p— 1)luol B H($)] 77 h(t)][uoll%

that is

__pr_
[1 = (p = Dlluol B H(®)] 7 h(t)[uol % >
N
> (1= (p = Dlfuol 55 H(®)] 7= h(t)]luo] A
Instead, u = 0 is a classical lower solution of both problem (P1) and
(2.15).

So by standard monoticity results there exists a function u,, € C(B;_1 X

[0,7)) such that
0<u, <u

which solves (2.15).
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For any fixed integer ng > 2 the sequence {uy}n>n, is uniformly

bounded and equicontinuous in the cylinder B;__1  x [0,7 — nio]
n 1

Applying well known compactness results we find that there exists a
subsequence {uy, } € {u,} which converges to a function u which is
a weak solution of the problem (P1). By Lemma 2.1 u is also a mild
solution and hence by Proposition 2.1 it is a classical solution.

e Uniqueness: Now we suppose that u; and ug are two weak bounded
solution (see definition 2.3) of the problem (P1) and we define w :=
u1 — uy then

- / / {ur — us}H{Ag + Y} dVidt =

{upr—up2}p(-, dV—I—// ) (| [P~ g —|ug [P~ ug )pdV dt
Hn

and since ug; = ug2 = up we have

/ / {1 — us H{Awth + AVt + / / h(t) (u — uD)dVdt = 0
Q"'l QTI
where 1 is defined in (2.3), hence w satisfies

/ /Q [0 [Awe + o] + h() () — W)} AVt = 0

and w(z,0) = 0.
Set wy = maz{0,w} and D := {z € Q; : wy(z) > 0}, then
1 d 1
ufl —ub = / d)\a(ul + Aw)? = p/ d\(u1 + dw)PLw
0

This implies

1
// (uf —ub)avdt < p/ w+/ [y + Awl| [P dAdVdt <
Q D 0

< pmax{]ur] 25", 225"} / wydVt,
D

hence for any positive ¥ we have

0< / wi [y + Ay + wthulHLoo @ )]dth.
D
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If we define & = ety (v = e oy = —AemMEL &G, Ay =
e~ M Agg) and we get

[¢t+AHw+wthu1HLw(Q )=
= e My [~ AL + & + AL — Ehpllu [T )]

If A > maxq - h(t)pl|us|[ < then

0< / (Y + Aptp + Arp) dVdt =
D
— / e My [(Yef + Ap(ve))] dVdt.
D

On the parabolic boundary of D we have wy = 0 as a consequence of
the fact that w, (z,0) = 0. Applying Lemma 2.2 in D to e~ *w, we
can conclude that w4 < 0 and so that u; < us.

Exchanging the role of the solutions w; and us the result follows.
O

2.3 Blow-up

2.3.1 Instantaneous blow-up

In this subsection we want to show that if no growth conditions are imposed
on o (at infinity) then the blow-up time is 7" = 0. This implies that the
problem (P1) may not even possess a local solution. We may refer to this as
the case of instantaneous blow-up.

2.3.1.1 Principal eigenvalue in annuli

We define the annulus A := B \ BX (a > 1) and the differential problem
A a Aa®a =0 i )
1Pa + Aad A (2.16)

¢a =0 in 0A.

where A\, denotes the principal eigenvalue and ¢, > 0 is the first Dirichlet
eigenfunction of Ay in A.

In order to develop some arguments in the next chapter (see 2.2) we need to
recall the following

Lemma 2.3. For any a > 1 we have Ao < Aq. Moreover for large a,
Ao <A1 +0(a2). Hence limg oo Ag = A1
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Proof. Searching for radial solutions of the form ¢(p, ) = z(p)a(6) of prob-
lem (2.16) we deduce that z = z(p) must satisfy the problem

{z” +(n—1)cothpz’ + Az =0 in (a,2a) (2.17)

z(a) = 2(2a) = 0.

Now, observing that

Agz = {sinh" (p)z'}

sinh™~*(p)

1

and multiplying all the equation of (2.17) by (sinh p)”~ w where w is a

ground state (compare definition 2.6) we get

2a
/ (Amz 4 \g2)(sinh p)"twdp = 0,
2a

2a
Agz(sinh p)" twdp + )\a/ (sinh )" twzdp = 0,
a

a

2a 2a
{(sinh p)"*lz’}/ wdp + )\a/ (sinh p)"twzdp = 0.

a

Then, integrating two times by parts the first term in the last equation we
get

[w(sinh p)" 2] za — [2(sinh )" 'w'] Za +

2a 2a
+ / [(sinh p)"_lw’]/zdp + )\a/ (sinh p)" twzdp = 0

and imposing that z(a) = 2(2a) = 0 (see (2.17))
2a (g h n—1 2
/ Ezihzgn—l [(sinh P)n_lw/] z+ )\a/ (sinh p)" twzdp > 0
which is

2a 2a
/ (sinh p)" ! Agwzdp + )\a/ (sinh p)" " twz > 0,

and thus reminding that w is a ground state that solve the equation Agw +
Aw = 0 we have

2a 2a
—)\/ (sinh p)" twzdp + )\a/ (sinh p)" twz > 0,
a a

2a
(=2 + ) / (sinh p)"lwzdp > 0.
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Fixing a, we can apply the Rayleigh principle and deduce that

fja(sinh )" t%dp

Ao = In e .
v(@)=v(2a) ["(sinh p)"~lv2dp

Now, assuming a to be very large we are led to approximate the equation
(2.26) with

{v” +(n—1)04+ =0 in (a,2a)
v(a) =v(2a) =0,

which solution is

U(p) = sin |: 5\ — )\0(/) — a):| efnTil(P*a)

with )
A=A+ (g) .

Since (sinh p)?~! = e;n_,llp[l + O(e=?P)] for large p and

f2a e(n=1)p,,12

f2a e(n—l)pv2dp )

then, for large values of a we get

R LR G| L

)\a S = A + O 6_2a .
J2 en=Dp[1 4 O(e=2)|v2dp e

Thus 9
7T —2a
< —
/\a_/\o-i-(a) +O(e )

and by letting a — oo we have A, — Ag.
O

Remark 2.3. Observe that this Lemma provides us of an estimate of g
depending only on a.

Theorem 2.2. If

infup(x) =00 as d(z,0) — oo (2.18)
then there is no solution for the Cauchy problem (P1) for any T > 0.
Proof. Let u(z,t) be a classical solution of problem (P1) in Qr satisfying
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Let k(t) be a continuous positive function such that £(0) =1 and k(T') = 0.
Consider the annulus

Alpo) := Bypo \ By, po >> 1,

and the first Dirichlet eigenfunction in A(pp) namely a function ¢ > 0 which
satisfies the following eigenvalue problem

Amth = -\ in A(pp),
=0 on  dA(po)

where A = A(po).

We have already shown (see Lemma (2.3)) that A = A(pg) — A1 = (n;1)2 as
pPo — O0.

If we multiply the equation in (P1) with ¢ = k(t)1(z) and we integrate by
parts then we get

-/ /Q Al Vi = [ wk©uv@av+ [ /Q A )V
_ /0 ' /Q ) Wk A+ DYV dt — /H g ()dV+ / /Q ) h(t) P ukydVt,

T
/ / —u{—kX+ K + [u[P kR }pdVdt > / uotp(z)dV,
0 JAp Alpo)

T kX — k'
{ u— uPtkhpdVdt > o (x)dV.
0o Ja,, kb Alpo)

’ . . .
We now set w := % As a function of u, wu — uP assume its maximum

P _p_
at u = (%) "~ and the value of the function in that point is 25> wi .

pr~1

Calling p’ = ;¢ (% + z% =1) we have

-1
b —wh .
pp

sup(wu — uP) =
u>0

A suitable choice of the function k(t) has to be made. So let
k() MBHW) if 0 <t < T2,
Cla(T =t if T/2<t<T.

The parameters o and (3 are chosen such that k(¢) and /() are continuous

T
atjso

o NEBH(E) _ Ly = a = (%)p A5 —BH(T)
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N
S
~

o« D=BHPE = —ap' () = 5=

'f‘jﬂ\

Now we compute the function wzfr, hk: in the interval (%, T] we have

: K+ A\
D
W hk = () hk =
kh ),
—op! (T — )P L4 AT — )7 |”
+
, NP
| .
R (T — ) B
+
al-p/ + \(T - 1)}
g hplfl .
In the interval (0, %) instead
: —K 4 AR\
D
W hk = () hk =
kho ),
(A — BH'(t) + N)eM=sHD |"
- kh hk
+

= P MBH()p
So finally we have

preMPHE i (0, 3],

!
a[—p +NT )]
hp'—1

W hk =

and by this we deduce that wﬁ’r/ hk is a continuous non-negative function
t € (0,7] and it is integrable in (0,7") (see 2.1 ).
Putting together all these results we can conclude that

p—1 (T
inf wug < - / wh hkds. (2.19)
A(po) PP Jo

The right-hand side of the above inequality can be bounded by a constant
which depends only on T', p’ but not on pg. Letting pg — oo, on the one side,
by assumption, the limit of ug diverges and on the other side we found the
the inf 4(,,) uo remains bounded. This is a clear contradiction that proves
the nonexistence of a local solution of problem (P1) under the assumption
(2.18). O
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Remark 2.4. It is possible to weaken the hypothesis (2.18). We can only
require that limg, o) Uo(T) = 00 in a given cone centered in x = 0. In
fact the limit in (2.18) need not to be uniform as d(x,0) — oco.

2.3.2 Finite time blow-up

We now want to give a blow-up criterion. Before this we need two preliminary
Lemmas.

Lemma 2.4. Let ug > 0, ug # 0. Then for any € > 0 there exists a function
feCH "), f(x) >0 for any x € H" (f depending only on €,n and ug) such
that ,

(e BFug)(z) > f(a:)t_%e_’\lt (2.20)

for any t € [e,00) and x € H".

Proof. By assumptions ug # 0 and wg is positive we can infer that there
exists z € H" and 0 > 0 such that ug(y) > ¢ in some ball {d(z,y) < ~}.
Without loss of generality we can suppose z = 0 and thus ug(y) > J in the
geodesic ball BEI ={d(z,y) <~} and v < 1.

Using estimate (1.18) we can write

(¢%0) (@) 2 de (mt) 5 [ [ )1+ o) 4415
B

d(z, 2 n—
X e (43) _Tld(x7y)d% >

> (50771(47r)_%t_%eht><

d(z,y)?

/ [+ d(z,y)]g(z,y)e 3 7 v gy,
BY

for any ¢ € [e,00) and z € H", where

1 if n>3,
Setting
f(z) = 5051(477)7% /BH[l + d(z,y)]g(z, y)e*%*%ld(%y)dvy
Yy

( notice that f(z) > 0) we have
(¢ up) () > fla)t™2e

that is what we were looking for. O
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Lemma 2.5. Let u be a mild solution of problem (P1) in [0,T) and set

Oz (t) = /n q(z, 2, T — t)u(z,t)dV,. (2.21)
Note that ¢,(0) = (e75ug) ().
Then )
[0 (0)P~1 < = D)H(T) for any x € H" (2.22)

where H is defined in (2.14).

Proof. Let us recall that, by definition, a mild solution of problem (P1) is of
the form

u(x,t) = /Hn q(z,y, t)updVy, + //Q q(z,y,t — s)h(s)|ulP " udV (y)ds.

If we multiply this expression by ¢(z, z, T — t) and we integrate over H" we
obtain

/ q(l’,Z,T-t)U(J?,t)d‘/z =
:/ / q(z, 2, T — t)q(z,y, t)updV (y)dV,+
+ / // q(z,2,T — t)q(2z,y,t — s)h(s)|ulP " udV,dV,ds.
" t

Now applying the semigroup property ((7ii) of Definition (1.1)) we get
[ a2 T = tula,av. -

-/ ( / q(x,z,T—oq(z,y,t)dvz) wodV, +
H™ H™

" // (/n q(z,2, T —t)q(z,y,t - 8)) h(s)|u[P~tudV,ds,

/n q(:z:, z, T — t)u(x, t)dVZ _
:/" q(z,y, T)uodVy+
+ // q(z,y, T — s)h(s)uP(y, s)dV (y)ds,

that is equivalent to write



2.3 Blow-up

57

¢A0==¢A0%+/1/ a(z,y, T — 5)h(s)uP(y, 5)dV (y)ds.

Using Jensen’s inequality to (2.21) we get

60 < [ oo T - ()

n

and thus combining it with (2.23) we get

| roa(sPs < o) = 6.00),

Now, deriving this inequality

G [ onoras < o) - 6,00
we get
o dsu)
(6, n(e) < 220

and thus integrating the latter inequality

do.(t)
RO
we get
[ (1)) P+
H(t)+ k< B
that is

(—p+ 1)(H() + k) < pa(t) 7T,
Imposing initial data we find k = ()]

Finally we have

0 s G20

H(t) p—1 - —p+1
¢o(t) PH | da(t)P!
H() < -p+1 * p—1
and so
(b~ DH() € oy — o < o

[62(0)]P~1 [x(t)]

This allows us to conclude that

[62(0)P~1

(2.23)
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1
¢ ()P > ———
O
Now we are ready to give the blow-up criterion announced previously
Theorem 2.3 (Blow-up criterion). Let
1
=1
fim LT (2.24)

T—o0 T%e)q T

Then, every nontrivial weak solution of problem (P1) blows-up in finite time.

Proof. Combining together (2.20),(2.18) and (2.22) we obtain

F@) T3 ™M < 6,(0) < <pi1) = O

Therefore we have

1 1

H(t)]»—1 1 \»1t 1

HOPE (141
T2 eMT p—1 f(ZL')

If u is a global solution of (P1) this inequality holds for any 7' > 0. For

T — oo, however, it contrasts with assumption (2.30). Therefore the solution

cannot exists for all ¢ € (0,00) and it blows-up in finite time. O

Remark 2.5. In R" the counterpart of estimate (2.18) is

|z

(e ug)() > fla)t>

for any t € [e,00), x € R™ where

N

f(z):= 50;1(471')_"/ r_%dy.
BR

Besides, the necessary condition of the blow-up criterion in R™ is

. [H(D)]» T
lim ———F%—— = oo.
T—o0 T=2

If h(t) =1 then H(T) = fOT h(s)ds = fOT lds =T. Thus

—

T)r-1
lim [ ]i\, =00
T—oo T%

and this happened if Iﬁ — % > 0 whence when p > 1+ %, in accordance
with the Fujita’s result.
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2.4 Global existence

Before deriving sufficient conditions for the existence of global solutions of
problem (P1) we need to introduce the concept of ground state.

2.4.1 Ground states

Definition 2.6. A ground state in H"” is a positive classical solution of

the equation
Agnd+Ap=0 in H". (2.25)

We seek a solution of the form

o(r,0) = w(r)a(h).

This means that

0 d 1
Aanb + )\qb = ﬁﬁb + ((n - 1) COth’I“)aqb + mAgn—lgf) + >\¢ =

= w”(r)a(f) + (n — 1) cothrw'(r)a(0) + sinizrw(T)Aea((g) + Aw(r)a(0)

If —Cx := —(k—1)(k+n—3) is an eigenvalue of Ay on S*~! then « satisfies
Aga + (oo = 0 and

w”(r) + (n — 1) cothrw'(r) — ﬁw(r)(ka(ﬁ) + Aw(r) =0,

Aga + (e = 0.

Since we are interested in radial solutions, then the equation to study, for
k=1,is

w”(r) + (n — 1) cothrw'(r) + Aw(r) =0 in [0, 00). (2.26)

If we choose w(r) := (sinh r)_nT_lu(r) we obtain

(_” —1 1> (sinhr) "2 ~2(cosh r)?u(r) -

n

(7))
B (n — 1> (sinhr)~ "7~ sinh ru(r) — <”;1> (sinhr)™"2 ! coshru/(r)+
&

(sinh r)_nT_l_l coshru/(r) + (sinh r)_nT_lu"(r)—

_n—1

— 2~ (cothr)(sinhr)” 2 ! coshru(r)+

1

+ (n — 1) coth r(sinh r)_nT_l_lu’(T) + A(sinh T)_%U(T) =0
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n—1 "

(sinh )~ T (r) = — <” - 1> (-” - L 1) (sinh )~ "7 2 (cosh ) 2u(r)+

—1 n—
) (sinh r)_Tl_l sinh ru(r)+

—1)2 e
u(coth ) (sinh r)_Tl_l coshru(r)—

+
— A(sinh r)*nTilu(r)

so that

= |- <n;1> <_”;1 _ 1) (sinh 1) ~2(cosh r)? — ("= 1)+

2
+ (n_21)2(coth r)(sinhr) ! coshr + A]u(r) =
() (7 ) 5 G o (7 o -
() () e ()

and thus

() = [(n—2)2—1 1

4 sob?y T )‘] u(r) =: —q(r)u. (2.27)

Theorem 2.4. A necessary condition for the existence of the ground state
s A S Al.

Proof. If w is a positive solution for equation (2.27) for A > A\; then we can
choose a so large that for p > a we have

A—M\

q(r) > 7

If we consider the ordinary differential equation

A=A
2

u(z) = csin < A _2)\11“)

that vanishes when w/%x = mm and thus when + = —22— with m € N.

\/m
p)

"
u’ +

uw=0 (2.28)

then its solution is
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Therefore we can apply the Sturm Comparison Principle ([16], Theorem 19,
pg 45 ) to the equations (2.27) and (2.28) and conclude that u vanishes at

mr (m+1)7w

V/Afxl’ \/A7A1
2 2

least once in the interval where m € N and

A=A
2

T > q.
\/

Lemma 2.6. For any A < A1 and ¢ > 0 there exists a unique ground state
w such that w(0) = c¢. There holds

lim w(p)e ™ =k
p—00

for some k > 0, where
V= \/)\1—)\— \/)\1.

In particular, if A > 0 then

lim w(p) = 0.

p—00
Proof. By classical theory of differential equation with singular coefficients
(see [4]) the equation (2.26) has one regular solution w such that w(0) = ¢
for every ¢ € R. By assumption ¢ > 0 so that, by the previous construction,
the function u(p) = (sinh p)%w(p) satisfies (2.27) and has the properties
of vanishing at p = 0 and of being positive in a neighborhood of the origin,
say B¢(0). All this implies that u/(p) > 0 for small p.
Now, if n > 3 then ¢(p) > 0 and since, by assumption, A\g — A > 0 then
u’(p) > 0 and by convexity u/(p) > 0 for all p > 0.
Instead, if n = 2 we have to make different considerations. We make the
change of variable. We set ¢t = cosh p which is p = acosht.

d(acosht) =d (log(t + \/ﬁ)) \/t21f1

and ;
cosh(acosht) =
t2—1
in fact
eln(t+vtr—1) _ o—in(t+Vt?—1)
sinh(acosht) = 5 =
t+VE2—1)— (t+vVt2 -1 t+ve2—1)7! o

PtV -1 1

—t—t+ V22— 1= -1
t+vVt2—1 t+Vt2—1
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thus ht ;
coth(acosht) = C?S = .
sinh ¢ 2 1
Therefore , we have
dw dw
= = \/t2 - 1—
YT dacosht dt’

2
W= T e <\/t2T1dw> _

d(acosht)2 dt dt

1 1 dw d*w
2t — +

2 V2 —_1dt  di?
Consequently the equation (2.26) (for n = 2) becomes

d>w dw t dw
2 2 _
LD e 12 1 =
(t )dt2 —l—tdt—i— o t dt+/\w 0

=Vt -1Vit2 -1

(t2 —1).

that is )
dw d“w
—2t— + V1 —t2— — dw = 0.
T az ~ Y
The last equation is the Legendre differential equation which can be written
in the form

which is the so-called “associated Legendre differential equation” correspond-
ing to the case m = 0.

The indicial equation associated to the Legendre function is 2

—v(v+1)—A=0

and since A < \g = i then v is a real number.

The ground state solution is a polynomial function P,(x) where v is a root
of the indicial equation.

Applying a classical result on the distribution of zeros of Legendre functions
we can conclude that P,(t) does not vanish in (1, 00)

If A > 0 the solution of (2.27) behaves like eV =27 with n — 0 as p — oo
for large p. Since u is increasing then u(p) ~ e*” and thus

lim (sinh)_nT_leo"’ ~ lim e "D = lim @~ (N-1r — 0,
p—00 p—00 p—00

2see [4], chap.4
3 — (N —1) < 0.
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Remark 2.6. We notice that the ground state solution w found in the pre-
vious Lemma does not belong to L*(H") in fact

/ N [w(p)]?(sinh p)"~tdp = / h u(p)?(sinh p)~ "V (sinh p) ") ~
0 0

oo
~ / eV /\1_>‘pdp =00
0

We can now prove the following result:

Theorem 2.5 (Global existence criterion). Let
~ ~ t ~
R(t) = h(t)e- =DM () = / 7(s)ds
0

and set Hog := limy_ oo fNI(t) Suppose that Hoy < 00 and let w be a ground
state corresponding to A = A1 such that

1 =

lw|]oo < [} : (2.29)
(p - 1)Hoo

If ug < w then the solution of the problem (P1) is global.

Proof. Let w be the ground state corresponding to the eigenvalue A = A;
such that w(0) = ¢ (¢ > 0) (compare Lemma 2.6) and ||w|| < co 4 and ¢ be
the solution of the problem

¢ = ||wl| B R()CP,
{C(O) _, (2.30)
We now compute the solution of this ordinary differential equation:
d¢ 4=
o = el R,
d¢ 4=
o [lwl|[B5 h(t)dt,
< g td t_
n ¢ -
Lo 5= & =l [ heas
¢—=D () — ¢==D(o -
O =l o)
Hence we have
C=[1-p-DlwlEtaw]) (2:31)

Tt is clear ||w||oo < 00 since w is smooth and lim,— . w(p) = 0.
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Let us show that, provided of assumption (2.23), the function

a(z,t) == e M (Hw(x)

is an upper solution of (P1) for all ¢ > 0.
It is very easy to check that u satisfies

ay > Aga + h(t)|uPa.

In fact deriving we have

—Are M w (@) e M (w(x) 2 —Aem M (w (@) Hh(t)alP e M Cw (),

which is

—AiCw(z) + ¢ (Hw(x) > =M l(tw(z) + h(t)][w][P~ e M P=DicPy(z).
Thus the condition to be satisfied is

¢'(t) = h(t)|jw| P~ e ®=DrcP

and this last inequality is always true because ( satisfies (2.30).
Since, by hypothesis, uy < w = u(0) then @ is clearly an upper solution.
If Hy, < 0o and we choose ¢ > 0 such that (2.29) holds, then the upper
solution @ exists for all ¢t > 0.
From this argument we can deduce that u is always an upper solution whilst
u = 0 is always a lower solution so that, by standard comparison results,
0<u<u.

O

2.5 A general result

Theorem 2.6. 1. Let h(t) = 1. Then for small initial data uy there exist
global solutions of problem (P1).

2. Let h(t) = t? with ¢ > —1. Then for small initial data ug there exist
global solutions of problem (P1).

3. Let h(t) = e* and set pfy := 1+ = (a>0).
(a) If 1 < p < pfy, every nontrivial solution of problem (P1) blows up
n finite time.

(b) If p > pfy, problem (P1) possesses global solutions for small initial
data.
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(c¢) If p = pjy and o > %)\1 there exist global solutions.

Proof. e If h(t) =1 then
H,, = /Oo e PN < o0
0

and we can apply Theorem 2.5.

e If A(t) = t9 then it is very simple to verify that we have global existence
for ¢ > —1 in fact

h(t) = e~ P~ DMitya

so that

t [e%¢)
Hy = lim e~ P=DMsgagg — / e~ P=DXsgagq —

1 [e'e)
= lim e~ (P DMsgage 4 Jim e~ (P~ DMsgagg
t—o0 0 t—o0 1

For every q we have

|ef(p71))\1ttq’ < |ef(p71))\18€(p71)A1+6| < |€76’

and this estimate makes the second integral always finite.

As far as the first integral is concerned we have that in a neighborhood
of the origin

le=(P~DAs 0| < |59

so that the integral is bounded from below by

We need to distinguish two cases: if g4+1 > 0 then the integral in finite
in (0,1) whilst if ¢ + 1 < 0 then the integral is divergent.

Therefore if ¢ > —1 then we can apply Theorem 2.5.

o If h(t) =e* and pf =1+ %, then the condition (2.24) reads as

_1
el | p—1 ol ol
@ er—1 er—1

j— ~
~

T3/2eMt it eMT
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which diverges if Z?—_Tl > \MT. Applying Theorem 2.3 we can infer that

for 1 < p < p* the solutions to equation (P1) with h(t) = ¢** blow up
in finite time.

Instead, if p > pj; then the problem (P1) possesses global solutions
thanks to Theorem 2.5 in fact the condition

I:IOO:: lim H < o

t—o0

is satisfied if

ela—(P—1)M)t
lim ———
mxa—(p—Dh
and thus we need v — (p — 1)A1 < 0 that is S5 < Ay
Finally we discuss the critical case (p = p* so that a = A\j(p — 1)):

we define the function

z(x,t) == &(t)q(x,0,t +tg) (to > 0).

Since ¢ is the heat kernel (i.e. satisfies ¢ = Apq) then the differential
equation for z is

zi(z,t) — Agz(z,t) — e 2P (x,t) =

§(D)g(,0,t +to) +§()ar(2,0, £ + to)

—&(t)Agq(z,0,t + ty) — eatfp(t)qp(x, 0,t+tg) =
a(,0,t +10) [ () — g7~ (2,0, + )" (1)]

SO

2t — Apz — e 2P = q(€ — e gP~1eP). (2.32)

By (1.18) we get

q(x,0,t 4+ to) < cp(dm(t + 1)) "2 (1 + d(z, 0)) x

n—3 n—1_ d*(z,0)

X (1+d(z,0) + (t+tg)) 2 e Mttt =" =75

_ (n—1)d

< en(Am)TE (4 to) " 2e MO (1 4 p(2))gr(z)e 2

where
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gl(x):{1 n<3

(1+ T—Op)*% n>3
If we call ki = ¢, (47) "2 (1 + p)gl(x)e_%p > 0 we have found that

(2,0, +to) < ki (t +tg) 2e M1 (HHH0) (2.33)
for any x € H" and t € [0, 00).

Inserting the estimate (2.33) in (2.32) we obtain

2 — Az — €2 > q(§ — P TIEP) =

M —1

— g |é— et (kl(t + to)_%e_)‘l(t+t0)>p fp} =

— g€ = R (t 4 1) BETDe M EHR D]

— g [€ — et DO (4 4 gy~ F -1 p1 fp} —

— g |é — e=~Dato(y 4 4)=30-D) kg;—lgp] ‘
Thus, if £ satisfies the problem
. _ 3 4o
€= nt +10) PR (2.31)

where k = klrle_ato
and if

z(2,0) = £(0)q(,0,t0) = uo(x)
then z is clearly an upper solution of (P1).

It only remains to find a condition which ensure the existence of the
function &(t).

So we can do nothing but solving the equation (2.34) using a similar
strategy to the one used for solving (2.30).

By (2.34), we write
_ 3o o
d¢ = k(t +ty) M §1+)\1 dt
and we integrate. Hence we get

@ g4 tod t _3a
/ 17704 :/ 1<a :n/(s—i-to) 2 ds (2.35)
G 7 BY) 0 ¢ RSt 0
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=€ 1O _ /—i/t(s+t0);ﬁds,
0

t

KO _ 3o _ o
£(t) ™ i (s +to) Prds+&(0) *1.
1Jo

If £(0) is sufficiently small and 3a > 2X1, i.e. o > 2\ then £(¢) exists
for all ¢t > 0.

This proves the last assertion of the Theorem.



Chapter 3

Front Propagation of
Semilinear Diffusion Equations

in H"

3.1 Preliminary results

In this section we recall some basic results about plane wave solutions in R™
given in [1].
Consider the following ordinary differential equation

" +rxd+f(g)=0 in R KeR (3.1)

A plane wave solution of the equation (4) is a function of the form g(z-v—ct)
where ¢ solves (3.1) and v € R" is an arbitrary unit vector.
It is our interest to study the case in which the following conditions are
satisfied

{q(f) €[0,1], ¢(¢) # 0 and

lim§—>oo Q(&.) = 0.

Equation (3.1) can be written as the system of two equations

¢ =p,
P =—krp— f(q).

whose solutions ¢(&), p(§) describe orbits on the phase space (g, p).
The trajectories that are traced out have slope

at any point p # 0.
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70 3. Front Propagation of Semilinear Diffusion Equations in H"

If f satisfies hypothesis (Hy), then the points (0,0) and (1,0) are critical
points for (3.1), as well as all the points of the form (a,0) with f(a) =0. A
plane

Let x > 0. If k2 > 4f'(0) it can be shown (see [1]) that there exists a
nontrivial trajectory from the origin. The unique trajectory in the strip S
that goes from the point (0, —v) with v > 0 cannot cross any trajectory that
goes to the origin. If we consider the trajectories, making v varying, and we
take the limit ¥ — 0 we obtain a nontrivial extremal trajectory going to the
origin, that we call Tj.

The critical value s for which there exist wave solutions will be defined in
terms of the trajectories Tj.

Firstly we define
o= sup {f(u)}
ue(0,1] U

so that f(u) < ou for u € [0,1] and we observe that if K2 > 40 then T} is
bounded above by the line through the origin p = —% </<; + VKZ — 40) q. In

particular Ty, connects the origin to the point of the form (1, —v) with v > 0.
Then it is well defined the number

¢ =inf{k: x> 0,k*>4f(0), there exists v > 0 such that (1,—v) € Ty}

which satisfies

41(0) < (¢*)? < 4o.
In particular, the number ¢* is the asymptotic speed of propagation associ-
ated with the equation (P2).
If we make the additional assumption that
o= f'(0) (3.2)

then ¢* = 24/f/(0). (see [1], Prop 4.2, p. 53).
We can now give the main result on the existence of plane wave solutions
whose proof is given in details in [1|[chapter 4, Theorem 4.1 and Lemma 4.3]

Proposition 3.1. Let assume that (Hy) and either (Hy) or (Hz) holds.
Then there exists ¢ > 0 with the following properties:

1. for k = ¢ equation (3.1) admits a decreasing solution ¢* in R satisfying

lim ¢*(&) = 1, fim 7" (&) = 0; (3-3)

£——o0

2. for any k € (0, c*) there exists v, € (0,1) such that: for anyn € (v, 1)
there exist b = b(k,n) > 0 and a solution q to equation (3.1) satisfying

q(0) =n, ¢'(0) =0, q(b) =0, ¢ < 0in (0,b]; (3-4)
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3. for any k > c* there exists a solution q to equation (3.1) in Ry such
that
q0)=1, ¢ <0inRy, q(€) — 0 as& — oco. (3.5)

3.2 Behavior of disturbances: extinction or propa-
gation?

In this section we will compare the long time behavior of solutions of (P2),

with respect to the choice of the forcing term.

Let us fix some notations: we refer to the case of propagation when the
solution u(z,t) of (P2) satisfies

tlim u(z,t) =1, uniformly on compact subset of H". (3.6)
—00

Instead, we refer to the case of extinction when the solution u(z,t) satisfies

lim u(z,t) =0, uniformly in H". (3.7)

t—o0

3.2.1 The KPP case

In this section we will investigate the behavior of the solution of (P2) if we
choose a forcing term of KPP-type.

We recall that in R™ if f is KPP then propagation occurs in any case .

The next result shows us that in H" we can have both propagation and
extinction, depending on the speed of propagation.

Theorem 3.1. Let assumption (Hy), (H1) and (H3) be satisfied. Let ug # 0
and let u be the corresponding solution of problem (P2).

e Suppose that ug has compact support and ¢* < n — 1. Then

tlim u(z,t) =0, uniformly in H".
—00

e Suppose that ¢* >n — 1. Then

tlim u(z,t) =1, wuniformly on compact subset of H".
— 00

Remark 3.1. It is important to notice that by the assumption (Hs), ¢* =

2/ f'(0) then

F<n—1=2 f’(O)<n—1éf’(0)<M

1 = A1

We can thus re-phrase the Theorem by saying
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e if f'(0) < A1 and ug has compact support then extinction occurs.
e if f'(0) > A\ then propagation occurs.

So, once again we find that the infimum of the spectrum of H™ plays a big
part in describing behaviors of solutions of a semilinear parabolic equation in
H™.

Proof. First part:
Since ug is assumed to be compactly supported, then, by definition there
exists R > 0 such that suppug C Bpr. There exists a C°° function 1y =
to(p) : Ry — [0,1] with

a4y <0 in Ry, 49g=0 forany p>R

and such that

ug(z) < ag(p(x)) for any = € R. (3.8)
1

Let us suppose that @ is a solution of the problem

p o .
Gt =58+ (n—1cothpGt + f(u) in Ry xRy,

g% =0 in {0} xRy, (3.9)
u = ’110 n R+ X {0}

It is then clear that a(p(z),t) satisfies (P2) with Cauchy data @y(p(z)).
Applying standard comparison results we can state that @ is an upper solu-
tion and 0 is a lower solution of equation (P1), so that
0 <u(z,t) <a(p(z),t) for any (z,t) € H" x Ry.
Now we consider the problem
2 .

Bu— 08+ (n-1)% + f(w) in Ry xRy,

g =0 in {0} xRy, (3.10)

w = 'ao in R+ X {0}

Since by assumption ¢ < n—1 then by Theorem 3.1 the ordinary differential
equation (3.1) with K =n — 1 in R4 has a solution ¢ = ¢(p) such that

q(0)=1, ¢ <0 in Ry, lim ¢(p) =0.
p—00

For instance if we define

1 for p < Ro,
Uo(p) = { Maxyemn.a(z,00=p o(z) for Ro < p <R,
0 for p>R

with Rg < R sufficiently large.
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Let v be the solution of the problem

{gg:gngjt(n—l)g;+f(v) in R xRy,

v=2¢ in {0} x Rx
where
b= 1 if p <R,
"~ lelp—R) ifp>R
In [1]|[chapter 2, Theorem 5.1| it is shown that
ov . .
— <0 in Rx Ry and lim v(p,t) =0.
ot t—o00

It is clear, by definition of ¢, that 4y < ¢; thus

o 0% v
o ap Vg, HI) =
ow 0w ow :
rrr (n — 1)—ap + f(w)in Ry x Ry
and

U:¢Zﬂ0 in R+X{O}

Hence v is an upper solution of problem (3.10) , namely
w S v In R+ X R+.
Now, taking the limit for ¢ — co we get

lim sup w(p,t) < lim w(p,t) < lim v(p,t) =0
t—o0 pER t—o0 t—o0

Thus we obtained that the solution w of problem (3.10) satisfies

sup w(p,t) — 0 ast — oo (3.11)
pERY

and

881:30 in R+XR+.

Again if we consider the problem

%Z%+(n—l)%+f’(w)z in Ry xRy,
z=0 in {0} x Ry,
=0 in Ry x {0}.
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where w is a solution of (3.10) then the function z = %—1: is a lower solution

of (3.10) in fact we have

2(5) - (5500 (5)enm)-

and i
~/ Uuo ~/ .
=—=u,<0 Ry x {0}.
iy = o = <0 in Ry x (0}
On the other hand z = 0 is a solution. By comparison we have
ow
op —
n R+ X R+.

Now, observing that coth p > 1 and that %—Z’ < 0 we have that w satisfies

ow  O*w ow
L _(n-1)=— >
o 0 (n—1) p + f(w) >
ou  0%u ou .
> 5 87;)2 —(n— 1)Cothp8—p + f(u)in Ry xRy
ow ou .
aip < 0= a m R+ X R+

w=u=1dg in R4 x{0}.
so that w is an upper solution of problem (3.9), namely
0 <u(z,t) <w(p,t) in Ry xR;.

Now, taking the supremum in (3.8) and using (3.11) we can conclude that

0 < sup u(x,t) < sup u(p,t) =0 as p — oo
reHn” peER

Second part:
The assumption ¢* > n — 1 implies that f/(0) > A1 (see Remark 2.2).
In the geodesic ball B with R > 0 we consider the eigenvalue problem

{Amb +[f/(0) +ul¢=0 in B, (312)

¢o=0 on OBg.

We call pu; = pi(Bgr) the first eigenvalue of (3.12) and ¢1 = ¢1(p) > 0 the
corresponding eigenfunction.
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Bearing in mind (1.19) when ¥ = B; we have
Ager + [f'(0) + 1 (Br)]or = 0= (=A1d + f/(0) + p1(Br)) ¢1 = 0 =

= 1(Br) = Ai1¢ — f/(0).
Since A\1(Br) \, A1 for R — oo (see section 1.5) and f'(0) > A; then there

exists Rg > 0
pi(Br) <0

for any R > Ry.
We now set

0 otherwise

we:{egbl(p) in Bg,

with R > Ry fixed.
Consider the elliptic problem in H"

Agv+ f(v) =0 in H". (3.13)
Since

Agwe + f(we) = €Amdr + f(we) = —eA1¢1 + f(we) = —Arwe + f(we)

then by assumption (Hs) it is possible to find an ¢y > 0 such for any € €
(0,€p) holds %ws) > A1 and so —A\jwe + f(we) > 0. Hence w, is a lower
solution of equation (3.13).

On the other side, 0 is a lower solution of (P2), so u(z,t) < 0 and if we think
of the form of the Laplace-Beltrami in the disk model (1.12) (or in the half
space model (1.14)) it is easy to see that the operator is elliptic inside the ball
Bi with bounded coefficient degenerating only on the boundary. Moreover,
observing assumption (Hs) then it is clear that

ou 0%u du 1
Frie Agu+ f(u) = g2 T (n—1) cothrg + mAanu%— fu) >
0*u d 1

> —+(n—1)cothr£+

————Agn-1u + C1u.
— Or? dr  sinh®r

Thus applying a standard consequence of the strong maximum principle to
the linear problem with bounded coefficient (see [16] Theorem 5 p.9) we can
finally state that

u(-,t) >0 in H" for any ¢ € Ry. (3.14)

We choose € € (0, ¢p) so small that

we(p(z)) < u(z,1)



76 3. Front Propagation of Semilinear Diffusion Equations in H"

for any x € H™.
If u. denotes the solution of the problem

%Tt* = Agu+ f(u) in H" x Ry, (3.15)
U = W, in H" x {0}.

then by comparison arguments
ue(-yt) <wu(,t+1¢) <1 in H" for any t € Ry

Again by the ellipticity of the operator Ap in the disk model (or in the
half space model) we can apply standard theorems for semilinear parabolic
equation in R™ to (3.15). Thus there hold the following:

1. the function t — wu,(z,t) is nondecreasing in R, for any x € H";

2. the pointwise limit
Uso(z) := lim wuc(x,t)
t—o0

is a solution of equation (3.13);

3. the convergence uc(-,t) — uoo as t — oo is uniform on compact subsets
of H".

The last thing to prove is that
Uso = 1 In H™
Hence we choose € € (0, ¢) so small such that
0 < we(z) < Uoo(x) for any x € H". (3.16)
Then we observe that
B :={y € H"we(ry(x)) = we(0) < uoo(z) for any = € H"} = H"

where 7 is defined in (1.10).
In fact

1. B is nonempty. In fact 0 € B since we(m0(z)) = we(x) < uso(z) by
(3.22).

2. B is open by the continuity of the map y — 7,(x) for every x € H".

3. B is closed because if {y,} C B such that d(y,,y) — 0 then by conti-
nuity of w, there holds

We(Ty()) < uso for any z € H". (3.17)

By the strong maximum principle us(z) > 0 inside the ball By (think
of the Laplace-Beltarmi operator in the disk model) thus we cannot
have equality in (3.17) otherwise we fall into contradiction.
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Hence B coincides with the whole space H™ and this fact implies that

We(72(2)) = we(0) < uso(x) for any x € H".

Thus if € is the solution of the problem

&= f(8),
E(O) = we(o)
then it is obvious that

£(t) < uso(z) for any x € H", t € RT.

Since the equilibrium point 1 is an asymptotically stable i.e. &(t) — 1 as
t — oo then

1= lim &(¢t) < tlim Uso(T) < tlim ue(x,t) < 1.

t—o0
SO
Uso(x) =1
and putting it together with (3.14) we conclude that
lim u(x,t) = 1.
t—o00

O]

Remark 3.2. We observe that in the second part of the proof of Theorem
3.1 it is shown that if f'(0) > 1 then v =1 is the unique nontrivial solution
of equation (3.13) such that 0 < v < 1.

Extinction occurs also in case we remove the assumption that f/(0) > 0 in
(Hp). In fact we can prove

Theorem 3.2. Let assumption (Hy) be satisfied and suppose that
flu) < pu? (0<u<1)

for some B >0 and p > 1. Let w be a ground state and define

wi=cw nH" (3.18)
where ¢ is chosen to satisfy
1
APt
0<c< L. (3.19)
[|w[loo

2
Let u be a solution of problem (P2) with ug < w in H"™. Then

lim u(x,t) =0 uniformly in H".

t—oo

2remember that w is in L°°(H™) but it does not belong to L*(H")
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Proof. Going through the proof in (2.5) we have h(t) = 1 so that h(t) =
e~ M=Dtp(4) and H(t) = [1 — e~ (=Dt

We recall that in this case we have always global existence of a solution of
(P2) in H" x (0, 00) for small initial data (see Theorem 2.6).

Consider the problem

I — k‘ ggl 7(p71)A0t 14
(o) = 1.
Its solution
¢ = [1= (= Dkl A )]
is well-defined in [0, 00) thanks to assumption (3.18) and (3.19).
Setting
7= e M¢(Hw(x) (x,t) € H" x [0, 00)

it is immediate to show that it is an upper solution to problem

ug = Agu + uP %n H™ x (0, 00), (3.21)

u=1uy >0 in H" x {0}.

Since, by assumption, f(z) < fuP then @ is an upper solution of (P2) too.
By comparison principles we have

0<u<u
in H" x [0, 00) and therefore we may conclude that

u(z,t) < a(x,t) < sup@ < |||l M¢(t) = 0 ast — oo.
H»

We note that this result is essentially due to Theorem 2.4, chapter 2.3.

3.2.2 The Allen-Cahn case

We now investigate the behavior of solutions of (P2) when we choose f of
KPP-type. We note that a threshold phenomenon occurs according to the
size of the initial data ug and the sign of the difference ¢* — (n —1).

Lemma 3.1. Assume that (Hy) and either (Hy) or (Hz) are satisfied. Let
¢ >n—1. Then by Theorem 3.1, for any c € (0,¢* — (n — 1)) there exists
a e € (0,1) such that for any n € (7, 1) there exists b = b(c,n) > 0 and a
solution q of equation

"+ (c+n—-1)¢+ f(qg)=0
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such that
q(0) =n, ¢(0) =0, q(b) =0, ¢ <0 in(0,b)].
Consider the problem
% = Agv+ f(v) n H", (3.22)
v =v0(p) in H™ x {0}
where, for every fived R, vy is defined as follows
n if p<R,
vw=<q(p—R) if R<p<R+D, (3.23)
0 in R4+b<p.
Then for any R > 0 such that
-1
tanh R > —— (3.24)
c+n—1
the solution v of the problem (3.22) satisfies the inequality
v(z,t) >n for any (x,t) € H" x Ry such that p(x) < R+ kt,  (3.25)
where
k=k(c):=c+(n—1)(1—-cothR) > 0. (3.26)
Therefore |
lim v(x,t) =1 wniformly in compact subsets of H". (3.27)

t—o0

Proof. We define
Wz, t) :==vo(p(x) — kt) (k,t) € H" x Ry

where k is defined in (3.26).
Setting s = p(x) — kt and observing that

Apgp(x) = —(n — 1) coth p(x)
we have

_ Oug(s)

W = 22 195(0)P + 90 ) Avep(a)

0s
If p(x) < R+ kt (s < R) then

0
W = AW — f(W) =
0 TG paf? — 20 A ) — () =
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HR+kt<plzx) <R+kt+b(R<s<R+D) then

%W—AW—f(W) =

0

—kq'(s = R) —q"(s = R)|Vp(2)]” — ¢'(s — R)Aup — f(q(s — R))
(s — R)[~k — Agp] +d'(s — R)(c+n—1)
q(s—R)[-k—Amp+c+n—1]
qd(s— R)[=k — (n—1)cothp(x) + c+n —1] =
qd(s—R)[~k+ (n—1)(1 - cothp(z)) +].

/

If p(x) > R+ kt+b (s > R+ ) then

)
a5V — AW — f(W) =0.

By the fact that (see(3.24))
c—k+(n—-1)(1-cothp(z))>c—k+(n—1)(1 —cothR) =0
and by Theorem 3.1 we can state that if R+ kt < p(z) < R+ b+ kt then
d(p(x) — kt — R) <0.

Moreover, by assumption (Hs) we know that f(n) > 0 for n > a and suffi-
ciently close to 1.

Gathering the informations we deduce that W is a lower solution of problem
(3.22), thus applying Comparison theorems we have W < v in H" x R;..
Inequality (3.25) is due to the fact that W (x,t) = n for p(z) < R+ kt and
(3.27) follows by (3.25) and by the fact that 7 is arbitrarily close to 1. O

We can now give the major result concerning the Allen-Chan case.

Theorem 3.3. Let assumptions (Hy) and (Hz) be satisfied. Let u be the
solution of problem (P2).

(i) If supgn up < a then we have (3.7).

(ii) If ug is suitably large and ¢* > n — 1 then we have (3.6).

Proof. (i) Let ¢ be a solution of the following problem

{CI = f(C)v (3.28)
C(0)=p
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where p1 = sup,epn uo(z). Since g < a then f(¢) < 0 for all t €
R, . Thus ((t) is decreasing 3 and it converges asymptotically to the
equilibrium point 0 as t — oc.

On the other hand, by hypothesis, 4 = supgn ug < a. Moreover, we
note that Ag¢ = 0 and , in particular, % — f(¢) = 0. Therefore,
applying comparison results we deduce that 0 < u(z,t) < {(t) for any
(x,t) € H" x R,..

We can therefore conclude that lim—.o u(z,t) = 0.

(ii) By assumption we choose ug(p) > vo(p) in H", where vy is defined in
(3.23). By comparison principles we have u > v, v being the solution
of (3.23), for all (z,t) € H" x R;. Applying Lemma 3.1 we have

1> lim w(z,t) > lim v(z,t) =1
t—o0 t—o0
uniformly on compact subsets of H".
O

Remark 3.3. The conclusion of Theorem (3.3) holds true also in the case
(Hs) is substitute by the following weaker assumption: there exists a € (0,1)
such that f(u) <0 for any u € [0,a] and f(u) > 0 for some u € (a,1).

The proof make use of the fact that there exists Cp, > 0 such that for any
te Ry

n—3
2

1+4+¢
sup p(‘T) Y, t) S Cn#e_Alt-
z,ycH" t2

This is a direct consequence of the bilateral estimate of the heat kernel in H"
(1.18).

3.3 Speed of propagation

In this section we will study in deep the case in which propagation prevails
over extinction; in particular the main aim is to determine the speed of
propagation of disturbances.

Theorem 3.4. Let assumption (Hy) and either (Hy)-(Hs) or (Ha) be sat-
isfied . Let ug Z 0 have compact support, and ugy be suitably large if (Ha)
holds. Moreover, assume c¢* > n — 1.

i) Let ¢ > c* — (n—1). Then for any y € H"

lim sup wu(z,t)=0.
t—o0 d(z,y)>ct

3The problem (3.28) has a unique solution which can be obtained, solving with respect

to ¢ the equation ¢t = : %. From this last expression we deduce { — oo as t — oo
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ii) Let 0 < c < c*—(n—1). Then for anyy € H"

lim sup wu(z,t)=1.
t—0o0 d(z,y)<ct

Proof. First part: Choose iy = 1p(p) : Ry — [0, 1]
a4y <0 in Ry, 4=0 forany p>R

and such that

uo(x) < dg(p(z)) for any x € R. (3.29)
(as in the proof of Theorem (3.1)).
Let u satisfy the boundary-value problem (3.9), that is

2 .
% = 273+(n—1)cothpg—z+f(u) in Ry xRy,

% =0 in {0} x Ry, (3.30)
u = U in Ry x{0}.

Since c+n—1 > ¢*, by Proposition (3.1) we know that there exists a solution
q = q(p) of the ordinary equation

" +(ctn—1)¢+f(gg=0 in Ry
such that

q0) =1, ¢ <0inRy, q(p) — oo as p — oo.

1 ifé <R
R WA

We now set

We notice that, by construction,

if £€>R ¢(§) =q(p—R) = 0=1o(p)
and
if §<R ¢() =12 uo(§)
so that
g < ¢ in Ry. (3.31)
Let v solve the following problem

v 2 ) .
= +ctn—1F+fv) in RxRy,
v=20¢ in R x {0}.
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We have already proved in Theorem 3.1 that

v(&,t) =0 as t— oo foranyfixed £€R

and 9
a% >0 in RxR,.
We define
w(p,t) ==v(p—ct,t) (p>0,t>0).

Then )

G =98+ n—-1%+ f(w) in Ry xRy,

?9—1; <0 in {0} xRy, (3.32)

w=¢ in R4 x{0}.

By (3.8) and (3.31) we have

uo(x) < ao(p(x)) < ¢(p()).

Observing that coth p > 1 then

u
— = — -1 hp— > — —1)—
5 8p2+(n ) cot pap—i-f(u)iapQ—i-(c—i-n )ap—i—f(u)
in Ry x Ry,
ow 0t
L <0=2"1in {0} xRy,

g <w=¢ in Ry x{0}.

Therefore, by comparison results we have

u(z,t) < a(p(x),t) <w(p(x),t) =v(p(x) —ct,t) in H" x Ry.

We notice that since d(x,y) < d(z,0) + d(y,0) = p(x) + p(y) then the
condition d(x,y) > ct implies that —ct + p(x) > —p(y).
Now, since & — v(§,t) is non-increasing for any ¢ > 0

sup u(z,t) < sup v(p(x) —ct,t) <
{zeH"|d(z,y)>ct} {z€eH"|d(z,y)>ct}
< sup v(—=p(y),t) =v(—p(y),t) =0 as t— oo.

 {z€Hn|d(z,y)>ct}

Second part:
We want to prove that
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for any 7] € (7, 1) there exists 7 € Ry such that

inf  w(x,t) >n for any t>rT.
d(z,y)<ct

If ¢ >n —1, thanks to Theorem (3.1), we can state that

tlim u(x,t) =1 uniformly in every compact subset of H"
— 00

so that for any compact subset K C H" and for any n € (0,1) there exists
h = h(K,n) > 0 such that

u(x,t) >n forany z € K, t > h. (3.33)
Let c € (0,¢* — (n—1)) and fix ¢ € (¢,c* — (n — 1)), R > 0 such that

Cc

cothR<1+£<1+
n—1 n—1

(3.34)

Let vz € (0,1), 7 € (v, 1), b = b(ve,7) > 0. Let ¢ be the solution of problem
¢"+(c+n—1)¢+ f(q) =0

such that
q(0) =1, ¢'(0) =0, ¢(b) =0, ¢ < 0in (0,b]. (3.35)

Moreover let o solve the problem (3.22) and take vg as in (3.23).
On the one hand, by Lemma 3.1 we deduce that

v(x,t) >n if p(r) < R+ kt, (3.36)

where k = k(¢) = ¢+ (n — 1)(1 — coth R) > 0.

On the other hand, by definition of ¥y and the fact that ¢ is decreasing in
(0, b] (see (3.35) ) we have

7 if p<R,

0 in p>R+0b,

glp—R) <7 in R<p<R+D.

so that

{@o(p(x)) <n if p(z) <R+D, (3.37)

to(p(x)) =0 otherwise.
The estimate (3.33) in a compact K = {z € H"|p(z) < R+ b} implies that

u(z,h) > 1> v9(p(x)) forany (x,t) € H" xRy
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and by comparison results
u(z,t +h) > v(x,t) forany (x,t) € H" x R;. (3.38)
From (3.36) and (3.38) it follows that
u(z,t + h) > vg(x,t) > 7 for all (x,t) € H" x Ry
such that p(z) < R+ kt, t € R, which is equivalent to say that
u(z,t) > vo(x,t) > n forall (z,t) € H" x Ry

such that p(z) < R+ k(t — h), (t > h).
We now observe that, by (3.34)

k=c¢+(n—-1)(1+cothR)>c+(n—1)(1-1- —

n_l):é—é—i-c:o

k>c.

It is then easy to verify that

!

— C

ct < R+k(t—h) forany t>7:= max{kh_R,O},
so that it is clear that

inf w(z,t)> _inf  w(z,t)>7
plx)<ct p<R+k(t—h)

for any t > 7.
Now the conclusion easily follows if we observe that « > 1 € H", by hypoth-
esis.

O]

3.4 Asymptotical symmetry

In this section we will give a result concerning the level sets of the solution
of problem (P2).

Theorem 3.5. Let assumption (Hy) and either (Hy)-(Hs) or (Ha) be sat-
isfied. Let ug Z 0 have compact support, and ug be suitably large if (Ha)
holds. Moreover, assume ¢* > n — 1. Then for any a € (0,1) and t € R4
sufficiently large the following holds:

i) the level set
Lo(ust) == {z € H"u(z,t) = a} (t € Ry)

is a smooth (n — 1) dimensional submanifold of H";
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ii) every geodesic orthogonal to T'n(u;t) intersects the convex hull of the
support of ug.

Proof. Let w be the convex hull of the support of ug and # C H" be an
hyperplane such that 7 Nw = 0. Let H” C H" be the half space containing
w.

Claim: the solution u of (P1) satisfies

(Vu,v)iy >0in mx Ry (3.39)
If this claim is true then we can prove the two statements.

i) Since ug is compactly supported, by hypothesis, and hm,g_,C>o u(z,t) =
uniformly in every compact subset of H" then T'y(u;t) Nw = @ for any
a € (0,1) and ¢t € R, sufficiently large.

wlx, )

SR
Al .
: Tal u%; t) f w } *

Now set xg € T'q(u;t) then we can find an hyperplane P C H" such that
9 € P and PNw = ). If we think 7 = P then we obtain Vyu(zg,t) # 0.
Hence, since xg is arbitrary, then I'y(u;t) is smooth.
i) We argue by contradiction. Suppose that xg € I'y(u;t) and that there
exist an infinite geodesic v orthogonal to I'y(u;t) at zp, which does not
intersect w. We can choose an hyperplane () € H" such that v C @ and
QNw = . Thinking 7 = Q we deduce (by (3.39)) that (Vyu(xo,t),7)yg # 0
where 7 is a tangent vector to I'y(u;t) at xg. This contradicts the definition
of T'y(u;t), which is a level set of w.
We end up proving our Claim.
Let us define

u(x,t) ;== u(Ry(x),t) with x € H"

where R is the reflection through the hyperspace 7 (see definition (1.8)).
The functions u and 4 satisfy the problem
=Agu+ f(u) in H xRy,
u=uy>0=1a in H" x {0},

u=1u in wxR;.
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By the maximum principle we can state that v > « in H, x Ry and by the
Hopf Lemma we can conclude that

Ou _0u  Ou

o v
where v is the vector field orthogonal to 7 pointing toward H. Therefore
we conclude that
(Vu,v)y >0in 7 x Ry,
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