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Abstract. We unveil new patterns of Structural Reflection in the large-cardinal hierarchy below

the first measurable cardinal. Namely, we give two different characterizations of strongly unfold-

able and subtle cardinals in terms of a weak form of the principle of Structural Reflection, and
also in terms of weak product structural reflection. Our analysis prompts the introduction of the

new notion of C(n)-strongly unfoldable cardinal for every natural number n, and we show that
these cardinals form a natural hierarchy between strong unfoldable and subtle cardinals analogous

to the known hierarchies of C(n)-extendible and Σn-strong cardinals. These results show that

the relatively low region of the large-cardinal hierarchy comprised between the first strongly un-
foldable and the first subtle cardinals is completely analogous to the much higher region between

the first strong and the first Woodin cardinals, and also to the much further upper region of the

hierarchy ranging between the first supercompact and the first Vopěnka cardinals.

1. Introduction

Large cardinals are transfinite cardinal numbers with associated properties that make them
very large, so much so that their existence cannot be proved in ZFC. Since the weakest large
cardinals, the weakly inaccessible, were first defined and studied by Hausdorff over a century ago,
in 1908, a plethora of different and much stronger large cardinals have since then been identified
in a great variety of contexts and taking many different forms. The book of Kanamori [22] gives
a comprehensive overview of the rich world of large cardinals, the world of the “Higher Infinite”
as the book’s title reads. Since the book’s first edition, published in 1994 in the wake of the
groundbreaking results of Martin-Steel [26] and Woodin [30] establishing the tight connections
between large cardinals and the determinacy of sets of reals, the theory of large cardinals has been
expanding in multiple directions, yielding solutions to well-known set-theoretic problems – e.g., in
the arithmetic of singular cardinals (see [17]) or in the combinatorial properties of small uncountable
cardinals (see [15] and [16]) – as well as fertile applications to other areas, from general topology
(see [7] and [14]) to algebraic topology and homotopy theory (see [3] and [9]), to abelian groups
(see [6] and [11]), etc. The use of large cardinals is most effective in conjunction with the forcing
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technique (e.g., Prikry-type forcing), and also via the construction and analysis of canonical inner
models in which large cardinals exist – the so-called inner model program. Indeed, to settle a given
statement ϕ one typically assumes, on the one hand, the existence of some suitable large cardinal
and, by forcing, produces a model of set theory in which ϕ holds. On the other hand, one assumes
ϕ and shows that some large cardinal (or even the same kind of large cardinal) exists in a canonical
inner model, thereby showing that ϕ is (equi)consistent with the existence of that large cardinal.

However, in spite of their enormous success, large-cardinal axioms, i.e., the axioms asserting that
such and such large cardinals exist, have remained a long-standing mystery from a foundational
point of view. Indeed, a precise definition of large cardinal, which would encompass all the variety
of known large cardinals into a single notion, is still lacking. Moreover, the fact that all known
large cardinals line up into a well-ordered hierarchy of consistency strength remains unexplained.
Furthermore, no convincing intrinsic justification of their naturalness, or their status as true axioms
of set theory has been yet put forward, and their acceptance has so far been supported mainly by
their fruitful consequences.

In recent years, a new program of reformulating large cardinals in terms of a general reflection
principle called Structural Reflection (SR) (see [2]), has succeeded at characterizing well-known large
cardinals at several regions of the large-cardinal hierarchy in terms of this principle. The program
started, still in a veiled form, with [1] and [3], in which large cardinals in the region spanning from
supercompact and extendible cardinals to Vopěnka’s Principle are characterized in terms of a strong
form of Löwenheim-Skolem type of reflection, equivalent to stratified forms of Vopěnka’s Principle
restricted to classes of structures of a given definitional complexity. The work continued in [9],
in which a similar characterization in terms of SR, this time using products and homomorphisms
instead of elementary embeddings, was given for large cardinals in the region between strong and
Woodin cardinals. Further work along the same lines was done in the lower regions of the large-
cardinal hierarchy, below the first measurable cardinal. In [8] (see also [24] and [2]), reformulations
in terms of SR are given for the weakest of large cardinals, namely those between weakly inaccessible
and weakly compact cardinals. Furthermore, in [4], a generic form of SR is used to characterize
cardinals that lie between almost-remarkable and virtually extendible. Several other similar SR
characterizations of large cardinals lying in other regions of the large-cardinal hierarchy are given
in [2] – e.g., for globally superstrong cardinals – and even large-cardinal principles such as “0]

exists” or “0† exists” are shown to be equivalent to SR for definable classes of structures belonging
to canonical inner models. Finally, in [5], the authors gave characterizations of large cardinals in the
uppermost regions of the large-cardinal hierarchy, between Vopěnka’s Principle and I1-cardinals.
Moreover, our analysis of those cardinals in terms of SR allowed to formulate a new hierarchy of
large cardinal notions that has the potential to go beyond all known large cardinals not known to
be inconsistent with ZFC.

In the present article, we show that the same pattern of SR that holds between a supercompact
and a Vopěnka cardinal, and between a strong and a Woodin cardinal, also holds between a strongly
unfoldable and a subtle cardinal. These correlations can be informally expressed by the following
equations:

Vopěnka

supercompact
=

Woodin

strong
=

subtle

strongly unfoldable

As strongly unfoldable and subtle cardinals lie below the first measurable cardinal and can exist
in Gödel’s constructible universe L, our results show that the large-cardinal hierarchy is highly
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homogeneous, repeating the same pattern in the upper, central, and lower regions of the hierarchy.
The reformulation of large cardinals in terms of SR does explain the empirical fact that they form a
well-ordered hierarchy, and also attests to their naturalness and intrinsic justification as true axioms
of set theory (see [2]). Moreover, each new SR characterization, like the ones given in the present
article, constitutes a further step towards the ultimate goal of yielding a uniform formulation of all
known large cardinals in terms of a single unifying principle. Furthermore, what could be termed
as a “side effect” is that every SR reformulation of a known large-cardinal notion suggests and gives
rise to new definitions of large cardinals, filling in the gaps in the large-cardinal hierarchy, e.g.,
C(n)-extendible cardinals, which lie between supercompact cardinals and Vopěnka’s Principle. Let
us describe next more precisely our results and explain how they fit in and contribute to the SR
program.

1.1. Structural Reflection. Recall that, given a natural number n, C(n) is the Πn-definable closed
unbounded class of ordinals α that are Σn-correct in V , that is, Vα is a Σn-elementary substructure
of V , written Vα ≺Σn V . Thus, C(0) is the class of all ordinal numbers and C(1) is the class of all
uncountable cardinals κ such that Vκ = Hκ.

Let us now recall the following different variants of the principle of Structural Reflection:

Definition 1.1. Let C be a class1 of structures2 of the same type and let κ be an infinite cardinal.

(1) (Bagaria-Väänänen, [8]) SRC(κ) denotes the statement that for every structure B in C,
there exists a structure A in C of cardinality less than κ and an elementary embedding of
A into B.

(2) (Bagaria, [1]) HSRC(κ) denotes the statement that for every structure B in C, there exists
a structure A in C ∩Hκ and an elementary embedding of A into B.

(3) (Bagaria, [2]) VSRC(κ) denotes the statement that for every structure B in C, there exists
a structure A in C ∩ Vκ and an elementary embedding of A into B.

Clearly, for a given class C and a cardinal κ, the principle HSRC(κ) implies both the principle
SRC(κ) and the principle VSRC(κ). Also, if κ is an element of C(1), then we have Hκ = Vκ, and
therefore the principles HSRC(κ) and VSRC(κ) are identical. Moreover, for classes C that are closed
under isomorphic images, the principle SRC(κ) implies the principle HSRC(κ). Thus, for a class C
closed under isomorphic images and κ ∈ C(1), the three principles SRC(κ), HSRC(κ) and VSRC(κ)
are the same.

The following theorem, proved in [1, Corollary 4.10] using Magidor’s characterization of the first
supercompact cardinal as the first cardinal that reflects the class of all structures of the form 〈Vα,∈〉
for ordinals α (see [25, Theorem 1]), gives a reformulation of supercompact cardinals in terms of
SR and it may be considered the first result of the SR program.

Theorem 1.2 ([1]). The following statements are equivalent for every cardinal κ:

(1) The cardinal κ is either supercompact or a limit of supercompact cardinals.
(2) The principle SRC(κ) (equivalently, HSRC(κ), or VSRC(κ)) holds for every class C of struc-

tures of the same type that is definable by a Σ2-formula with parameters in Vκ.

Corollary 1.3. The following statements are equivalent for every cardinal κ:

1We work in ZFC. Therefore, when considering proper classes, we shall always mean classes that are definable,
possibly using sets as parameters.

2In this paper, the term structure refers to structures for countable first-order languages. The cardinality of a
structure is defined as the cardinality of its domain.
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(1) The cardinal κ is the least supercompact cardinal.
(2) The cardinal κ is the least cardinal with the property that SRC(κ) (equivalently, HSRC(κ),

or VSRC(κ)) holds for every class C of structures of the same type that is definable by a
Σ2-formula with parameters in Vκ. �

For classes of structures of higher definitional complexity an analogous equivalence is given in
the theorem below, proved in [1, Theorem 4.18], which characterizes extendible and C(n)-extendible
cardinals in terms of SR. Recall that a cardinal κ is C(n)-extendible if for every λ > κ, there is an
ordinal µ and an elementary embedding j : Vλ −→ Vµ with crit (j) = κ, j(κ) > λ and j(κ) ∈ C(n).

A cardinal is extendible if and only if it is C(1)-extendible.

Theorem 1.4 ([1]). The following statements are equivalent for every cardinal κ:

(1) κ is either C(n)-extendible or a limit of C(n)-extendible cardinals.
(2) The principle SRC(κ) (equivalently, HSRC(κ), or VSRC(κ)) holds for every class C of struc-

tures of the same type that is definable by a Σn+2-formula with parameters in Vκ.

Corollary 1.5. The following statements are equivalent for every cardinal κ:

(1) κ is the least C(n)-extendible cardinal.
(2) κ is the least cardinal with the property that SRC(κ) (equivalently, HSRC(κ), or VSRC(κ))

holds for every class C of structures of the same type that is definable by a Σn+2-formula
with parameters in Vκ. �

Remember that Vopěnka’s Principle is the scheme of axioms stating that for every proper class
C of structures of the same type, there exist A,B ∈ C with A 6= B and an elementary embedding
from A to B. In [1], the first author obtains the following characterization of this principle:

Theorem 1.6 ([1]). The following schemes of axioms are equivalent over ZFC:

(1) Vopěnka’s Principle.
(2) For every natural number n, there exists a C(n)-extendible cardinal.
(3) For every natural number n, there exists a proper class of C(n)-extendible cardinals.
(4) For every class C of structures of the same type, there exists a cardinal κ such that SRC(κ)

(equivalently, HSRC(κ), or VSRC(κ)) holds.

The next result, which shall be proved in Section 2 below, uses the set-version of this equivalence
to provide a canonical characterization of Vopěnka cardinals, i.e., inaccessible cardinals δ with the
property that for every set C of structures of the same type with C ∈ Vδ+1 \Vδ, there exist A,B ∈ C
with A 6= B and an elementary embedding from A to B (see, for example, [18] and [28]).

Theorem 1.7. The following statements are equivalent for every uncountable cardinal δ:

(1) The cardinal δ is a Vopěnka cardinal.
(2) For every set C of structures of the same type with C ∈ Vδ+1 \ Vδ, there exists a cardinal

κ < δ with the property that the principle SRC(κ) (equivalently, HSRC(κ), or VSRC(κ))
holds.

1.2. Weak Structural Reflection. We now use weaker forms of SR, defined below, to obtain
canonical characterizations of smaller large cardinals, lying below the first measurable cardinal.

Definition 1.8. Let C be a non-empty class of structures of the same type and let κ be an infinite
cardinal.
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(1) (Bagaria–Väänänen, [8]) SR−C (κ) is the statement that for every structure B in C of car-
dinality κ, there exists a structure A in C of cardinality less than κ and an elementary
embedding of A into B.

(2) (Bagaria–Väänänen, [8]) Let SR−−C (κ) denote the statement that C contains a structure of
cardinality less than κ.

(3) WSRC(κ) denotes the conjunction of SR−C (κ) and SR−−C (κ).

(4) Let HSR−C (κ) and VSR−C (κ) be the same as HSRC(κ) and VSRC(κ), respectively (as given
in Definition 1.1), but restricted to structures B of cardinality κ.

For a given class C and a cardinal κ, the principle HSR−C (κ) clearly implies both SR−C (κ) and

VSR−C (κ); and if κ is an element of C(1), then the principles HSR−C (κ) and VSR−C (κ) are equiva-

lent. Also, if C is closed under isomorphic images, then the principle SR−C (κ) implies the principle

HSRC(κ). Hence, for C closed under isomorphic images and κ ∈ C(1), the principles HSR−C (κ),

SR−C (κ) and VSR−C (κ) are the same.
Next, we recall the large-cardinal notion of strong unfoldability, introduced by Villaveces in

model-theoretic investigations of models of set theory.

Definition 1.9 (Villaveces, [29]). An inaccessible cardinal κ is strongly unfoldable if for every
ordinal λ and every transitive ZF−-model M of cardinality κ with κ ∈M and <κM ⊆M , there is
a transitive set N with Vλ ⊆ N and an elementary embedding j : M −→ N with crit (j) = κ and
j(κ) ≥ λ.

Every strongly unfoldable cardinal is a totally indescribable element of C(2) (see [13, Theorem
2] and [23, Section 3]). In particular, the first strongly unfoldable cardinal is bigger than the first
subtle cardinal (see Definition 1.15 below) and smaller than the first strong cardinal. The following
characterization of strongly unfoldable cardinals in terms of weak SR will be proved in Section 3:

Theorem 1.10. The following statements are equivalent for every cardinal κ:

(1) κ is either strongly unfoldable or a limit of supercompact cardinals.
(2) The principle WSRC(κ) holds for every class C of structures of the same type that is definable

by a Σ2-formula with parameters in Vκ.
(3) κ is an element of C(2) and the principle HSR−C (κ) holds for every class C of structures of

the same type that is definable by a Σ2-formula with parameters in Vκ.

The fact that supercompact cardinals are strongly unfoldable now directly yields a characteriza-
tion of strongly unfoldable cardinals through weak principles of structural reflection:

Corollary 1.11. The following statements are equivalent for every cardinal κ:

(1) κ is the least strongly unfoldable cardinal.
(2) κ is the least cardinal with the property that the principle WSRC(κ) holds for every class C

of structures of the same type that is definable by a Σ2-formula with parameters in Vκ.
(3) κ is the least element of the class C(2) with the property that the principle HSR−C (κ) holds

for every class C of structures of the same type that is definable by a Σ2-formula with
parameters in Vκ. �

For classes of structures of higher definitional complexity, we shall prove analogous equivalences,
using the following natural strengthening of strong unfoldability:

Definition 1.12. Given a natural number n, an inaccessible cardinal κ is C(n)-strongly unfoldable
if for every ordinal λ ∈ C(n) greater than κ and every transitive ZF−-model M of cardinality κ



6 JOAN BAGARIA AND PHILIPP LÜCKE

with κ ∈M and <κM ⊆M , there is a transitive set N with Vλ ⊆ N and an elementary embedding
j : M −→ N with crit (j) = κ, j(κ) > λ and Vλ ≺Σn V

N
j(κ).

By definition, a cardinal is strongly unfoldable if and only if it is C(0)-strongly unfoldable. A short
argument (see Proposition 9.2 below) shows that strong unfoldability also coincides with C(1)-strong
unfoldability. Moreover, it is also easy to see that all C(n)-extendible cardinals are C(n+1)-strongly
unfoldable (see Proposition 9.3 below). The following result, which shall be proved in Section 9,
characterizes C(n)-strongly unfoldable cardinals in terms of weak SR. For every natural number
n > 0, the theorem shows that C(n+1)-strongly unfoldable cardinals are related, via weak SR, to
strongly unfoldable cardinals, as C(n)-extendible cardinals are related, via SR, to supercompact
cardinals.

Theorem 1.13. Given a natural number n > 1, the following statements are equivalent for every
cardinal κ:

(1) κ is either C(n)-strongly unfoldable or a limit of C(n−1)-extendible cardinals.
(2) The principle WSRC(κ) holds for every class C of structures of the same type that is definable

by a Σn+1-formula with parameters in Vκ.
(3) κ is an element of C(n+1) and the principle HSR−C (κ) holds for every class C of structures

of the same type that is definable by a Σn+1-formula with parameters in Vκ.

By combining this theorem with Corollary 1.11 and the fact that all C(n)-extendible cardinals
are C(n+1)-strongly unfoldable, we now obtain a uniform characterization of the least C(n)-strongly
unfoldable cardinal through weak principles of structural reflection:

Corollary 1.14. Given a natural number n > 0, the following statements are equivalent for every
cardinal κ:

(1) κ is the least C(n)-strongly unfoldable cardinal.
(2) κ is the least cardinal with the property that the principle WSRC(κ) holds for every class C

of structures of the same type that is definable by a Σn+1-formula with parameters in Vκ.
(3) κ is the least cardinal in C(n+1) with the property that the principle HSR−C (κ) holds for every

class C of structures of the same type that is definable by a Σn+1-formula with parameters
in Vκ. �

We now want to use weak SR to isolate the canonical variations of Vopěnka’s Principle and
Vopěnka cardinals for the considered region of the large cardinal hierarchy. This analysis turns out
to be closely related to the notion of subtle cardinals, introduced by Jensen and Kunen in their work
on the validity of strong diamond principles in the constructible universe L. Remember that, given
a set A of ordinals, a sequence 〈Eα | α ∈ A〉 is called an A-list if Eα ⊆ α holds for every α ∈ A.

Definition 1.15 (Jensen-Kunen, [21]). An infinite cardinal δ is subtle if for every δ-list 〈Eγ | γ < δ〉
and every closed unbounded subset C of δ, there exist β < γ in C with Eβ = Eγ ∩ β.

Subtle cardinals are strongly inaccessible,3 and below the first subtle cardinal there are many
totally indescribable cardinals. However, the first subtle cardinal is Π1

1-describable, and therefore
not weakly compact. Moreover, if δ is a subtle cardinal, then the set of κ < δ that are strongly
unfoldable in Vδ is stationary in δ (see [13, Theorem 3]).

3Note that it is not necessary to include regularity in the definition of subtleness, because, if we assume that a

singular cardinal δ possesses the above property, then we could pick a closed cofinal subset C ⊆ δ of order-type cof(δ)
with min(C) > cof(δ) and define Eγ = otp (C ∩ γ) ⊆ γ for all γ < δ.
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The notion of subtleness has a natural class-version (“Ord is subtle”) that postulates, as a
schema, that for every closed unbounded class C of ordinals and every class sequence 〈Eγ | γ ∈ Ord〉,
there exist β < γ in C with Eβ = Eγ ∩ β (see [10, Section 5]). It turns out that for our purposes, a
slight strengthening of this principle is needed. The formulation of this principle is motivated by the
trivial observation that the Axiom of Choice allows us to show that a cardinal δ is subtle if and only
if for every closed unbounded subset C of δ and every sequence 〈Eγ | γ < δ〉 with ∅ 6= Eγ ⊆ P(γ)
for all γ < δ, there exist β < γ in C and E ∈ Eγ with E ∩ β ∈ Eβ .

Definition 1.16. Let “Ord is essentially subtle” denote the axiom schema stating that for every
closed unbounded class C of ordinals and every class function E on the ordinals with the property
that ∅ 6= E(γ) ⊆ P(γ) for all γ ∈ Ord, there exist β < γ in C and E ∈ E(γ) with E ∩ β ∈ E(β).

Note that this principle implies that Ord is subtle, and, in the presence of a definable well-
ordering of V , both principles are equivalent. Moreover, the assumption that Ord is essentially
subtle is obviously downwards absolute to L, and hence both principles have the same consistency
strength over ZFC. In contrast, the proof of [10, Theorem 5.6] produces a model of set-theory that
witnesses that both principles are not equivalent over ZFC. The next result, proved in Section 9,
provides a direct analog of Theorem 1.6 by showing that strongly unfoldable and C(n+1)-strongly
unfoldable cardinals are related, via weak SR, to the assumption that Ord is essentially subtle, as
supercompact and C(n)-extendible cardinals are related, via SR, to Vopěnka’s Principle.

Theorem 1.17. The following schemes of axioms are equivalent over ZFC:

(1) Ord is essentially subtle.
(2) For every natural number n, there exists a C(n)-strongly unfoldable cardinal.
(3) For every natural number n, there exists a proper class of C(n)-strongly unfoldable cardinals.
(4) For every natural number n and every class C of structures of the same type, there exists a

cardinal κ ∈ C(n) with the property that HSR−C (κ) holds.

Finally, we will also show that an analog of Theorem 1.7 holds for this region of the large cardinal
hierarchy. The following theorem, which will be proved in Section 4, shows that subtle cardinals are
related, via weak SR, to strongly unfoldable and C(n+1)-strongly unfoldable cardinals, as Vopěnka
cardinals are related, via SR, to supercompact and C(n)-extendible cardinals.

Theorem 1.18. The following statements are equivalent for every uncountable cardinal δ:

(1) δ is either subtle or a limit of subtle cardinals.
(2) For every set C of structures of the same type with C ∈ Vδ+1 \ Vδ, there exists a cardinal

κ < δ with the property that the principle WSRC(κ) holds.

Corollary 1.19. The following statements are equivalent for every uncountable cardinal δ:

(1) δ is the least subtle cardinal.
(2) δ is the least cardinal with the property that for every set C of structures of the same type

with C ∈ Vδ+1 \Vδ, there exists a cardinal κ < δ such that the principle WSRC(κ) holds. �

1.3. Product Structural Reflection. In analogy with the characterization (given essentially in
[9], but outlined below) of strong, Σn-strong, and Woodin cardinals, in terms of product SR (see
Definition 1.21 below), we work towards additional characterizations of strongly unfoldable, C(n)-
strongly unfoldable, and subtle cardinals in terms of weak product SR (see Definition 1.29 below).

Let us recall that for any set S of structures of the same type, the set-theoretic product
∏
S

is the structure whose universe is the set of all functions f with domain S such that f(A) ∈ A
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for every A = 〈A, . . .〉 ∈ S, and whose interpretation of constant, function and relation symbols is
defined point-wise. In addition, note that, if X is a substructure of

∏
S and A = 〈A, . . .〉 ∈ S, then

the canonical projection map

p : X −→ A; f 7→ f(A)

is a homomorphism from X into A.4

The following Product Reflection Principle (PRP) was introduced in [9, Definition 3.1]:

Definition 1.20 (Bagaria-Wilson, [9]). Given a class C of structures of the same type, the principle
PRPC asserts that there is a subset S of C such that for B ∈ C, there is a homomorphism from

∏
S

to B.

The principle PRPC holds for every class C that is definable by a Σ1-formula with parameters,
as witnessed by sets of the form Vκ ∩ C, where κ ∈ C(1) has the property that Vκ contains the
parameters used in the definition of C (see [9, Proposition 3.2]). Also, if κ is either a strong cardinal
or a limit of strong cardinals, then PRPC holds for every class C that is defined by a Σ2-formula
with parameters in Vκ, as witnessed by C ∩ Vκ (see [9, Proposition 3.3]). Moreover, the proof of
[9, Theorem 4.1] shows that if κ is a cardinal such that C ∩ Vκ is non-empty and witnesses PRPC
for every class C that is defined by a Π1-formula without parameters, then there exists a strong
cardinal less than or equal to κ. If the same holds for every class C that is defined by a Π1-formula
with parameters in Vκ, then κ is either a strong cardinal or a limit of strong cardinals. Hence, the
following statements are equivalent for every infinite cardinal κ:

(1) κ is either a strong cardinal or a limit of strong cardinals.
(2) C ∩Vκ witnesses PRPC for all classes C of structures of the same type that are definable by

a Π1-formula (equivalently, by a Σ2-formula) with parameters in Vκ.

In view of this equivalence, we may reformulate the principle PRP as a principle of Structural
Reflection for products, as follows:

Definition 1.21. Given an infinite cardinal κ and a class C of structures of the same type, we let
PSRC(κ) denote the statement that C ∩Vκ 6= ∅ and for every B ∈ C, there exists a homomorphism
from

∏
(C ∩ Vκ) to B.

The above equivalence can now be stated in the following way:

Theorem 1.22 ([9]). The following statements are equivalent for every cardinal κ:

(1) κ is either a strong cardinal or a limit of strong cardinals.
(2) The principle PSRC(κ) holds for every class C of structures of the same type that is definable

by a Σ2-formula with parameters in Vκ.

Corollary 1.23. The following statements are equivalent for every cardinal κ:

(1) κ is the least strong cardinal.
(2) κ is the least cardinal with the property that PSRC(κ) holds for every class C of structures

of the same type that is definable by a Σ2-formula with parameters in Vκ.

More generally, recall the following strengthening of strongness introduced in [9, Definition 5.1]:

Definition 1.24 (Bagaria-Wilson, [9]). Let n > 0 be a natural number.

4As defined in [20, Section 1.2].
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(1) Given an ordinal λ, a cardinal κ is λ-Σn-strong if for every class A that is definable by a Σn-
formula without parameters, there is a transitive class M with Vλ ⊆M and an elementary
embedding j : V −→M with crit (j) = κ, j(κ) > λ and A ∩ Vλ ⊆ j(A).

(2) A cardinal κ is Σn-strong if it is λ-Σn-strong for every ordinal λ.

Every strong cardinal is Σ2-strong (see [9, Proposition 5.2]). Arguments contained in the proofs
of [9, Claim 5.12] and [9, Theorem 5.13] now yield the following equivalence:

Theorem 1.25 ([9]). Given a natural number n > 1, the following statements are equivalent for
every cardinal κ:

(1) κ is either a Σn-strong cardinal or a limit of Σn-strong cardinals.
(2) The principle PSRC(κ) holds for every class C of structures of the same type that is definable

by a Σn-formula with parameters in Vκ.

Corollary 1.26. Given a natural number n > 1, the following statements are equivalent for every
cardinal κ:

(1) κ is the least Σn-strong cardinal.
(2) κ is the least cardinal with the property that PSRC(κ) holds for every class C of structures

of the same type that is definable by a Σn-formula with parameters in Vκ.

The results of [9] also show that the canonical variation of Vopěnka’s Principle corresponding
to the above large cardinal notions is the assumption that “Ord is Woodin”. This axiom schema
asserts that for every class A, there exists some cardinal κ which is A-strong, i.e., for every λ, there is
an elementary embedding j : V −→M with crit (j) = κ, j(κ) > λ, Vλ ⊆M and A∩Vλ = j(A)∩Vλ.

Theorem 1.27 ([9]). The following statements are equivalent:

(1) Ord is Woodin.
(2) For every class C of structures of the same type there exists a cardinal κ with the property

that the principle PSRC(κ) holds.
(3) For every natural number n, there exists a Σn-strong cardinal.
(4) For every natural number n, there exists a proper class of Σn-strong cardinals.

Using the characterization of a cardinal δ being a Woodin cardinal in terms of the existence of
cardinals κ < δ that are A-strong, for every subset A of Vδ (see [22, Theorem 26.14]), we will extend
the argument given in [9, Theorem 5.13] to prove a version of Theorem 1.7 for Woodinness and
obtain the following characterization of Woodin cardinals in terms of PSR in Section 7:

Theorem 1.28. The following statements are equivalent for every uncountable cardinal δ:

(1) δ is a Woodin cardinal.
(2) For every set C of structures of the same type with C ⊆ Vδ, there exists a cardinal κ < δ

with the property that the principle PSRC(κ) holds.

1.4. Weak Product Structural Reflection. We now introduce a weakening of PSR and show
that this principle produces analogous characterizations of strongly unfoldable, C(n)-strongly un-
foldable, and subtle cardinals.

Definition 1.29. Given an infinite cardinal κ and a class C of structures of the same type, we let
WPSRC(κ) denote the statement that C ∩ Vκ 6= ∅ and for every substructure X of

∏
(C ∩ Vκ) of

cardinality at most κ and every B ∈ C, there exists a homomorphism from X to B.
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Note that, if X is a substructure of
∏

(C ∩ Vκ), then the identity map id : X −→
∏

(C ∩ Vκ) is a
homomorphism. In particular, for every class C and every cardinal κ, the principle PSRC(κ) implies
the principle WPSRC(κ). In Section 6, we will prove the following theorem that yields another
canonical characterization of strong unfoldability:

Theorem 1.30. The following statements are equivalent for every cardinal κ:

(1) κ is either strongly unfoldable or a limit of strong cardinals.
(2) The principle WPSRC(κ) holds for every class C of structures of the same type that is

definable by a Σ2-formula with parameters in Vκ.

The fact that strong cardinals are strongly unfoldable now yields the following corollary:

Corollary 1.31. The following statements are equivalent for every cardinal κ:

(1) κ is the least strongly unfoldable cardinal.
(2) κ is the least cardinal with the property that the principle WPSRC(κ) holds for every class C

of structures of the same type that is definable by a Σ2-formula with parameters in Vκ. �

The generalization of the last theorem to C(n)-strongly unfoldable cardinals is given by the
following theorem, which shall be proved in Section 10:

Theorem 1.32. Given a natural number n > 1, the following statements are equivalent for every
cardinal κ:

(1) κ is either C(n)-strongly unfoldable or a limit of Σn+1-strong cardinals.
(2) The principle WPSRC(κ) holds for every class C of structures of the same type that is

definable by a Σn+1-formula with parameters in Vκ.

The next result shows that the above pattern also holds for the class-version of WPSR. The
proof will be given in Section 10.

Theorem 1.33. The following schemes of axioms are equivalent over ZFC:

(1) Ord is essentially subtle.
(2) For every non-empty class C of structures of the same type, there exists a cardinal κ such

that WPSRC(κ) holds.

Finally, we also have the analog characterization of subtle cardinals in terms of weak product
SR. The proof of this result is contained in Section 8.

Theorem 1.34. The following statements are equivalent for every uncountable cardinal δ:

(1) δ is a subtle cardinal.
(2) For every set C of structures of the same type with C ⊆ Vδ, there exists a cardinal κ < δ

with the property that the principle WPSRC(κ) holds.

2. Vopěnka cardinals

In this section, we present the proof of Theorem 1.7. Recall that an inaccessible cardinal δ is a
Vopěnka cardinal if for every set C ∈ Vδ+1 \ Vδ of structures of the same type, there exist distinct
A,B ∈ C with an elementary embedding from A to B.

Lemma 2.1. If δ is a Vopěnka cardinal and C ⊆ Vδ is a set of structures of the same type, then
there exists a cardinal κ < δ with the property that HSRC(κ) (and hence also SRC(κ) and VSRC(κ))
holds.
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Proof. Assume that δ is a Vopěnka cardinal and C ⊆ Vδ is a set of structures of the same type. By
[22, Exercise 24.19], there is a cardinal κ < δ that is η-extendible for C, for every η < δ, i.e., for
every ordinal κ < η < δ, there is an ordinal ζ and an elementary embedding

j : 〈Vη,∈, C ∩ Vη〉 −→ 〈Vζ ,∈, C ∩ Vζ〉
with crit (j) = κ and j(κ) > η. Now, fix a structure B in C and let κ < η < δ be a limit ordinal
such that B ∈ Vη. Since B is an element of C ∩ Vj(κ) and j induces an elementary embedding of B
into j(B), elementarity yields an element A of C ∩ Vκ and an elementary embedding of A into B.
Moreover, since κ is inaccessible, we know that A is contained in Hκ. These computations show
that HSRC(κ) holds. �

Lemma 2.2. If δ is a singular cardinal, then there exists a class C of structures of the same type
with C ⊆ Vδ and the property that the principles SRC(κ) and VSRC(κ) fail for every cardinal κ < δ.

Proof. Fix a strictly increasing sequence 〈δξ | ξ < cof(δ)〉 of cardinals greater than cof(δ) that is
cofinal in δ. Define L to be the first-order language that extends L∈ by two constant symbols. Given
ξ < cof(δ), define Aξ to be the L-structure 〈Vδξ ,∈, cof(δ), ξ〉. Set C = {Aξ | ξ < cof(δ)} ⊆ Vδ.

Claim. If ξ, ζ < cof(δ) have the property that there exists an elementary embedding from Aξ to
Aζ , then ξ = ζ.

Proof of the Claim. Let j : Vδξ −→ Vδζ be an elementary embedding with j(cof(δ)) = cof(δ) and
j(ξ) = ζ. Then j(Vcof(δ)+2) = Vcof(δ)+2 and the map j � Vcof(δ)+2 : Vcof(δ)+2 −→ Vcof(δ)+2 is an
elementary embedding. The Kunen Inconsistency then ensures that j � Vcof(δ)+2 = idVcof(δ)+2

and

we can conclude that ξ = j(ξ) = ζ. �

The above claim directly shows that the principle SRC(κ), and also VSRC(κ), fail for every
cardinal κ < δ. �

Proposition 2.3. If δ is an uncountable cardinal that is not a limit of inaccessible cardinals, then
there exists a class C of structures of the same type, which is Π1-definable in Vδ with an ordinal as
a parameter, and such that the principles SRC(κ) and VSRC(κ) fail for every cardinal κ < δ.

Proof. Fix an ordinal λ < δ with the property that there are no inaccessible cardinals between λ
and δ. Let L denote the first-order language that extends L∈ by a constant symbol and define
C to be the set of all L-structures of the form 〈Vγ+2,∈, λ〉 with λ < γ < δ. Then ∅ 6= C ⊆ Vδ
and C is definable in Vδ by a Π1-formula with parameter λ. Assume, towards a contradiction, that
there is a cardinal κ < δ with the property that either SRC(κ) or VSRC(κ) holds. Then there is an
ordinal λ < γ < κ with the property that there exists an elementary embedding j : Vγ+2 −→ Vκ+2

with j(λ) = λ. Since elementarity ensures that j(γ) = κ, we know that j is non-trivial. Moreover,
we have j(Vλ+2) = Vλ+2 and the Kunen Inconsistency ensure that the elementary embedding
j � Vλ+2 : Vλ+2 −→ Vλ+2 is trivial. This allows us to conclude that crit (j) is an inaccessible
cardinal greater than λ, a contradiction. �

Proof of Theorem 1.7. The implication (1) ⇒ (2) is given by Lemma 2.1. In order to prove the
implication (2) ⇒ (1), first notice that Lemma 2.2 and Proposition 2.3 show that (2) implies that
δ is inaccessible. The implication (2)⇒ (1) then directly follows from the simple observation that
for every set C ∈ Vδ+1 \ Vδ of structures of the same type and every cardinal κ < δ, both SRC(κ)
and VSRC(κ) imply that there exist distinct A,B ∈ C with an elementary embedding from A to
B. �
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3. Strongly unfoldable reflection

We shall next demonstrate the connection between strong unfoldability and the validity of the
principle WSR for Σ2-definable classes by proving Theorem 1.10. The starting point is the following
characterization of the elements of the class C(n)-cardinals through the principle SR−−.

Lemma 3.1. Given a natural number n > 1, the following statements are equivalent for every
cardinal κ:

(1) The cardinal κ is an element of C(n).
(2) The principle SR−−C (κ) holds for every non-empty class C of structures of the same type

that is definable by a Σn-formula with parameters in Vκ.
(3) Every non-empty class of structures of the same type that is definable by a Σn-formula with

parameters in Hκ contains an element of Vκ.
(4) Every non-empty class of structures of the same type that is definable by a Σn-formula with

parameters in Hκ contains a structure of cardinality less than κ.
(5) Every non-empty class of structures of the same type that is definable by a Σn-formula with

parameters in Vκ contains an element of Hκ.
(6) Every non-empty class of structures of the same type that is definable by a Σn-formula with

parameters in Vκ contains an element of Vκ.

Proof. First, assume that (1) holds. Fix a Σn-formula ϕ(v0, v1), and a ∈ Vκ with the property that
the class C = {A | ϕ(A, a)} is non-empty and consists of structures of the same type. Then the Σn-
statement ∃v0ϕ(v0, a) holds in V and our assumptions imply that it also holds in Vκ. Hence, there
is A ∈ Vκ with the property that ϕ(A, a) holds in Vκ. Our assumption now implies that ϕ(A, a)
holds in V . But our assumption also ensures that Hκ = Vκ and hence we know that C ∩Hκ 6= ∅.
This shows that (2),(3), (4), (5) and (6) all hold in this case.

Next, assume that either (2), or (3), or (4), or (5), or (6) holds, and we shall prove (1).

Claim. If ρ is an ordinal with the property that the set {ρ} is definable by a Σn-formula with
parameters in Hκ, then ρ < κ.

Proof of the Claim. Let L denote the trivial first-order language and let B be the unique L-structure
with domain ρ. Then the class C = {B} is definable by a Σn-formula with parameters in Hκ and
hence each of our assumptions allows us to conclude that ρ < κ. �

The above claim implies that κ is a limit point of C(n−1), because for every α < κ, the least
cardinal in C(n−1) greater than α is definable by a Σn-formula with parameter α. To show (1), fix
a Σn-formula ∃xψ(x, y), with ψ being Πn−1, and some a ∈ Vκ with the property that ∃xψ(x, a)
holds. Let ρ denote the least element of C(n−1) such that a ∈ Vρ and for some b ∈ Vρ, ψ(b, a) holds
in Vρ. Then the set {ρ} is definable by a Σn-formula with parameter a ∈ Hκ and the previous claim

shows that ρ < κ. Since κ ∈ C(n−1) and Πn−1-formulas are upwards absolute between Vρ and Vκ,
we can now conclude that ψ(b, a) holds in Vκ, for some b. This shows that (1) holds. �

Let us also observe that Clause (1) of the above lemma is also equivalent to each of (2), (3), (4),
(5), (6), restricted to Σn-definable classes C that are closed under isomorphic images. The reason
is that the above claim also holds under this restriction by taking C in the proof to be the class of
all L-structures of cardinality ρ, which is closed under isomorphic images, instead of the singleton
{B}.
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We are now ready to prove the equivalences stated in Theorem 1.10. The following arguments rely
on Magidor’s characterization of supercompactness in [25] and the analysis of strong unfoldability
provided by the results of [23] and [24].

Proof of Theorem 1.10. First, note that Lemma 3.1 directly yields the implication (3)⇒ (2).
Next, assume that κ is a strongly unfoldable cardinal. Then κ is an element of C(2) (see [23,

Section 3] or Proposition 9.1 below). Fix a class C of structures of the same type that is definable
by a Σ2-formula with parameters in Vκ and a structure B in C of cardinality κ. Pick a Σ2-formula
ϕ(v0, v1) and an element z of Hκ with C = {A | ϕ(A, z)}, and let θ > κ be a cardinal with the
property that B ∈ Hθ and ϕ(B, z) holds in Hθ. Using [23, Theorem 1.3] and [24, Lemma 2.1]
(see also Theorem 9.4 below), we can find cardinals κ̄ < θ̄ < κ, an elementary submodel X of Hθ̄

with κ̄ + 1 ⊆ X and an elementary embedding j : X −→ Hθ with j � κ̄ = idκ̄, j(κ̄) = κ, and
B, z ∈ ran(j). We then have j � (Hκ̄ ∩ X) = idHκ̄∩X , and therefore z ∈ Hκ̄ and j(z) = z. Pick
A ∈ X with j(A) = B. Then elementarity and Σ1-absoluteness implies that ϕ(A, z) holds and
hence A is an element of C. Since A belongs to X, and therefore to Hθ̄, it also belongs to Hκ.
Moreover, since κ̄ is a subset of X, and A has cardinality κ̄ in X, the restriction of j to A yields
an elementary embedding of A into B. This shows that HSR−C (κ) holds in this case.

Now, assume that κ is a limit of supercompact cardinals. Then κ is an element of C(2). Moreover,
Theorem 1.2 shows that HSRC(κ) holds for every class C of structures of the same type that is
definable by a Σ2-formula with parameters in Vκ. In combination with the above computations,
this yields the implication (1)⇒ (3).

Finally, assume that κ is a cardinal that is not strongly unfoldable and the principle WSRC(κ)
holds for every class C of structures of the same type that is definable by a Σ2-formula with
parameters in Vκ. By Lemma 3.1, we know that κ is an element of C(2). In particular, κ is a limit
cardinal and the set Vκ has cardinality κ.

Claim. If θ > κ is a cardinal, y ∈ Vκ and z ∈ Hθ, then there are cardinals κ̄ < θ̄ < κ with y ∈ Vκ̄,
an elementary submodel X of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X and an elementary embedding j : X −→ Hθ

with j(κ̄) = κ, j(y) = y and z ∈ ran(j).

Proof of the Claim. Let L denote the first-order language that extends L∈ by three constant sym-
bols and let C denote the class of all L-models of the form 〈M,∈, µ, a, y〉 such that µ is a cardinal
in C(1), y ∈ Vµ and there exists a cardinal ν > µ and an elementary submodel X of Hν with
Vµ ∪ {µ} ⊆ X and the property that M is the transitive collapse of X. It is then easy to see that
the class C is definable by a Σ2-formula with parameter y. Now, let Y be an elementary submodel
of Hθ of cardinality κ with Vκ∪{κ, z} ⊆ Y and let τ : Y −→ N denote the corresponding transitive
collapse. Then θ and Y witness that B = 〈N,∈, κ, τ(z), y〉 is an element of C of cardinality κ. Our
assumptions then yield cardinals κ̄ < θ̄ with κ̄ ∈ C(1) ∩ κ, an elementary submodel X of Hθ̄ of
cardinality less than κ with Vκ̄∪{κ̄} ⊆ X and an elementary embedding i : M −→ N with i(κ̄) = κ,
i(y) = y and τ(z) ∈ ran(i), where π : X −→M denotes the corresponding transitive collapse. Since
κ ∈ C(2) and M ∈ Vκ, we may assume that θ̄ < κ. Define

j = τ−1 ◦ i ◦ π : X −→ Hθ.

Then j is an elementary embedding with j(κ̄) = κ, j(y) = y and z ∈ ran(j). �

Claim. If θ > κ is a cardinal, y ∈ Vκ and z ∈ Hθ, then there are cardinals κ̄ < θ̄ < κ with y ∈ Vκ̄,
an elementary submodel X of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X and an elementary embedding j : X −→ Hθ

with j(κ̄) = κ, j(y) = y, z ∈ ran(j) and j � κ̄ 6= idκ̄.



14 JOAN BAGARIA AND PHILIPP LÜCKE

Proof of the Claim. Since κ is not strongly unfoldable, we can combine [23, Theorem 1.3] with [24,
Lemma 2.1] (see also Theorem 9.4.(3) below and the Remark 9.5 that follows) to find a cardinal
ϑ > θ and z′ ∈ Vϑ such that for all cardinals κ̄ < ϑ̄ and all elementary submodels X of Hϑ̄ with
Vκ̄ ∪ {κ̄} ⊆ X, there is no elementary embedding j : X −→ Hϑ with j � κ̄ = idκ̄, j(κ̄) = κ, and
z, z′, θ ∈ ran(j). An application of our previous claim now yields cardinals κ̄ < ϑ̄ < κ with y ∈ Vκ̄,
an elementary submodel Y of Hϑ̄ with Vκ̄ ∪ {κ̄} ⊆ Y and an elementary embedding i : Y −→ Hϑ

with i(κ̄) = κ, i(y) = y and z, z′, θ ∈ ran(i). Therefore, we must have i � κ̄ 6= idκ̄. Pick θ̄ ∈ Y
with i(θ̄) = θ. Then elementarity implies that θ̄ is a cardinal. Set X = Y ∩ Hθ̄ and j = i � X.
In this situation, we can conclude that κ̄ < θ̄ < κ, X is an elementary submodel of Hθ̄ with
Vκ̄ ∪ {κ̄} ⊆ X and j : X −→ Hθ is an elementary embedding with j(κ̄) = κ, j(y) = y, z ∈ ran(j)
and j � κ̄ 6= idκ̄. �

Claim. There are unboundedly many cardinals below κ that are α-supercompact for every α < κ.

Proof of the Claim. Fix an uncountable regular cardinal ρ < κ and a cardinal θ in C(1) above κ.
By our previous claim, we can find cardinals ρ < κ̄ < θ̄ < κ, an elementary submodel X of Hθ̄ with
Vκ̄ ∪ {κ̄} ⊆ X and an elementary embedding i : X −→ Hθ with i(κ̄) = κ, j(ρ) = ρ and i � κ̄ 6= idκ̄.
Set j = i � Vκ̄ : Vκ̄ −→ Vκ. Our setup then ensures that j is a non-trivial elementary embedding.
Since the Kunen Inconsistency implies that i � Vρ = idρ, we know that crit (j) > ρ. Moreover, [25,

Lemma 2] directly shows that crit (j) is α-supercompact for all α < κ̄. Since θ is an element of C(1),
we know that θ is a limit cardinal with Hθ = Vθ. Therefore, elementarity implies that the Power
Set Axiom holds in Hθ̄ and for every ordinal γ < θ̄, the set Hθ̄ ∩ Vγ is an element of Hθ̄. Since Hθ̄

computes power sets correctly, it follows that Hθ̄ = Vθ̄ and we now know that θ̄ is an element of
C(1). This implies that Hθ̄ contains all ultrafilters witnessing that crit (j) is α-supercompact for all
α < κ̄ and hence it follows that, in X, the cardinal crit (j) is α-supercompact for all α < κ̄. But
this allows us to conclude that j(crit (j)) is a cardinal in the interval (ρ, κ) that is α-supercompact
for all α < κ. �

Claim. Every cardinal below κ that is α-supercompact for every α < κ is supercompact.

Proof of the Claim. Let µ < κ be a cardinal that is α-supercompact for all α < κ, let λ > κ be an
ordinal and let θ > λ be an element of C(1). By our first claim, there exist cardinals µ < κ̄ < θ̄ < κ,
an elementary submodel X of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X and an elementary embedding j : X −→ Hθ

with j(κ̄) = κ, j(µ) = µ and λ ∈ ran(j). Pick λ̄ ∈ X with j(λ̄) = λ. Then µ < λ̄ < κ and µ is
λ̄-supercompact. Since elementarity ensures that θ̄ is an element of C(1), we now know that µ is
λ̄-supercompact in X and this shows that µ is λ-supercompact. �

The combination of the above claims now shows that κ is a limit of supercompact cardinals in
this case. In particular, these arguments prove the implication (2)⇒ (1). �

In addition to Corollary 1.11, Theorem 1.10 can directly be used to derive several interesting
equivalences. For example, it shows that for cardinals that are not strongly unfoldable, the validity
of the principle SR for Σ2-definable classes is equivalent to the validity of the principle WSR, and
also to HSR−, for these classes. In particular, this equivalence holds for all singular cardinals.

Corollary 3.2. The following statements are equivalent for every cardinal κ that is not strongly
unfoldable:

(1) The cardinal κ is a limit of supercompact cardinals.
(2) The principle WSRC(κ) holds for every class C of structures of the same type that is definable

by a Σ2-formula with parameters in Vκ.
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(3) The principle HSR−C (κ) holds for every class C of structures of the same type that is definable
by a Σ2-formula with parameters in Vκ. �

4. Subtle reflection

We will next give a proof of Theorem 1.18. Recall that, given an ordinal δ, a sequence 〈Eγ | γ < δ〉
is a δ-list if Eγ ⊆ γ holds for every γ < δ.

Lemma 4.1. Let δ be an element of C(1) with the property that for every δ-list 〈Eγ | γ < δ〉 and
every ρ < δ, there exist cardinals ρ < µ < ν < δ with Eµ ⊆ Eν . If C is a non-empty set of structures
of the same type with C ⊆ Vδ, then there exists a cardinal κ < δ with the property that WSRC(κ)
holds.

Proof. Let L denote the signature of C and let ρ denote the minimal cardinality of structures in
C. Since δ ∈ C(1), we know that ρ < δ. In addition, let SatL denote the formalized satisfaction
relation for L and let FmlL denote the set of Gödel numbers of formalized L-formulas. Assume,
towards a contradiction, that the principle SR−C (κ) fails for every cardinal ρ < κ < δ. Given a
cardinal ρ < κ < δ, we can now fix a structure Aκ ∈ C of cardinality κ with the property that
there is no elementary embedding of a structure in C of cardinality less than κ into Aκ. Let bκ be
a bijection between κ and the domain of Aκ. Let 〈Eγ | γ < δ〉 be a δ-list with the property that
for every cardinal ρ < κ < δ, the set Eκ consists of all ordinals of the form5

≺`, α0, . . . , αk−1�

for some ` ∈ FmlL that codes a formula with k free variables and α0, . . . , αk−1 < κ with

SatL(Aκ, `, 〈bκ(α0), . . . , bκ(αk−1)〉).

By our assumptions, there exist cardinals ρ < µ < ν < δ with the property that Eµ ⊆ Eν .

Claim. The map bν ◦ b−1
µ is an elementary embedding of Aµ into Aν .

Proof of the Claim. Fix an L-formula ϕ(v0, . . . , vk−1) and α0, . . . , αk−1 < µ such that

Aµ |= ϕ(bµ(α0), . . . , bµ(αk−1)).

If `ϕ is the canonical element of FmlL corresponding to ϕ, then we have

≺`ϕ, α0, . . . , αk−1� ∈ Eµ ⊆ Eν

and this implies that

Aν |= ϕ(bν(α0), . . . , bν(αk−1)).

By also considering negated formulas, the derived implication yields the statement of the claim. �

Since the above claim yields a contradiction, we now know that the principle SR−C (κ) holds for

some cardinal ρ < κ < δ. Moreover, our setup also ensures that SR−−C (κ) holds. �

The above lemma directly yields a proof of the forward implication of Theorem 1.18.

Corollary 4.2. If δ is either a subtle cardinal or a limit of subtle cardinals and C is a non-empty
class of structures of the same type with C ⊆ Vδ, then there exists a cardinal κ < δ with the property
that WSRC(κ) holds.

5Here, we let ≺·, . . . , ·� : Ordn −→ Ord denote the iterated Gödel pairing function.
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Proof. Let 〈Eγ | γ < δ〉 be a δ-list and let ρ be an ordinal smaller than δ. If δ is a subtle cardinal,
then we can consider the closed unbounded subset of all cardinals in the interval (ρ, δ) and find
elements µ < ν of this set with the property that Eµ = Eν ∩ µ. In the other case, if δ is a limit of
subtle cardinals, then we can fix a subtle cardinal δ0 with ρ < δ0 < δ and repeat the above argument
with the δ0-list 〈Eγ | γ < δ0〉 to find cardinals µ < ν with ρ < µ < ν < δ0 and Eµ = Eν ∩ µ. Since

our assumptions imply that δ is an element of C(1), these computations allow us to apply Lemma
4.1 to derive the desired conclusion. �

Lemma 4.3. Let ρ be an ordinal with the property that there exists a cardinal ε greater than ρ such
that for every A ⊆ Vε and every sufficiently large cardinal θ, there exist cardinals ρ < κ̄ < κ < ε,
an elementary submodel X of Hθ with κ̄ ∪ {κ̄, A} ⊆ X and an elementary embedding j : X −→ Hθ

with j � κ̄ = idκ̄, j(κ̄) = κ and j(A) = A. If δ is the least cardinal greater than ρ with this property,
then δ is a subtle cardinal.

Proof. We start our proof with the following claim.

Claim. δ is a limit cardinal.

Proof of the Claim. First, note that our assumptions imply that δ is an uncountable cardinal. Next,
assume towards a contradiction that δ = γ+ for some infinite cardinal γ. Let A be a subset of Vγ
and let θ be a cardinal that is sufficiently large with respect to δ and the above property. Then
we can find cardinals ρ < κ̄ < κ < δ, an elementary submodel X of Hθ with κ̄ ∪ {γ, δ, κ̄, A} ⊆ X
and an elementary embedding j : X −→ Hθ with j � κ̄ = idκ̄, j(κ̄) = κ, j(γ) = γ, j(δ) = δ and
j(A) = A. Since κ ≤ γ, j(γ) = γ and j(κ̄) = κ, we know that κ < γ. But this shows that γ also
possesses the relevant property, contradicting the minimality of δ. �

Let ~E = 〈Eγ | γ < δ〉 be a δ-list and let C be a closed unbounded subset of δ that consists
of cardinals. Now, pick a well-ordering C of Vδ and a cardinal θ > iδ such that θ is sufficiently
large and Hθ is sufficiently elementary in V . In this situation, our assumptions yields cardinals

ρ < κ̄ < κ < δ, an elementary submodel X of Hθ with κ̄ ∪ {κ̄, C, ~E,C} ⊆ X and an elementary

embedding j : X −→ Hθ with j � κ̄ = idκ̄, j(κ̄) = κ, j(C) = C, j( ~E) = ~E and j(C) = C.

Claim. κ̄ ∈ C.

Proof of the Claim. Assume, towards a contradiction, that κ̄ is not an element of C. Define

γ = min(C \ κ̄) ∈ X ∩ (κ̄, δ).

If C ∩ κ̄ = ∅, then γ = min(C) and the ordinal γ is definable in Hθ by a formula with parameter C.
In the other case, if C ∩ κ̄ 6= ∅, then sup(C ∩ κ̄) < κ̄, γ = min(C \ (sup(C ∩ κ̄) + 1)) and therefore
the ordinal γ is definable in Hθ by a formula with parameters in κ̄∪{C}. In both cases, the ordinal
γ is definable in Hθ by a formula whose parameters are elements of X and that are fixed by the
embedding j. This shows that γ is a cardinal greater than κ̄ that is fixed by j. Since j(κ̄) = κ, this
also shows that γ is bigger than κ.

Using the minimality of δ, we can now find a cardinal ϑ > iγ and a subset A of Vγ , with the
property that for all cardinals ρ < µ̄ < µ < γ and every elementary submodel Y of Hϑ with
µ̄ ∪ {µ̄, A} ⊆ Y , there is no elementary embedding i : Y −→ Hϑ with i � µ̄ = idµ̄, i(µ̄) = µ and
j(A) = A. Let ϑ denote the least cardinal greater than iγ such that there exists a subset of Vγ with
these properties and let A denote the C-least subset of Vγ witnessing this statement with respect
to γ. Since Hθ was chosen sufficiently elementary in V , it follows that ϑ and A are elements of Hθ

and both sets are definable in Hθ from the parameters γ and C. But this implies that ϑ,A ∈ X,
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j(ϑ) = ϑ and j(A) = A. Set Y = Hϑ ∩X and i = j � Y : Y −→ Hϑ. Since our assumptions on θ
ensure that Hϑ ∈ X, it follows that Y is an elementary submodel of Hϑ with κ̄∪ {κ̄, A} ⊆ Y and i
is an elementary embedding with i � κ̄ = idκ̄, i(κ̄) = κ and j(A) = A, contradicting the properties
of ϑ and A. �

By elementarity, the above claim directly implies that κ is an element of C. Moreover, our setup
ensures that Eκ̄ = j(Eκ̄) ∩ κ̄ = Eκ ∩ κ̄.

The above computations show that δ is a limit cardinal with the property that for every δ-list
〈Eγ | γ < δ〉 and every closed unbounded set C in δ that consists of cardinals, there are µ < ν in
C with Eµ = Eν ∩ ν. This directly implies that δ has uncountable cofinality and we can conclude
that for every δ-list 〈Eγ | γ < δ〉 and every closed unbounded set C in δ, there are µ < ν in C with
Eµ = Eν ∩ ν. �

Proposition 4.4. If δ is an uncountable cardinal that is not an element of C(1), then there exists
a class C of structures of the same type with C ⊆ Vδ and the property that the principle SR−−C (κ)
fails for every cardinal κ ≤ δ.

Proof. Our assumptions on δ directly yield an ordinal β < δ with the property that the set Vβ
has cardinality greater than δ. Let C denote the set of all L∈-structures of the form 〈Vγ ,∈〉 with

β ≤ γ < δ. Then ∅ 6= C ⊆ Vδ and SR−−C (κ) fails for every cardinal κ ≤ δ, because C contains no
structures of cardinality less than or equal to δ. �

Proof of Theorem 1.18. Let δ be an uncountable cardinal with the property that for every set C
of structures of the same type with C ⊆ Vδ, there exists a cardinal κ < δ such that the principle
WSRC(κ) holds. Then Proposition 4.4 shows that δ is an element of C(1). Assume, towards a
contradiction, that κ is neither a subtle cardinal nor a limit of subtle cardinals. Pick an uncountable
regular cardinal ρ < δ with the property that the interval (ρ, δ] contains no subtle cardinals.

Claim. If A ⊆ Vδ and θ > iδ is a cardinal, then there exist cardinals ρ < ν̄ < ν < δ, an elementary
submodel X of Hθ with ν̄∪{ν̄, A} ⊆ X and an elementary embedding j : X −→ Hθ with j � ν̄ = idν̄ ,
j(ν̄) = ν and j(A) = A.

Proof of the Claim. Let L denote the first order-language that extends L∈ by three constant sym-
bols and let C denote the set of all L-structures of the form 〈M,∈, ρ, µ,B〉 such that µ is a cardinal
strictly between iρ and δ, and there exists an elementary submodel X of Hθ of cardinality µ with
the property that Vρ ∪ µ ∪ {µ,A} ⊆ X, M is the transitive collapse of X and π(A) = B, where
π : X −→ M denotes the corresponding collapsing map. We then have C ⊆ Vδ and, by our as-
sumptions on δ, there exists a cardinal κ < δ with the property that WSRC(κ) holds. Since every
structure in C has cardinality greater than iρ, we know that κ > ρ.

Now, pick an elementary submodel Y of Hθ of cardinality κ with Vρ ∪ κ ∪ {κ,A} ⊆ Y and let
π : Y −→ N denote the corresponding transitive collapse. Then 〈N,∈, ρ, κ, π(A)〉 is a structure
in C of cardinality κ. By our assumptions, we can now find a cardinal κ̄ strictly between iρ
and κ, an elementary submodel X of Hθ of cardinality κ̄ with Vρ ∪ κ̄ ∪ {κ̄, A} ⊆ X and an
elementary embedding i of 〈M,∈, ρ, κ̄, π̄(A)〉 into 〈N,∈, ρ, κ, π(A)〉, where π̄ : X −→ M denotes
the corresponding transitive collapse. We define

j = π−1 ◦ i ◦ π̄ : X −→ Hθ.

Then j is an elementary embedding with j(ρ) = ρ, j(κ̄) = κ and j(A) = A. Moreover, since ρ is
an uncountable regular cardinal, Vρ ⊆ X and j(Vρ) = Vρ, the Kunen Inconsistency implies that
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j � Vρ = idρ. Let ν̄ denote the least ordinal in X that is moved by j. Then ν̄ is a cardinal with
ρ < ν̄ ≤ κ̄. Set ν = j(ν̄). We then know that ν is a cardinal with ν̄ < ν ≤ κ < δ. �

By Lemma 4.3, the above claim shows that the interval (ρ, δ] contains a subtle cardinal, contra-
dicting our assumptions.

The above computations show that (2) in Theorem 1.18 implies (1) of the theorem. In the other
direction, Corollary 4.2 states that (1) also implies (2). �

Note that results of Matet show that a cardinal δ is either subtle or a limit of subtle cardinals
if and only if for every δ-list 〈Eγ | γ < δ〉 and every ρ < δ, there exist ρ < µ < ν < δ satisfying
Eµ = Eν ∩ µ (see [27, Corollary 3]). An alternative proof of this equivalence can be obtained from
a combination of Theorem 1.18 and Lemma 4.1.

5. Extenders deriving from Product Reflection

The Product Reflection Principle (PRP) yields the existence of strong cardinals, via extenders
derived from the principle holding for a single Π1-definable class C of structures (see [9, Theorem
4.1]). In this section, we shall derive extenders in a more general context, including weak forms of
Product Structural Reflection (WPSR) restricted to Π1-definable classes of structures, which shall
then be used in the proofs of Theorems 1.30 and 1.34, given below in Sections 6 and 8, respectively.

In the following, let L′ denote a first-order language that extends the language of set theory by
constants κ̇ and u̇, plus, possibly, finitely-many other predicate, constant, and function symbols.
Let L denote the first-order language that extends L′ by an (n + 1)-ary predicate symbol Ṫϕ for
every L′-formula ϕ(v0, . . . , vn) with (n + 1)-many free variables. Define SL to be the class of all
L-structures A such that there exists a cardinal κA in C(1) and a limit ordinal θA > κA such that:

(1) The domain of A is VθA+1.
(2) ∈A= ∈ � VθA+1, κ̇A = κA and u̇A = θA.
(3) If ϕ(v0, . . . , vn) is an L′-formula, then

ṪAϕ = {〈x0, . . . , xn〉 ∈ V n+1
θA+1 | A |= ϕ(x0, . . . , xn)}.

Note that SL is definable by a Π1-formula without parameters.
For the rest of the section, we assume that

• C be a subclass of SL, and
• ζ is an ordinal with C ∩ Vζ 6= ∅.

We define

κ = sup{κA | A ∈ C ∩ Vζ} ≤ ζ.

For every set x, we let fx denote the unique function with domain C ∩ Vζ such that that fx(A) = x
for all A with x ∈ VκA , and fx(A) = u̇A otherwise. In addition, let fx denote the unique function
with domain C ∩ Vζ and such that fx(A) = x ∩ VκA , for all A in the domain. For the remainder of
this section, we also assume that

• X is a substructure of
∏

(C ∩ Vζ) with fx ∈ X, for all x ∈ Vκ,
• B is an element of SL with κB ≥ κ, and
• h : X −→ B is a homomorphism.

Lemma 5.1. The following hold:



PATTERNS OF STRUCTURAL REFLECTION IN THE LARGE-CARDINAL HIERARCHY 19

(1) If ϕ(v0, . . . , vn−1) is an L′-formula and g0, . . . , gn−1 ∈ X with

A |= ϕ(g0(A), . . . , gn−1(A))

for all A ∈ C ∩ Vζ , then

B |= ϕ(h(g0), . . . , h(gn−1)).

(2) If x ∈ Vκ with h(fx) 6= u̇B, then h(fx) ∈ VκB .
(3) If α < κ with h(fα) 6= u̇B, then h(fα) < κB.
(4) If E0, E1 ⊆ Vζ with fE0 , fE1 ∈ X, then fE0∩E1 ∈ X implies that h(fE0) ∩ h(fE1) =

h(fE0∩E1) and fE0∪E1 ∈ X implies that h(fE0) ∪ h(fE1) = h(fE0∪E1). Moreover, if
fE0\E1 ∈ X, then h(FE0) \ h(fE1) = h(fE0\E1).

(5) If E0 ⊆ E1 ⊆ Vζ with fE0 , fE1 ∈ X, then h(fE0) ⊆ h(fE1).

Proof. (1) Fix an L′-formula ϕ(v0, . . . , vn−1) and g0, . . . , gn−1 ∈ X with A |= ϕ(g0(A), . . . , gn−1(A))

for all A ∈ C∩Vζ . Then A |= Ṫϕ(g0(A), . . . , gn−1(A)) holds for all A ∈ C∩Vζ . By the definition of the

product structure, this implies that
∏

(C∩Vζ) |= Ṫϕ(g0, . . . , gn−1) and hence X |= Ṫϕ(g0, . . . , gn−1).

Since h is a homomorphism, this shows that B |= Ṫϕ(h(g0), . . . , h(gn−1)) holds, and therefore
B |= ϕ(h(g0), . . . , h(gn−1)).

(2) Pick x ∈ Vκ with h(fx) 6= u̇B . Given A ∈ C ∩ Vζ , we have

A |= “fx(A) 6= u̇ −→ fx(A) is an element of Vκ̇”.

Using (1), the fact that h(fx) 6= u̇B now directly implies that h(fx) is an element of VκB .
(3) This implication follows directly from the combination of (1) and (2).
(4) Since the given definitions ensure that fE0(A) ∩ fE1(A) = fE0∩E1(A), fE0(A) ∪ fE1(A) =

fE0∪E1(A), and fE0(A) \ fE1(A) = fE0\E1(A), for all A ∈ C ∩ Vζ , the desired implications follow
immediately from (1).

(5) Since our assumptions imply that E0 ∩ E1 = E0, a combination of (1) and (4) shows that
h(fE0) ∩ h(fE1) = h(fE0) and hence h(fE0) ⊆ h(fE1). �

Note that we have fκ(A) = u̇A = θA for all A ∈ C ∩ Vζ and this implies that fκ ∈ X with
h(fκ) = u̇B = θB > κB ≥ κ. In particular, we know that fµ ∈ X holds for all ordinals µ ≤ κ.

Lemma 5.2. Suppose that µ is an ordinal less than or equal to κ such that h(fµ) 6= µ, fµ ∈ X,
and h(fx) = x for all x ∈ Vµ. Then the following hold:

(1) If E ⊆ Vµ with fE ∈ X, then h(fE) ∩ Vµ = E.
(2) If h(fµ) = u̇B, then h(fµ) = κB.
(3) If h(fµ) 6= u̇B, then h(fµ) = h(fµ) < κB.
(4) µ is a strong limit cardinal.
(5) If there exists E ⊆ µ of order-type cof(µ) with fE ∈ X and either µ < h(fµ) or κA < κB

holds for all A ∈ C ∩ Vζ , then µ is regular and, by (4), it follows that µ is an inaccessible
cardinal.

(6) f∅ ∈ X with h(f∅) = ∅ and, if f [µ]<ω ∈ X, then h(f [µ]<ω ) = [h(fµ)]<ω.

Proof. (1) First, pick x ∈ E. For each A ∈ C ∩ Vζ , we have

A |= “fx(A) 6= u̇ −→ fx(A) ∈ fE(A)”.

By Lemma 5.1.(1), the fact that h(fx) = x 6= u̇B implies that x = h(fx) ∈ h(fE). This shows that
E ⊆ h(fE) ∩ Vµ.
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In the other direction, pick x ∈ Vµ \ E. Then

A |= “fx(A) ∈ fE(A) −→ fx(A) = u̇”

holds for all A ∈ C ∩ Vζ , and since h(fx) = x 6= u̇B , by Lemma 5.1.(1) we must have that
x = h(fx) /∈ h(fE). This shows h(fE) ∩ Vµ ⊆ E, thus proving the desired equality.

(2) For each A ∈ C ∩ Vζ , we have

A |= “fµ(A) = u̇ −→ fµ(A) = κ̇”.

By Lemma 5.1.(1), this yields the desired implication.
(3) For each A ∈ C ∩ Vζ , we have

A |= “fµ(A) 6= u̇ −→ fµ(A) = fµ(A) < κ̇”.

The desired implication now follows from another application of Lemma 5.1.(1).
(4) First, note that since h(fµ) 6= µ, Lemma 5.1.(1) directly implies that µ > ω. Now assume,

towards a contradiction, that there is a cardinal ρ < µ with 2ρ ≥ µ. Given A ∈ C ∩Vζ with ρ < κA,

the fact that κA ∈ C(1) implies that 2ρ < κA ≤ κ. Using Lemma 5.1.(1), we can now show that
h(f2ρ) = 2ρ, h(fV2ρ

) = V2ρ and h(fx) ∈ V2ρ for all x ∈ V2ρ . In particular, since h(fµ) 6= µ and
2ρ ≥ µ, we must have µ < 2ρ. Another application of Lemma 5.1.(1) shows that the map

j : V2ρ −→ V2ρ ; x 7→ h(fx)

is an elementary embedding. Since cof(2ρ) > ρ ≥ ω, the Kunen Inconsistency implies that j is the
identity on V2ρ and hence h(fµ) = j(µ) = µ, a contradiction.

(5) Assume, towards a contradiction, that µ is singular and pick E ⊆ µ of order-type cof(µ) with
fE ∈ X. We then have

A |= “[fcof(µ)(A) 6= u̇ ∧ fµ(A) = u̇ ∧ otp
(
fE(A)

)
≥ fcof(µ)(A)]

−→ fE(A) is a cofinal subset of κ̇ of order-type fcof(µ)(A)”

for all A ∈ C ∩ Vζ . By Lemma 5.1.(1), and the assumption that h(fx) = x for all x ∈ Vµ, which in
particular yields h(fcof(µ)) = cof(µ), we have that

B |= “[cof(µ) 6= u̇ ∧ h(fµ) = u̇ ∧ otp
(
h(fE)

)
≥ cof(µ)]

−→ h(fE) is a cofinal subset of κ̇ of order-type cof(µ)”.

Claim. h(fµ) 6= u̇B.

Proof of the Claim. Assume, towards a contradiction, that h(fµ) = u̇B . Since (1) shows that we
have otp

(
h(fE)

)
≥ otp (E) = cof(µ), a combination of the above observation with the fact that

cof(µ) < µ ≤ κ < u̇B then shows that µ = κB = sup(E). By (2), this also shows that h(fµ) = µ
and our assumptions imply that κA < κB holds for all A ∈ C ∩ Vζ . But then Lemma 5.1.(1) allows
us to find A ∈ C ∩ Vζ with cof(µ) < κA ≤ µ and κA = sup(E) = κB , contradicting the fact that
κA < κB holds for all A ∈ C ∩ Vζ . �

Now using Lemma 5.1.(1) again, the fact that

A |= “fµ(A) 6= u̇ −→ otp
(
fE(A)

)
= fcof(µ)(A) ∧ fµ(A) = sup(fE(A))”

holds for all A ∈ C ∩ Vζ , implies that otp
(
h(fE)

)
= cof(µ) and h(fµ) = sup(h(fE)). Since

E ⊆ h(fE), this implies h(fµ) = sup(E) = µ, contradicting our initial assumptions.
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(6) Since f∅(A) = ∅ = f∅(A) holds for all A ∈ C∩Vζ , we know that f∅ ∈ X and Lemma 5.1.(1)

directly implies that h(f∅) = ∅. Next, assume that f [µ]<ω ∈ X and note that we have

f [µ]<ω (A) = [µ]<ω ∩ VκA = [µ ∩ κA]<ω = [fµ(A)]<ω

for all A ∈ C ∩ Vζ . By Lemma 5.1.(1), this implies that h(f [µ]<ω ) = [h(fµ)]<ω. �

Lemma 5.3. Let µ be as in Lemma 5.2 and assume, moreover, that µ < h(fµ) and fE ∈ X for
all E ⊆ Vµ. Set ν = h(fµ) and define

Ea = {E ⊆ [µ]|a| | a ∈ h(fE)}

for all a ∈ [ν]<ω. Then the resulting system

E = 〈Ea | a ∈ [ν]<ω〉

is a (µ, ν)-extender (as defined in [22, pp. 354–355]).

Proof. We prove the lemma through a series of claims.

Claim. For every a ∈ [ν]<ω, the collection Ea is a <µ-complete ultrafilter on [µ]|a|.

Proof of the Claim. First, note that a combination of clauses (4) and (5) of Lemma 5.1 and Lemma
5.2.(6) shows that Ea is an ultrafilter on [µ]|a|. Now, fix ρ < µ and a sequence 〈Eα | α < ρ〉 of
elements of Ea. Define G =

⋂
{Eα | α < ρ} and H = {〈x, α〉 | α < ρ, x ∈ Eα} ⊆ Vµ. Given

A ∈ C ∩ Vζ with ρ ≤ κA, the fact that µ and κA are both cardinals implies that

x ∈ fEα(A) = Eα ∩ [κA]|a| ⇐⇒ 〈x, α〉 ∈ fH(A) = H ∩ VκA
holds for all α < ρ and this allows us to conclude that

fG(A) = {x ∈ [fµ(A)]|a| | 〈x, α〉 ∈ H for all α < ρ}.

Since h(fα) = α for all α ≤ ρ, we can use Lemma 5.1.(1) to show that

h(fEα) = {x ∈ [ν]|a| | 〈x, α〉 ∈ h(fH)}

for all α < ρ and

a ∈
⋂
{h(fEα) | α < ρ} = {x ∈ [ν]|a| | 〈x, α〉 ∈ h(fH) for all α < ρ} = h(fG).

This proves that
⋂
{Eα | α < ρ} ∈ Eα. �

Claim. E{µ} is not <µ+-complete.

Proof of the Claim. Given α < µ, set Eα = {{β} | α < β < µ} ⊆ [µ]1. For each α < µ, Lemma
5.1.(1) then implies that h(fEα) = {{β} | α < β < ν} and this shows that Eα ∈ E{µ}. But⋂
{Eα | α < µ} = ∅ and this yields the statement of the claim. �

Claim. If α < µ, then E{α} = {x ⊆ [µ]1 | {α} ∈ x}.

Proof of the Claim. Fix x ⊆ [µ]1. If {α} ∈ x, then

A |= “fα(A) 6= u̇ −→ f{α}(A) ∈ fx(A)”

holds for all A ∈ C∩Vζ , and hence Lemma 5.1.(1) implies that {α} = h(f{α}) ∈ h(fx), which yields

x ∈ E{α}. In the other direction, if x ∈ E{α}, then {α} ∈ h(fx) ∩ [µ]1 and Lemma 5.2.(1) implies
that {α} ∈ x. �
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Given a ⊆ b ∈ [ν]<ω, we let πb,a : [µ]|b| −→ [µ]|a| denote the canonical induced map, i.e. if
β0 < . . . < β|b|−1 is the monotone enumeration of b and i0 < . . . < i|a|−1 is the unique strictly
increasing sequence of natural numbers less than |b| such that a = {βi0 , . . . , βi|a|−1

}, then

πb,a(x) = {αi0 , . . . , αi|a|−1
}

for all x ∈ [µ]|b| with monotone enumeration α0 < . . . < α|b|−1.

Claim (Coherence). If a ⊆ b ∈ [ν]<ω, then Ea = {E ⊆ [µ]|a| | π−1
b,a [E] ∈ Eb}.

Proof of the Claim. Given A ∈ C ∩ Vζ , let πAb,a : [fµ(A)]|b| −→ [fµ(A)]|a| denote the induced
canonical projection map.

Fix E ⊆ [µ]|a|. If A ∈ C ∩ Vζ is such that µ < κA, then we have fµ(A) = µ, fE(A) = E,

fπ
−1
b,a[E](A) = π−1

b,a [E], πAb,a = πb,a, and hence

x ∈ fπ
−1
b,a[E](A) ⇐⇒ πAb,a(x) ∈ fE(A)

for all x ∈ [fµ(A)]|b|. In the other case, namely if µ ≥ κA, then we have fµ(A) = κA, fE(A) =

E ∩ VκA , fπ
−1
b,a[E](A) = (π−1

b,a [E]) ∩ VκA and therefore

x ∈ fπ
−1
b,a[E](A) ⇐⇒ πb,a(x) = πAb,a(x) ∈ E ⇐⇒ πAb,a(x) ∈ fE(A)

for all x ∈ [fµ(A)]|b| ⊆ VκA . If we now define π̃b,a : [ν]|b| −→ [ν]|a| to be the induced canonical

projection map, then an application of Lemma 5.1.(1) yields h(fπ
−1
b,a[E]) = π̃−1

b,a [h(fE)]. This equality
allows us now to conclude that

E ∈ Ea ⇐⇒ π̃b,a(b) = a ∈ h(fE) ⇐⇒ b ∈ h(fπ
−1
b,a[E]) ⇐⇒ π−1

b,a [E] ∈ Eb

holds for all E ⊆ [µ]|a|. �

Claim (Well-foundedness). If 〈an | n < ω〉 is a sequence of elements of [ν]<ω and 〈En | n < ω〉 is
such that En ∈ Ean for all n < ω, then there exists a function

d :
⋃
{an | n < ω} −→ µ

with d[an] ∈ En for all n < ω.

Proof of the Claim. Assume, towards a contradiction, that there exist sequences 〈an | n < ω〉 and
〈En | n < ω〉 witnessing that the claim fails. Then by the previous Claim (Coherence) we may
assume that |an| = n, an+1 = an ∪{max(an+1)} and En+1 ⊆ π−1

an+1,anEn hold for all n < ω. Define

T to be the subset of <ωµ consisting of all strictly increasing sequences t with ran(t) ∈ Elh(t). Our
assumptions then imply that T is a subtree of <ωµ. Moreover, it follows that T is well-founded,
because if c : ω −→ µ was a cofinal branch through T , then the map

d :
⋃
{an | n < ω} −→ µ; max(an+1) 7→ c(n)

would satisfy d[an] ∈ En for all n < ω. For each A ∈ C ∩ Vζ ,
A |= “fT (A) is a well-founded subtree of <ωfµ(A)”.

Hence, by Lemma 5.1.(1) and the fact P(µ) ⊆ VθB , we have that h(fT ) is a well-founded subtree
of <ων.

Define E = {〈x, n〉 | n < ω, x ∈ En} ⊆ Vµ. Given n < ω, we have

A |= “fEn(A) = {x ∈ [fµ]n | 〈x, n〉 ∈ fE(A)}”
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for all A ∈ C ∩ Vζ , and hence h(fEn) = {x ∈ [ν]n | 〈x, n〉 ∈ h(fE)}. Moreover, since we also have
that

A |= “fT (A) consists of all strictly increasing t in <ωfµ(A) with 〈ran(t), lh(t)〉 ∈ fE(A)”,

we can conclude that h(fT ) consists of all strictly increasing sequences t in <ων with the property
that 〈ran(t), lh(t)〉 ∈ h(fE). Now define

c : ω −→ ν; n 7→ max(an+1).

Given n < ω, we have that ran(c � n) = an ∈ h(fEn), and therefore 〈ran(c � n), n〉 ∈ h(fE). This
shows that c � n ∈ h(fT ) for all n < ω, contradicting the well-foundedness of the tree h(fT ). �

Claim (Normality). If a ∈ [ν]<ω and r : [µ]|a| −→ µ is such that

{x ∈ [µ]|a| | r(x) < max(x)} ∈ Ea,

then there exists a ⊆ b ∈ [ν]<ω with max(a) = max(b) and

{x ∈ [µ]|b| | (r ◦ πb,a)(x) ∈ x} ∈ Eb.

Proof of the Claim. Set E = {x ∈ [µ]|a| | r(x) < max(x)}. Let A ∈ C ∩ Vζ . If µ < κA, then
fr(A) = r, and therefore

fE(A) = E = {x ∈ [fµ(A)]|a| | x ∈ dom(fr(A)), fr(A)(x) < max(x)}.

Now assume µ ≥ κA and let us see that the last equality also holds in this case. If x ∈ fE(A) =
E ∩ VκA , then x ∈ [κA]|a| and r(x) < max(x) < κA, hence x ∈ dom(fr(A)) with fr(A)(x) = r(x).
In the other direction, if x ∈ [fµ(A)]|a| = [κA]|a| with x ∈ dom(fr(A)) and fr(A)(x) < max(x),
then r(x) = fr(A)(x) and x ∈ E.

An application of Lemma 5.1.(1) now yields

h(fE) = {x ∈ [ν]|a| | x ∈ dom(h(fr)), h(fr)(x) < max(x)}.

Since E ∈ Ea, and so a ∈ h(fE), the equality above implies that a ∈ dom(h(fr)) and h(fr)(a) <
max(a). Set b = a ∪ {h(fr)(a)} and

D = {x ∈ [µ]|b| | (r ◦ πb,a)(x) ∈ x}.

Letting π̃b,a : [ν]|b| −→ [ν]|a| be the induced canonical projection, a variation of the above argument
now shows that

h(fD) = {x ∈ [ν]|b| | π̃b,a(x) ∈ dom(h(fr)), (h(fr) ◦ π̃b,a)(x) ∈ x}.

Since π̃b,a(b) = a and h(fr)(a) ∈ b, we can conclude that b ∈ h(fD) and hence D ∈ Eb. �

This completes the proof of the lemma. �

Lemma 5.4. Under the assumptions of Lemma 5.3, the following hold:

(1) The cardinal µ is inaccessible and ν is an element of C(1).
(2) Let E = 〈Ea | a ∈ [ν]<ω〉 be the (µ, ν)-extender given by Lemma 5.3, let

〈〈Ma | a ∈ [ν]<ω〉, 〈ja : V −→Ma | a ∈ [ν]<ω〉〉

denote the induced system of ultrapowers of V and ultrapower embeddings (see [22, p. 355]),
let

〈ia,b : Ma −→Mb | a ⊆ b ∈ [ν]<ω〉
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denote the system of elementary embeddings induced by the projections πb,a : [µ]|b| −→ [µ]|a|

(see [22, p. 354]), let

〈ME , 〈ka : Ma −→ME | a ∈ [ν]<ω〉〉
denote the direct limit of the directed system

〈〈Ma | a ∈ [ν]<ω〉, 〈ia,b : Ma −→Mb | a ⊆ b ∈ [ν]<ω〉〉
and let jE : V −→ME denote the induced embedding. We then have crit (jE) = µ, jE(µ) ≥ ν
and Vν ⊆ME .

Proof. (1) Since we assumed that µ < h(fµ), Lemma 5.2.(5) directly implies that µ is inaccessible.
Given A ∈ C ∩ Vζ , we have fµ(A) ∈ {µ, κA} ⊆ C(1) and this implies that Vfµ(A) �Σ1 Vκ̇A . Using

Lemma 5.1.(1), we now know that Vν �Σ1
VκB and, since κB ∈ C(1), we can conclude that ν ∈ C(1).

(2) By [22, Lemma 26.2.(b)], we have crit (jE) = µ and jE(µ) ≥ ν. Fix a bijection g : [µ]1 −→ Vµ
with the property that g[[ρ]1] = Vρ holds for every ρ ∈ C(1)∩µ. Next, for every A ∈ C ∩Vζ we have
that

A |= “fg(A) is a bijection between [fµ(A)]1 and Vfµ(A) ”.

Hence, by Lemma 5.1.(1), we know that h(fg) is a bijection between [ν]1 and Vν . Also, elementarity

ensures that jE(g) is a bijection between [jE(µ)]1 and VMEjE(µ) with the property that jE(g)[[ρ]1] = VMEρ

holds for all ρ in (C(1))ME less than or equal to jE(µ). Now, since (1) shows that ν ∈ C(1) and
being in C(1) is a Π1-property, we know that ν ∈ (C(1))ME . Thus, jE(g)[[ν]1] = VMEν , and the map

ι = jE(g) ◦ h(fg)−1 : Vν −→ VMEν

is a bijection.

Claim. ι = idVν .

Proof of the Claim. Since Vν and VMEν are transitive, it is sufficient to show that ι is an ∈-
homomorphism. Thus, let x0, x1 ∈ Vν . As h(fg) : [ν]1 −→ Vν is a bijection, let a0, a1 ∈ [ν]1

be the preimages under h(fg) of x0 and x1, respectively. Set a = a0 ∪ a1 and

E = {x ∈ [µ]|a| | g(πa,a0
(x)) ∈ g(πa,a1

(x))}.
Given A ∈ C ∩ Vζ , the fact that g[[fµ(A)]1] = Vfµ(A) implies that fg(A) = g � [fµ(A)]1 and hence

fE(A) = {x ∈ [fµ(A)]|a| | fg(A)(πa,a0
(x)) ∈ fg(A)(πa,a1

(x))}.
By Lemma 5.1.(1), this shows that

h(fE) = {x ∈ [ν]|a| | h(fg)(πa,a0
(x)) ∈ h(fg)(πa,a1

(x))}.
Thus, we have the following equivalences:

x0 ∈ x1 ⇐⇒ h(fg)(a0) ∈ h(fg)(a1) ⇐⇒ a ∈ h(fE) ⇐⇒ E ∈ Ea

and the latter, by the definition of E and the ultrapower map ja : V −→Ma, is equivalent to

ja(g)([πa,a0 ]Ea) ∈ ja(g)([πa,a1 ]Ea).

By applying the map ka to the last displayed sentence, and using the fact that jE = ka ◦ ja,
ka0

= ka ◦ ia0,a, and ia0,a([id|a0|]Ea0
) = [id|a0| ◦ πa0,a]Ea = [πa0,a]Ea , and similarly for a1, we have

that

jE(g)(ka0([id|a0|]Ea0
)) ∈ jE(g)(ka1([id|a1|]Ea1

)).
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Now, as in [22, Lemma 26.2.(a)], ka0([id|a0|]Ea0
) = a0, and similarly for a1. Thus the last displayed

sentence is equivalent to the first term of the following chain of equivalences

jE(g)(a0) ∈ jE(g)(a1)⇐⇒ ι(h(fg)(a0)) ∈ ι(h(fg)(a1))⇐⇒ ι(x0) ∈ ι(x1).

We have thus shown that x0 ∈ x1 if and only if ι(x0) ∈ ι(x1), which proves the Claim. �

The above claim shows that Vν = range(ι) ⊆ME , and thus Vν ⊆ME . �

We shall end this section with the following lemma, which will be used in the proofs of Theorems
1.30 and 1.34, given in Sections 6 and 8 below.

Lemma 5.5. If we define

λ = min{rnk(x) | fx ∈ X, h(fx) = u̇B},

then the following statements hold:

(1) λ is a limit ordinal with λ ≤ κ and h(fλ) = u̇B.
(2) If x ∈ Vλ with h(fx) 6= x, then there exists α ≤ rnk(x) with α < h(fα).
(3) If we define

χ = sup{h(fα) | α < λ},
then χ ≤ κB, rnk(h(fx)) < χ for all x ∈ Vλ and the map

j : Vλ −→ Vχ; x 7→ h(fx)

is a Σ1-elementary embedding.

Proof. (1) First, note that the fact that fκ ∈ X with h(fκ) = u̇B directly implies that λ ≤ κ.
Next, assume, towards a contradiction, that h(fλ) 6= u̇B . Then the above computations show

that λ < κ. Pick a set x ∈ Vκ with rnk(x) = λ and h(fx) = u̇B . An application of Lemma 5.1.(1)
now yields an element A of C∩Vζ with fλ(A) 6= u̇A and fx(A) = u̇A. But then λ < κA and x /∈ VκA ,
a contradiction.

Now, assume, towards a contradiction, that there is an ordinal α with λ = α+1. Then h(fα) 6= u̇B

and λ < κA holds for all A ∈ C ∩Vζ with α < κA. By Lemma 5.1.(1), this implies that h(fλ) 6= u̇B ,
a contradiction.

(2) Assume that there exists x ∈ Vλ with h(fx) 6= x. Let y ∈ Vλ be rank-minimal with h(fy) 6= y.
Set α = rnk(y) ≤ rnk(x) < λ ≤ κ. Then h(fα) 6= u̇B , and Lemma 5.1.(3) shows that h(fα) < κB .
Note that, since y ∈ Vλ, h(fy) 6= u̇B . So, since we have

A |= “fy(A) 6= u̇A −→ fα(A) = rnk(fy(A))”

for all A ∈ C ∩ Vζ , this implies that h(fα) = rnk(h(fy)).
Assume, towards a contradiction, that h(fα) ≤ α. Given z ∈ y, we then have

A |= “fy(A) 6= u̇A −→ fz(A) ∈ fy(A)”

for all A ∈ C ∩ Vζ , and this shows that h(fz) ∈ h(fy). By the minimality of y, this implies that
y ⊆ h(fy) and hence there exists w ∈ h(fy) \ y. We now know that

rnk(w) < rnk(h(fy)) = h(fα) ≤ α = rnk(y)

and therefore the minimality of y implies that h(fw) = w ∈ h(fy). Hence there exists A in C ∩ Vζ
with fy(A) 6= u̇A and fw(A) ∈ fy(A). But then rnk(w) < rnk(y) < κA and hence we can conclude
that w = fw(A) ∈ fy(A) = y, a contradiction.
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(3) First, note that Lemma 5.1.(3) directly implies that χ ≤ κB . Since Lemma 5.1.(1) shows
that rnk(h(fx)) = h(frnk(x)) < χ holds for all x ∈ Vλ, we know that the function j : Vλ −→ Vχ is
well-defined.

In the following, fix a Σ1-formula ϕ(v) and an element x of Vλ. First, assume that ϕ(x) holds
in Vλ. Since (1) shows that λ is a limit ordinal, we can use the fact that ∆0-formulas are absolute
between transitive structures to find an ordinal α < λ with the property that x ∈ Vα and ϕ(x)
holds in Vα. By Σ1-upwards absoluteness, this shows that we have

A |= “fα(A) 6= u̇A −→ Vfα(A) |= ϕ(fx(A))”

for all A ∈ C∩Vζ . Using Lemma 5.1.(1), we now know that ϕ(j(x)) holds in Vj(α) and therefore Σ1-
upwards absoluteness implies that ϕ(j(x)) holds in Vχ. In the other direction, assume that ϕ(j(x))
holds in Vχ. Since our computations already show that j(α) < j(β) holds for all α < β < λ,
we know that χ = lub{h(fα) | α < λ} and hence we can find α < λ such that ϕ(j(x)) holds in
Vj(α). Another application of Lemma 5.1.(1) then shows that ϕ(x) holds in Vα and Σ1-upwards
absoluteness allows us to conclude that this statement holds in Vλ. �

6. Strongly unfoldable product reflection

We shall give next a proof of Theorem 1.30. Namely, we will show that the following are
equivalent for every cardinal κ:

(1) κ is either strongly unfoldable or a limit of strong cardinals.
(2) The principle WPSRC(κ) holds for every class C of structures of the same type that is

definable by a Σ2-formula with parameters in Vκ.

The implication (1)⇒ (2) follows from a combination of the following lemma and Theorem 1.22.

Lemma 6.1. If κ is a strongly unfoldable cardinal, then WPSRC(κ) holds for every non-empty
class C of structures of the same type that is definable by a Σ2-formula with parameters in Vκ.

Proof. First, note that, since all strongly unfoldable cardinals are elements of C(2) (see Theorem
1.10), Lemma 3.1 shows that C ∩ Vκ 6= ∅. Now, fix a substructure X of

∏
(C ∩ Vκ) of cardinality

at most κ and a structure B in C. Pick a cardinal δ ∈ C(2) greater than κ, with B ∈ Vδ, and an
elementary submodel M of Hκ+ of cardinality κ with the property that Vκ ∪ {X} ∪ <κM ⊆ M .
Since κ ∈ C(2), we know that C ∩ Vκ ∈ M . Using the strong unfoldability of κ, we can find a
transitive set N with Vδ ⊆ N and an elementary embedding j : M −→ N with crit (j) = κ and
j(κ) > δ. Now notice that since δ is in C(2), and therefore in C(1) in the sense of N , and since j(κ)
is an inaccessible cardinal in N , we have that Vδ ≺Σ1 V

N
j(κ), which implies C ∩Vδ ⊆ j(C ∩Vκ). Thus,

B ∈ C ∩ Vδ ⊆ j(C ∩ Vκ), and the function

h : X −→ B; f 7→ j(f)(B)

is a well-defined homomorphism. �

Proof of Theorem 1.30. Let κ be a cardinal with the property that WPSRC(κ) holds for every class
C of structures of the same type that is definable by a Σ2-formula with parameters in Vκ. Then
Lemma 3.1 shows that κ is an element of C(2). Assume, towards a contradiction, that κ is neither
strongly unfoldable nor a limit of strong cardinals. Pick an ordinal α < κ such that the interval
[α, κ) contains no strong cardinals. Given a cardinal ρ that is not strong, we let ηρ denote the least
cardinal δ > ρ such that ρ is not δ-strong. Since the class of ordinals that are not strong cardinal
is definable by a Σ2-formula without parameters, the fact that κ ∈ C(2) implies that the interval



PATTERNS OF STRUCTURAL REFLECTION IN THE LARGE-CARDINAL HIERARCHY 27

(α, κ) is closed under the function ρ 7−→ ηρ, and therefore it contains unboundedly many cardinals
ξ with the property that ηρ < ξ holds for all cardinals α ≤ ρ < ξ. Finally, since [23, Theorem
1.3] implies that κ is not shrewd, basic definability considerations allow us to find an L∈-formula
Φ(v0, v1), a limit ordinal θ > κ and E ⊆ Vκ with the property that Φ(κ,E) holds in Vθ+1 and for
all β < γ < κ, the statement Φ(β,E ∩ Vβ) does not hold in Vγ+1.

Let L′ be the first-order language that extends the language of set theory with a binary relation
symbol Ṡ, constant symbols κ̇, u̇, and ċ, and a unary function symbol ė. Let L denote the first-order
language that extends L′ by an (n+ 1)-ary predicate symbol Ṫϕ for every L′-formula ϕ(v0, . . . , vn)
with (n+ 1)-many free variables, and let SL be the class of structures as defined at the beginning
of Section 5. Namely, SL is the class of all L-structures A such that there exists a cardinal κA in
C(1) and a limit ordinal θA > κA such that the following hold:

(1) The domain of A is VθA+1.
(2) ∈A= ∈ � VθA+1, κ̇A = κA and u̇A = θA.
(3) If ϕ(v0, . . . , vn) is an L′-formula, then

ṪAϕ = {〈x0, . . . , xn〉 ∈ V n+1
θA+1 | A |= ϕ(x0, . . . , xn)}.

Let C denote the class of all A ∈ SL such that the following hold:

• ċA = α < κA.
• The interval [α, κA) contains no strong cardinals.

• ṠA = {〈ρ, γ〉 ∈ κA × κA | ρ is a γ-strong cardinal}.
• If α < δ < κA is a cardinal, then ėA(δ) is a cardinal below κA and is the smallest cardinal
ξ greater than δ that has the property that ηρ < ξ holds for all cardinals α ≤ ρ < ξ.

It is easily seen that the class C is definable by a Σ2-formula with parameter α. In addition,
the fact that κ is an element of C(2) implies that sup{κA | A ∈ C ∩ Vκ} = κ and there exists a
structure B in C with κB = κ and θB = θ. Let C be a cofinal subset of κ of order-type cof(κ).
Given a set x, we define functions fx and fx with domain C ∩ Vκ as in Section 5. Namely, we have
fx(A) = x ∩ VκA for all A ∈ C ∩ Vκ, fx(A) = x for all A ∈ C ∩ Vκ with x ∈ VκA and fx(A) = u̇A

for all A ∈ C ∩ Vκ with x /∈ VκA . Since κ is an element of C(1), we can find a substructure X of∏
(C ∩ Vκ) of cardinality κ with the property that fE ∈ X, fC ∈ X, and fx, f

x ∈ X for all x ∈ Vκ.
By our assumptions, there exists a homomorphism h : X −→ B and we can define

λ = min{rnk(x) | fx ∈ X, h(fx) = u̇B}
and

χ = sup{h(fβ) | β < λ}.
Lemma 5.5 then shows that both λ and χ are less than or equal to κ. Moreover, Lemma 5.5.(1)
shows that h(fλ) = u̇B 6= λ, and this implies that α < λ, because fα(A) 6= u̇A holds for all
A ∈ C ∩ Vκ and, by Lemma 5.1.(1), this implies that h(fα) 6= u̇B . Now, let

µ = min{β ≤ λ | h(fβ) 6= β}.
Then Lemma 5.5.(2) implies that h(fx) = x holds for all x ∈ Vµ. Moreover, since κA < κ holds for
all A ∈ C ∩ Vκ, we can apply Lemma 5.2.(5) to show that µ is an inaccessible cardinal.

Claim. µ < κ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ = κ holds. Since Lemma 5.1.(1)
implies h(fE) ⊆ Vκ, we can apply Lemma 5.2.(1) to conclude that h(fE) = E and hence

B |= Φ(κ̇B , h(fE)).
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Another application of Lemma 5.1.(1) then yields A ∈ C ∩ Vκ with

A |= Φ(κ̇A, fE(A))

and this shows that Φ(κA, E ∩ VκA) holds in VθA+1. Since κA < θA < κ, this contradicts the fact
that E witnesses that κ is not a shrewd cardinal. �

Claim. µ < λ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ < κ. Then Lemma 5.2.(2) shows
that h(fµ) = κ and we can apply Lemma 5.4 to show that µ is a κ-strong cardinal. But this
contradicts the fact that α < µ < ηµ < κ. �

The above claim shows that µ < λ ≤ κ and h(fµ) 6= u̇B . We let

j : Vλ −→ Vχ; x 7→ h(fx)

denote the non-trivial Σ1-elementary embedding with crit (j) = µ that was introduced in Lemma
5.5.(3). As in the proof of Theorem 1.22, we can now use the Σ1-elementarity of j and the Kunen
Inconsistency to conclude that α < µ. Since α < µ < λ ≤ κ, we can now pick a cardinal µ < ξ < κ
that is the minimal cardinal above µ with the property that ηρ < ξ holds for all cardinals α ≤ ρ < ξ.
Given A ∈ C ∩ Vκ with µ < κA, we then have ξ = ėA(µ) < κA. Using Lemma 5.1.(1), this shows
that h(fξ) 6= u̇B and ξ < λ.

Claim. If n < ω, then jn(µ) < jn+1(µ) < ξ and jn(µ) is a jn+1(µ)-strong cardinal.

Proof of the Claim. Since µ < κ and Lemma 5.2.(3) shows that j(µ) = h(fµ), we can apply Lemma
5.4 to conclude that µ is j(µ)-strong and this implies that µ < j(µ) < ηµ < ξ. Now, assume that
for some n < ω, we have jn(µ) < jn+1(µ) < ξ and jn(µ) is a jn+1(µ)-strong cardinal. Then

〈jn(µ), jn+1(µ)〉 ∈ ṠA for all A ∈ C ∩ Vκ with ξ < κA and the fact that h(fξ) 6= u̇B allows us

to use Lemma 5.1.(1) to show that 〈jn+1(µ), jn+2(µ)〉 ∈ ṠB . Hence, we know that jn+1(µ) is a
jn+2(µ)-strong cardinal and jn+1(µ) < jn+2(µ) < ηjn+1(µ) < ξ. �

We can now define
τ = sup

n<ω
jn(µ) ≤ ξ < λ,

apply Lemma 5.5.(1) to show that λ is a limit ordinal, and use the Σ1-elementarity of j to conclude
that j(Vτ+2) = Vτ+2. Since this entails that j � Vτ+2 : Vτ+2 −→ Vτ+2 is a non-trivial elementary
embedding, we again derived a contradiction to the Kunen Inconsistency.

The above computations yield a proof of the implication (2)⇒ (1) of Theorem 1.30. The converse
implication (1)⇒ (2) follows directly from a combination of Theorem 1.22 and Lemma 6.1. �

7. A Lemma about Weak Product Structural Reflection

Recall (see Definition 1.29) that for a class C of structures of the same type and a cardinal κ,
the principle WPSRC(κ) asserts that C ∩ Vκ 6= ∅ and for every substructure X of

∏
(C ∩ Vκ) of

cardinality at most κ and every B ∈ C, there exists a homomorphism from X to B. We now prove
a lemma that will be used in the proof of Theorem 1.34, given in the next section.

Lemma 7.1. Let δ be an uncountable cardinal with the property that for every set C of structures
of the same type with C ⊆ Vδ, there exists a cardinal κ < δ such that WPSRC(κ) holds. Then δ is
inaccessible.

Proof. We start by proving a series of claims.
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Claim. δ is a limit cardinal.

Proof of the Claim. Assume, towards a contradiction, that there exists a cardinal γ < δ satisfying
γ+ = δ. Let L denote the trivial first-order language, let A be the L-structure with domain Vγ and
set C = {A}. Then C ∩ Vκ = ∅ for all cardinals κ < δ, contradicting our assumption. �

Claim. cof(δ) > ω.

Proof of the Claim. Assume, towards a contradiction, that cof(δ) is countable. Pick a strictly
increasing sequence 〈δn | n < ω〉 of cardinals that is cofinal in δ and let L denote the first-order
language that extends the language of group theory by a constant symbol ġ. Given 1 < n < ω, fix
an L-structure Gn such that δn < rnk(Gn) < δn+1 and the reduct of Gn to the language of group
theory is the sum of δn-many copies of the cyclic group of order n and ġGn is an element of order
n in this group. Set C = {Gn | 1 < n < ω} ⊆ Vδ. Then there exists a cardinal κ < δ with the
property that WPSRC(κ) holds. Let X be a substructure of

∏
(C ∩ Vκ) of cardinality at most κ.

Pick a prime number p with δp > κ. Then our assumption yields a homomorphism h : X −→ Gp
and our setup ensures that (ġX)(p−1)! is the neutral element of X. But this implies that (ġGp)(p−1)!

is the neutral element of Gp, contradicting the fact that ġGp has order p in Gp. �

Claim. |Vcof(δ)| ≥ δ.

Proof of the Claim. Assume, towards a contradiction, that |Vcof(δ)| < δ. Then cof(δ) < δ and we
can pick a strictly increasing sequence 〈δξ | ξ < cof(δ)〉 of cardinals greater than |Vcof(δ)| that is
cofinal in δ. Let L denote the first-order language that extends L∈ by a constant symbol ċ, a unary
relation symbol Ṁ and an (n+ 1)-ary relation symbol Ṙϕ for every L∈-formula ϕ ≡ ϕ(v0, . . . , vn)
with n + 1 free variables. Given ξ < cof(δ), let Aξ denote the unique L-structure with L∈-reduct

〈Vδξ ,∈〉 that satisfies ċAξ = ξ, ṀAξ = Vcof(δ) and

Ṙ
Aξ
ϕ = {〈x0, . . . , xn〉 ∈ V n+1

cof(δ) | Vcof(δ) |= ϕ(x0, . . . , xn)}

for every L∈-formula ϕ ≡ ϕ(v0, . . . , vn). Set C = {Aξ | ξ < cof(δ)} ⊆ Vδ. Then there exists a
cardinal κ < δ with the property that WPSRC(κ) holds and the fact that C ∩ Vκ 6= ∅ directly
implies that κ > |Vcof(δ)|. Fix ζ < cof(δ) with the property that δζ > κ. Given x ∈ Vcof(δ), let fx
denote the unique function with domain C∩Vκ and fx(A) = x for all A ∈ C∩Vκ. Since |Vcof(δ)| < κ,
we can find a substructure X of

∏
(C ∩ Vκ) with fx ∈ X for all x ∈ Vcof(δ). Our assumptions then

yield a homomorphism h : X −→ Aζ and, as in the proof of Lemma 5.1.(1), one can now prove the
following statement.

Subclaim. If ϕ(v0, . . . , vn−1) is an L∈-formula and g0, . . . , gn−1 ∈ X with the property that
g0(A), . . . , gn−1(A) ∈ Vcof(δ) and Vcof(δ) |= ϕ(g0(A), . . . , gn−1(A)) hold for all A ∈ C ∩ Vκ, then
h(g0), . . . , h(gn−1) ∈ Vcof(δ) and Vcof(δ) |= ϕ(h(g0), . . . , h(gn−1)). �

If we now define

j : Vcof(δ) −→ Vcof(δ); x 7→ h(fx),

then the above claim shows that j is an elementary embedding. Moreover, since

Vcof(δ) |= fζ(A) 6= ċA

holds for all A ∈ C ∩ Vκ, the subclaim shows that j(ζ) 6= ċAζ = ζ and this allows us to conclude
that j is a non-trivial embedding. But this contradicts the Kunen Inconsistency, because cof(δ) is
an uncountable regular cardinal. �
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Claim. |Vξ| < δ for all ξ < cof(δ).

Proof of the Claim. Assume, towards a contradiction, that the statement of the claim fails and let
ξ < cof(δ) be minimal with |Vξ| ≥ δ. The minimality of ξ then yields an ordinal η with ξ = η + 1
and |Vη| < δ. Fix an injective enumeration 〈xγ | γ < δ〉 of subsets of Vη. Moreover, if there exists
a limit cardinal λ of countable cofinality with η ∈ {λ, λ + 1}, then we also fix a cofinal function
d : ω −→ λ. Let L denote the first-order language that extends L∈ by a constant symbol ċ, a
constant symbol ḋn for every natural number n, a unary relation symbol Ṁ and an (n + 1)-ary

relation symbol Ṙϕ for every L∈-formula ϕ ≡ ϕ(v0, . . . , vn) with n+ 1 free variables. Given γ < δ,
let Aγ denote an L-structure such that the following statements hold:

• The L∈-reduct of Aγ is of the form 〈Vρ,∈〉 for some cardinal max(γ, |Vη|) < ρ < δ.

• ċAγ = xγ and ṀAγ = Vη.

• If η ∈ {λ, λ+ 1} for a limit cardinal λ of countable cofinality, then ḋ
Aγ
n = d(n).

• If ϕ ≡ ϕ(v0, . . . , vn) is an L∈-formula, then

ṘAγϕ = {〈z0, . . . , zn〉 ∈ V n+1
η+1 | Vη+1 |= ϕ(z0, . . . , zn)}.

Define C = {Aγ | γ < δ} ⊆ Vδ and pick a cardinal κ < δ with the property that WPSRC(κ) holds.
Then κ > |Vη|, because C ∩ Vκ is non-empty and the domain of every element of C is some Vρ
with ρ greater than |Vη|. Given x ∈ Vη+1, we define fx to be the unique function with domain
C ∩ Vκ and fx(A) = x for all A ∈ C ∩ Vκ. Then there exists a substructure X of

∏
(C ∩ Vκ) of

cardinality at most κ with fVη , fxκ ∈ X and fx ∈ X for all x ∈ Vη. Moreover, our assumption yields
a homomorphism h : X −→ Aκ. Then we again know that for every L∈-formula ϕ(v0, . . . , vn−1)
and all g0, . . . , gn−1 ∈ X such that g0(A), . . . , gn−1(A) ∈ Vη+1 and Vη+1 |= ϕ(g0(A), . . . , gn−1(A))
hold for all A ∈ C ∩ Vκ, we have h(g0), . . . , h(gn−1) ∈ Vη+1 and Vη+1 |= ϕ(h(g0), . . . , h(gn−1)). In
particular, we know that h(fVη ) = Vη and the induced map

j : Vη −→ Vη; x 7→ h(fx)

is an elementary embedding.

Subclaim. The embedding j is non-trivial.

Proof of the Subclaim. Assume, towards a contradiction, that j = idVη . We then have ċA 6= xκ =

fxκ(A) for all A ∈ C ∩ Vκ and hence the above observations show that h(fxκ) 6= ċAκ = xκ. Pick
an element x ∈ Vη that is contained in the symmetric difference of xκ and h(fxκ). Since h(fx) = x
holds, our earlier computations imply that x is an element of xκ if and only if x is an element of
h(fxκ), a contradiction. �

If we now define λ = supn<ω j
n(crit (j)), then λ is a strong limit cardinal of countable cofinality

and the Kunen Inconsistency implies that η ∈ {λ, λ + 1}. But this shows that for some cofinal

function d : ω −→ λ, we have ḋAn = d(n) for all n < ω and A ∈ C. In particular, this implies that

j(d(n)) = ḋAκn = d(n) holds for all n < ω, contradicting the fact that η ≤ λ+ 1. �

Claim. The cardinal δ is regular.

Proof of the Claim. Assume, towards a contradiction, that δ is singular. Since our first claim
shows that |Vcof(δ)| ≥ δ > cof(δ), we can now find an ordinal η < cof(δ) with |Vη| ≥ cof(δ). Fix
an injective sequence 〈xξ | ξ < cof(δ)〉 of elements of Vη. By our second claim, we can also pick a
strictly increasing sequence 〈δξ | ξ < cof(δ)〉 of cardinals greater than |Vη+2| that is cofinal in δ. We
let L denote the first-order language extending L∈ by a constant symbol ċ, a unary relation symbol
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Ṁ and an (n + 1)-ary relation symbol Ṙϕ for every L∈-formula ϕ ≡ ϕ(v0, . . . , vn) with n + 1 free
variables. For every ξ < cof(δ), we let Aξ denote the unique L-structure with L∈-reduct 〈Vδξ ,∈〉
such that ċAξ = xξ, Ṁ

Aξ = Vη+2 and

Ṙ
Aξ
ϕ = {〈y0, . . . , yn〉 ∈ V n+1

η+2 | Vη+2 |= ϕ(y0, . . . , yn)}

for every L∈-formula ϕ ≡ ϕ(v0, . . . , vn). Set C = {Aξ | ξ < cof(δ)} ⊆ Vδ, pick a cardinal κ < δ
with the property that WPSRC(κ) holds and fix ζ < cof(δ) with δζ > κ. Given x ∈ Vη+2, we let fx
denote the unique function with domain C ∩ Vκ and fx(A) = x for all A ∈ C ∩ Vκ. Since our setup
ensures that κ > |Vη+2|, we can now find a homomorphism h : X −→ Aζ for some substructure X
of
∏

(C ∩ Vκ) with fxζ ∈ X and fx ∈ X for all x ∈ Vη+2. As above, we know that

j : Vη+2 −→ Vη+2; x 7→ h(fx)

is an elementary embedding and, by the Kunen Inconsistency, this map is trivial. But then

h(fxζ ) = j(xζ) = xζ = ċAζ

and there exists A ∈ C ∩ Vκ with xζ = fxζ (A) = ċA, a contradiction. �

The above arguments show that δ is a regular cardinal with |Vγ | < δ for all γ < δ and this
directly implies that δ is inaccessible. �

We show how the above lemma can be combined with results in [9] to prove that the following
statements are equivalent for every uncountable cardinal δ:

(1) δ is a Woodin cardinal.
(2) For every set C of structures of the same type with C ⊆ Vδ, there exists a cardinal κ < δ

with the property that the principle PSRC(κ) holds.

Proof of Theorem 1.28. (1)⇒ (2): Let δ be a Woodin cardinal and let C ⊆ Vδ be a set of structures
of the same type. Using [22, Theorem 26.14], we can find a cardinal κ < δ that is γ-strong for
C for all κ < γ < δ, i.e. for all κ < γ < δ, there exists a transitive class M with Vγ ⊆ M and
an elementary embedding j : V −→ M with crit (j) = κ, j(κ) > γ and j(C) ∩ Vγ = C ∩ Vγ . Fix
B ∈ C and pick an inaccessible cardinal κ < γ < δ with B ∈ Vγ and an elementary embedding
j : V −→ M with crit (j) = κ, j(κ) > γ and j(C) ∩ Vγ = C ∩ Vγ . Then we have B ∈ C ∩ Vγ =
j(C) ∩ Vγ ⊆ j(C) ∩ VMj(κ) = j(C ∩ Vκ) and the map

h :
∏

(C ∩ Vκ) −→ B; f 7→ j(f)(B)

is a well-defined homomorphism.
(2)⇒ (1): Assume that δ is an uncountable cardinal with the property that for every set C ⊆ Vδ

of structures of the same type, there exists a cardinal κ < δ with the property that the principle
PSRC(κ) holds. Then Lemma 7.1 implies that δ is inaccessible. A direct adaptation of the proof of
[9, Theorem 5.13] then shows that δ is a Woodin cardinal. �

8. Subtle product reflection

We will next give a proof of Theorem 1.34. Namely, we will show that the following statements
are equivalent for every uncountable cardinal δ:

(1) δ is a subtle cardinal.
(2) For every set C of structures of the same type with C ⊆ Vδ, there exists a cardinal κ < δ

with the property that the principle WPSRC(κ) holds.
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The implication (1)⇒ (2) is given by the following lemma:

Lemma 8.1. If δ is a subtle cardinal and C ⊆ Vδ is a non-empty set of structures of the same type,
then there exists an inaccessible cardinal κ < δ such that WPSRC(κ) holds.

Proof. Assume, towards a contradiction, that the above conclusion fails. Given an inaccessible
cardinal κ < δ, fix a substructure Xκ of

∏
(C ∩Vκ) of cardinality κ and an ordinal ξκ < δ such that

there exists a structure Bκ ∈ C ∩ Vξκ with the property that there is no homomorphism from Xκ

into Bκ. Then there exists a closed unbounded subset C of δ that consists of strong limit cardinals
and has the property that whenever κ is an inaccessible cardinal in C, then ξκ < min(C \ (κ+ 1)).
In addition, fix a bijection bκ : κ −→ Xκ for every inaccessible cardinal κ < δ.

Let L denote the signature of C and fix an enumeration 〈ϕk | k < ω〉 of all L-formulas. Pick a
δ-list 〈Dα | α < δ〉 such that the following statements hold for all α < δ:

• If α is inaccessible, then Dα is the set of all elements of α of the form6 ≺0, k, α0, . . . , αn−1�,
where ϕk is an n-ary L-formula, α0, . . . , αn−1 < α and

Xα |= ϕk(bα(α0), . . . , bα(αn−1)).

• If α is a singular limit cardinal of cofinality λ, then there exists a cofinal function cα : λ −→ α
with cα(0) = 0 and Dα = {≺1, λ, ξ, c(ξ)� | ξ < λ}.

Using the subtleness of δ, we can now find ordinals κ < θ in C with Dκ = Dθ ∩ κ.

Claim. The ordinals κ and θ are both inaccessible cardinals.

Proof of the Claim. First, note that the definition of C implies that both κ and θ are strong limit
cardinals. Now, assume that κ is a singular strong limit cardinal. Then we have

≺1, cof(κ), 0, 0� ∈ Dκ ⊆ Dθ

and this shows that θ is also singular with cof(κ) = cof(θ). Moreover, it follows that cκ = cθ and
hence ran(cθ) ⊆ κ < θ, a contradiction. Thus we have shown that κ is inaccessible, and therefore
there is some k < ω such that ≺0, k� ∈ Dκ ⊆ Dθ. By the definition of the list 〈Dα | α < δ〉 this
shows that θ is also an inaccessible cardinal. �

If we now define

b = bθ ◦ b−1
κ : Xκ −→ Xθ,

then the above setup ensures that b is an elementary embedding. Note that the definition of C
implies that Bκ ∈ C ∩ Vθ and therefore we know that the map

p : Xκ −→ Bθ; f 7→ b(f)(Bκ)

is a homomorphism of L-structures. But this allows us to conclude that p ◦ b : Xκ −→ Bκ is a
homomorphism, contradicting our initial assumptions. �

Proof of Theorem 1.34. Let δ be an uncountable cardinal with the property that for every set C
of structures of the same type with C ⊆ Vδ, there exists a cardinal κ < δ with the property that
the principle WPSRC(κ) holds. Lemma 7.1 then shows that δ is inaccessible. Assume, towards a
contradiction, that δ is not a subtle cardinal and fix a closed unbounded subset C of δ and a δ-list
~E = 〈Eγ | γ < δ〉 with the property that Eγ ∩ β 6= Eβ holds for all β < γ in C. Let α denote the
least cardinal of uncountable cofinality in C.

6Here, we let ≺·, . . . , ·� : Ordn+1 −→ Ord denote the iterated Gödel Pairing Function.
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Let L′ denote the first-order language that extends the language of set theory by a unary predicate
symbol Ċ, constant symbols κ̇, u̇, ċ, and unary function symbols ė and ṡ. Let L denote the first-order
language that extends L′ by an (n+ 1)-ary predicate symbol Ṫϕ for every L′-formula ϕ(v0, . . . , vn)
with (n+1)-many free variables, and let SL be the class of L-structures as defined at the beginning
of Section 5. Namely, the class of L-structures A such that there exists a cardinal κA in C(1) and
a limit ordinal θA > κA such that:

(1) The domain of A is VθA+1.
(2) ∈A= ∈ � VθA + 1, κ̇A = κA and u̇A = θA.
(3) If ϕ(v0, . . . , vn) is an L′-formula, then

ṪAϕ = {〈x0, . . . , xn〉 ∈ V n+1
θA+1 | A |= ϕ(x0, . . . , xn)}.

Let C denote the set of all A ∈ SL ∩ Vδ such that the following hold:

• κA is a limit point of C above α.
• ċA = α and ĊA = C ∩ κA.
• If γ < κA, then ėA(γ) = Eγ and ṡA(γ) = min(C \ (γ + 1)).

The fact that δ is inaccessible implies that C is non-empty and hence there exists a cardinal ζ < δ
with the property that WPSRC(ζ) holds. Define

κ = sup{κA | A ∈ C ∩ Vζ} ∈ (α, ζ]

and notice that κ ∈ C(1) ∩ Lim(C). Let D be some cofinal subset of κ of order-type cof(κ). Given
a set x, we again define functions fx and fx with domain C ∩ Vζ as in Section 5. Namely, we have
fx(A) = x ∩ VκA for all A ∈ C ∩ Vζ , fx(A) = x for all A ∈ C ∩ Vζ with x ∈ VκA and fx(A) = u̇A

for all A ∈ C ∩ Vζ with x /∈ VκA . Then there is a substructure X of
∏

(C ∩ Vζ) of cardinality κ with
the property that fD, fEκ ∈ X and fx, f

x ∈ X for all x ∈ Vκ. Moreover, since δ is inaccessible, we
can find a structure B in C with κB > ζ. By WPSRC(ζ), there is a homomorphism h : X −→ B.
Using the results of Section 5, we can define

λ = min{rnk(x) | fx ∈ X, h(fx) = u̇B} ≤ κ

as well as
χ = sup{h(fβ) | β < λ} ≤ κB .

Since h(fα) = ċB = α 6= u̇B , we have that α < λ.

Claim. λ ∈ C.

Proof of the Claim. Assume, towards a contradiction, that λ /∈ C. We then have α ∈ C ∩ λ 6= ∅
and, if we define β = sup(C ∩ λ), then β < λ and h(fβ) 6= u̇B . Set γ = min(C \ (β + 1)). If
A ∈ C ∩ Vζ is such that fβ(A) 6= u̇A, then β < κA, γ = ṡA(β) < κA, and hence fγ(A) = γ 6= u̇A.
Thus, for every A ∈ C ∩ Vζ , we have

A |= “fβ 6= u̇A −→ fγ 6= u̇A”.

As h(fβ) 6= u̇B , Lemma 5.1.(1) shows that h(fγ) 6= u̇B and hence γ < λ, which yields a contradiction
to the fact that γ is the least element of C greater than β, and therefore must be greater than λ. �

Now let
j : Vλ −→ Vχ; x 7→ h(fx)

be the Σ1-elementary embedding given by Lemma 5.5.(3). Lemma 5.5.(1) shows that h(fλ) = u̇B 6=
λ and we can define µ ≤ λ to be the minimal ordinal with h(fµ) 6= µ. Then Lemma 5.5.(2) implies
that h(fx) = x holds for all x ∈ Vµ.
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Claim. µ < κ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ = κ holds. Since fEκ ∈ X,
Lemma 5.2.(1) shows that h(fEκ) ∩ κ = Eκ = ėB(κ). Moreover, since κ ∈ C ∩ κB = ĊB , the
cardinal κ witnesses that

B |= “∃β < κ̇ [β ∈ Ċ ∧ h(fEκ) ∩ β = ė(β)] ”.

Using Lemma 5.1.(1), we can now find A ∈ C ∩Vζ and β ∈ C ∩κA with Eκ ∩β = fEκ(A)∩β = Eβ .
But this yields a contradiction, because we have β < κA ≤ κ, and hence β and κ are distinct
elements of C. �

Claim. µ < λ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ holds. The above claims then
show that µ ∈ C ∩ κ. Since fEµ ∈ X, Lemma 5.2.(1) implies that h(fEµ) ∩ µ = Eµ and Lemma
5.5.(1) shows that h(fλ) = u̇B , the ordinal µ witnesses that

B |= “h(fµ) = u̇ ∧ ∃β < κ̇ [β ∈ Ċ ∧ h(fEµ) ∩ β = ė(β)] ”.

Using Lemma 5.1.(1), this yields A ∈ C ∩ Vζ with κA ≤ µ and β ∈ C ∩ κA satisfying Eµ ∩ β =
fEµ(A) ∩ β = Eβ . Since β < µ are both elements of C, this yields a contradiction. �

By the above claims, we now know that µ < λ ≤ κ.

Claim. α < µ.

Proof of the Claim. Assume, towards a contradiction, that µ ≤ α holds. Since we have

j(α) = h(fα) = ċB = α

we must have µ < α. But this implies that j � Vα : Vα −→ Vα is a non-trivial elementary embedding
and, since α has uncountable cofinality, this yields a contradiction via the Kunen Inconsistency. �

Claim. µ ∈ C.

Proof of the Claim. Assume, towards a contradiction, that µ is not an element of C. Since the
previous claim shows that α ∈ C∩µ, we know that β = sup(C∩µ) < µ and γ = min(C\(β+1)) > µ.
We then have γ = ṡA(β) < κA for all A ∈ C ∩ Vζ with µ < κA. Thus for every A ∈ C ∩ Vζ , we have

A |= “fµ(A) 6= u̇A −→ ṡA(fβ(A)) < κ̇A”.

Thus, since an earlier claim shows µ < λ and therefore Lemma 5.1.(1) implies that h(fµ) 6= u̇B , we
know that ṡB(h(fβ)) < κB . Hence, we can conclude that

j(γ) = h(fγ)) = ṡB(h(fβ)) = ṡB(j(β)) = ṡB(β) = γ.

Since Lemma 5.5.(1) ensures that γ + 2 < λ, the Σ1-elementarity of j implies that j(Vγ+2) = Vγ+2

and we can conclude that j � Vγ+2 : Vγ+2 −→ Vγ+2 is a non-trivial elementary embedding, which
yields a contradiction via Kunen Inconsistency. �

Now notice that since µ < λ, Lemma 5.5.(2) yields that h(fµ) 6= u̇B , and since µ < j(µ) = h(fµ),
we have that

B |= “h(fµ) 6= u̇ ∧ ∃β < h(fµ) [β ∈ Ċ ∧ h(fEµ) ∩ β = ė(β)] ”

as witnessed by µ. An application of Lemma 5.1.(1) then yields an A ∈ C ∩ Vζ with κA > µ and
β ∈ C ∩ µ with the property that

Eµ ∩ β = fEµ(A) ∩ β = ėA(β) = Eβ .
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Since β and µ are distinct elements of C, this yields a final contradiction.
The above computations yield the implication (2) ⇒ (1) of the theorem. Since the implication

(1)⇒ (2) follows from Lemma 8.1, this completes the proof of the theorem. �

9. Between strongly unfoldable and subtle cardinals

We shall give in this section a proof of Theorem 1.13. But first we shall prove some properties
of C(n)-strongly unfoldable cardinals, and give other equivalent reformulations of these cardinals
in terms of elementary embeddings. Recall (see Definition 1.12) that an inaccessible cardinal κ is
C(n)-strongly unfoldable if for every ordinal λ ∈ C(n) greater than κ and every transitive ZF−-model
M of cardinality κ with κ ∈ M and <κM ⊆ M , there is a transitive set N with Vλ ⊆ N and an
elementary embedding j : M −→ N with crit (j) = κ, j(κ) > λ and Vλ ≺Σn V

N
j(κ).

Proposition 9.1. C(n)-strongly unfoldable cardinals are elements of C(n+1).

Proof. Let κ be a C(n)-strongly unfoldable cardinal. Pick a Σn+1-formula ϕ(v) and z ∈ Vκ with
the property that ϕ(z) holds in V . Fix λ ∈ C(n+1) greater than κ, so that ϕ(z) holds in Vλ, and fix
an elementary submodel M of Hκ+ of cardinality κ with (κ+ 1)∪ <κM ⊆M . By our assumption,
there exists a transitive set N with Vλ ⊆ N and an elementary embedding j : M −→ N with
crit (j) = κ, j(κ) > λ and Vλ ≺Σn V

N
j(κ). Thus, since ϕ(z) holds in Vλ, it also holds in V Nj(κ), and

hence elementarity implies that ϕ(z) holds in Vκ. �

Clearly, a cardinal is strongly unfoldable if and only if it is C(0)-strongly unfoldable. But more
is true:

Proposition 9.2. A cardinal is strongly unfoldable if and only if it is C(1)-strongly unfoldable.

Proof. Let κ be an inaccessible cardinal, let λ ∈ C(1) be greater than κ, let M be a transitive
ZF−-model of cardinality κ with {κ} ∪ <κM ⊆ M , let N be a transitive set with Vλ ⊆ N , and let
j : M −→ N be an elementary embedding with crit (j) = κ and j(κ) > λ. Then, in N , λ is also in
C(1). So, since j(κ) is an inaccessible cardinal in N , hence also in C(1) in the sense of N , we have
that Vλ ≺Σ1

V Nj(κ). �

Proposition 9.3. Given a natural number n, every C(n)-extendible cardinal is C(n+1)-strongly
unfoldable.

Proof. Since C(0)-extendibility coincides with C(1)-extendibility and C(0)-strong unfoldability co-
incides with C(1)-strong unfoldability, we may assume that n is greater than 0. Let κ be a C(n)-
extendible cardinal, let λ > κ be an element of C(n+1) and let M be a transitive ZF−-model of
cardinality κ with κ ∈ M and <κM ⊆ M . Then there is an ordinal µ and an elementary embed-
ding j : Vλ −→ Vµ with crit (j) = κ, j(κ) > λ and j(κ) ∈ C(n). Elementarity now implies that
N = j(M) is a transitive set with Vj(κ) ⊆ N , and our setup ensures that Vλ ≺Σn+1 Vj(κ) = V Nj(κ).

Moreover, the map i = j �M : M −→ N is an elementary embedding with crit (i) = κ, i(κ) > λ
and Vλ ≺Σn+1

V Ni(κ). �

Theorem 9.4. Given a natural number n > 0, the following statements are equivalent for every
cardinal κ:

(1) κ is C(n)-strongly unfoldable.
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(2) For every L∈-formula ϕ(v0, v1), every ordinal γ ∈ C(n) greater than κ, and every subset
A of Vκ with the property that ϕ(κ,A) holds in Vγ , there exist ordinals α < β < κ with

β ∈ C(n) and the property that ϕ(α,A ∩ Vα) holds in Vβ.

(3) For every ordinal γ ∈ C(n) greater than κ and every z ∈ Vγ there exist an ordinal γ̄ ∈
C(n) ∩ κ, a cardinal κ̄ < γ̄, an elementary submodel X of Vγ̄ with Vκ̄ ∪ {κ̄} ⊆ X, and an
elementary embedding j : X −→ Vγ with j � κ̄ = idκ̄, j(κ̄) = κ and z ∈ ran(j).

(4) For every ordinal λ ∈ C(n) greater than κ, every transitive ZF−-model M of cardinality
κ with κ ∈ M and <κM ⊆ M , and every Πn−1-formula ψ(v0, v1) with the property that
ψ(M,κ) holds, there is a transitive set N with Vλ ⊆ N and an elementary embedding
j : M −→ N such that crit (j) = κ, j(κ) > λ, Vλ ≺Σn V

N
j(κ), and ψ(N, j(κ)) holds.

Proof. First, note that, by a well-known result of Levy (see [22, Proposition 6.2]), the assumption (2)
implies that κ is an inaccessible cardinal. And also each of (3) and (4) implies that κ is inaccessible,
since so are the critical points of elementary embeddings of sufficiently reach transitive models.

(1) ⇒ (2): Assume that (1) holds and fix an L∈-formula ϕ(v0, v1), an ordinal γ ∈ C(n) greater
than κ, and a subset A of Vκ such that ϕ(κ,A) holds in Vγ . Pick an elementary submodel M
of Hκ+ of cardinality κ with {κ,A} ∪ <κM ⊆ M and use our assumption to find a transitive set
N with Vγ ⊆ N and an elementary embedding j : M −→ N with crit (j) = κ, j(κ) > γ and
Vγ ≺Σn V

N
j(κ). The ordinals κ and γ then witness that, in N , there are ordinals α < β < j(κ) such

that Vβ ≺Σn Vj(κ) and ϕ(α, j(A) ∩ Vα) holds in Vβ . Using the elementarity of j, we find ordinals
α < β < κ with the property that Vβ ≺Σn Vκ and ϕ(α,A ∩ Vα) holds in Vβ . Since Proposition 9.1

shows that κ ∈ C(n+1), we also have that β is in C(n).
(2)⇒ (3): Assume that (2) holds. Pick an ordinal γ ∈ C(n) greater than κ, and an element z of

Vγ . Let ϕ(v0, v1) be an L∈-formula with the property that for every ordinal λ and all A, δ ∈ Vλ, the
statement ϕ(A, δ) holds in Vλ if and only if λ is a limit ordinal and there exists an ordinal ε > δ, a
subset X of Vε and a bijection b : δ −→ X such that the following statements hold:

• Vε is Σn-correct.
• Vδ ∪ {δ} ⊆ X.
• b(0) = δ and b(ω · (1 + α)) = α for all α < δ.
• If α0, . . . , αn−1 < δ and a ∈ Fml represents a formula with n free variables, then

〈a, α0, . . . , αn−1〉 ∈ A ⇐⇒ Sat(X, 〈b(α0), . . . , b(αn−1)〉, a)

⇐⇒ Sat(Vε, 〈b(α0), . . . , b(αn−1)〉, a),

where Fml denotes the set of formalized L∈-formulas and Sat denotes the formalized satis-
faction relation for L∈-formulas.7

Pick an ordinal λ ∈ C(n) greater than γ, an elementary submodel Y of Vγ of cardinality κ with
Vκ ∪ {κ, z} ⊆ Y and a bijection b : κ −→ Y with b(0) = κ, b(1) = z and b(ω · (1 + α)) = α for all
α < κ. Let A denote the set of all tuples 〈a, α0, . . . , αn−1〉 with the property that a ∈ Fml represents
an L∈-formula with n free variables, α0, . . . , αn−1 < κ and Sat(Y, 〈b(α0), . . . , b(αn−1)〉, a). Then γ,
Y and b witness that the statement ϕ(A, κ) holds in Vλ, and we can use our assumption to find
ordinals κ̄ < β < κ such that β ∈ C(n) and ϕ(A ∩ Vκ̄, κ̄) holds in Vβ . Then there are ordinals
κ̄ < γ̄ < β, a subset X of Vγ̄ and a bijection b̄ : κ̄ −→ X such that Vγ̄ ≺Σn Vβ , Vκ̄ ∪ {κ̄} ⊆ X,

7See [12, Section I.9]. Note that the classes Fml and Sat are defined by Σ1-formulas without parameters.
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b̄(0) = κ̄, b̄(ω · (1 + α)) = α for all α < κ̄ and

〈a, α0, . . . , αn−1〉 ∈ A ∩ Vκ̄ ⇐⇒ Sat(X, 〈b̄(α0), . . . , b̄(αn−1)〉, a)

⇐⇒ Sat(Vγ̄ , 〈b̄(α0), . . . , b̄(αn−1)〉, a)

for all α0, . . . , αn−1 < κ̄ and every a ∈ Fml representing a formula with n free variables. Since
β ∈ C(n) and Vγ̄ ≺Σn Vβ , we have that γ̄ ∈ C(n). Also, the displayed equivalences above show that
X is an elementary submodel of Vγ̄ and, for each L∈-formula ϕ(v0, . . . , vn−1) and α0, . . . , αn−1 < κ̄,
we have

X |= ϕ(b̄(α0), . . . , b̄(αn−1)) ⇐⇒ 〈pϕq, α0, . . . , αn−1〉 ∈ A ∩ Vκ̄
⇐⇒ 〈pϕq, α0, . . . , αn−1〉 ∈ A ⇐⇒ Vγ |= ϕ(b(α0), . . . , b(αn−1)),

where pϕq denotes the canonical element of Fml representing ϕ. In particular, we know that the
map j = b ◦ b̄−1 : X −→ Vγ is an elementary embedding that satisfies j � κ̄ = idκ̄, j(κ̄) = κ and
z ∈ ran(j). This shows that (3) holds.

(3) ⇒ (4): Assume that (3) holds. Fix ordinals λ < γ in C(n) and greater than κ, a transitive
ZF−-model M of cardinality κ with {κ} ∪ <κM ⊆ M , and a Πn−1-formula ψ(v0, v1) such that
ψ(M,κ) holds. Then there exists an ordinal γ̄ ∈ C(n) ∩ κ, a cardinal κ̄ < γ̄, an elementary
submodel X of Vγ̄ with Vκ̄∪{κ̄} ⊆ X, and an elementary embedding j : X −→ Vγ with j � κ̄ = idκ̄,
j(κ̄) = κ and M,λ ∈ ran(j). Pick M̄, λ̄ ∈ X with j(M̄) = M and j(λ̄) = λ. Then M̄ ⊆ X and the
fact that the class C(n) is Πn-definable implies that λ̄ is an also element of C(n). In particular, we
know that Vλ̄ ≺Σn Vκ. Thus, κ, M and j � M̄ witness that there exists a transitive set N and an
elementary embedding k : M̄ −→ N such that λ̄ < k(κ̄), Vλ̄ ⊆ N , Vλ̄ ≺Σn V

N
k(κ̄), crit (k) = κ̄ and

ψ(N, k(κ̄)) holds. Since this statement can be formulated by a Σn-formula with parameters κ̄, M̄
and Vλ̄, the fact that all these parameters are contained in X implies that the statement holds in
X. The elementarity of j and the Σn-correctness of Vγ now yield a transitive set N with Vλ ⊆ N
and an elementary embedding k : M −→ N such that crit (k) = κ, k(κ) > λ, Vλ ≺Σn V Nρ and
ψ(N, k(κ)) holds. This shows that (4) holds.

Since the implication (4) ⇒ (1) is trivial, this completes the proof that all four of the listed
statements are equivalent. �

Remark 9.5. Note that, in the definition of κ being C(n)-strongly unfoldable (Definition 1.12), we
may only require, and obtain an equivalent definition, that for a tail of ordinals λ ∈ C(n) greater
than κ and every transitive ZF−-model M of cardinality κ with κ ∈ M and <κM ⊆ M , there is
a transitive set N with Vλ ⊆ N and an elementary embedding j : M −→ N with crit (j) = κ,
j(κ) > λ and Vλ ≺Σn V Nj(κ). For given any λ′ ∈ C(n) greater than κ, and given M as before,

we can pick λ ≥ λ′ in the tail so that the required N exists. Then N also works for λ, because
Vλ′ ≺Σn Vλ ≺Σn V

N
j(κ), and therefore Vλ′ ≺Σn V

N
j(κ).

The same applies to the equivalent reformulations of C(n)-strong unfoldability given in Theorem
9.4, namely one gets equivalent statements by only requiring that they hold for a tail of λ in C(n).
Let us see this for (2): so suppose (2) holds for a tail of λ ∈ C(n). Given ϕ(v0, v1), γ ∈ C(n) greater
than κ, and A ⊆ Vκ such that ϕ(κ,A) holds in Vγ , pick λ ∈ C(n) in the tail such that the sentence

∃X, δ [X = Vδ ∧ δ ∈ C(n) ∧ Vδ |= ϕ(κ,A)]

holds in Vλ (such a λ exists by the Reflection Theorem, since the sentence is true in V , and therefore
true in Vβ for a closed unbounded class class of β). So, there exist ordinals α < β < κ with β ∈ C(n)
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and the property that the sentence

∃X, δ [X = Vδ ∧ δ ∈ C(n) ∧ Vδ |= ϕ(α,A ∩ α)]

holds in Vβ . If δ witnesses this, then δ ∈ C(n), because Vβ is correct about this.

Corollary 9.6. Given a nautural number n > 1, the following statements are equivalent for every
cardinal κ:

(1) κ is C(n)-strongly unfoldable.
(2) For every cardinal λ ∈ C(n) greater than κ, and every transitive ZF−-model M of cardinality

κ with κ ∈M and <κM ⊆M , there exists an inaccessible cardinal ρ ∈ C(n−1) greater than
λ,8 a transitive set N with ρ ∈ N and <ρN ⊆ N , and an elementary embedding j : M −→ N
with crit (j) = κ and j(κ) = ρ. �

Proof. Assuming (1), the statement (2) follows immediately from (4) of Theorem 9.4 by taking
ϕ(v0, v1) to be the formula that asserts that v1 ∈ C(n−1) and v0 is a transitive ZF−-model of
cardinality v1 with v1 ∈ v0 and <v1v0 ⊆ v0, and by taking ρ = j(κ). That (2) implies (1) is
immediate. �

In particular, this shows that all C(2)-strongly unfoldable cardinals are almost-hugely unfoldable,
as introduced in [19, Definition 4].

The characterizations and properties of C(n)-strongly unfoldable cardinals given in Section 3
can now be put to use to extend the equivalences between strong unfoldability and weak forms of
Structural Reflection given by Theorem 1.10 to any classes of structures of any degree of definitional
complexity.

Lemma 9.7. If κ is C(n)-strongly unfoldable cardinal, then HSR−C (κ) holds for every class C of
structures of the same type that is definable by a Σn+1-formula with parameters in Vκ.

Proof. Pick a Πn-formula ϕ(v0, v1, v2) and an element z of Vκ with the property that

C = {A | ∃x ϕ(A, x, z)}.

Fix a structure B in C of cardinality κ and an ordinal κ < γ ∈ C(n) with the property that ϕ(B, y, z)
holds for some y ∈ Vγ . By Theorem 9.4, we can now find an ordinal γ̄ ∈ C(n) ∩κ, a cardinal κ̄ < γ̄,
an elementary submodel X of Vγ̄ with Vκ̄ ∪ {κ̄} ⊆ X and an elementary embedding j : X −→ Vγ
with j � κ̄ = idκ̄, j(κ̄) = κ and B, z ∈ ran(j). Pick A ∈ Vγ̄ with j(A) = B. Our setup then ensures
that the domain of A is a subset of X, j � A : A −→ B is an elementary embedding and A is an
element of C ∩Hκ. �

We shall next prove Theorem 1.13, which is a generalization of Theorem 1.10 to arbitrary classes
of structures. Namely, we will show that, for every n > 1, the following are equivalent for every
cardinal κ:

(1) κ is either C(n)-strongly unfoldable or a limit of C(n−1)-extendible cardinals.
(2) The principle WSRC(κ) holds for every class C of structures of the same type that is definable

by a Σn+1-formula with parameters in Vκ.
(3) κ ∈ C(n+1) and the principle HSR−C (κ) holds for every class C of structures of the same

type that is definable by a Σn+1-formula with parameters in Vκ.

8Note that these assumptions imply that Vλ ≺Σn Vρ.
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The proof follows similar arguments as that of Theorem 1.10 (given in Section 3), but now using
Proposition 9.1, Lemma 9.7, and the characterization of C(n)-strongly unfoldable cardinals given
in Theorem 9.4 3.

Proof of Theorem 1.13. Assume that κ is not C(n)-strongly unfoldable and the principle WSRC(κ)
holds for every class C of structures of the same type that is definable by a Σn+1-formula with
parameters in Vκ. Lemma 3.1 then shows that κ ∈ C(n+1). In particular, we know that κ is a limit
cardinal and |Vκ| = κ.

Claim. If θ is a cardinal in C(n) greater than κ, y ∈ Vκ, and z ∈ Hθ, then there are cardinals
κ̄ < θ̄ < κ with y ∈ Vκ̄ and θ̄ ∈ C(n), an elementary submodel X of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X, and an
elementary embedding j : X −→ Hθ such that j(κ̄) = κ, j(y) = y and z ∈ ran(j).

Proof of the Claim. Let L denote the first-order language that extends L∈ by three constant sym-
bols and let C denote the class of all L-structures of the form 〈M,∈, µ, a, y〉 such that µ is a cardinal
in C(n), y ∈ Vµ, and there exists a cardinal ν in C(n) greater than µ and an elementary submodel
X of Hν with Vµ ∪ {µ} ⊆ X and the property that M is the transitive collapse of X. Since the

class C(n) is Πn-definable, the class C is definable by a Σn+1-formula with parameter y. Now, let Y
be an elementary submodel of Hθ of cardinality κ with Vκ ∪ {κ, z} and let τ : Y −→ N denote the
corresponding transitive collapse. Thus θ and Y witness that B = 〈N,∈, κ, τ(z), y〉 is an element
of C of cardinality κ. Our assumption WSRC(κ) now yields cardinals κ̄ < θ̄ with κ̄ ∈ C(n) ∩ κ, an
elementary submodel X of Hθ̄ of cardinality less than κ with Vκ̄ ∪ {κ̄} ⊆ X and an elementary
embedding i : M −→ N , with M being the transitive collapse of X, and with i(κ̄) = κ, i(y) = y
and τ(z) ∈ ran(i). Since κ ∈ C(n+1) and M ∈ Vκ, we may assume that θ̄ < κ. Letting π : X −→M
denote the transitive collapse, define

j = τ−1 ◦ i ◦ π : X −→ Hθ.

Then j is an elementary embedding with j(κ̄) = κ, j(y) = y and z ∈ ran(j). �

Claim. If θ is a cardinal in C(n) greater than κ, y ∈ Vκ, and z ∈ Hθ, then there are cardinals
κ̄ < θ̄ < κ with y ∈ Vκ̄ and θ̄ ∈ C(n), an elementary submodel X of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X, and an
elementary embedding j : X −→ Hθ such that j(κ̄) = κ, j(y) = y, z ∈ ran(j), and j � κ̄ 6= idκ̄.

Proof of the Claim. Since we assumed κ is not C(n)-strongly unfoldable, Theorem 9.4.3 and Remark
9.5 show that there exists a cardinal ϑ in C(n) greater than θ, and z′ ∈ Vϑ such that for all cardinals
κ̄ < ϑ̄, with ϑ̄ ∈ C(n) ∩ κ, and all elementary submodels X of Hϑ̄ with Vκ̄ ∪ {κ̄} ⊆ X, there is no
elementary embedding j : X −→ Hϑ such that j � κ̄ = idκ̄, j(κ̄) = κ, and z, z′, θ ∈ ran(j). An
application of our previous claim now yields cardinals κ̄ < ϑ̄ < κ with ϑ̄ ∈ C(n) and y ∈ Vκ̄, an
elementary submodel Y of Hϑ̄ with Vκ̄ ∪ {κ̄} ⊆ Y , and an elementary embedding i : Y −→ Hϑ

such that i(κ̄) = κ, i(y) = y and z, z′, θ ∈ ran(i). Therefore, we must have i � κ̄ 6= idκ̄. Pick θ̄ ∈ Y
with i(θ̄) = θ. Then elementarity implies that θ̄ is a cardinal. Set X = Y ∩Hθ̄ and j = i � X. We
can then conclude that κ̄ < θ̄ < κ, X is an elementary submodel of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X and
j : X −→ Hθ is an elementary embedding with j(κ̄) = κ, j(y) = y, z ∈ ran(j), and j � κ̄ 6= idκ̄. �

Claim. There are unboundedly many cardinals below κ that are C(n−1)-extendible.

Proof of the Claim. Fix an uncountable regular cardinal ρ < κ and a cardinal θ in C(n) above κ. By
our previous claim, we can find cardinals ρ < κ̄ < θ̄ < κ, with θ̄ ∈ C(n), an elementary submodel X
of Hθ̄ with Vκ̄ ∪ {κ̄} ⊆ X, and an elementary embedding i : X −→ Hθ such that i(κ̄) = κ, i(ρ) = ρ
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and i � κ̄ 6= idκ̄. Set j = i � Vκ̄ : Vκ̄ −→ Vκ. Since j is non-trivial, the Kunen’s Inconsistency
implies that j � Vρ = idρ, and so crit (j) > ρ. Define λ = crit (j).

Subclaim. λ ∈ C(n).

Proof of the Subclaim. Fix a Πn−1-formula ϕ(v0, v1) that is absolute between V and Vλ, and a
parameter a ∈ Vλ. In one direction, if ∃x ϕ(a, x) holds in Vλ, then our assumptions on ϕ directly
ensure that this statement also holds in V . In the other direction, assume, towards a contradiction,
that the statement ∃x ϕ(a, x) holds in V and fails in Vλ. First, notice that κ̄ ∈ C(n), because as
θ ∈ C(n), Hθ satisfies “κ ∈ C(n)”, and, by elementarity, the model X, and therefore also Hθ̄, satisfies
“κ̄ ∈ C(n)”, and since θ̄ ∈ C(n), this is true. In particular, the statement ∃x ϕ(a, x) holds in Vκ̄ and
we can find b ∈ Vκ̄ such that the statement ϕ(a, b) holds in Vκ̄, Vκ and V . Now, note that there
exists an ordinal 0 < η ≤ ω with the property that jm(λ) ≤ κ̄ for all m < η and κ̄ ≤ supm<η j

m(λ),
because otherwise we would have jm(λ) < κ̄ for all m < ω and supm<ω j

m(λ) would be a fixed
point of j below κ̄, which is impossible by the Kunen Inconsistency. Hence, we can pick m < ω
minimal with the property that b ∈ Vjm(λ). Our assumptions then imply that m > 0. Moreover,
the minimality of m ensures that jm(λ) < κ. Thus, we know that

Vκ |= ∃x ∈ Vjm(λ) ϕ(x, a),

which, by elementarity, directly implies that

Vκ̄ |= ∃x ∈ Vjm−1(λ) ϕ(x, a).

Since κ, κ̄ ∈ C(n), and therefore Vκ̄ ≺Σn Vκ, this shows that

Vκ |= ∃x ∈ Vjm−1(λ) ϕ(x, a).

By iterating this argument m-many times, we can conclude that

Vκ̄ |= ∃x ∈ Vλ ϕ(x, a)

and our assumptions on ϕ then show that the statement ∃x ϕ(a, x) holds in Vλ, contradicting our
initial assumption. �

For each ordinal α in the interval (λ, κ̄), the restricted map j � Vα : Vα −→ Vj(α) is an elementary

embedding with critical point λ. Note that j(λ) ∈ C(n), because λ ∈ C(n) implies that λ ∈ (C(n))Vκ̄ ,
elementarity ensures that j(λ) ∈ (C(n))Vκ and the fact that κ ∈ C(n) allows us to conclude that
j(λ) ∈ C(n). Now, for each α ∈ (λ, κ̄), the statement “There exists an ordinal β and an elementary
embedding i : Vα −→ Vβ with crit (i) = λ and i(λ) ∈ C(n−1) ” can be formulated by a Σn-formula
with parameters α and λ, and it holds in V . Hence, it also holds in Vκ̄. Thus, in Vκ̄, for every
ordinal α greater than λ, there is an ordinal β and an elementary embedding i : Vα −→ Vβ with

crit (i) = λ and i(λ) ∈ C(n−1). Elementarity then implies that, in Vκ, for every ordinal α greater
than j(λ), there is an ordinal β and an elementary embedding i : Vα −→ Vβ with crit (i) = j(λ)

and i(j(λ)) ∈ C(n−1). Since κ is an element of C(n+1), this statement also holds in V and we can
conclude that j(λ) is a cardinal in the interval (ρ, κ) that is C(n−1)-extendible. �

The above computations directly yield the implication (2) ⇒ (1) of the theorem. Moreover,
the implication (1) ⇒ (3) follows directly from a combination of Theorem 1.4, Proposition 9.1
and Lemma 9.7. This completes the proof of the theorem, because the implication (3) ⇒ (2) is
immediate. �
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We end this section by determining the class-principle corresponding to weak SR, i.e., we show
that the following schemes are equivalent over ZFC:

(1) Ord is essentially subtle.
(2) For every natural number n, there exists a C(n)-strongly unfoldable cardinal.
(3) For every natural number n, there exists a proper class of C(n)-strongly unfoldable cardinals.
(4) For every natural number n and every class C of structures of the same type, there exists

a cardinal κ ∈ C(n) with the property that that HSR−C (κ) holds.

Proof of Theorem 1.17. (1)⇒ (2): Assume that for some natural number m > 1, there are no C(m)-
strongly unfoldable cardinals. Using a canonical coding of both Gödel numbers of L∈-formulas and
subsets of Vκ into subsets of κ for κ ∈ C(1), our assumption allows us to apply Theorem 9.4 to find
an L∈-formula ϕ(v0, v1) with the property that for every cardinal κ in C(1), there exists a subset
E of κ and an ordinal κ < γ ∈ C(m) with the property that ϕ(κ,E) holds in Vγ and ¬ϕ(α,E ∩ α)

holds in Vβ for all α < β < κ with α ∈ C(1) and β ∈ C(m). Now, let E be the unique class function
with domain Ord such that the following statements hold:

• If γ ∈ Ord \ C(1), then E(γ) = P(γ).
• If κ ∈ C(1), then E(κ) consists of all subsets E of κ with the property that there exists an

ordinal κ < γ ∈ C(m) with the property that ϕ(κ,E) holds in Vγ and ¬ϕ(α,E ∩ α) holds

in Vβ for all α < β < κ with α ∈ C(1) and β ∈ C(m).

Assume, towards a contradiction, that there are ρ < κ in C(m+1) and E ∈ E(κ) with E∩ρ ∈ E(ρ).
Then there exists an ordinal ρ < γ ∈ C(m) with the property that ϕ(ρ,E ∩ ρ) holds in Vγ . Since κ

is an element of C(m+1), we can find such a γ that is smaller than κ. But this contradicts the fact
that E is an element of E(κ). These arguments show that Ord is not essentially subtle in this case.

(2) ⇒ (3): Assume that for some natural number m, there are only boundedly many C(m)-
strongly unfoldable cardinals, and let λ denote the least upper bound of the set of all C(m)-strongly
unfoldable cardinals. Since the set {λ} is definable by an L∈-formula without parameter, Proposi-
tion 9.1 implies that for all sufficiently large natural numbers n, there is no C(n)-strongly unfoldable
cardinal.

(3)⇒ (4): This implication follows directly from Proposition 9.1 and Lemma 9.7.
(4)⇒ (1): Assume that for every natural number n and every class C of structures of the same

type, there exists a cardinal κ ∈ C(n) with the property that HSR−C (κ) holds. Let C be a closed
unbounded class of ordinals and let E be a class function on the ordinals with the property that
∅ 6= E(γ) ⊆ P(γ) holds for all γ ∈ Ord. Then there is a natural number n > 0 such that every
element κ of C(n) with the property that Vκ contains the parameters used in the definition of C is
a limit point of C. Let L denote the first-order language that extends L∈ by a constant symbol ḋn
for every natural number n, unary function symbols ė and ṡ, and unary relation symbols Ċ and Ė.
Define C to be the class of L-structures of the form 〈Vρ,∈, 〈dn | n < ω〉, e, s, C ∩ ρ,E〉 such that the
following statements hold:

• ρ ∈ C(n) and Vρ contains the parameters used in the definition of C.
• E ∈ E(ρ).
• If cof(ρ) = ω, then 〈dn | n < ω〉 is a strictly increasing cofinal sequence in ρ.
• e(γ) ∈ E(γ) for all γ < ρ.
• s(γ) = min(C \ (γ + 1)) for all γ < ρ.

By our assumption, there exists κ ∈ C(n) with the property that HSR−C (κ) holds. Then there
exists B in C with domain Vκ and, since |Vκ| = κ, we find A ∈ C ∩ Hκ such that there exists an
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elementary embedding j of A into B. Pick ρ ∈ C(n) with the property that Vρ is the domain of

A. If j is the trivial embedding, then ρ < κ are elements of C and ĖB is an element of E(κ)

with ĖB ∩ ρ = ĖA ∈ E(ρ). In the following, assume that the embedding j is non-trivial and set
λ = crit (j) < ρ.

Claim. λ ∈ C.

Proof of the Claim. Assume, towards a contradiction, that λ /∈ C. Since elementarity implies that
j(min(C)) = min(C), the Kunen Inconsistency ensures that λ > min(C). Set β = sup(C ∩ λ) < λ
and γ = min(C\(β+1)) ∈ (λ, ρ). Then ṡA(β) = γ and hence we have j(γ) = γ and j(Vγ+2) = Vγ+2,
contradicting the Kunen Inconsistency. �

By elementarity, we now know that λ < j(λ) are elements of C and j(ėA(λ)) = ėB(λ) is an
element of E(j(λ)) with j(ėA(λ)) ∩ λ = ėA(λ) ∈ E(λ). These computations show that (1) holds in
this case. �

10. On WPSR for arbitrary classes of structures

We shall deal next with the extension of Theorem 1.30 to arbitrary classes of structures. This is
given by Theorem 1.32. Namely, we will show that for every natural number n > 1, the following
statements are equivalent for every cardinal κ:

(1) κ is either C(n)-strongly unfoldable or a limit of Σn+1-strong cardinals.
(2) The principle WPSRC(κ) holds for every class C of structures of the same type that is

definable by a Σn+1-formula with parameters in Vκ.

The proof will use similar arguments to those in the proof of Theorem 1.30, given in section
6. The implication (1) ⇒ (2) follows from the following C(n)-version of Lemma 6.1, which can be
proved in the same way, using Proposition 9.1.

Lemma 10.1. If n > 0 is a natural number and κ is a C(n)-strongly unfoldable cardinal, then
WPSRC(κ) holds for every non-empty class C of structures of the same type that is definable by a
Σn+1-formula with parameters in Vκ.

Proof. Since Proposition 9.1 ensures that κ ∈ C(n+1), we have ∅ 6= C ∩ Vκ ∈ Hκ+ . Pick a
substructure X of

∏
(C ∩Vκ) of cardinality at most κ, a structure B in C, a cardinal κ < δ ∈ C(n+1)

with B ∈ Vδ, and an elementary submodel M of Hκ+ of cardinality κ with Vκ∪{C∩Vκ, X}∪<κM ⊆
M . Fix a transitive set N with Vδ ⊆ N and an elementary embedding j : M −→ N with crit (j) = κ,
j(κ) > δ and Vδ ≺Σn V

N
j(κ). This setup ensures that B ∈ C ∩ Vδ ⊆ j(C ∩ Vκ) and hence the function

h : X −→ B; f 7→ j(f)(B)

is a well-defined homomorphism. �

Proof of Theorem 1.32. Let n > 0 be a natural number and let κ be a cardinal with the property
that WPSRC(κ) for every class C of structures of the same type that is definable by a Σn+1-formula
with parameters in Vκ. Then Lemma 3.1 shows that κ ∈ C(n+1). Assume, towards a contradiction,
that κ is neither C(n)-strongly unfoldable nor a limit of Σn+1-strong cardinals. Pick an ordinal
α < κ such that the interval [α, κ) contains no Σn+1-strong cardinals. Given a cardinal ρ that
is not Σn+1-strong, we let ηρ denote the least cardinal δ > ρ such that ρ is not δ-Σn+1-strong.
Since the property of not being a Σn+1-strong cardinal can be defined by a Σn+1-formula, and
since κ ∈ C(n+1), the interval (α, κ) is closed under the function ρ 7−→ ηρ, and therefore it contains
unboundedly many cardinals ξ with the property that ηρ < ξ holds for all cardinals α ≤ ρ < ξ.
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Finally, using Theorem 9.4.(2) and some standard fact about definability in models of the form Vη,

we can find an L∈-formula Φ(v0, v1), an ordinal θ > κ in C(n), and E ⊆ Vκ with the property that
Φ(κ,E) holds in Vθ+1 and for all β < γ < κ with γ ∈ C(n) the statement Φ(β,E ∩ Vβ) does not
hold in Vγ+1.

Let L′ be the first-order language that extends the language of set theory with a binary relation
symbol Ṡ, constant symbols κ̇, u̇, and ċ, and a unary function symbol ė. Let L denote the first-order
language that extends L′ by an (n+ 1)-ary predicate symbol Ṫϕ for every L′-formula ϕ(v0, . . . , vn)
with (n + 1)-many free variables, and let SL be the class of structures A such that there exists a
cardinal κA in C(n) and a cardinal θA > κA also in C(n) such that the following hold:

(1) The domain of A is VθA+1.
(2) ∈A= ∈ � VθA+1, κ̇A = κA and u̇A = θA.
(3) If ϕ(v0, . . . , vn) is an L′-formula, then

ṪAϕ = {〈x0, . . . , xn〉 ∈ V n+1
θA+1 | A |= ϕ(x0, . . . , xn)}.

Let C denote the class of all A ∈ SL such that the following statements hold:

• ċA = α < κA.
• The interval [α, κA) contains no Σn+1-strong cardinals.

• ṠA = {〈ρ, γ〉 ∈ κA × κA | ρ is a γ-Σn+1-strong cardinal}.
• If α < δ < κA is a cardinal, then ėA(δ) is a cardinal below κA and is the smallest cardinal
ξ greater than δ that has the property that ηρ < ξ holds for all cardinals α ≤ ρ < ξ.

It is easily seen that the class C is Σn+1-definable with parameter α. In addition, the fact that
κ is an element of C(n+1) implies that sup{κA | A ∈ C ∩ Vκ} = κ and there exists a structure B
in C with κB = κ and θB = θ. Let C be a cofinal subset of κ of order-type cof(κ). Let X be a
substructure of

∏
(C ∩Vκ) of cardinality κ with the property that fC ∈ X, fE ∈ X, and fx, f

x ∈ X
for all x ∈ Vκ. By our assumption, there is a homomorphism h : X −→ B and we define

λ = min{rnk(x) | fx{κ}, h(fx) = u̇B}
and

χ = sup{h(fβ) | β < λ}.
Note that the results of Section 5 imply that λ, χ ≤ κ. Moreover, Lemma 5.5.(2) shows that
h(fλ) = u̇B 6= λ and this implies that α < λ (see the proof of Theorem 1.30). Let

µ = min{β ≤ λ | h(fβ) 6= β}.
and apply Lemma 5.2.(5) to show that µ is an inaccessible cardinal. Moreover, Lemma 5.5.(2)
implies that h(fx) = x holds for all x ∈ Vµ.

Claim. µ < κ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ = κ holds. Since Lemma 5.1.(1)
implies h(fE) ⊆ κ, we can apply Lemma 5.2.(1) to conclude that h(fE) = E and hence

B |= Φ(κ̇, h(fE)).

Another application of Lemma 5.1.(1) then yields A ∈ C ∩ Vκ with

A |= Φ(κ̇, fE(A))

and this shows that Φ(κA, E ∩ VκA) holds in VθA+1. Since κA < θA < κ and θA ∈ C(n), this
contradicts the choice of E. �
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Claim. µ < λ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ < κ. Then Lemma 5.2.(2) shows
that h(fµ) = κ and we can apply Lemmas 5.3 and 5.4 to show that µ is a κ-strong cardinal. The
claim will be proved once we show that µ is a κ-Σn+1-strong cardinal, for this contradicts the fact
that α < µ < ηµ < κ.

Now, [9, Proposition 5.5] shows that µ is a κ-Σn+1-strong cardinal if and only if there exists a
transitive M and an elementary embedding j : V −→ M with crit (j) = µ, j(µ) > κ, Vκ ⊆ M ,
and M |= “κ ∈ C(n)”. Thus, letting E be the (µ, κ)-extender given by Lemma 5.3, and letting
jE : V −→ ME be as in Lemma 5.4, it only remains to show that M̄E |= “κ ∈ C(n)”, where M̄E
is the transitive collapse of ME . Since κ is a limit point of C(n), it suffices to show that if γ < κ
belongs to C(n), then M̄E |= “γ ∈ C(n)”. So, fix such an ordinal γ.

Let f : [µ]1 −→ µ be such that f({x}) = x. It is well known that k{γ}([f ]E{γ}) = γ, where k{γ} :

M{γ} −→ M̄E is the standard map given by k{γ}([g]E{γ}) = π([{γ}, [g]E{γ} ]), for any g : [µ]1 −→ V ,

and where π : ME −→ M̄E is the transitive collapse (see [22, Lemma 26.2(a)]).
Since being a singleton whose unique element belongs to C(n) is a predicate in the language

of every structure A ∈ C ∩ Vκ, letting Z = {{x} ∈ [µ]1 | x ∈ C(n)}, by Lemma 5.1.(1) and, since
h(fµ) = κ and κ ∈ C(n), we have that h maps fZ to the set {{x} ∈ [κ]1 | x ∈ C(n) ∩ Vκ}. Thus,
{γ} ∈ h(Z), and therefore Z ∈ E{γ}. Hence, M{γ} |= “[f ]E{γ} ∈ C(n)”, and therefore we can

conclude that ME |= “[{γ}, [f ]E ] ∈ C(n)”, which yields M̄E |= “γ ∈ C(n)”, as desired. �

The claim above shows that µ < λ ≤ κ and h(fµ) 6= u̇B . So let

j : Vλ −→ Vχ; x 7→ h(fx)

be the non-trivial Σ1-elementary embedding with crit (j) = µ given by Lemma 5.5.(3). Like in the
proof of Theorem 1.22 we may now use the Σ1-elementarity of j and the Kunen Inconsistency to
conclude that α < µ. Since α < µ < λ ≤ κ, we can pick a cardinal µ < ξ < κ that is minimal above
µ with the property that ηρ < ξ holds for all cardinals α ≤ ρ < ξ. Given A ∈ C ∩ Vκ with µ < κA,
we then have ξ = ėA(µ) < κA. Using Lemma 5.1.(1), this shows that h(fξ) 6= u̇B and ξ < λ.

Claim. If i < ω, then ji(µ) < ji+1(µ) < ξ and ji(µ) is a ji+1(µ)-Σn+1-strong cardinal.

Proof of the Claim. Since µ < κ and Lemma 5.2.(3) shows that j(µ) = h(fµ), we can apply Lemma
5.4 and argue as in the last claim above to conclude that µ is j(µ)-Σn+1-strong, and this implies
that µ < j(µ) < ηµ < ξ. Now, assume that for some i < ω, we have ji(µ) < ji+1(µ) < ξ and ji(µ) is

a ji+1(µ)-Σn+1-strong cardinal. Then 〈ji(µ), ji+1(µ)〉 ∈ ṠA for all A ∈ C ∩Vκ with ξ < κA and the

fact that h(fξ) 6= u̇B allows us to use Lemma 5.1.(1) to show that 〈ji+1(µ), ji+2(µ)〉 ∈ ṠB . Hence,
we know that ji+1(µ) is a ji+2(µ)-Σn+1-strong cardinal and ji+1(µ) < ji+2(µ) < ηji+1(µ) < ξ. �

Now, define

τ = sup
i<ω

ji(µ) ≤ ξ < λ,

and apply Lemma 5.5.(2) to show that λ is a limit ordinal and use the Σ1-elementarity of j to
conclude that j(Vτ+2) = Vτ+2. Since this entails that j � Vτ+2 : Vτ+2 −→ Vτ+2 is a non-trivial
elementary embedding, we obtain a contradiction to the Kunen Inconsistency.

The above computations prove the implication (2) ⇒ (1) of the theorem. The implication
(1)⇒ (2) follows directly from Lemma 10.1. �
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We conclude this section with the proof of Theorem 1.33, i.e., we prove that the following schemas
are equivalent over ZFC:

(1) Ord is essentially subtle.
(2) For every non-empty class C of structures of the same type, there exists a cardinal κ such

that WPSRC(κ) holds.

Proof of Theorem 1.33. The implication (1)⇒ (2) follows from a combination of Theorem 1.17 and
Lemma 10.1.

To show that (2) ⇒ (1), assume, aiming for a contradiction, that there is a closed unbounded
class C of ordinals and a class function E with domain Ord and the property that ∅ 6= E(γ) ⊆ P(γ)
holds for all γ ∈ Ord and E ∩ β /∈ E(β) holds for all β < γ in C and E ∈ E(γ). As in the proof of
Theorem 1.34, let α denote the least cardinal of uncountable cofinality in C and let L′ denote the
first-order language that extends L∈ by a unary predicate symbol Ċ, constant symbols κ̇, ċ and
u̇, and unary function symbols ė and ṡ. Then let L denote the first-order language extending L′
by an (n + 1)-ary predicate symbol Ṫϕ for every L′-formula ϕ(v0, . . . , vn) with (n + 1)-many free
variables, and let SL be the class of L-structures as defined at the beginning of Section 5. Now, let
C denote the class of all A ∈ SL such that the following statements hold:

• κA is a limit point of C above α.
• ċA = α and ĊA = C ∩ κA.
• If γ < κA, then ėA(γ) ∈ E(γ) and ṡA(γ) = min(C \ (γ + 1)).

Then C 6= ∅. Assume, towards a contradiction, that there is a cardinal ζ with the property that
WPSRC(ζ) holds. Set

κ = sup{κA | A ∈ C ∩ Vζ} ∈ Lim(C) ∩ C(1) ∩ (α, ζ].

Let D be a cofinal subset of κ of order-type cof(κ), and let E be an element of E(κ).
For each set x, define functions fx and fx as in Section 5. Pick B ∈ C with κB > ζ and ėB(κ) = E.

Fix a substructure X of
∏

(C ∩ Vζ) of cardinality κ such that fD, fE ∈ X and fx, f
x ∈ X for all

x ∈ Vκ. Then there is a homomorphism h : X −→ B and we can define

λ = min{rnk(x) | fx ∈ X, h(fx) = u̇B} ≤ κ

as well as

χ = sup{h(fα) | α < λ} ≤ κB .

Our setup then ensures that α < λ and an argument presented in the proof of Theorem 1.34 shows
that λ ∈ C. Using Lemma 5.5.(3), we know that

j : Vλ −→ Vχ; x 7→ h(fx)

is a Σ1-elementary embedding. Next, Lemma 5.5.(1) allows us to define µ ≤ λ to be the minimal
ordinal with h(fµ) 6= µ. By Lemma 5.5.(2), we then have h(fx) = x for all x ∈ Vµ.

Claim. µ < κ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ = κ holds. Lemma 5.2.(1) now

shows that h(fE) ∩ κ = E = ėB(κ) and hence the cardinal κ ∈ C ∩ κB = ĊB witnesses that

B |= “∃β < κ̇ [β ∈ Ċ ∧ h(fE) ∩ β = ė(β)] ”.

Then Lemma 5.1.(1) yields A ∈ C ∩ Vζ and β ∈ C ∩ κA with E ∩ β = fE(A) ∩ β = ėA(β) ∈ E(β).
Since β < κA ≤ κ, this yields a contradiction. �
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Define E0 = ėB(µ) ∈ E(µ).

Claim. µ < λ.

Proof of the Claim. Assume, towards a contradiction, that µ = λ holds. Then µ ∈ C ∩ κ and
fE0 ∈ X. Lemma 5.2.(1) now implies that h(fE0) ∩ µ = E0 and, since Lemma 5.5.(1) shows that
h(fλ) = u̇B , we have

B |= “h(fµ) = u̇ ∧ ∃β < κ̇ [β ∈ Ċ ∧ h(fE0) ∩ β = ė(β)] ”.

By Lemma 5.1.(1), there is A ∈ C ∩ Vζ with κA ≤ µ and β ∈ C ∩ κA with E0 ∩ β = fE0(A) ∩ β =
ėA(β) ∈ E(β), a contradiction. �

This shows that µ < λ ≤ κ. In addition, arguments already contained in the proof of Theorem
1.34 prove that α < µ ∈ C. Then µ < j(µ) = h(fµ) 6= u̇B and µ witnesses that

B |= “h(fµ) 6= u̇ ∧ ∃β < h(fµ) [β ∈ Ċ ∧ h(fE0) ∩ β = ė(β)] ”.

By Lemma 5.1.(1), there is A ∈ C ∩ Vζ with κA > µ and β ∈ C ∩ µ with E0 ∩ β = fE0(A) ∩ β =
ėA(β) ∈ E(β), a contradiction. �
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ICREA (Institució Catalana de Recerca i Estudis Avançats) and
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