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1. Introduction

A central aspect of the combinatorial behavior of uncountable regular cardinals
κ is given by the fact that the collection Club(κ) of all subsets of κ that contain
a closed unbounded subset forms a normal filter on κ, the club filter on κ. Since
the structural properties of these filters and the corresponding dual ideals NS(κ) of
non-stationary subsets provide important information about the underlying model
of set theory, the study of these objects plays a central role in modern set theory.
In [31] and [32], Mekler, Shelah and Väänänen initiated the study of the complexity
of club filters and non-stationary ideals and showed that these investigations are
deeply connected to several research lines in both model theory and set theory.

Remember that a formula ϕ in the language of set theory is a Σ0-formula if it
is contained in the smallest collection of formulas in this language that contains
all atomic formulas and is closed under negations, conjunctions, disjunctions and
bounded quantification. Next, for a natural number n, we say that the negation of
a Σn-formula is a Πn-formula. Finally, given a natural number n, a set-theoretic
formula is a Σn+1-formula if it is of the form ∃xψ for some Πn-formula Ψ. In the
following, we say that a class A is definable by a formula ϕ(v0, v1) and a parameter
b if A = {a | ϕ(a, b)} holds. Given an uncountable regular cardinal κ, it is now
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easy to see that the sets Club(κ) and NS(κ) are both definable by Σ1-formulas
with parameter κ. In contrast, it is not clear if it is also possible to define these
sets by a Π1-formula and parameters contained in the collection H(κ+) of all sets of
hereditary cardinality at most κ, and the study of the complexity of Club(κ) and
NS(κ) focusses on answering this question for various uncountable regular cardinals
κ in different models of set theory. For this purpose, given an infinite cardinal κ,
we say that a set A of subsets of κ is a ∆1-subset of P(κ) if A is definable by both
a Σ1- and a Π1-formula with parameters in H(κ+). Using this terminology, we can
now phrase the above question in the following way:

Question A. Given an uncountable regular cardinal κ, is the set Club(κ) a ∆1-
subset of P(κ)?

Note that the basic closure properties1 of the classes of Σ1- and Π1-definable
subsets of P(κ) ensure that the above question has an affirmative answer if and
only if NS(κ) is a ∆1-subset of P(κ). Motivated by the fact that, in our results
providing negative answers to the above questions, we often derive a statement
that substantially strengthens the non-∆1-definability of Club(κ), we also consider
a weakening of Question A whose formulation is motivated by the classical Lusin
Separation Theorem (see [23, Theorem 14.7]) from descriptive set theory. Given a
set X and disjoint subsets A and B of X, we say that a subset S of X separates
A from B if A ⊆ S ⊆X r B holds.

Question B. Given an uncountable regular cardinal κ, is there a ∆1-subset of
P(κ) that separates Club(κ) from NS(κ)?

Typical candidates for subsets of P(κ) that provide affirmative answers to Ques-
tion B are given by the restrictions of the club filter to stationary subsets of κ.
Given an uncountable regular cardinal κ and a stationary subset subset S of κ, we
define

Club(S) = {A ⊆ κ | A ∪ (κr S) ∈ Club(κ)}
as well as

NS(S) = {A ⊆ κ | κrA ∈ Club(S)}.
Note that Club(S) and NS(S) are disjoint subsets of P(κ) that are definable by
Σ1-formulas with parameter S. Moreover, the above definition ensures that the
set Club(S) is a ∆1-subset of P(κ) if and only if the set NS(S) has this property.
Finally, it is easy to see that the stationarity of S guarantees that the set Club(S)
separates Club(κ) from NS(κ). This shows that the existence of a stationary subset
S of κ with the property that Club(S) is a ∆1-subset of κ provides an affirmative
answer to Question B.

In the remainder of this paper, we will present results that provide answers to
the above questions in different models of set theory. These reveal deep connections
between these questions and central topics of contemporary research in set theory.
In Section 2, we will discuss four settings that provide affirmative answers to the
above questions. Contrasting this, the results discussed in Section 3 present four

1See, for example, [6, Chapter 1].
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settings in which well-studied structural properties of the models of set theory lead
to negative answers to these questions.

2. Definability results

In the following, we present different ways to obtain affirmative answers to the
above two questions.

2.1. Dense ideals. Our first and most direct examples of ∆1-definable club filters
arise from strong saturation properties of non-stationary ideals.

Definition 2.1. An ideal I on an infinite cardinal κ is dense if there exists a subset
D of P(κ)rI of cardinality κ with the property that for every A ∈ P(κ)rI, there
exists D ∈ D with D rA ∈ I.

Note that a dense ideal I on a cardinal κ is κ+-saturated, i.e., there exists no
sequence 〈Sγ | γ < κ+〉 of elements of P(κ)rI with the property that Sγ ∩Sδ ∈ I

holds for all γ < δ < κ+. We are now interested in the complexity of dense ideals.

Proposition 2.2. Let I be a dense ideal on an infinite cardinal κ. If I is definable
by a Σ1-formula with parameters in H(κ+), then I is a ∆1-subset of P(κ).

Proof. Pick D ⊆ P(κ)rI witnessing that I is dense. Given A ⊆ κ, we have A /∈ I

if and only if there is D ∈ D with DrA ∈ I. Since D ∈ H(κ+) and I is definable
by a Σ1-formula with parameters in H(κ+), this equivalence shows that P(κ) r I

is also definable by a Σ1-formula with parameters in H(κ+). �

Corollary 2.3. If NS(ω1) is dense, then Club(ω1) is a ∆1-subset of P(ω1). �

Note that Woodin proved in [33] that, over the theory ZFC, the statement
that NS(ω1) is dense is equiconsistent to the existence of infinitely many Woodin
cardinals. Moreover, a combination of Theorem 3.26 below with the results of [2]
and [8] shows that the assumption that NS(ω1) is ℵ2-saturated does not imply that
Club(ω1) is a ∆1-subset of P(ω1).

2.2. Canary trees. Next, we discuss the historically first examples of ∆1-definable
restrictions of the club filters to stationary sets that arose from the study of so-
called canary trees by Mekler and Shelah in [31], and later work of Hyttinen and
Rautila in [20]. Given infinite regular cardinals µ < κ, we let Sκµ denote the set of
all limit ordinals α < κ of cofinality µ. Moreover, for natural numbers m < n, we
write Snm instead of Sωnωm . In addition, we define Sκ<µ and Sκ>µ in the obvious ways.
Finally, given a (set-theoretic) tree T, we let [T] denote the set of cofinal branches
through T.

Definition 2.4 ([20, 31]). Given an infinite regular cardinal κ, a κ-canary tree is
a tree T of height κ+ with [T] = ∅ and the property that 1P 
 “ [Ť] 6= ∅” holds

whenever S is a stationary subset of Sκ
+

κ and P is a <κ+-distributive partial order
with 1P 
 “ Š ∈ NS(κ̌+)”.
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In the following, we present results from [32] that relate the existence and non-
existence of κ-canary trees to the complexity of the club filter on κ. The starting
point to establish this connection is given by the next definition:

Definition 2.5. Given an infinite regular cardinal κ and a subset S of Sκ
+

κ , we
let T(S) denote the tree whose underlying set consists of all strictly increasing

s ∈ <κ+

κ+ such that dom(s) is a successor ordinal, ran(s) ⊆ S and s is continuous
at all points of cofinality κ in its domain and whose ordering is given by end-
extension.

Proposition 2.6. Let κ be an infinite regular cardinal.

(1) If S is a stationary subset of Sκ
+

κ , then the tree T(S) has height κ+.

(2) A subset S of Sκ
+

κ is an element of Club(Sκ
+

κ ) if and only if the tree T(S)
has height κ+ and [T(S)] 6= ∅ holds.

Proof. (1) For every closed unbounded subset C of κ+, the set C ∩ (S ∪ Sκ+

<κ)
contains a closed subset of order-type κ+1. Therefore, [1, Lemma 1.12] shows that

for every γ < κ+, the set S ∪ Sκ+

<κ contains a closed subset of order-type γ + 1. By
considering the monotone enumerations of the intersections of such closed subsets
with S, we can now conclude that the tree T(S) has height κ+.

(2) First, let S be a subset of Sκ
+

κ in Club(Sκ
+

κ ), let C be a closed unbounded

subset of κ+ with C ∩ Sκ+

κ ⊆ S and let s : κ+ −→ C ∩ S be the monotone
enumeration of C∩S. We then know that for every γ < κ+, the function s � (γ+1)
is an element of T(S) with lhT(S)(s � (γ + 1)) = γ. This directly shows that T(S)

is a tree of height κ+ with [T(S)] 6= ∅.
Now, assume that S is a subset of Sκ

+

κ with the property that the tree T(S) has
height κ+ and [T] 6= ∅. Then there is a function s : κ+ −→ κ+ with the property
that s � (γ + 1) is an element of T(S) for every γ < κ+. Let C denote the set
of limit points of ran(s) in κ+. Then the definition of T(S) ensures that C is a

closed unbounded subset of κ+ with C ∩ Sκ+

κ ⊆ S. In particular, it follows that C

witnesses that S is an element of Club(Sκ
+

κ ). �

The next ingredient to connect the complexity of club filters to the existence of
canary trees is the ordering of trees under order-embeddability :

Definition 2.7. Given trees S and T, we let S � T denote the statement that
there exists a function e : S −→ T satisfying e(s0) <T e(s1) for all s0, s1 ∈ S with
s0 <S s1.

The following result directly generalizes [32, Theorem 23] and its proof to suc-
cessor cardinals of arbitrary infinite regular cardinals:

Lemma 2.8. Given an infinite regular cardinal κ and a tree T of height κ+ with
[T] = ∅, consider the following statements:

(1) T(S) � T holds for all subsets S of Sκ
+

κ that are bistationary in Sκ
+

κ .2

2Given a stationary subset S of an uncountable regular cardinal θ, we say that a subset B of
S is bistationary in S if both B and S rB are stationary subsets of θ.
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(2) T is a κ-canary tree.

Then (1) implies (2). Moreover, if κ<κ = κ holds, then (2) also implies (1).

Proof. First, assume that (1) holds, let S be a stationary subset of Sκ
+

κ and let P be

a <κ+-distributive partial order with 1P 
 “ Š ∈ NS(κ̌+)”. Set S = T(Sκ
+

κ r S).
The fact that forcing with P preserves the regularity of κ+ then ensures that S

is bistationary in Sκ
+

κ . Our assumptions now yield a function e : S −→ T with
e(s0) <T e(s1) for all s0, s1 ∈ S with s0 <S s1. Now, let G be P-generic over
V . Since V and V [G] contain the same bounded subsets of κ+, we know that

T(Sκ
+

κ rS)V [G] = S. Moreover, since S is an element of NS(κ+)V [G], we know that

Sκ
+

κ r S ∈ Club(Sκ
+

κ ) and Proposition 2.6.2 shows that, in V [G], the tree S has
height κ+ and contains a cofinal branch. But, this allows us to conclude that the
tree T has a cofinal branch in V [G].

Now, assume that κ<κ = κ and (2) holds. Fix a subset S of Sκ
+

κ that is bistation-

ary in Sκ
+

κ and let PS denote the canonical partial order to add a closed unbounded

subset to S∪Sκ+

<κ, i.e., conditions in PS are non-empty, closed and bounded subsets

c of κ+ with Sκ
+

κ ∩c ⊆ S and the ordering of PS is given by reversed end-extension.
The assumption that κ<κ = κ holds then allows us to apply [1, Theorem 1] to

show that PS is <κ+-distributive and 1PS 
 “Sκ̌
+

κ̌ r Š ∈ NS(κ̌+)” holds. By our

assumption, we can now find a PS-name Ḃ with 1PS 
 “ Ḃ ∈ [Ť] ”. In the follow-
ing, we inductively construct a system 〈〈ts, cs〉 ∈ T× PS | s ∈ T(S)〉 such that the
following statements hold for all s ∈ T(S):

(i) max(ran(s)) 6 lhT(ts) 6 max(cs).

(ii) cs 
PS “ ťs ∈ Ḃ ”.
(iii) If r ∈ T(S) with r 6T(S) s, then tr 6T ts and cs 6PS cr.
(iv) If there is a q ∈ T(S) with q <T(S) s and max(ran(s)) 6 lhT(tq), then

tq = tr and cq = cr for all r ∈ T(S) with q 6T(S) r 6T(S) s.
(v) If max(ran(s)) > lhT(tr) for all r ∈ T(S) with r <T(S) s, then

lhT(ts) > sup{max(cr) | r ∈ T(S), r <T(S) s}.
First, if s ∈ T(S) with dom(s) = {0}, then we define ts to be a minimal element of

T and set cs = {0}. Next, fix s ∈ T(S) with dom(s) > 1 and assume that we already
defined pairs 〈tr, cr〉 with the above properties for all r ∈ T(S) with r <T(S) s. If
there is r ∈ T(S) with r <T(S) s and max(ran(s)) 6 lhT(tr), then we define ts = tr
and cs = cr and all of the above statements are satisfied. Hence, we may assume
that max(ran(s)) > lhT(tr) holds for all r ∈ T(S) with r <T(S) s. First, assume
that there is r ∈ T(S) with r <T(S) s and dom(s) = dom(r) + 1. Then we can
easily find ts ∈ T and cs ∈ PS such that tr <T ts, lhT(ts) > max(ran(s)) + max(cr),

max(cs) > lhT(ts) and cs 
PS “ ťs ∈ Ḃ ”. These choices then directly ensure that
all of the above statements hold. Now, assume that there is no maximal element
below s in T(S).

Claim. If max(dom(s)) ∈ Sκ+

κ , then

max(ran(s)) = sup{max(cp) | p ∈ T(S), p <T(S) s}.
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Proof of the Claim. First, note that the assumption that max(dom(s)) ∈ Sκ+

κ to-
gether with the fact that s is continuous at all points of cofinality κ in its domain
imply that

max(ran(s)) = sup{max(ran(p)) | p ∈ T(S), p <T(S) s}
6 sup{max(cp) | p ∈ T(S), p <T(S) s}.

In the other direction, fix p ∈ T(S) with p <T(S) s. Then our assumptions
imply that lhT(tp) < max(ran(s)) and the continuity of s at max(dom(s)) allows
us to find r ∈ T(S) that is <T(S)-minimal with the property that r <T(S) s and
lhT(tp) < max(ran(r)). Since max(ran(p)) 6 lhT(tp), we know that p <T(S) r.
Moreover, given q ∈ T(S) with p 6T(S) q <T(S) r, we have max(ran(q)) 6 lhT(tp)
and this implies that tp = tq and cp = cq. This shows that max(ran(r)) > lhT(tq)
holds for all q ∈ T(S) with q <T(S) r and this allows us to conclude that

max(cp) < lhT(tr) < max(ran(s))

holds. �

We now define

c = {sup{max(cp) | p ∈ T(S), p <T(S) s}} ∪
⋃
{cp | p ∈ T(S), p <T(S) s}.

It is then easy to see that c is a bounded and closed subset of κ+. Moreover, the

above claim ensures that Sκ
+

κ ∩ c ⊆ S holds. In particular, it follows that c is a
condition in PS with c 6PS cp for all p ∈ T(S) with p <T(S) s.

We can now pick ts ∈ T and cs ∈ PS satisfying

lhT(ts) > sup{max(cr) | r ∈ T(S), r <T(S) s},

tr <T ts for all r ∈ T(S) with r <T(S) s, cs 6P(S) c, lhT(ts) 6 max(cs) and cs 
PS
“ ťs ∈ Ḃ ”. The pair 〈ts, cs〉 then satisfies the above statements. This completes our
inductive construction.

Finally, since lhT(S)(s) 6 max(ran(s)) 6 lhT(ts) holds for all s ∈ T(S), there is a
function e : T(S) −→ T with the property that for all s ∈ T(C), the set e(s) is the
unique element t of T with t 6T ts and lhT(S)(s) = lhT(t). We can now conclude
that the function e witnesses that T(S) � T holds. �

We are now ready to relate the order-embeddability of trees to the complexity
of restrictions of the club filter.

Lemma 2.9. Let κ be an infinite regular cardinal, let M be a stationary subset of

Sκ
+

κ and let T be a tree of height κ+ with [T] = ∅ and T(Sκ
+

κ r S) � T for every
subset S of M that is bistationary in M . Then the set NS(κ+)∩P(M) is definable

by a Π1-formula with parameters H(κ+), M , Sκ
+

κ and T.

Proof. Define A to be the collection of all subsets A of M with the property that

either A ∈ Club(M) or T(Sκ
+

κ rA) � T holds.

Claim. A = P(M) r NS(κ+).
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Proof of the Claim. First, assume that A is an element of NS(κ+) ∩P(M). Then

Sκ
+

κ r A ∈ Club(Sκ
+

κ ) and the fact that M is a stationary subset of Sκ
+

κ ensures
that A is not an element of Club(M). Moreover, Proposition 2.6.2 implies that

T(Sκ
+

κ rA) is a tree of height κ+ with [T(Sκ
+

κ rA)] 6= ∅. By our assumptions on T,

this shows that T(Sκ
+

κ rA) � T does not hold. We can now conclude that A /∈A.
Now, assume that A is a subset of M that is not contained in NS(κ+). If A is an

element of Club(M), then A is an element of A. Therefore, we may assume that

M rA is stationary. In this situation, our assumptions imply that T(Sκ
+

κ rA) � T
and we know that A ∈A. �

The statement of the lemma now follows directly from the above claim, because

the set A is obviously definable by a Σ1-formula with parameters H(κ+), M , Sκ
+

κ

and T. �

Corollary 2.10. Let κ be an infinite regular cardinal with 2κ = κ+. If there exists
a tree of cardinality and height κ+ with [T] = ∅ and the property that T(S) � T
holds for every subset S of Sκ

+

κ that is bistationary in Sκ
+

κ , then Club(Sκ
+

κ ) is
a ∆1-subset of P(κ+). In particular, if κ is an infinite cardinal with κ<κ = κ
and 2κ = κ+, then the existence of a κ-canary tree of cardinality κ+ implies that

Club(Sκ
+

κ ) is a ∆1-subset of P(κ+).

Proof. Without loss of generality, we may assume that T is an element of H(κ++).

An application of Lemma 2.9 with M = Sκ
+

κ shows that the set NS(κ+)∩P(Sκ
+

κ )

is definable by a Π1-formula with parameters H(κ+), M , Sκ
+

κ and T. Since a

subset A of κ+ is an element of Club(Sκ
+

κ ) if and only if Sκ
+

κ r A is an element

of NS(κ+) ∩ P(Sκ
+

κ ), it follows that the set Club(Sκ
+

κ ) is also definable by a Π1-

formula with parameters H(κ+), M , Sκ
+

κ and T. Finally, our assumptions imply
that all of these parameters are elements of H(κ++) and hence we can conclude

that Club(Sκ
+

κ ) is a ∆1-subset of P(κ).
Now, assume that κ is an infinite cardinal with κ<κ = κ, 2κ = κ+ and the

property that there exists a κ-canary tree T of cardinality κ+. Then κ is regular

and Lemma 2.8 ensures that T(S) � T holds for all subsets S of Sκ
+

κ that are

bistationary in Sκ
+

κ . The first part of the corollary then allows us to conclude that

Club(Sκ
+

κ ) is a ∆1-subset of P(κ+). �

Remark 2.11. Using the Boundedness Lemma for uncountable regular cardinals
(see [32, Corollary 13] for κ = ω1 and [27, Lemma 8.1] for the direct generalization
to higher regular cardinals), it is possible to show that the converse of the implica-
tion of Corollary 2.10 also holds true, i.e., if κ is an infinite regular cardinal such

that 2κ = κ+ and Club(Sκ
+

κ ) is a ∆1-subset of P(κ+), then there is a tree T of
cardinality and height κ+ with the property that T(S) � T holds for every subset

S of Sκ
+

κ that is bistationary in Sκ
+

κ .

The main results of [20] and [31] now show that, if κ is an infinite cardinal
satisfying κ<κ = κ and 2κ = κ+, then there exists a cofinality-preserving forcing
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that also preserves these cardinal arithmetic assumptions on κ and adds a κ-canary
tree of cardinality κ+. By the second part of Corollary 2.10, this means that this

forcing causes Club(Sκ
+

κ ) to be a ∆1-subset of P(κ+). In the following, we will
present work contained in [4] providing a detailed analysis of the forcing notion
constructed in [20] that leads to a strengthening of the main results of [20] and
[31]. In particular, we will be able to relax the cardinal arithmetic assumptions
on the given cardinal κ and derive strong closure properties of the constructed
partial order. This analysis is based on the following concept from Shelah’s work
on cardinal arithmetic:

Definition 2.12 (Shelah). Let κ be an infinite regular cardinal.

(1) An ordinal γ < κ+ is approachable with respect to a sequence 〈zα | α < κ+〉
of elements of [κ+]<κ if there exists a cofinal sequence ~α = 〈αξ | ξ < cof(γ)〉
in γ such that every proper initial segment of ~α is equal to zα for some
α < γ.

(2) The Approachability ideal I[κ+] on κ+ is the (possibly non-proper) normal
ideal generated by sets of the form

A~z = {γ < κ+ | γ is approachable with respect to ~z }

for some sequence ~z ∈ κ+

([κ+]<κ).

Lemma 2.13 ([5]). Let κ be an infinite regular cardinal with κ<κ 6 κ+, let
〈zα | α < κ+〉 be an enumeration of [κ+]<κ and set

M~z = {γ ∈ Sκ
+

κ | γ is approachable with respect to ~z }.

Then the following statements hold:

(1) M~z ∈ I[κ+].

(2) M~z is a maximum element of I[κ+] ∩ P(Sκ
+

κ ) mod NS, in the sense that

whenever S is a stationary subset of Sκ
+

κ with S ∈ I[κ+], then S rM~z is
non-stationary.

(3) If κ<κ = κ, then Sκ
+

κ ∈ I[κ+].

Using the above notions and results, the work presented in [4] leads to the
following strengthening of the main results of [20] and [31]:

Theorem 2.14 ([4]). Given an infinite regular cardinal κ, there is a partial order
P with the following properties:

(1) P is <κ+-directed closed and satisfies the (2κ)+-chain condition.

(2) If G is P-generic over V , then, in V [G], there is a subtree T of <κ
+

κ+ of
height κ+ with [T] = ∅ such that the following statements hold:

(a) If S is a subset of Sκ
+

κ that is bistationary in Sκ
+

κ and the set Sκ
+

κ rS
contains a stationary set in I[κ+], then T(S) � T.

(b) If M ∈ V is a maximum element of I[κ+]∩P(Sκ
+

κ ) mod NS in V and
κ<κ 6 κ+ holds in V , then the following statements hold in V [G]:

(i) M is a maximum element of I[κ+] ∩P(Sκ
+

κ ) mod NS.
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(ii) If S is a subset of Sκ
+

κ that is bistationary in Sκ
+

κ and M rS is
stationary, then T(S) � T.

The conclusions of the above theorem enable us to give a detailed analysis of
the complexities of various restrictions of the club filter in the constructed forcing
extension:

Corollary 2.15. Let κ be an infinite regular cardinal satisfying κ<κ 6 κ+, let
P be the partial order given by Theorem 2.14 and let M be a maximum element

of I[κ+] ∩ P(Sκ
+

κ ) mod NS. If G is P-generic over V , then, in V [G], the set
NS(κ+) ∩P(M) is definable by a Π1-formula with parameters in H((2κ)+).

Proof. Let T ∈ V [G] be the tree given by Theorem 2.14. Then T ∈ H((2κ)+)V [G].

Work in V [G] and fix S ⊆M bistationary in M . Then M r (Sκ
+

κ rS) is stationary

and Sκ
+

κ rS is bistationary in Sκ
+

κ . Hence, Theorem 2.14 implies T(Sκ
+

κ rS) � T.
An application of Lemma 2.9 now shows that NS(κ+) ∩ P(M) is definable by a

Π1-formula with parameters H(κ+), M , Sκ
+

κ and T. This conclusion now directly
implies the statement of the lemma, because all of these parameters are contained
in H((2κ)+). �

We now continue by showing how the main results of [20] and [31] can be directly
derived from the statement of Theorem 2.14.

Theorem 2.16 ([20, 31]). Let κ be an infinite cardinal with κ<κ = κ and 2κ = κ+,
let P be the partial order given by Theorem 2.14 and let G be P-generic over V .

Then, in V [G], there is a κ-canary tree of cardinality κ+ and Club(Sκ
+

κ ) is a ∆1-
subset of P(κ).

Proof. Set M = (Sκ
+

κ )V . Then Lemma 2.13.3 implies that M is a maximum

element of I[κ+] ∩ P(Sκ
+

κ ) mod NS in V . Let T ∈ V [G] be the tree given by
Theorem 2.14. We then know that, in V [G], the tree T has height and cardinality

κ+ and [T] = ∅ holds. Moreover, if S ⊆ Sκ
+

κ is bistationary in Sκ
+

κ in V [G], then
the last item in the statement of Theorem 2.14 implies that T(S) � T holds. Since
the properties of P ensure that 2κ = κ+ holds in V [G], we can now apply Corollary

2.10 to show that Club(Sκ
+

κ ) is a ∆1-subset of P(κ). Finally, the fact that κ<κ = κ
holds in V [G] allows us to use Lemma 2.8 to conclude that T is a κ-canary tree in
V [G]. �

In the remainder of this section, we discuss the main result of [4] that uses
Theorem 2.14 to show that strong forcing axioms are compatible with the ∆1-
definability of Club(S2

0). The proof of this result relies on a connection between
principles of stationary reflection and the complexities of non-stationary ideals that
we will discuss next. Given an uncountable regular cardinal θ and a stationary
subset S of θ, we let Refl(S) denote the set of all reflection points of S in θ, i.e.,
the set of all limit ordinals λ < θ with the property that S ∩ λ is stationary in λ.

Lemma 2.17. Let S be a stationary subset of an uncountable regular cardinal θ and
let E be a set of stationary subsets of θ with the property that for every stationary
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subset A of S, there exists E ∈ E with E ⊆ Refl(A). If the set E is definable
by a Σ1-formula with parameter p, then the set NS(θ) ∩ P(S) is definable by a
Π1-formula with parameters H(θ), p and S.

Proof. We define A to be the set of all subsets A of S with the property that there
exists E ∈ E with E ⊆ Refl(A). If A ∈ P(S) r NS(θ), then our assumptions on E

ensure that A is contained in A. Moreover, if E ∈ E witnesses that A ⊆ S is an
element of A and C is closed unbounded in θ, then we can find λ ∈ E ∩Lim(C) ⊆
Refl(A) and therefore ∅ 6= A∩C ∩ λ ⊆ A∩C. In combination, these computations
show that A = P(S)rNS(θ) and this yields the conclusion of the lemma, because
the set A is definable by a Σ1-formula with parameters H(θ), p and S. �

Before we connect the above lemma with Theorem 2.14, we need to recall another
concept that is closely connected to the notions discussed above. Remember that,
given an uncountable regular cardinal κ, the class IAκ of all sets that are internally
approachable with length and cardinality κ consists of all sets W with the property

that there exists a sequence ~N = 〈Nα | α < κ〉 satisfying the following statements:

(1) The sequence ~N is ⊆-increasing and ⊆-continuous.
(2) W =

⋃
{Nα | α < κ}.

(3) |Nα| < κ for all α < κ.

(4) Every proper initial segment of ~N is an element of W .

Theorem 2.18 ([4]). Assume that Martin’s Maximum MM holds and let P denote
the partial order given by Theorem 2.14. If G is P-generic over V , then Club(S2

0)
is a ∆1-subset of P(ω2) in V [G].

Proof. First, note that our assumptions imply that 2ℵ0 = 2ℵ1 = ℵ2 holds in V (see
[21, Theorem 16.20 & 31.23]) and MM holds in V [G] (see [3, Theorem 4.7]). Lemma
2.13 then shows that, in V , there is a subset M of S2

1 that is a maximum element
of I[ω2] ∩ P(S2

1) mod NS and Theorem 2.14 shows that M retains this property
in V [G]. In addition, an application of Corollary 2.15 allows us to conclude that,
in V [G], the set NS(ω2) ∩P(M) is definable by a Π1-formula with parameters in
H(ℵ3). Now, work in V [G] and define E = P(M) r NS(ω2). We then know that
the set E consists of stationary subsets of ω2 and it is definable by a Σ1-formula
with parameters in H(ℵ3).

Claim. If A is a stationary subset of S2
0 , then there is E ∈ E with E ⊆ Refl(A).

Proof of the Claim. The proof of [8, Theorem 13] yields R ⊆ IAω1
∩ [H(ℵ3)]ℵ1

that is stationary in [H(ℵ3)]ℵ1 , consists of elementary substructures of H(ℵ3) and
satisfies E0 = {W ∩ ω2 | W ∈ R} ⊆ Refl(A). Then E0 is a stationary subset of
S2

1 . Moreover, the fact that 2ℵ0 = ℵ2 holds implies that each W in R contains an
enumeration ~z = 〈zξ | ξ < ω2〉 of [ω2]ℵ0 as an element and therefore the internal
approachability of W implies that E0 is approachable with respect to ~z. This
shows that E0 is a stationary element of I[ω2]. Since M is a maximum element of
I[ω2] ∩ P(S2

1) mod NS, we now know that E = E0 ∩M is a stationary subset of
M . In particular, we can conclude that E is an element of E with E ⊆ Refl(A). �
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The above claim now allows us to use Lemma 2.17 to show that NS(ω2)∩P(S2
0)

is a ∆1-subset of P(ω2). Since

Club(S2
0) = {A ⊆ κ | S2

0 rA ∈ NS(κ+) ∩P(S2
0)},

this also shows that Club(S2
0) is a ∆1-subset of P(ω2). �

It should be noted that the results of [4] also show that strong forcing axioms are
compatible with a negative answer to Question B at ω2. This is a direct consequence
of the indestructibility of these axioms under <ω2-directed closed forcings and
Lemma 3.9 below.

2.3. Stationary reflection. In this short section, we present an observation from
[4] that shows that the connection between stationary reflection and the complexity
of the non-stationary ideal provided by Lemma 2.17 can be further utilized to
obtain affirmative answers to Question B. Note that results presented later in this
paper show that the assumptions of the following theorem cannot be reduced to
the statement that every stationary subset of S reflects (see Corollary 3.18 below).

Proposition 2.19. Let E and S be stationary subsets of an uncountable cardinal
with κ = κ<κ. If Refl(A) ∈ Club(E) holds for every stationary subset A of S, then
Club(S) is a ∆1-subset of P(κ).

Proof. First, note that Club(E) is a set of stationary subsets of κ that is definable
by a Σ1-formula with parameter E and has the property that for every stationary
subset A of S, there exists D ∈ Club(E) with D ⊆ Refl(A). Hence, Lemma 2.17
shows that the set NS(κ) ∩P(S) is definable by a Π1-formula with parameters E,
H(κ) and S. Since H(κ) is an element of H(κ+) and

Club(S) = {A ⊆ κ | S rA ∈ NS(κ) ∩P(S)},
we can conclude that Club(S) is a ∆1-subset of P(κ). �

In [30], Magidor shows that it is possible to force over a model of ZFC+GCH con-
taining a weakly compact cardinal to produce a model of ZFC + 2ℵ1 = ℵ2 with the
property that Refl(A) ∈ Club(S2

1) holds for every stationary subset A of S2
0 . The

above proposition now shows that Club(S2
0) is a ∆1-subset of P(ω2) in Magidor’s

model.

2.4. Another forcing result. As the final definability result, we present the state-
ment of the main result of [13]. While the consistency results discussed above yield
several settings in which there is an infinite regular cardinal κ and a stationary
subset S of κ+ with the property that the restriction Club(S) of the club filter
to S is a ∆1-subset of P(κ+), this theorem of S. Friedman, Wu and Zdomskyy
shows that the full club filter Club(κ+) of an arbitrary successor cardinal κ+ can
be forced to be a ∆1-subset of P(κ+).

Theorem 2.20 ([13]). Assume that V = L holds. If κ is an infinite cardinal, then
there exists a partial order P such that the following statements hold:

(1) Forcing with P preserves all cardinals and the GCH.
(2) If G is P-generic over V , then Club(κ+) is a ∆1-subset of P(κ+) in V [G].
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3. Undefinability results

We now continue by presenting several canonical settings in which non-stationary
ideals are not ∆1-definable.

3.1. Descriptive arguments. The easiest way to obtain a negative answer to
Question A at an uncountable regular cardinal is to start with an uncountable
cardinal κ satisfying κ<κ = κ and then add κ+-many Cohen subsets to κ (see [20,
Theorem 4.1] and [31, Theorem 3]). In the following, we want to present results
contained in [28] and [29] that put this consistency result into a wider context.
More specifically, we want to derive this implication using notions and results from
generalized descriptive set theory, the study of the structural properties of definable
subsets of higher higher function spaces (see, for example, [11], [24], [27] and [32]).
For this purpose, we equip the power set P(κ) of an infinite regular cardinal κ with
the topology whose basic open sets are of the form

Nβ,b = {x ⊆ κ | x ∩ β = b}

for some ordinal β < κ and a subset b of β. The resulting space can easily be
identified with the generalized Cantor space of the cardinal κ, i.e., the topological
space consisting of the set κ2 of all functions from κ to {0, 1} equipped with the
topology whose basic open sets consist of all extensions of functions s : α −→ 2
with α < κ. The next definition directly generalizes the classical Baire property to
higher spaces.

Definition 3.1. Let X be a topological space and let κ be an infinite cardinal.

(1) A subset of X is nowhere dense if its closure in X has empty interior.
(2) A subset of X is κ-meager if it is equal to the union of κ-many nowhere

dense subsets of X.
(3) A subset A of X has the κ-Baire property if there is an open subset U of

X with the property that the symmetric difference

A∆U = (A rU) ∪ (U rA)

is κ-meager.

In [15], Halko and Shelah showed that, if κ is an uncountable regular cardinal,
then Club(κ) and NS(κ) are subsets of P(κ) without the κ-Baire property. In
the following, we will present an argument contained in [29] that yields a stronger
conclusion. This argument is based on the following topological property:

Definition 3.2. Given an infinite cardinal κ, a subset S of a topological space
X is κ-super-dense if for every non-empty open subset U of X and every se-
quence 〈Uα | α < κ〉 of dense open subsets of U, the corresponding intersection⋂
{S ∩Uα | α < κ}) is non-empty.

The following proposition motivates the definition of super-denseness. It gener-
alizes the trivial fact that disjoint dense subsets of a topological space cannot be
separated by an open subset.
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Proposition 3.3. Let κ be an infinite cardinal and let S and T be disjoint κ-super-
dense subsets of a topological space X. If A is a subset of X that separates S from
T(i.e., S ⊆A ⊆X rT holds), then A does not have the κ-Baire property.

Proof. Assume, towards a contradiction, that there is an open subset U of X and
a sequence 〈Cα | α < κ〉 of closed nowhere dense subsets of X with the property
that A∆U ⊆

⋃
{Cα | α < κ}. First, assume, towards a contradiction, that U is

the empty set and therefore S ⊆ A ⊆
⋃
{Cα | α < κ}. Then 〈X r Cα | α < κ〉

is a sequence of dense open subsets of X, and the κ-super-density of S implies
that

⋂
{S r Cα | α < κ} 6= ∅, a contradiction. This shows that U is non-empty

and 〈U r Cα | α < κ〉 is a sequence of dense open subsets of U. Then there is an
x ∈

⋂
{(T ∩U) r Cα | α < κ}. Since x ∈ T, we have x ∈ U r A and therefore

x ∈ Cα for some α < κ, a contradiction. �

The following argument now shows how super-denseness is connected to our
context:

Lemma 3.4. If κ is an uncountable regular cardinal, then Club(κ) and NS(κ) are
disjoint κ-super-dense subsets of P(κ).

Proof. Let U be a non-empty open subset of P(κ) and let 〈Uα | α < κ〉 be a
sequence of dense open subsets of U. Pick β < κ and b ⊆ β with Nβ,b ⊆ U. In this
situation, a standard inductive construction yields a strictly increasing, continuous
sequence 〈βα < κ | α < κ〉 of ordinals and a system 〈biα | α < κ, i < 2〉 of bounded
subsets of κ with the property that biα ⊆ βα, b = biα ∩ β, biα = biᾱ ∩ βα, βα /∈ b0ᾱ,
βα ∈ b1ᾱ and Nβα,biα ⊆ Uα for all α < ᾱ < κ and i < 2. Set C = {βα | α < κ} and

Bi =
⋃
{biα | α < κ} ⊆ κ for i < 2. Then C is a closed unbounded subset of κ that

witnesses that B0 ∈ Club(κ) and B1 ∈ NS(κ). Moreover, our construction ensures
that B0, B1 ∈

⋂
{Uα | α < κ}. �

Corollary 3.5. If κ is an uncountable regular cardinal, then no subset of P(κ)
that separates Club(κ) from NS(κ) has the κ-Baire property. �

In combination with results presented in Section 2, this corollary shows that,
if ZFC is consistent, then this theory does not prove that for uncountable regular
cardinals κ, all ∆1-subsets of P(κ) have the κ-Baire property. In the remainder of
this section, we will show that the negation of this statement is also not provable.
These arguments connect the regularity property introduced above with notions of
generic absoluteness.

Definition 3.6. Given an infinite cardinal κ and a partial order P, a subset A of
P(κ) is P-absolutely ∆1-definable if there is z ∈ H(κ+) and Σ1-formulas ϕ0(v0, v1)
and ϕ1(v0, v1) such that the following statements hold:

• A = {A ⊆ κ | ϕ0(A, z)}.
• P(κ) rA = {A ⊆ κ | ϕ1(A, z)}.
• 1P 
 “∀A ⊆ κ̌ [ϕ0(A, ž) ∨ ϕ1(A, ž)] ”.

In the following, we let Add(κ, 1) denote the forcing that adds a Cohen subset
to an infinite regular cardinal κ, i.e., the partial order that consists of functions
s : α −→ 2 with α < κ, ordered under end-extension.
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Lemma 3.7. If κ is an infinite cardinal with κ = κ<κ, then every Add(κ, 1)-
absolutely ∆1-definable subset of P(κ) has the κ-Baire property.

Proof. Fix z ∈ H(κ+) and Σ1-formulas ϕ0(v0, v1) and ϕ1(v0, v1) witnessing that a
subset A of P(κ) is Add(κ, 1)-absolutely ∆1-definable. Then

(3.1) 1Add(κ,1) 
 “∀A ⊆ κ̌ [ϕ0(A, ž) ∨ ϕ1(A, ž)] ”.

holds. Given an Add(κ, 1)-name Ȧ for a subset of κ with Ȧ ∈ H(κ+), our assump-
tions ensure that the statement

1Add(κ,1) 
 “ϕ0(Ȧ, ž) ∨ ϕ1(Ȧ, ž)”

can be formulated by a Σ1-formula with parameters in H(κ+) (see [25, Section-
VII.3]) and therefore Σ1-absoluteness ensures that this statement holds in H(κ+).
In particular, we know that (3.1) holds in H(κ+).

Let M be an elementary submodel of H(κ+) of cardinality κ with the property
that κ<κ ∪ {z} ⊆ M . Then M is transitive and elementarity implies that (3.1)
holds in M . Let 〈Cα | α < κ〉 enumerate all closed nowhere dense subsets of P(κ)

that are elements of M and let Ȧ denote the canonical Add(κ, 1)-name for the

generic subset of κ, i.e., we have ȦG = {α < κ | (
⋃
G)(α) = 1} whenever G is

Add(κ, 1)-generic over V . Given a condition s in Add(κ, 1), we set βs = dom(s)
and bs = {α < βs | s(α) = 1}. Now, define

U =
⋃
{Nβs,bs | s 
MAdd(κ,1) ϕ0(Ȧ, ž)} ⊆ P(κ).

Claim. A rU ⊆
⋃
{Cα | α < κ}.

Proof of the Claim. Pick A ∈ A r
⋃
{Cα | α < κ} and let x : κ −→ 2 denote the

characteristic function of A. Since A is an element of every dense open subset of
P(κ) that is an element of M , it follows that the filter GA = {x � α | α < κ} is

Add(κ, 1)-generic over M with A = ȦGA ∈ M [GA]. Moreover, since A ∈ A, we
know that ϕ1(A, z) does not hold in V and hence Σ1-upwards absoluteness implies
that ϕ1(A, z) fails in M [GA]. The fact that (3.1) holds in M then ensures that
ϕ0(A, z) holds in M [GA] and therefore we can find α < κ such that

x�α 
MAdd(κ,1) ϕ0(Ȧ, ž)

holds. This allows us to conclude that A ∈ Nβx�α,bx�α ⊆ U. �

Claim. U rA ⊆
⋃
{Cα | α < κ}.

Proof of the Claim. Pick A ∈ U r
⋃
{Cα | α < κ} and let x : κ −→ 2 denote the

corresponding characteristic function. As above, we know that the filter GA =
{x � α | α < κ} is Add(κ, 1)-generic over M with A = ȦGA ∈ M [GA]. Since A is
an element of U, it follows that ϕ0(A, z) holds in M [GA] and therefore Σ1-upwards
absoluteness implies that A ∈A. �

In combination, the above claims show that the open subset U and the sequence
〈Cα | α < κ〉 witness that A has the κ-Baire property. �
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Our next aim is to show that, consistently, all ∆1-subsets of P(κ) can be
Add(κ, 1)-absolutely ∆1-definable. For the proof of this consistency result, we
need a well-known observation that goes back to the work of Silver.

Lemma 3.8. If κ is an infinite regular cardinal, P is a <κ-closed partial order,
ϕ(v0, . . . , vn) is a Σ0-formula, Ȧ is a P-name for a subset of κ and B0, . . . , Bn−1 ⊆ κ
with 1P 
 ϕ(Ȧ, B̌0, . . . , B̌n−1), then there is A ⊆ κ with ϕ(A,B0, . . . , Bn−1).

Proof. By a standard elementary submodel argument, there is a P-name Ċ for a
closed unbounded subset of κ with the property that whenever G is P-generic over
V and α ∈ ĊG, then ϕ(ȦG∩α,B0∩α, . . . , Bn−1∩α) holds. We can then construct a
descending sequence 〈pα | α < κ〉 of conditions in P, a strictly increasing, continuous
sequence 〈βα | α < κ〉 of ordinals less than κ and a sequence 〈aα | α < κ〉 of bounded
subsets of κ such that

pα 
P “ β̌α ∈ Ċ ∧ Ȧ ∩ β̌α = ǎα ”

holds for all α < κ. Set A =
⋃
{aα | α < κ} ⊆ κ and assume, towards a con-

tradiction, that ϕ(A,B0, . . . , Bn−1) does not hold. Another elementary submodel
argument then yields an α < κ such that ϕ(A ∩ βα, B0 ∩ βα, . . . , Bn−1 ∩ βα) fails.

Let G be P-generic over V with pα ∈ G. Then A∩βα = ȦG∩βα and βα ∈ ĊG. But,
this implies that ϕ(A∩βα, B0∩βα, . . . , Bn−1∩βα) holds in V [G], contradicting the
fact that Σ0-formulas with parameters in V are absolute between V and V [G]. �

We now show that the forcing Add(κ, κ+) that adds κ+-many Cohen subsets to
an infinite regular cardinal κ allows us to construct the desired model of set theory.

Lemma 3.9. Let κ be an infinite cardinal with κ = κ<κ and let G be Add(κ, κ+)-
generic over V . In V [G], every ∆1-subset of P(κ) is Add(κ, 1)-absolutely ∆1-
definable.

Proof. Work in V [G] and fix a ∆1-subset A of P(κ). We can then find C ⊆ κ and
Σ0-formulas ϕ0(v0, v1, v2) and ϕ1(v0, v1, v2) such that

A = {A ⊆ κ | ∃B ⊆ κ ϕ0(A,B,C)}

and

P(κ) rA = {A ⊆ κ | ∃B ⊆ κ ϕ1(A,B,C)}.
Assume, towards a contradiction, that

1Add(κ,1) 6
 “∀A ⊆ κ̌ ∃B ⊆ κ̌ [ϕ0(A,B, Č) ∨ ϕ1(A,B, Č)] ”.

Since Add(κ, 1) satisfies the κ+-chain condition, we can now find a condition s in

Add(κ, 1) and an Add(κ, 1)-name Ȧ for a subset of κ in H(κ+) with

(3.2) s 
Add(κ,1) “∀B ⊆ κ̌ [¬ϕ0(Ȧ, B, Č) ∧ ¬ϕ1(Ȧ, B, Č)] ”.

Then, there exists an inner model M of V [G] such that Ȧ, C ∈ M and V [G] is an
Add(κ, κ+)-generic extension of M . In this situation, there is H ∈ V [G] such that
H is Add(κ, 1)-generic over M , s ∈ H and V [G] is an Add(κ, κ+)-generic extension

of M [H]. We can now find i < 2 and B̄ ∈ P(κ)V [G] such that ϕi(Ȧ
H , B̄, C) holds
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in V [G]. By Lemma 3.8, we can find B ∈ P(κ)M [H] such that ϕ(ȦH , B,C) holds
in M [H]. These computations yield an extension t of s in Add(κ, 1) such that

(3.3) t 
Add(κ,1) “∃B ⊆ κ̌ ϕi(Ȧ, B, Č)”.

holds in M . Since (3.3) can be expressed by a Σ1-formula, it follows that this
statement also holds in V [G], contradicting the fact that (3.2) holds in V [G]. �

The above lemma now allows us to use class forcing to construct a model of
ZFC in which non-stationary ideals at uncountable regular cardinals are not ∆1-
definable.

Theorem 3.10. Assume that the GCH holds in the ground model V and V [G]
is a class forcing extension of V obtained through the standard Ord-length forcing
iteration with Easton support that adds κ+-many Cohen subsets to every infinite
regular cardinal κ. Then V [G] is a cofinality-preserving class forcing extension of
V and, in V [G], if κ is an infinite regular cardinal, then every ∆1-subset of P(κ)
has the κ-Baire property.

Proof. Standard factoring arguments (see [21, p. 233]) show that for every infinite
regular cardinal κ in V , there are inner models M and N of V [G] with the property
that V ⊆M ⊆ N , M is a cofinality-preserving extension of V , N is an Add(κ, κ+)-
generic extension of M and H(κ+)V [G] ⊆ N . The conclusion of the theorem then
follows from applications of Lemma 3.7 and Lemma 3.9. �

The above theorem shows that, if ZFC is consistent, then this theory does not
prove that there is an uncountable regular cardinal κ with the property that there
exists a ∆1-subset of P(κ) that separates Club(κ) from NS(κ). Moreover, since the
class forcing used in the above proof is known to preserve various large cardinals,
the above argument shows that the existence of an uncountable regular cardinal
κ with the property that there exists a ∆1-subset of P(κ) that separates Club(κ)
from NS(κ) is also not provable from extensions of ZFC by large cardinal axioms.

3.2. Large cardinals. In this section, we will present an argument due to S. Fried-
man and Wu in [12] that shows that sufficiently strong large cardinal properties of
a cardinal κ ensure that Club(κ) is not ∆1-definable. We will present a proof of
this result that makes use of classical ideas from descriptive set theory.

Definition 3.11. Given a collection Γ of subsets of a topological space X, we say
that an element A of Γ is complete for Γ if for every element B of Γ, there is a
continuous function f : X −→X with B = f−1[A].

Proposition 3.12. If Γ is a collection of subsets of a topological space X that is
closed under preimages of continuous functions from X to X and A is complete
for Γ with the property that XrA ∈ Γ, then Γ is closed under complements in X.

Proof. Pick B ∈ Γ. Then there is a continuous function f : X −→ X with
B = f−1[A]. In this situation, we know that XrB = f−1[XrA] and XrA ∈ Γ.
Hence, the closure of Γ under continuous preimages ensures that X r B ∈ Γ. �
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We now prove two lemmata that allow us to apply the above proposition to
the collection of all subsets of the power set of an inaccessible cardinal that are
definable by Σ1-formulas with parameters in H(κ+).

Lemma 3.13. Given an infinite cardinal κ satisfying κ = κ<κ, the collection of
subsets of P(κ) that are definable by Σ1-formulas with parameters in H(κ+) is
closed under continuous preimages.

Proof. Fix a subset A of P(κ) that is definable by a Σ1-formula with parameters
in H(κ+) and a continuous function f : P(κ) −→ P(κ). Let B denote the set of
all quadruples 〈β, b, γ, c〉 satisfying β, γ < κ, b ⊆ β, c ⊆ γ and Nβ,b ⊆ f−1[Nγ,c].
Given X ⊆ κ, we then have X ∈ f−1[A] if and only if there is Y ∈ A with the
property that for all γ < κ, there is β < κ with 〈β,X ∩ β, γ, Y ∩ γ〉 ∈ B. Since the
assumption κ = κ<κ implies that B is an element of H(κ+), we can conclude that
the set f−1[A] is also definable by a Σ1-formula with parameters in H(κ+). �

Lemma 3.14. Given an infinite cardinal κ, the collection of subsets of P(κ) that
are definable by Σ1-formulas with parameters in H(κ+) is not closed under comple-
ments in P(κ).

Proof. Pick a universal Σ1-formula ϕ(v0, . . . , v3), i.e., a Σ1-formula ϕ(v0, . . . , v3)
with the property that for every Σ1-formula ψ(v0, v1, v2), there is a natural number
m such that the sentence

(3.4) ∀x, y, z [ϕ(x, y, z,m)←→ ψ(x, y, z)]

is provable in ZFC− (see [22, Section 1]). Then the set

A = {n ∪ {ω + α | α ∈ X} | X ⊆ κ and n < ω with ϕ(X,n,X, n)} ⊆ P(κ)

is definable by a Σ1-formula with parameters in H(κ+). Assume, towards a contra-
diction, that P(κ)rA is also definable by a Σ1-formula with parameters in H(κ+).
Then we can find a Σ1-formula ψ(v0, v1, v2) and a subset Y of κ such that

ψ(X,n, Y ) ←→ ¬ϕ(X,n,X, n)

holds for all X ⊆ κ and n < ω. Now, pick a natural number m such that (3.4)
holds with respect to this Σ1-formula ψ. We can then conclude that

ϕ(Y,m, Y,m) ←→ ¬ϕ(Y,m, Y,m),

a contradiction. �

Remember that a cardinal κ is weakly compact if and only if it is Π1
1-indescribable,

i.e., if it has the property that for every R ⊆ Vκ and every Π1
1-sentence Φ with

〈Vκ,∈, R〉 |= Φ, there is an α < κ with the property that 〈Vα,∈, R ∩ Vα〉 |= Φ.
Following [26], we associate a filter to this reflection property:

Definition 3.15. Given a weakly compact κ, the weakly compact filter on κ consists
of all subsets X of κ with the property that there is a Π1

1-sentence Ψ and R ⊆ Vκ
with 〈Vκ,∈, R〉 |= Φ and {α < κ | 〈Vα,∈, R ∩ Vα〉 |= Φ} ⊆ X.
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A short argument then shows that the weakly compact filter is a normal filter
on the given weakly compact cardinal (see [26]). In particular, all elements of this
collection are stationary. Moreover, it is easy to see that this filter contains all sets
of the form Refl(S) for stationary subsets S of the given weakly compact cardinal.

Theorem 3.16. If κ is a weakly compact cardinal and S is an element of the weakly
compact filter on κ, then Club(S) is complete for the collection of subsets of P(κ)
that are definable by Σ1-formulas with parameters in H(κ+).

Proof. Let A be a subset of P(κ) that is definable by a Σ1-formula with parameters
in H(κ+). Then we can find a Σ1-formula ϕ(v0, v1) and Y ⊆ κ with the property
that A = {X ⊆ κ | ϕ(X,Y )}. Define

f : P(κ) −→ P(κ); X 7−→ {α ∈ S | ϕ(X ∩ α, Y ∩ α)}.
It is then easy to see that the function f is Lipschitz, i.e., f(X0) ∩ α = f(X1) ∩ α
holds for all α < κ and all X0, X1 ⊆ κ with X0 ∩ α = X1 ∩ α. In particular, it
follows that f is a continuous function.

Claim. If X ∈A, then f(X) ∈ Club(S).

Proof of the Claim. Pick an increasing and continuous chain3 〈Nα | α < κ〉 of ele-
mentary submodels of H(κ+) with X,Y ∈ N0 and α ⊆ Nα ∩ κ ∈ κ for all α < κ.
Then C = {Nα ∩ κ | α < κ} is a closed unbounded subset of κ. Fix α ∈ C ∩ S,
pick β < κ with Nβ ∩ κ = α and let π : Nβ −→ M denote the corresponding
transitive collapse. Then π(κ) = α, π(X) = X ∩ α and π(Y ) = Y ∩ α. Moreover,
since our setup ensures that ϕ(X,Y ) holds in Nβ , we know that ϕ(X ∩ α, Y ∩ α)
holds in M . Using Σ1-upwards absoluteness, we can now conclude that α ∈ f(X).
In particular, it follows that C witnesses that f(X) is an element of Club(S). �

Claim. If X ⊆ κ with f(X) ∈ Club(S), then X ∈A.

Proof of the Claim. Assume, towards a contradiction, that ϕ(X,Y ) does not hold.
Since S is contained in the weakly compact filter on κ, there exists a Π1

1-sentence
Ψ and a subset R of Vκ with the property that 〈Vκ,∈, R〉 |= Ψ and

{α < κ | 〈Vα,∈, R ∩ Vα〉 |= Ψ} ⊆ S.

In addition, we can find a closed unbounded subset C of κ with the property
that C ∩ S ⊆ f(X). Using [18, Lemma 4.2 & Corollary 4.3], we can now find a
limit cardinal θ > κ, a transitive set M , an inaccessible cardinal κ̄ ∈ M ∩ κ with
H(κ̄+)M ≺Σ1 H(κ̄+) and a non-trivial elementary embedding j : M −→ H(θ) with
critical point κ̄, j(κ̄) = κ and C,R,X, Y ∈ ran(j). We then know that κ̄ ∈ C and
Vκ̄, R ∩ Vκ̄, X ∩ κ̄, Y ∩ κ̄ ∈M with j(Vκ̄) = Vκ, j(R ∩ Vκ̄) = R, j(X ∩ κ̄) = X and
j(Y ∩ κ̄) = Y . Our setup then allows us to use Σ1-upwards absoluteness to show
that both ¬ϕ(X ∩ κ̄, Y ∩ κ̄) and 〈Vκ̄,∈, R ∩ Vκ̄〉 |= Ψ hold. But, this allows us to
conclude that κ̄ ∈ C ∩ S ⊆ f(X), contradicting the definition of f(C). �

3In the following, we say that a sequence 〈Bα | α < λ〉 of sets is an increasing and continuous

chain if Bα ⊆ Bβ holds for all α < β < λ and Bβ =
⋃
{Bα | α < β} holds for all limit ordinals

β < λ.
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Since the above claims show that for every subset A of P(κ) that is definable
by a Σ1-formula with parameters in H(κ+), there exists a continuous function
f : P(κ) −→ P(κ) with A = f−1[Club(S)], we know that Club(S) is complete for
the collection of subsets of P(κ) that are definable in this way. �

We are now ready to show how large cardinal properties of κ answer Question
A at κ. The following result slightly strengthens [12, Proposition 2.1]:

Corollary 3.17. If κ is a weakly compact cardinal and S is an element of the
weakly compact filter on κ, then Club(S) is not a ∆1-subset of P(κ).

Proof. Assume, towards a contradiction, that P(κ) r Club(S) is definable by a
Σ1-formula with parameters in H(κ+). Since κ is inaccessible, we can then apply
Lemma 3.13 to show that the collection of subsets of P(κ) that are definable by Σ1-
formulas with parameters in H(κ+) is closed under continuous preimages. Moreover,
since Theorem 3.16 ensures that Club(S) is complete for the collection of all subsets
of P(κ) that are definable by Σ1-formulas with parameters in H(κ+), Proposition
3.12 implies that this collection is closed under complements, directly contradicting
Lemma 3.14. �

Corollary 3.18. If κ is a weakly compact cardinal, then Club(κ) is not a ∆1-subset
of P(κ). �

3.3. Condensation. The aim of this section is to show that, in canonical inner
models, the non-stationary ideal of an uncountable regular cardinal is not ∆1-
definable. In the case of the constructible universe L, this conclusion was proven
by S. Friedman, Hyttinen and Kulikov (see [11, Theorem 49.(3)]). In the following,
we will show that the key idea from their proof can also be used to prove analogous
results for various other canonical inner models. These arguments will be based on
an abstract condensation principle introduced in the next definition:

Definition 3.19. Given an uncountable regular cardinal κ and a subset S of κ,
we let Cond(S) denote the statement that there exists an increasing and contin-
uous sequence 〈Mβ | β < κ〉 of transitive sets with the property that for every
z ∈ H(κ+), there exists an increasing and continuous sequence 〈Nε | ε < κ〉 of
elementary submodels of H(κ+) of cardinality less than κ such that the following
statements hold:

(1) z ∈ N0 and ε ⊆ Nε ∩ κ ∈ κ for all ε < κ.
(2) If ε < κ satisfies Nε ∩ κ ∈ S, then there is β < κ such that the following

statements hold:
(a) The transitive collapse of Nε is equal to Mβ .

(b) If β < γ < κ has the property that Mγ is a model of ZFC−, then the
set {Nδ ∩ κ | δ < ε} is an element of Mγ .

In order to motivate the formulation of the principle Cond(κ), we briefly show
that this principle holds at all uncountable regular cardinals in Gödel’s constructible
universe. The argument proving this observation already contains the key idea from
the proof of [11, Theorem 49.(3)].
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Proposition 3.20. If V = L and κ is an uncountable regular cardinal, then
〈Lε | ε < κ〉 witnesses that Cond(κ) holds.

Proof. Fix z ∈ Lκ+ and let C denote the set of all α < κ with the property that
the Skolem hull HullLκ+ (α ∪ {z}) (using the canonical Skolem functions in L) of
α∪ {z} in Lκ+ satisfies HullLκ+ (α∪ {z})∩ κ = α. Then C is a closed unbounded
subset of κ. Let 〈αε | ε < κ〉 denote the monotone enumeration of C and, for each
ε < κ, we set Nε = HullLκ+ (αε ∪ {z}). Then z ∈ N0 and for all ε < κ, we

know that Nε is an elementary submodel of H(κ+) of cardinality less than κ with
ε ⊆ αε = Nε ∩ κ ∈ κ. Moreover, for each ε < κ, there is βε < κ such that Nε
collapses to Lβε . Finally, if ε < κ, βε < γ < κ with the property that Lγ is a model

of ZFC− and π : Nε −→ Lβε denotes the corresponding collapsing map, then we
have

C ∩ αε = {α < αε | HullLβε (α ∪ {π(z)}) ∩ αε = α} ∈ Lγ

and hence we know that {Nδ ∩ κ | δ < ε} ∈ Lγ . �

Next, we observe that the above principle implies fragments of the GCH:

Lemma 3.21. If κ is an uncountable regular cardinal such that Cond(S) holds for
some stationary subset S of κ, then κ = κ<κ holds.

Proof. Let 〈Mβ | β < κ〉 witness that Cond(S) holds and pick z ∈ H(κ). Then there
is an increasing and continuous sequence 〈Nε | ε < κ〉 of elementary submodels of
H(κ+) of cardinality less than κ such that z ∈ N0 and for all ε < κ with Nε∩κ ∈ S,
we have ε ⊆ Nε∩κ ∈ κ and there is βε < κ such that Nε collapses to Mβε . We now
know that {βε | ε < κ with Nε ∩ κ ∈ S} is a cofinal subset of κ and this implies
that Mβ has cardinality less than κ for all β < κ. Moreover, there is ε < κ such
that Nε ∩ κ ∈ S and there is a surjection of ε onto the transitive closure of z. It
then follows that z ∈Mβε .

The above computations show that H(κ) is equal to the union of κ-many sets of
cardinality less than κ and therefore we know that this set has cardinality κ. This
proves that κ = κ<κ holds. �

We now show how the above condensation principle is connected to the com-
plexity of non-stationary ideals.

Theorem 3.22. If κ is an uncountable regular cardinal and S is a stationary
subset of κ with the property that Cond(S) holds, then Club(S) is complete for the
collection of subsets of P(κ) that are definable by Σ1-formulas with parameters in
H(κ+).

Proof. Fix a subset A of P(κ) with the property that A = {X ⊆ κ | ϕ(X,Y )}
holds for some Σ1-formula ϕ(v0, v1) and some Y ⊆ κ. Let 〈Mε | ε < κ〉 be a
sequence of transitive sets witnessing that Cond(S) holds. Given X ⊆ κ, we define
f(X) to be the set of all limit ordinals α ∈ S with the property that there exists
β < κ such that the following statements hold:

• Mβ is a model of ZFC−.
• α, S ∩ α,X ∩ α, Y ∩ α ∈Mβ .
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• ϕ(X ∩ α, Y ∩ α) holds in Mβ .
• α is an uncountable regular cardinal in Mβ .
• S ∩ α is a stationary subset of α in Mβ .

It is then easy to see that the resulting function f : P(κ) −→ P(κ) is Lipschitz and
therefore continuous.

Claim. If X ∈A, then f(X) ∈ Club(S).

Proof of the Claim. By our assumptions, there exists an increasing and continuous
sequence 〈Nε | ε < κ〉 of elementary submodels of H(κ+) of cardinality less than κ
such that Lim ∩ S,X, Y ∈ N0 and for every ε < κ, we have ε ⊆ Nε ∩ κ ∈ κ and,
if Nε ∩ κ ∈ S, then there is βε < κ with the property that the transitive collapse
of Nε is equal to Mβε . Set C = {Nε ∩ κ | ε < κ}. Then C is a closed unbounded
subset of κ that consists of limit ordinals. Fix α ∈ C ∩ S and pick ε < κ with
Nε ∩ κ = α. Then the fact that Mβε is the transitive collapse of Nε implies that

Mβε is a model ZFC−, α, S ∩α,X ∩α, Y ∩α ∈Mβε , ϕ(X ∩α, Y ∩α) holds in Mβε ,
α is a regular uncountable cardinal in Mβε and Lim ∩ S ∩ α is a stationary subset
of α in Mβε . This shows that βε witnesses that α is an element of f(X). �

Claim. If X ⊆ κ with f(X) ∈ Club(S), then X ∈A.

Proof of the Claim. Assume, towards a contradiction, that ϕ(X,Y ) does not hold.
Pick a closed unbounded subset C0 of κ with C0∩S ⊆ f(X). Our assumptions now
allow us to find an increasing and continuous sequence 〈Nε | ε < κ〉 of elementary
submodels of H(κ+) of cardinality less than κ such that C0, S,X, Y ∈ N0 and
for every ε < κ, we have ε ⊆ Nε ∩ κ ∈ κ and, if Nε ∩ κ ∈ S, then there is
βε < κ such that the transitive collapse of Nε is equal to Mβε and, if βε < γ < κ

has the property that Mγ is a model of ZFC−, then {Nδ ∩ κ | δ < ε} ∈ Mγ . It
then follows that C1 = {Nε ∩ κ | ε < κ} is a closed unbounded subset of κ and
S contains a limit point of C1. Set α = min(Lim(C1) ∩ S) and pick ε < κ with
Nε ∩ κ = α. We then know that the transitive collapse of Nε is equal to Mβε

and this implies that X ∩ α, Y ∩ α ∈ Mβε and ϕ(X ∩ α, Y ∩ α) fails in Mβε .
Moreover, this setup ensures that α is a limit point of C0 and we can conclude
that α ∈ C0 ∩ S ⊆ f(X) holds. Therefore, we can find γ < κ such that Mγ is

a model of ZFC−, α, S ∩ α,X ∩ α, Y ∩ α ∈ Mγ , ϕ(X ∩ α, Y ∩ α) holds in Mγ , α
is an uncountable regular cardinal in Mγ and S ∩ α is a stationary subset of α in
Mγ . Since ϕ(X ∩α, Y ∩α) holds in Mγ and fails in Mβε , Σ1-upwards absoluteness
implies that Mγ * Mβε and hence we know that βε < γ < κ. But, this implies
that C1 ∩α = {Nδ ∩ κ | δ < ε} ∈Mγ and this set witnesses that either α is not an
uncountable regular cardinal in Mγ or S ∩α is not a stationary subset of α in Mγ ,
a contradiction. �

The above claims complete the proof of the theorem. �

We are now ready to prove the following slight strengthening of [11, Theorem
49.(3)]:
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Corollary 3.23. If κ is an uncountable regular cardinal and S is a stationary
subset of κ with the property that Cond(S) holds, then Club(S) is not a ∆1-subset
of P(κ).

Proof. A combination of Lemma 3.13, Lemma 3.14 and Lemma 3.21 shows that
the collection of subsets of P(κ) that are definable by Σ1-formulas with parameters
in H(κ+) is closed under continuous preimages and not closed under complements.
Since Theorem 3.22 ensures that Club(S) is complete for this collection, we can
now apply Proposition 3.12 to conclude that P(κ)rClub(S) is not a ∆1-subset of
P(κ). �

In the remainder of this section, we will use results on abstract condensation
principles contained in [7], [9], [10] and [19] to show that, in various canonical inner
models, the principle Cond(κ) holds for every uncountable regular cardinal κ.

Definition 3.24 ([9, 19]). Given an uncountable cardinal κ, we say that Local Club
Condensation holds at κ+ if there exists a sequence 〈Mγ | γ 6 κ+〉 of transitive sets
such that the following statements hold:

(1) If β < γ 6 κ+, then Mβ ∈Mγ and Mβ ∩Ord = β.
(2) If γ 6 κ+ is a limit ordinal, then Mγ =

⋃
{Mβ | β < γ}.

(3) Mκ+ = H(κ+).
(4) If κ 6 γ < κ+ and M is a structure in a countable language that expands the

structure 〈Mγ ,∈, 〈Mβ | β < γ〉〉, then there is an increasing and continuous
sequence 〈Nα | α < κ〉 of elementary submodels of M of cardinality less than
κ satisfying the following statements, where Nα denotes the underlying set
of Nα for each α < κ:
(a) α ⊆ Nα for all α < κ.
(b) Mγ =

⋃
{Nα | α < κ}.

(c) If α < κ, then there is β < κ with the property that the transitive
collapse of Nα is equal to Mβ .

It is known that, in various canonical inner models of the form L[E], the se-
quences 〈Lγ [E] | γ 6 κ+〉 witness that Local Club Condensation holds at uncount-
able cardinals κ+ (see [7] and [9, Theorem 8]). Therefore, the following result shows
that the non-stationary ideal of an uncountable regular cardinal is not ∆1-definable
in these models.

Lemma 3.25. If κ is an uncountable regular cardinal and A is a subset of κ+

with the property that the sequence 〈Lγ [A] | γ 6 κ+〉 witnesses that Local Club
Condensation holds at κ+, then 〈Lβ [A] | β < κ〉 witnesses that Cond(κ) holds.

Proof. Fix z ∈ H(κ+) and consider the structure

M = 〈H(κ+),∈, 〈Lγ [A] | γ < κ+〉, F, S〉,
where S is a set of Skolem functions for the given structure that are defined using
the canonical well-ordering <L[A] of L[A] and F = 〈fγ | κ 6 γ < κ+〉 is the unique
sequence with the property that fγ is the <L[A]-least bijection between κ and γ

for all κ 6 γ < κ+. Let C denote the set of all α < κ with the property that α is
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equal to the intersection of κ with HullM(α∪{z}). Then C is a closed unbounded
subset of κ. Let 〈αε | ε < κ〉 denote its monotone enumeration. Given ε < κ, set
Nε = HullM(αε ∪ {z}) and let Nε denote the substructure of M with underlying
set Nε. In addition, for each ε < κ, we let Mε denote the unique structure in the
same language as M that has the transitive collapse of Nε as its underlying set and
is isomorphic to Nε via the corresponding uncollapsing map.

Then 〈Nε | ε < κ〉 is an increasing and continuous sequence of elementary sub-
structures of H(κ+) with z ∈ N0 and ε ⊆ Nε ∩ κ ∈ κ for all ε < κ. Moreover,
if ε < κ, then [19, Theorem 1] ensures that the transitive collapse of Nε is equal
to Lβ [A] for some β < κ. Finally, pick ε < β < γ < κ with the property that

the transitive collapse of Nε is equal to Lβ [A] and Lγ [A] is a model of ZFC−. We
then know that the structure Mε is an element of Lγ [A], because Lγ [A] contains
both Lβ [A] and A∩ β as elements and elementarity ensures that the functions and
relations of Mε are all definable over the structure 〈Lβ [A],∈, A〉. Moreover, note
that C ∩ αε is equal to the set of all α < αε with the property that α is equal to
the intersection of αε with HullMε(α∪{z̄}), where z̄ denotes the image of z under
the transitive collapse of Nε. In combination, this shows that C ∩αε is an element
of Lγ [A]. �

3.4. Forcing axioms. As our final example of a canonical setting in which the
non-stationary ideal is not ∆1-definable, we present the statement of a result of
Hoffelner, Larson, Schindler and Wu in [16] that shows that strong forcing axioms
imply that Club(ω1) is not a ∆1-subset of P(ω1). Remember that Woodin’s axiom
(∗) postulates that the Axiom of Determinacy holds in L(R) and L(P(ω1)) is a
Pmax-extension of L(R) (see [33, Chapter 5]). The definition of Bounded Martin’s
Maximum BMM can be found in [14] and [33, Section 10.3].

Theorem 3.26 ([16]). Assume that either Woodin’s axiom (∗) holds or there is a
Woodin cardinal and BMM holds. Then Club(ω1) is not a ∆1-subset of P(ω1).

Since Asperó and Schindler [2] proved that the strengthening MM++ of Martin’s
Maximum (see [8] and [33, Definition 2.45]) implies that Woodin’s axiom (∗) holds,
it follows that this forcing axiom provides a negative answer to Question A. In
contrast, Hoffelner, Larson, Schindler and Wu proved in [17] that the Proper Forcing
Axiom PFA does not suffice for the above conclusion.
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1-definability at uncountable regular cardinals. J. Symbolic Logic,

77(3):1011–1046, 2012.
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