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1. Tutorial



Large cardinals



Large cardinal axioms postulate the existence of cardinals possessing
closure properties strong enough to imply the consistency of ZFC, and
whose existence can therefore not be proven in ZFC by Gödel’s
Incompleteness Theorem.

These principles play an important role in the search for the right axioms
for mathematics for two reasons:

First, they are themselves strong candidates for new axioms, because
strong arguments can be made to intrinsically justify them and they can be
shown to answer important questions left open by ZFC in the desired way.

Second, these notions can be used to measure and compare the strength of
mathematical theories through equiconsistency results between such
theories and extensions of ZFC by large cardinal axioms.



The simplest example of large cardinal axioms originates from Hausdorff’s
work on cardinal arithmetic:

Definition

An uncountable cardinal is weakly inaccessible if it is a regular limit
cardinal.

If κ is weakly inaccessible, then the corresponding initial segment Lκ of
Gödel’s constructible universe L is a model of ZFC.

By Gödel’s Incompleteness Theorem, this shows that, if ZFC is consistent,
then this theory does not prove the existence of weakly inaccessible
cardinals.



Another fundamental example of large cardinal axioms is given by Ulam’s
work on the Measure Problem:

Definition

An infinite cardinal is measurable if there exists a normal ultrafilter
over κ.

Using an ultrapower construction, this large cardinal property can also be
characterized by the existence of certain elementary embeddings:

Theorem (Keisler, Keisler–Tarski, Scott)

An infinite cardinal κ is measurable if and only if there exists an inner
model M and a non-trivial elementary embedding j : V −→M with

κ = crit(j) = min{α ∈ Ord | j(α) > α}.



If we use a normal ultrafilter on a measurable cardinal κ in an ultrapower
construction to obtain an elementary embedding j : V −→M with critical point
κ, then the resulting ultrapower M is closed under κ-sequences in V.

A canonical way to obtain stronger axioms is to postulate the existence of
elementary embeddings into inner models with stronger closure properties.

Definition

Given uncountable cardinals κ < λ, the cardinal κ is huge with target λ if
there is a <κ-complete, normal ultrafiler U over P(λ) with

{x ∈ P(λ) | otp(x) = κ} ∈ U.

Theorem

An uncountable cardinal κ is huge with target λ if and only if there exists
an inner model M with λM ⊆M and a non-trivial elementary embedding
j : V −→M with κ = crit(j) and j(κ) = λ.



The above property can be strengthened further in a canonical way:

Definition

Given a natural number n > 0 and uncountable cardinals

κ0 < κ1 < . . . < κn,

the cardinal κ0 is n-huge with targets κ1, . . . , κn if there is a <κ-complete,
normal ultrafiler U over P(κn) with

{x ∈ P(κn) | otp(x ∩ κℓ+1) = κℓ} ∈ U

for all ℓ < n.

Theorem

An uncountable cardinal κ0 is n-huge with targets κ1, . . . , κn if and only if
there exists an inner model M with κnM ⊆M and a non-trivial elementary
embedding j : V −→M with κ0 = crit(j) and j(κℓ) = κℓ+1 for all ℓ < n.



It is now natural to consider transfinite versions of the above axioms.

Definition

Given a non-trivial elementary embedding j : V −→ M , the critical
sequence of j is the sequence ⟨κℓ | ℓ < ω⟩ defined by κ0 = crit(j)

and κℓ+1 = j(κℓ) for all ℓ < ω.

Note that, in the situation of the definition, the supremum of the critical
sequence of j is the least non-trivial fixed point of j, i.e., supℓ<ω κℓ is the
least ordinal λ > κ0 with j(λ) = λ.

A surprising theorem of Kunen shows that the closure properties of the
target inner models of elementary embeddings of V are severely restricted
by the supremum of the corresponding critical sequence.



The Kunen Inconsistency



The Kunen’s theorem can also be applied to embeddings that are not
necessarily definable classes. To phrase the result in this wider context, we
extend the language of set theory by a binary function symbol j and a
unary relation symbol M, and consider the extension ZFC∗ of ZFC that
extends the Replacement and Separation Scheme to formulas in the
enriched language.

Theorem (The Kunen Inconsistency, Version I., ZFC∗)

If M is an inner model, j : V −→M is an elementary embedding and
λ is the supremum of the critical sequence of j, then j[λ] /∈M.



Kunen’s proof of the above result relies on the following concept:

Definition

Given an infinite cardinal λ, a function f : [λ]ω −→ λ is ω-Jónsson if

f [[A]ω] = λ

holds for every A ∈ [λ]λ.

Theorem (Erdős–Hajnal)

For every infinite cardinal λ, there exists an ω-Jónsson function
f : [λ]ω −→ λ.



Proof.

Assume that there exists no ω-Jónsson function for λ.

Define a binary relation E on [λ]ω by setting

x E y ⇐⇒ sup(x) = sup(y) ∧ ∃α < sup(x) [x \ α = y \ α]

for all x, y ∈ [λ]ω. Then E is an equivalence relation on [λ]ω.

Using the Axiom of Choice, we can find a selector for E, i.e., a function
s : [λ]ω −→ [λ]ω such that

x E s(x)

and
x E y =⇒ s(x) = s(y)

hold for all x, y ∈ [λ]ω.
Given x ∈ [λ]ω, let g(x) denote the least α ∈ s(x) with

x \ (α+ 1) = s(x) \ (α+ 1).



Our assumption now implies that for every A ∈ [λ]λ, there is B ∈ [A]λ

with the property that A ⊈ g [[B]ω]. This allows us to inductively define a

descending sequence ⟨An ∈ [λ]λ | n < ω⟩ such that A0 = λ and there exists
a strictly increasing sequence ⟨αn < λ | n < ω⟩ with αn < min(An+1) and

αn ∈ An \ g [[An+1]
ω]

for all n < ω. Define

x = {αn | n < ω} ∈ [λ]ω.

Then there exists m < ω with

s(x) \ αm = {αn | m ≤ n < ω}

and
g({αn | m < n < ω}) = αm ∈ g [[Am+1]

ω] ,

a contradiction.



Proof of Kunen’s Theorem.

Let M be an inner model, let j : V −→ M be a non-trivial elementary
embeddings and let λ denote the supremum of the critical sequence of j.

Assume, towards a contradiction, that j[λ] is an element of M .

Fix an ω-Jónsson function f : [λ]ω −→ λ for λ.

Since j[λ] ∈ ([λ]λ)M and elementarity implies that j(f) is an ω-Jónsson
function for λ in M, we can find y ∈ ([j[λ]]ω)M with j(f)(y) = crit(j) /∈ j[λ].

Set x = j−1[y]. Since y ∈ [j[λ]]ω, we then have x ∈ [λ]ω and

j(x) = j[x] = y.

But this implies

crit(j) = j(f)(y) = j(f)(j(x)) = j(f(x)) ∈ j[λ],

a contradiction.



Since all ω-Jónsson functions for a singular cardinal λ of countable
cofinality are elements of Vλ+2, the above argument also yields the
following ZFC-result:

Theorem (The Kunen Inconsistency, Version II.)

For every ordinal λ, there is no non-trivial elementary embedding from
Vλ+2 into itself.



Rank-into-rank embeddings



Motivated by Kunen’s result, Kanamori, Reinhardt and Solovay initiated
the study of large cardinal notion just below the Kunen Inconsistency:

Definition

• An I3-embedding is a non-trivial elementary embedding
j : Vλ −→ Vλ for some limit ordinal λ.

• An I2-embedding is a non-trivial elementary embedding
j : V −→ M with the property that Vλ ⊆ M , where λ is the
supremum of the critical sequence of j.

• An I1-embedding is a non-trivial elementary embedding
j : Vλ+1 −→ Vλ+1 for some ordinal λ.



If either j : Vλ+1 −→ Vλ+1 is an I1-embedding or j : V −→M is an
I2-embedding whose critical sequence has supremum λ, then j(λ) = λ and
j ↾ Vλ is an I3-embedding.

The definition of critical sequences also makes sense for I1- and
I3-embeddings, and, if either j : Vλ+1 −→ Vλ+1 is an I1-embedding or
j : Vλ −→ Vλ is an I3-embedding, then the Kunen’s Inconsistency implies
that λ is the supremum of the critical sequence of j and hence j(γ) > γ

holds for all γ ∈ [crit(j), λ).

Moreover, if ⟨κℓ | ℓ < ω⟩ is the critical sequence of j in this situation, then
we can inductively show that Vκℓ

≺ Vκℓ+1
holds for all ℓ < ω. In

particular, we have Vκℓ
≺ Vλ for all ℓ < ω and, since κ0 is strongly

inaccessible, it follows that Vλ is a model of ZFC.



More far-reaching implications between the above three properties are less
obvious. In order to isolate such implications, we use canonical liftings of
I3-embeddings j : Vλ −→ Vλ to functions from Vλ+1 to itself.

Definition

If j : Vλ −→ Vλ is an elementary embedding for some limit ordinal
λ, then we define

j+ : Vλ+1 −→ Vλ+1; A 7−→
⋃
{j(A ∩Vγ) | γ < λ}.

Theorem

If j : Vλ −→ Vλ is an elementary embedding for some limit ordinal
λ, then j+ is the unique Σ0-elementary function from Vλ+1 into itself
that extends j.



We can now state and prove an alternative characterization of
I2-embeddings:

Theorem

The following statements are equivalent for every I3-embedding
j : Vλ −→ Vλ:

• The map j can be extended to an I2-embedding i : V −→M .

• If R is a well-founded relation on Vλ, then j+(R) is a well-
founded relation on Vλ.



Proof.

First, assume that j : Vλ −→ Vλ can be extended to an I2-embedding
i : V −→M and R is a well-founded relation on Vλ.

Then i(R) is a well-founded relation on Vλ in M and, since well-
foundedness is absolute between V and M , it follows that i(R) is
well-founded.

Given A ∈ Vλ+1, elementarity implies that

i(A) =
⋃
{i(A ∩Vα) | α < λ}.

Since i ↾ Vλ = j and i ↾ Vλ+1 : Vλ+1 −→ Vλ+1 is Σ0-elementary,
the uniqueness of j+ implies that j+ = i ↾ Vλ+1.

In particular, we can conclude that j+(R) is well-founded.



Proof.

Now, assume that j+(R) is well-founded for every well-founded rela-
tion R on Vλ. Let ⟨κn | n < ω⟩ denote the critical sequence of j.

Given 0 < n < ω, we let

Un = {A ⊆ P(κn) | j[κn] ∈ j(A)}

denote the n-huge filter over P(κn) induced by j.

Since each Un is a <κ-complete ultrafilter, we can identify the corre-
sponding ultrapower Mn with its transitive collapse and let

in : V −→Mn

denote the corresponding ultrapower embedding.



Given 0 < n < ω, standard arguments then show that:

• If γ ≤ κn, then

[x 7→ otp(x ∩ γ)]Un = γ.

In particular, we have

in ↾ (κn−1 + 1) = j ↾ (κn−1 + 1)

and crit(in) = κ0.

• [idP(κn)]Un = in[κn] ∈Mn.

• Vκn ∈Mn and in ↾ Vκn−1 = j ↾ Vκn−1 .



Given 0 < m ≤ n < ω, we define

im,n : Mm −→Mn; [f ]Um 7−→ [x 7→ f(x ∩ κm)]Un .

Then each im,n is an elementary embedding satisfying

im,n ◦ im = in

and
im,n ↾ (κm + 1) = idκm+1.

By standard arguments, this implies that

im,n ↾ Vκm = idVκm

holds for all 0 < m ≤ n < ω.



Let

(⟨(Mn,∈) | 0 < n < ω⟩, ⟨im,n : Mm −→Mn | 0 < m ≤ n < ω⟩)

denote the corresponding directed system and let

((M,E), ⟨kn : Mn −→M | 0 < n < ω⟩)

denote its direct limit. Assume that (M,E) is ill-founded.

Then there exists a strictly increasing sequence ⟨n(ℓ) | ℓ < ω⟩ and a
sequence ⟨fℓ : P(κn(ℓ)) −→ Ord | ℓ < ω⟩ of functions such that

kn(ℓ+1)([fℓ+1]Un(ℓ+1)
) E kn(ℓ)([fℓ]Un(ℓ)

)

holds for all ℓ < ω.



Define
D =

⋃
{ran(fℓ) | ℓ < ω} ⊆ Ord.

Then |D| ≤ λ and there is a well-founded relation R on λ such that there
exists an order-embedding e : (D,∈) −→ (λ,R).

Given ℓ < ω, we then have

[fℓ+1]Un(ℓ+1)
∈ iκn(ℓ),n(ℓ+1)

([fℓ]Un(ℓ)
)

and this implies that the set of all y ∈ P(κn(ℓ+1)) satisfying

(e ◦ fℓ+1)(y) R (e ◦ fℓ)(y ∩ κn(ℓ))

is an element of Uκn(ℓ+1)
.

This allows us to conclude that

j+(e ◦ fℓ+1)(j[κn(ℓ+1)]) j+(R) j+(e ◦ fℓ)(j[κn(ℓ)])

holds for all ℓ < ω, contradicting the well-foundedness of j+(R).



We can now identify (M,E) with its transitive collapse. The universal
property of direct limits then yields an elementary embedding

i : V −→M

satisfying
kn ◦ in = i

for all 0 < n < ω.

In combination with earlier computations, these equalities ensure that

i ↾ Vλ = j.

This completes the proof of the theorem.



Corollary

Every I1-embedding j : Vλ+1 −→ Vλ+1 can be extended to an I2-
embedding.

Proof.

If R is a well-founded relation on Vλ, then (j ↾ Vλ)+(R) = j(R) is
a well-founded relation on Vλ.

By the above theorem, this shows that j ↾ Vλ can be extended to an
I2-embedding i : V −→M .

The uniqueness of (j ↾ Vλ)+ now allows us to conclude that

j = (j ↾ Vλ)+ = i ↾ Vλ+1

holds.



2. Tutorial



Definition

• An I3-embedding is a non-trivial elementary embedding
j : Vλ −→ Vλ for some limit ordinal λ.

• An I2-embedding is a non-trivial elementary embedding
j : V −→ M with the property that Vλ ⊆ M , where λ is the
supremum of the critical sequence of j.

• An I1-embedding is a non-trivial elementary embedding
j : Vλ+1 −→ Vλ+1 for some ordinal λ.



Iterations of rank-into-rank
embeddings



Recall the following concept from the last lecture:

Definition

If j : Vλ −→ Vλ is an elementary embedding for some limit ordinal
λ, then we define

j+ : Vλ+1 −→ Vλ+1; A 7−→
⋃
{j(A ∩Vγ) | γ < λ}.

Theorem

If j : Vλ −→ Vλ is an elementary embedding for some limit ordinal
λ, then j+ is the unique Σ0-elementary function from Vλ+1 into itself
that extends j.



Note that, given a limit ordinal λ and elementary embeddings j and k from
Vλ into itself, the map j is a subset of Vλ and hence we can apply k+ to it.

Lemma

Let λ be a limit ordinal and let k, j : Vλ −→ Vλ be elementary
embeddings.

• The set k+(j) is an elementary embedding of Vλ into itself.

• If j = idVλ
, then k+(j) = idVλ

.

• If j is an I3-embedding with critical sequence κ⃗ = ⟨κn | n < ω⟩,
then k+(j) is an I3-embedding with critical sequence k+(κ⃗) =

⟨k(κn) | n < ω⟩.



Proof.

Since k+ is a Σ0-elementary embedding, we know that k+(j) is a function
with domain Vλ.

Given a set-theoretic formula φ(v0, ..., vn−1), we have

Vλ+1 |= ∀x0, . . . , xn−1 ∈ Vλ

[φVλ(x0, . . . , xn−1)←→ φVλ(j(x0), . . . , j(xn−1))]

and therefore the Σ0-elementarity of k+ implies that

Vλ+1 |= ∀x0, . . . , xn−1 ∈ Vλ

[φVλ(x0, . . . , xn−1)←→ φVλ(k+(j)(x0), . . . , k+(j)(xn−1))].

The other statements can be proven in a similar way using the Σ0-
elementarity of k+.



Given a limit ordinal λ, various statements can be proven about the
algebraic structure of sets of elementary embeddings from Vλ into itself
equipped with the operations of composition and application.

The following equality will be used in the subsequent constructions:

Proposition

If λ is a limit ordinal and k, j : Vλ −→ Vλ are elementary embeddings,
then

k+ ◦ j+ = (k+(j))+ ◦ k+.



Fix an I3-embdding j : Vλ −→ λ with critical sequence ⟨κℓ | ℓ < ω⟩. The above
lemma allows us to inductively define a sequence

⟨jn,n+1 : Vλ −→ Vλ | n < ω⟩

of I3-embeddings by setting

• j0,1 = j, and

• jn+1,n+2 = j+(jn,n+1) for all n < ω.

Given n < ω, we then know that ⟨κn+ℓ | ℓ < ω⟩ is the critical sequence of jn,n+1.

Moreover, the above proposition shows that

jn+1,n+2 = j+(jn,n+1) = j+n,n+1(jn,n+1)

holds for all n < ω.



We now let
⟨jm,n : Vλ −→ Vλ | m ≤ n < ω⟩

denote the directed system of elementary embeddings induced by the above maps.

Then each jm,n with m < n is an I3-embedding with crit(jm,n) = κm and

jn,n+k(κn+ℓ) = κm+ℓ+k

holds for all k, ℓ, n < ω.

Let
⟨(Mj , Ej), ⟨jn,ω : Vλ −→Mj | n < ω⟩⟩

denote the direct limit of this system.

In addition, let wf(Ej) denote the well-founded part of (Mj , Ej) and identify it
with its transitive collapse.

Easy computations now show that Vλ ∪ {λ} ⊆ wf(Mj) and j0,ω(κ0) = λ.



Definition

A I3-embedding j : Vλ −→ Vλ is iterable if the corresponding direct
limit (Mj , Ej) is well-founded.

The next result shows that the consistency strength of the existence of
iterable I3-embeddings is strictly larger than the consistency strength of the
existence of I3-embeddings:

Theorem

If j : Vλ −→ Vλ is an iterable I3-embedding and α < λ, then there
is an I3-embedding i : Vλ′ −→ Vλ′ for some α < λ′ < λ.



Proof.

Define T to be the set of all partial elementary embeddings i : Vλ
part−−−→ Vλ

such that there exists a natural number 0 < ℓ < ω and a strictly increasing
sequence ⟨λk | k ≤ ℓ⟩ of cardinals below λ with α < λℓ, dom(i) = Vλℓ−1

,
ran(i) ⊆ Vλℓ

, i ↾ λ0 = idλ0
, i(λk) = λk+1 and Vλk

≺ Vλ for all k < ℓ.

By ordering T under inclusion, we can turn this set into a tree of height
at most ω. Since the restrictions of j to sufficiently large elements of the
critical sequence are elements of T , we know that T has height ω and there
is a cofinal branch through T .

Since the tree T is definable in Mj , it is an element of Mj and the abso-
luteness of ill-foundedness yields a cofinal branch b through T in Mj .

By the definition of T , there is α < λ′ ≤ λ such that
⋃

b : Vλ′ −→ Vλ′ is
an I3-embedding in Mj .

Since λ = j0,λ(crit(j)) is regular in Mj , it follows that λ′ < λ.



Theorem

If i : V −→ M is an I2-embedding and λ is the supremum of the
critical sequence of j, then i ↾ Vλ is iterable.

Proof.

Set j = i ↾ Vλ and let ⟨jm,n : Vλ −→ Vλ | m ≤ n < ω⟩ denote the
corresponding directed system of I3-embeddings.

Remember that, in the last session, we showed that from the pa-
rameter j, we can define an I2-embedding i0,1 : V −→ N1 with
i0,1 ↾ Vλ = j. Then i0,1(j) = j+(j) = (j0,1)+(j0,1) = j1,2.

We can now repeat this construction in N1 using the parameter j1,2
and define an I2-embedding i2 : N1 −→ N2 in N1 with the property
that i1,2 ↾ Vλ = j1,2 and i1,2(j1,2) = (j1,2)+(j1,2) = j2,3.



By iteration this process, we obtain a directed system

(⟨Nn | n < ω⟩, ⟨im,n : Nm −→ Nn | m ≤ n < ω⟩)

of inner models and elementary embeddings with N0 = V and if n < ω,
then in,n+1 : Nn −→ Nn+1 is the I2-embedding constructed from jn,n+1 =

i0,n(j) in Nn. In particular, we have

jm,n = im,n ↾ Vλ

for all m ≤ n < ω. In V, this system is definable from the parameter j.

Given k < ω, if we carry out the same construction in Nk using the param-
eter jk,k+1, then we obtain the directed system

N⃗k = (⟨Nn | k ≤ n < ω⟩, ⟨im,n : Nm −→ Nn | k ≤ m ≤ n < ω⟩).

Moreover, for all k,m, n < ω, we have i0,k[Nm] ⊆ Nm+k and

i0,k ◦ im,n = im+k,n+k ◦ (i0,k ↾ Nm).



Let
((N,E), ⟨in,ω : Nn −→ N | n < ω⟩)

denote the direct limit of N⃗0.

Given k < ω, we then know that

((N,E), ⟨ik+n,ω : Nk+n −→ N | n < ω⟩)

is the direct limit of N⃗ in Nk and i0,k[N ] ⊆ N holds.

Moreover, for all n < ω, we have

i0,k ◦ in,ω = ik+n,ω ◦ (i0,k ↾ Nn).



Assume that (N,E) is ill-founded and let α be the minimal ordinal ξ such
that i0,ω(ξ) is an element of the ill-founded part of N .

Given k < ω, elementarity implies that i0,k(α) is the minimal ordinal ξ such
that ik,ω(ξ) is an element of the ill-founded part of N .

The ill-founded part of N contains an ordinal smaller than i0,ω(α) and we
can find k < ω and an ordinal β such that ik,ω(β) is an element of the
ill-founded part of N and ik,ω(β) E i0,ω(α) holds.

Since this means that β < i0,k(α), we obtained a contradiction.

This shows that (N,E) is well-founded. By construction, the direct limit
(Mj , Ej) of

⟨jm,n : Vλ −→ Vλ | m ≤ n < ω⟩

is an initial segment of (N,E) and we therefore know that (Mj , Ej) is
well-founded.



Prikry forcing



Recall that, if U is a normal ultrafilter over a measurable cardinal κ, then Prikry
forcing with U is the partial order PU defined by the following clauses:

• Conditions in PU are pairs p = (sp, Ap) with the property that Ap ∈ U and
sp : np −→ min(Ap) is a strictly increasing function with np < ω.

• Given conditions p and q in PU , we have p ≤PU
q if and only if Ap ⊆ Aq,

nq ≤ np, sp ↾ nq = sq and sp(ℓ) ∈ Aq for all nq ≤ ℓ < np.

Theorem

Let U be a normal ultrafilter over a measurable cardinal κ and let G be
PU -generic over V.

• V and V[G] have the same cardinals and contain the same bounded
subsets of κ.

• The set
xG =

⋃
{ran(sp) | p ∈ G}

is a cofinal subset of κ of order-type ω in V[G].



Lemma

If U is a normal ultrafilter over a measurable cardinal κ and G is PU -generic
over V, then

U = {A ∈ P(κ)V | ∃α < κ xG \ α ⊆ A}.

In particular, we have V[G] = V[xG].

Theorem (Mathias criterion)

If M is an inner model of ZFC and U is a normal ultrafilter over a mea-
surable cardinal κ in M , then the following statements are equivalent for
every cofinal subset x of κ of order-type ω:

• There exists G PM
U -generic over M with x = xG.

• For all A ∈ U , there is α < κ with x \ α ⊆ A.



Lemma

If j : Vλ −→ Vλ is an iterable I3-embedding with critical sequence κ⃗ =

⟨κℓ | ℓ < ω⟩, j0,ω : Vλ −→ Mj is the corresponding ω-th iteration map
and

U = {A ∈ P(κ0) | κ0 ∈ j(A)}
is the induced normal ultrafilter over κ0, then Mj [κ⃗] is a PMj

j0,ω(U)-generic
extension of Mj .

Proof.

Fix A ∈ j0,ω(U). Then there is k < ω and Ak ⊆ κk with A = jk,ω(Ak).

Given k ≤ ℓ < ω, elementarity implies that

jk,ℓ(Ak) ∈ j0,ℓ(U) = {B ∈ P(κℓ) | κℓ ∈ jℓ,ℓ+1(B)}

and hence κℓ ∈ A for all k ≤ ℓ < ω.

By the Mathias criterion, the cofinal subset {κℓ | ℓ < ω} of λ induces a
PMj

j0,ω(U)-generic filter over Mj .



3. Tutorial



In this talk, we will use the theory developed in the previous two sessions to prove
that the consistency strength of a large cardinal principle isolated in recent joint
work with Juan Aguilera (TU Wien) and Joan Bagaria (Barcelona) is surprisingly
low.

As a motivation for the formulation of this notion, we consider a large cardinal
property appearing in the work of Gabriel Goldberg and Farmer Schlutzenberg
that, by the Kunen Inconsistency, contradicts the Axiom of Choice:

Definition (Goldberg & Schlutzenberg, ZF)

A cardinal λ is rank-Berkeley if for all α < λ < β, there is a non-trivial
elementary embedding j : Vβ −→ Vβ with α < crit(j) < λ and j(λ) = λ.



It now turns out that we can weaken this property in a canonical way in order to
obtain an axiom that does not contradict the Kunen Inconsistency and still
possesses key features of rank-Berkeleyness.

Definition (Aguilera–Bagaria–L.)

A cardinal λ is exacting if for all α < λ < β, there exists

• an elementary submodel X of Vβ with Vλ ∪ {λ} ⊆ X, and

• an elementary embedding

j : X −→ Vβ

with α < crit(j) < λ and j(λ) = λ.



It can be easily show that the exactingness of a cardinal is witnessed by a single
embedding whose domain is an elementary substructure of a sufficiently
elementary initial segment of the set-theoretic universe.

Proposition

The following statements are equivalent for every cardinal λ:

• λ is an exacting cardinal.

• There is an ordinal β > λ with Vβ ≺Σ2 V, an elementary submodel
X of Vβ with Vλ ∪ {λ} ⊆ X, and an elementary embedding

j : X −→ Vβ

with crit(j) < λ and j(λ) = λ.

We continue by showing that the above notion can also be obtained by
strengthening well-studied large cardinal notions defined through model-theoretic
reflection properties.



Definition

A cardinal λ is Jónsson if every structure in a countable first-order language
with domain λ has a proper elementary substructure of cardinality λ.

Theorem (Aguilera–Bagaria–L.)

The following are equivalent for each cardinal λ with |Vλ| = λ:

• λ is an exacting cardinal.

• For every class C of structures in a countable first-order language that
is definable by a formula with parameters in Vλ∪{λ}, every structure
of cardinality λ in C contains a proper elementary substructure of
cardinality λ isomorphic to a structure in C.

• For every class C of structures in a countable first-order language that
is definable by a formula with parameters in Vλ∪{λ}, every structure
of cardinality λ in C is isomorphic to a proper elementary substructure
of a structure of cardinality λ in C.



In another direction, exactingness can also be represented as a natural
strengthening of the existence of I3-embeddings:

Theorem (Aguilera–Bagaria–Goldberg–L.)

The following are equivalent for every cardinal λ:

• λ is an exacting cardinal.

• For every non-empty, ordinal definable subset A of Vλ+1, there exist
x, y ∈ A and a non-trivial elementary embedding

j : (Vλ,∈, x) −→ (Vλ,∈, y).



Proof.

First, assume that λ is an exacting cardinal and the second property fails.

Let A be the minimal non-empty subset of Vλ+1 in the canonical well-
ordering of OD with the property that for all x, y ∈ A, there is no elementary
embedding i : (Vλ,∈, x) −→ (Vλ,∈, y).

Then A is definable from the parameter λ.

Pick β > λ such that Vβ is sufficiently elementary. Then there exists an
elementary submodel X of Vβ with Vλ ∪ {λ} ⊆ X and an elementary
embedding

j : X −→ Vβ

with crit(j) < λ and j(λ) = λ.

We then know that A ∈ X, j(A) = A and there is x ∈ A ∩X.

Then j(x) ∈ A and j ↾ Vλ : (Vλ,∈, x) −→ (Vλ,∈, j(x)) is a non-trivial
elementary embedding, a contradiction.



Now, assume that λ has the property that for every non-empty, ordinal de-
finable subset A of Vλ+1, there exist x, y ∈ A and a non-trivial elementary
embedding j : (Vλ,∈, x) −→ (Vλ,∈, y). Then |Vλ| = λ.

Pick β > λ with Vβ ≺Σ2 V and let A denote the set of all subsets of Vλ

that code elementary submodels X of Vβ with Vλ∪{λ} ⊆ X in some fixed
canonical way.

Then A is a non-empty, ordinal definable subset of Vλ+1 and we can find
x, y ∈ A with the property that there exists a non-trivial elementary em-
bedding i : (Vλ,∈, x) −→ (Vλ,∈, y).

If we picked our coding of substructures in the right way, then this embed-
ding yields elementary submodels X and Y of Vβ with Vλ ∪ {λ} ⊆ X ∩ Y
and an elementary embedding

j : X −→ Y ≺ Vβ

with crit(j) < λ and j(λ) = λ.



The above result can be used to show that exacting cardinals have the surprising
property that they imply the existence of sets that are not ordinal definable.

Theorem (Aguilera–Bagaria–L.)

If λ is an exacting cardinal, then λ is regular in HODVλ
.

Proof.

Assume that λ is singular in HODVλ
. Then λ is singular in HOD{z} for

some z ∈ Vλ. Moreover, since λ is a limit of inaccessible cardinals, a
theorem of Vopenka shows that HOD{z} is a forcing extension of HOD

using a partial order of size strictly less than λ and therefore we know that
λ is also singular in HOD.

Let c be the least cofinal subset of λ with order-type cof(λ)HOD and
min(c) > cof(λ)HOD in the canonical well-ordering of HOD.

Then {c} is a non-empty ordinal definable subset of Vλ+1 and there exists
a non-trivial elementary embedding j : (Vλ,∈, c) −→ (Vλ,∈, c).
We then have crit(j) > cof(λ)HOD and j ↾ c = idc, a contradiction.



Lower bounds for the
consistency strength of
exactingness



We want to show that there are many I3-embeddings below an exacting cardinals.

Fur this purpose, we adapt the corresponding tree argument for iterable
I3-embeddings by replacing the ω-th iterate Mj with the inner model HODVλ

.

Here, the additional complication arises that the Axiom of Choice might fail in
HODVλ

and therefore the ill-foundedness of trees is not equivalent to the
existence of cofinal branches in this model.

This is taken care of with the following lemma:

Lemma

Let λ be a strong limit cardinal, let M be an inner model of ZF with
Vλ ⊆ M and let T ∈ M be a tree of height ω whose underlying set is a
subset of Vλ. If T has an infinite branch in V and λ is regular in M , then
T has an infinite branch in M .



Since we know that an exacting cardinal λ is regular in HODVλ
, we can repeat an

earlier argument using the tree of partial attempts to build an I3-embedding with
this inner model and obtain the following result:

Theorem(Aguilera–Bagaria–Goldberg–L.)

If λ is an exacting cardinal and α < λ, then there is an I3-embedding
i : Vλ′ −→ Vλ′ for some α < λ′ < λ.



Upper bounds for the
consistency strength of
exactingness



The first consistency result for exacting cardinals contained in joint work with
Aguilera and Bagaria derived this consistency from assumptions much stronger
than the existence of an I1-embedding.

The following result shows that the consistency strength is surprisingly low:

Theorem (Aguilera–Bagaria–Goldberg–L.)

Let j : Vλ −→ Vλ be an iterable I3-embedding with critical point κ and let

U = {A ⊆ κ | κ ∈ j(A)}.

If G is PU -generic over V, then κ is an exacting cardinal in V[G].



The starting point of the proof of the above result is the observation that, in the
directed system constructed from an iterable I3-embeddings, images of subsets of
the critical point of the original embedding in the limit model are invariant under
the original embedding:

Lemma

If j : Vλ −→ Vλ is an iterable I3-embedding, j0,ω : Vλ −→ Mj is the
corresponding embedding into the direct limit and A ⊆ Vcrit(j), then

j+(j0,ω(A)) = j0,ω(A).



Proof of the Theorem.

Let j : Vλ −→ Vλ be an iterable I3-embedding with critical point κ, let
j0,ω : Vλ −→ Mj denote corresponding embedding into the direct limit of
the induced directed system and set U = {A ⊆ κ | κ ∈ j(A)}.

Then Mj is a transitive set with Vλ ∪ {λ} ⊆ Mω, crit(j0,ω) = κ and
j0,ω(κ) = λ.

Fix ρ > λ such that Vρ is sufficiently elementary in V and pick an elemen-
tary submodel X of Vρ of cardinality κ with Vκ ∪ {U} ⊆ X.

Let π : X −→ N denote the transitive collapse. Pick a well-founded
relation R on κ such that (N,∈) is the transitive collapse of (κ,R) and this
collapse sends 0 to κ, 1 to π(U) and ω · α to α for all 0 < α < κ.

Set N∗ = j0,ω(N), R∗ = j0,ω(R) and U∗ = j0,ω(π(U)).

Then Vλ ⊆ N∗ and the critical sequence κ⃗ of j is PN∗
U∗

-generic over N∗.

We then have j+(R∗) = R∗ and (N∗,∈) is the transitive collapse of (λ,R∗)

and this collapse τ sends 0 to λ, 1 to U∗ and ω · α to α for 0 < α < λ.



We now know that

i = τ ◦ (j ↾ λ) ◦ τ−1 : N∗ −→ N∗

is an elementary embedding with i ↾ (λ+1) = j ↾ (λ+1) and j(U∗) = U∗.

In this situation, the embedding i can be canonically lifted to

i∗ : N∗[κ⃗] −→ N∗[κ⃗].

Now, in N∗[κ⃗], fix a non-empty subset A of Vλ+1 that is definable by a
formula with parameter λ. Pick x ∈ A and set y = i∗(x). Then y ∈ A and
i∗ induces a non-trivial elementary embedding of (Vλ,∈, x) into (Vλ,∈, y).

Since λ has countable cofinality in N∗[κ⃗] and this model satisfies a suf-
ficiently large fragment of ZFC, a well-foundedness argument shows that
such an embedding already exists in N∗[κ⃗].

The characterization of exacting cardinals through I3-embeddings now
shows that λ is an exacting cardinal in N∗[κ⃗] and hence elementarity ensures
that Prikry forcing with U over V turns κ into an exacting cardinal.



Thank you for listening!
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