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Abstract. Exacting and ultraexacting cardinals are large cardi-
nal numbers compatible with the Zermelo-Fraenkel axioms of set
theory, including the Axiom of Choice. In contrast with standard
large cardinal notions, their existence implies that the set-theoretic
universe V is not equal to Gödel’s subuniverse of Hereditarily Or-
dinal Definable (HOD) sets.

We prove that the existence of an ultraexacting cardinal is equi-
consistent with the well-known axiom I0; moreover, the existence
of ultraexacting cardinals together with other standard large cardi-
nals is equiconsistent with generalizations of I0 for fine-structural
models of set theory extending L(Vλ+1). We prove tight bounds
on the strength of exacting cardinals, placing them strictly be-
tween the axioms I3 and I2. The argument extends to show that
I2 implies the consistency of Vopěnka’s Principle together with an
exacting cardinal and the HOD Hypothesis. In particular, we ob-
tain the following result: the existence of an extendible cardinal
above an exacting cardinal does not refute the HOD Hypothesis.

We also give several new characterizations of exacting and ul-
traexacting cardinals; first in terms of strengthenings of the axioms
I3 and I1 with the addition of Ordinal Definable predicates, and
finally also in terms of principles of Structural Reflection which
characterize exacting and ultraexacting cardinals as natural two-
cardinal forms of strong unfoldability.
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1. Introduction

Large cardinals are infinite cardinal numbers with structural prop-
erties making them so large that their existence cannot be proved
on the basis of the standard Zermelo-Fraenkel axioms of set theory
with the Axiom of Choice (ZFC). Their existence nonetheless has pro-
found consequences throughout mathematics, leading to applications
in algebra (see e.g., [MS94, EM02, Lav92, BM14]), algebraic topology
(see e.g., [BCMR15]), general topology (see e.g., [Bd23] for an exam-
ple and [KV84] for a collection of surveys), measure theory (see e.g.,
[Sol71, Sol70, SW90]), game theory (see e.g., [MS89, Woo88]), and cat-
egory theory (see e.g., [AR94]). In addition to their applications, large
cardinals are studied for their own sake, as they are one of the main
sources of insight into the nature of infinity and the structure of the
universe of sets (see [Kan03] for a general survey of large cardinals).
Exacting and ultraexacting cardinals are large cardinals recently in-

troduced in [ABL24]. A cardinal λ is called exacting if for every cardi-
nal ζ > λ, there is an elementary substructure X of Vζ (the collection
of all sets of von Neumann rank less than ζ) such that Vλ ∪ {λ} ⊆ X
and an elementary (i.e., truth-preserving) embedding

j : X → Vζ

such that j(λ) = λ and j ↾ λ ̸= Id. We say λ is ultraexacting if we addi-
tionally require that j ↾ Vλ ∈ X. One of the most important properties
of exacting and ultraexacting cardinals is that their existence implies
that V is not equal to HOD, the sub-universe of Hereditarily Ordinal
Definable sets; in other words, they imply that there exist sets that
cannot be defined in any reasonable way. This is in contrast to “tradi-
tional” large cardinals, all of which are consistent with the hypothesis
V = HOD. Moreover, in contrast with all large cardinals studied so far,
ultraexacting cardinals become much stronger in the presence of other
large cardinals, thus calling into question the established idea that large
cardinals form a linear hierarchy of increasing strength. All this poses
a challenge to our current conception of large cardinals, which calls for
a further study of their consistency strength, especially in combination
with other large cardinals, and for obtaining further evidence of their
naturalness as axioms.
The purpose of this article is twofold. First, we settle the ques-

tions concerning the strength of exacting and ultraexacting cardinals
in relation to traditional large cardinals, thereby placing them in their
exact position within the current hierarchy of large cardinals, as well
as the question of whether exacting cardinals suffice to replicate the
“blow-up” behavior of ultraexacting cardinals in the presence of other
large cardinals. Second, we prove new equivalences of these large cardi-
nals with some straightforward enhancements of traditional large car-
dinals, as well as with some simple forms of reflection that generalize
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the reflection properties of traditional large cardinals, attesting to the
naturalness of exacting and ultraexacting cardinals.

It was proved in [ABL24] that ultraexacting cardinals are consistent
relative to the existence of an I0 embedding, i.e., a nontrivial elemen-
tary embedding j : L(Vλ+1) → L(Vλ+1) with j ↾ λ ̸= Id. The first
ordinal moved by such an embedding is a large cardinal, also known as
an I0 cardinal. They were first introduced by Woodin in the 1980s to
establish the consistency of the Axiom of Determinacy, and they are
located at the upper end of the roster of traditional large cardinals.
Our first result, proved in §4, is the converse of this theorem, thus
establishing:

Theorem A. The following are equiconsistent over ZFC:

(1) There exists an I0 embedding.
(2) There exists an ultraexacting cardinal.

Here, recall that axioms T1 and T2 are said to be equiconsistent over
ZFC if the arithmetical formalization of the sentence “ZFC + T1 is
consistent” is equivalent to that of “ZFC + T2 is consistent” (with the
equivalence provable arithmetically).

Theorem A is a corollary of a result that shows how ultraexacting
cardinals fit into a previously studied paradigm for producing large
cardinal-like hypotheses that contradict the HOD Conjecture:

Theorem B. If λ is a cardinal, the following are equivalent:

(1) λ is ultraexacting.
(2) For every ordinal definable A ⊆ Vλ+1 there is a non-trivial ele-

mentary embedding from (Vλ+1, A) to itself.

From this perspective, one can view ultraexacting cardinals as a local
version of the hypothesis that there is an elementary embedding from
HODVλ+1

to itself. This hypothesis was considered by Woodin [Woo10],
who showed that the existence of such a λ above an extendible cardinal
is consistent with ZFC relative to choiceless large cardinal assumptions
[Woo10, p. 335] but contradicts the HOD Conjecture [Woo10, Theo-
rem 199]. Woodin [Woo10, Theorem 200] obtained the same conclusion
using a hypothesis on λ that he showed was consistent with ZFC assum-
ing Con(ZFC+ I0); namely, the existence of an elementary embedding
j : Vλ+1 → Vλ+1 such that for any Σ2-formula φ(x) and any a ∈ Vλ+1,
V ⊨ φ(a) if and only if V ⊨ φ(j(a)). In Corollary 3.7, we show that
this hypothesis is equivalent to λ being ultraexacting.

One of the most novel aspects of ultraexacting cardinals is their non-
trivial interaction with other large cardinals. For instance, in contrast
to Theorem A, the existence of two I0 cardinals is much weaker than
the existence of two ultraexacting cardinals (see [ABL24, Theorem D]).
Our next theorem, proved in §4.3 and of which Theorem A is in fact a
particular case, clarifies this phenomenon:
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Theorem C. Let φ be a formula in the language of set theory. Then,
the following two theories are equiconsistent, modulo ZFC:

(1) There is an ultraexacting cardinal λ and a countably iterable
Mitchell-Steel Vλ+1-premouse M satisfying φ.

(2) There is a countably iterable Mitchell-Steel Vλ+1-premouse M
satisfying φ and an elementary embedding

j : L(Vλ+1,M) → L(Vλ+1,M)

with critical point below λ.

According to Theorem C, ultraexacting cardinals stretch the strength
of large cardinals above them by producing elementary embeddings
which strengthen I0 by incorporating inner models into the domain of
the embedding. It was proved in [ABL24] that the existence of an ul-

traexacting cardinal λ together with V #
λ+1 implies the consistency of a

proper class of I0 cardinals. Theorem C strengthens and generalizes
this fact optimally.

We also investigate whether exacting cardinals are sufficient to repli-
cate this “blow-up” phenomenon of large cardinal strength. We an-
swer the question negatively in §5 while simultaneously bounding the
strength of exacting cardinals dramatically. Its statement involves the
notion of an I3wf(0)-embedding. This is a technical strengthening of I3
much weaker than I2 (see §5 for the definitions of I3 and I2).

Theorem D. Suppose that j : Vλ → Vλ is an I3wf(0)-embedding with
critical point κ. Then there is a normal ultrafilter U on κ such that if
G is a Prikry-generic U-sequence, then

V [G] |= “κ is exacting.”

We also show that the use of an I3wf(0)-embedding in Theorem D
cannot be replaced by a simple I3 embedding, as the existence of ex-
acting cardinals implies the consistency of a proper class of I3 cardinals.
Thus, Theorem D is close to an equiconsistency and exacting cardinals
are located strictly between the hypotheses I3 and I2.

Theorem D also yields models of exacting cardinals together with any
large cardinal which is preserved by “small” Prikry forcing, indicating
a key difference between exacting and ultraexacting cardinals.

Perhaps the most striking consequence of exacting cardinals, estab-
lished in [ABL24] is that the consistency of an exacting cardinal above
a strongly compact cardinal refutes Woodin’s HOD Conjecture. In
sharp contrast to this, we derive the following result from Theorem D
(Corollary 5.6):

Theorem E. Suppose ZFC + I2 is consistent. Then, ZFC is consis-
tent with the existence of an exacting cardinal together with Vopěnka’s
principle and the HOD Hypothesis.



LARGE CARDINALS BEYOND HOD 5

In particular, the consistency of ZFC together with exacting cardi-
nal below an extendible cardinal does not refute the HOD Conjecture
(assuming the consistency of I2).
Finally, in §6 we give new characterizations of ultraexacting and ex-

acting cardinals in terms of principles of structural reflection, improving
the results in [ABL24]. The characterizations show that these cardi-
nals fit nicely in the hierarchy of large cardinals when they are viewed
under the general framework of structural reflection (see [Bag23]).

It is shown in [BL24] that the smallest C(n)-strongly unfoldable car-
dinal can be characterized in terms of Structural Reflection as the
smallest µ with the property that if C is a class of structures of the
same signature, which is Σn+1-definable from parameters in Vµ, and
B ∈ C has size µ, then there is A ∈ C of size < µ and an elementary
embedding

j : A → B,

provided that C contains some structure of size < µ. In general, this
characterizes C(n)-strong unfoldability, with the exception that limits
of C(n−1)-extendible cardinals also satisfy this property.
We end section §6 by showing (Theorem 6.12) that exacting cardi-

nals are also characterized in terms of Structural Reflection as a two-
cardinal variant of C(n)-strong unfoldability. The characterization is
obtained by adding a second cardinal constraint to the structures con-
sidered. Let n ≥ 2. Then, λ is exacting if and only if for some µ,
for every class of structures C of the same signature Σn-definable from
parameters in Vµ ∪ {λ} and every B ∈ C of type ⟨µ, λ⟩, there is A ∈ C
of type ⟨ν, λ⟩ with ν < µ and an elementary embedding j : A → B.
Ultraexacting cardinals admit a similar characterization in which the
embedding j is required to be a square root of a fixed embedding.

2. Preliminaries

Let us recall the definitions of exact and ultraexact embeddings.
Recall that an embedding j : M → N is elementary if it is truth-
preserving, i.e., if for all tuples a ∈ [M ]<N and all formulas ϕ, we have
M |= ϕ(a) if and only if N |= ϕ(j(a)). By convention, all elementary
embeddings occurring in this article are assumed to be non-trivial, i.e.,
different from the identity.

Definition 2.1 ([BL23, ABL24]). Let n > 0 be a natural number and
let λ be a limit cardinal. Given a cardinal λ < η ∈ C(n), an elementary
submodel X of Vη with Vλ ∪ {λ} ⊆ X, and a cardinal λ < ζ ∈ C(n+1),
an elementary embedding j : X → Vζ is an n-exact embedding at λ if
j(λ) = λ, and j ↾ λ is not the identity on λ. If, moreover, we require
that j ↾ Vλ ∈ X, then we say that j is an n-ultraexact embedding at
λ.



6 AGUILERA, BAGARIA, GOLDBERG, AND LÜCKE

The following lemma from [ABL24] shows that the notions of exact
and ultraexact embedding are independent of n (for n > 0).

Lemma 2.2. Given a natural number n > 0, the following statements
are equivalent for every limit ordinal λ and every set x:

(1) There is an n-exact (n-ultraexact) embedding j : X → Vζ at λ
with x ∈ X and j(x) = x.

(2) There are elements η and ζ of C(2) greater than λ, an elemen-
tary submodel X of Vη with Vλ∪{λ, x} ⊆ X, and an elementary
embedding j : X → Vζ with j(λ) = λ, j(x) = x, j ↾ λ ̸= Idλ

(and j ↾ Vλ ∈ X).
(3) For every ζ > λ with x ∈ Vζ, there is an elementary submodel

X of Vζ with Vλ ∪ {λ, x} ⊆ X, and an elementary embedding
j : X → Vζ with j(λ) = λ, j(x) = x, j ↾ λ ̸= Idλ (and
j ↾ Vλ ∈ X).

Thus, an n-exact (n-ultraexact) embedding at λ exists (for n > 0)
if and only if for some ζ ∈ C(2) greater than λ (equivalently, for the
least such ζ), there is an elementary embedding j : X → Vζ , where X
is an elementary substructure of Vζ that contains Vλ ∪ {λ}, such that
j(λ) = λ, j ↾ λ ̸= Idλ (and j ↾ Vλ ∈ X).

In view of Lemma 2.2, we shall say that an embedding j : X → Vζ is
an exact (ultraexact) embedding at λ if it is an n-exact (n-ultraexact)
embedding at λ, for some n > 0. Now we define:

Definition 2.3. A cardinal λ is exacting (ultraexacting) if there exists
an exact (ultraexact) embedding at λ.

Thus, λ is exacting (ultraexacting) if and only if there is an elemen-
tary embedding j : X → Vζ , where ζ is some cardinal in C(2) above
λ (equivalently, the least such) and X is an elementary substructure
of Vζ that contains Vλ ∪ {λ}, such that j(λ) = λ, j ↾ λ ̸= Idλ (and
j ↾ Vλ ∈ X). Equivalently, λ is exacting (ultraexacting) if such an
embedding exists for all ζ > λ.

The following proposition shows that our definition of exacting and
ultraexacting cardinals are equivalent to the definitions given in [ABL24,
2.4, 3.3].

Proposition 2.4. A cardinal λ is exacting (ultraexacting) iff for ev-
ery ζ in C(2) above λ (equivalently, the least such) and every α < λ
there is an elementary embedding j : X → Vζ, where X an elementary
substructure Vζ that contains Vλ∪{λ}, such that j(λ) = λ, j ↾ α = Idα,
j ↾ λ ̸= Idλ (and j ↾ Vλ ∈ X).

Proof. Suppose, aiming for a contradiction, that for some ζ ∈ C(2)

above λ, for some α < λ the required embedding does not exist. Let α
be the least witness. Let ζ ′ be the first cardinal in C(2) above ζ. Let
j : X → Vζ′ witness that λ is exacting (ultraexacting). As α and ζ are
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definable in Vζ′ , both α and ζ belong toX and they are fixed by j. Then
X∩Vζ is an elementary substructure of Vζ and j ↾ X∩Vζ : X∩Vζ → Vζ

witnesses that λ is exacting (ultraexacting), with j ↾ α = Idα, contrary
to our assumption on α. □

Recall that an I0 embedding (at a cardinal λ) is an elementary em-
bedding

j : L(Vλ+1) → L(Vλ+1)

with critical point less than λ. Axiom I0 asserts that there exists an
I0 embedding (definable, possibly from parameters).

We shall show (Theorem 4.5) that the existence of an ultraexacting
cardinal is equiconsistent with the existence of an I0 embedding. But
notice that since being an ultraexacting cardinal is Σ3-expressible, the
first ultraexacting cardinal, if it exists, is below the first extendible
cardinal.

3. Large cardinals and ordinal definable sets

Recall that an I1 embedding is an elementary embedding from Vλ+1

to itself, with λ a limit ordinal. If j : L(Vλ+1) → L(Vλ+1) is an I0
embedding, then clearly j ↾ Vλ+1 is an I1 embedding. Further, if A is
subset of Vλ+1 that is definable in L(Vλ+1) with parameters in Vcrit(j) ∪
{λ}, then j ↾ Vλ+1 : (Vλ+1, A) → (Vλ+1, A) is an elementary embedding.

We shall prove next a characterization of exacting and ultraexacting
cardinals in terms of I1 embeddings expanded with ordinal definable
predicates. We prove this characterization from ZF+DCλ, rather than
ZFC. Recall that DCλ (or λ−DC) is the assertion that every <λ-closed
tree with no terminal points has a branch of length λ. Moreover, recall
that OD is the class of all Ordinal Definable sets. It is well known that
OD is a Σ2 class, and that there exists a Σ2-definable well-ordering,
<OD, of OD (see, e.g., [Jec02]).

Theorem 3.1 (ZF+DCλ). A cardinal λ is ultraexacting if and only if
for every ordinal definable subset A of Vλ+1, there exists an elementary
embedding j : (Vλ+1, A) → (Vλ+1, A).

Proof. First, assume λ is ultraexacting and, towards a contradiction,
that A is the <OD-least subset of Vλ+1 such that there is no elementary
embedding from (Vλ+1, A) to itself. Fix ζ ∈ C(2) and X ⪯ Vζ such
that Vλ ∪ {λ} ⊆ X, and j : X → Vζ is an elementary embedding with
crit(j) < λ, j(λ) = λ, and j ↾ Vλ ∈ X. Note that A ∈ Vζ and A
is definable in Vζ from λ, and therefore A ∈ X and j(A) = A. Let
k = j ↾ Vλ+1. Then k ∈ X, since j ↾ Vλ ∈ X, and k is definable from
j ↾ Vλ by k(x) =

⋃
{j(x ∩ Vα) : α < λ}.

The main point is that, in X, k is an elementary embedding from
(Vλ+1, A) to itself. The latter claim follows from the fact that for all
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x ∈ Vλ+1 ∩X,

X ⊨ “(Vλ+1, A) ⊨ φ(x)”

if and only if

Vζ ⊨ “(Vλ+1, A) ⊨ φ(k(x))”

by the elementarity of k, and this holds if and only if

X ⊨ “(Vλ+1, A) ⊨ φ(k(x))”

since k(x) ∈ X and X ⪯ Vζ . This contradicts the choice of A as the
OD-least subset of Vλ+1 such that there is no elementary embedding
from (Vλ+1, A) to itself.

For the converse, let ζ be the least element of C(2) above λ, and let A
be the set of all well-founded extensional relations E ⊆ Vλ×Vλ such that
⟨Vλ, E⟩ is isomorphic to some elementary substructure X ⪯ Vζ with
Vλ∪{λ} ⊆ X. ThenA is ∆2-definable with ζ and λ as parameters. Note
that A is non-empty. To prove this, first observe that DCλ implies that
Vα can be wellordered for each α < λ (by induction on α); using this and
DC, we see that |Vλ| = λ. Using this fact, DCλ allows us to carry out
the proof of the Löwenheim-Skolem theorem to construct elementary
substructures of Vζ containing Vλ. Thus, indeed A is nonempty.
Now, let j : (Vλ+1, A) → (Vλ+1, A) be an elementary embedding

and fix E ∈ A such that j ↾ Vλ belongs to the transitive collapse ME

of ⟨Vλ, E⟩. Let F = j(E) and let MF be the transitive collapse of
⟨Vλ, F ⟩. Then j ↾ ME : ME → MF is elementary. Moreover there are
XE, XF ⪯ Vζ , both including Vλ ∪ {λ}, and isomorphisms πE : XE

∼=
ME and πF : XF

∼= MF . Now letting IdXF
: XF → Vζ be the identity

map, and letting

i := IdXF
◦ π−1

F ◦ j ↾ ME ◦ πE

we have that i : XE → Vζ is an elementary embedding that agrees with
j on Vλ, and moreover i ↾ Vλ ∈ XE. Thus, XE and i witness that λ is
ultraexacting. □

The characterization of ultraexacting cardinals given by Theorem
3.1 makes no reference to elementary substructures of Vζ , so it moti-
vates the following re-definition of ultraexacting cardinals, which is the
definition we shall use in the context where DCλ fails:

Definition 3.2 (ZF). A cardinal λ is ultraexacting if and only if for
every ordinal definable A ⊂ Vλ+1 there is an elementary embedding
j : (Vλ+1, A) → (Vλ+1, A) with critical point <λ.

Remark 3.3. The proof of Theorem 3.1 above gives some additional
information. Namely, given λ, if ζ is the least element of C(2) greater
than λ, then the following are equivalent:

(1) λ is ultraexacting.
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(2) There is an elementary embedding from (Vλ+1, A) to itself, where
A is the subset of Vλ+1 used in the proof of the theorem above and
is ∆2-definable from the parameters λ and ζ. Namely, A is the
set of all well-founded extensional relations E ⊆ Vλ×Vλ isomor-
phic to some elementary substructure X ⪯ Vζ with Vλ ∪ {λ} ⊆
X.

We also have the following equivalence in the case of exacting cardi-
nals:

Theorem 3.4 (ZF + DCλ). A cardinal λ is exacting if and only if or
every nonempty ordinal definable subset A of Vλ+1, there exist x, y ∈ A
and an elementary embedding j : (Vλ, x) → (Vλ, y).

Proof. Suppose λ is exacting and, towards a contradiction, let A be
the OD-least nonempty subset of Vλ+1 for which there are no x, y ∈ A
with an elementary embedding j : (Vλ, x) → (Vλ, y). Let ζ be the least
ordinal in C(2) greater than the least ordinal parameters appearing
in a definition of A. Then fix X ⪯ Vζ and j : X → Vζ as in the
definition of exacting cardinal, and note that A ∈ X and j(A) = A.
Therefore for any x ∈ A∩X, setting y = j(x) and taking the restriction
j ↾ Vλ : (Vλ, x) → (Vλ, y), we obtain a contradiction.

The converse is proved similarly as in the previous theorem, using
the same A. As A is nonempty, let E,F ∈ A be such that there is an
elementary embedding j : (Vλ, E) → (Vλ, F ). There are XE, XF ⪯ Vζ ,
both including Vλ ∪ {λ}, and isomorphisms πE : XE

∼= ME and πF :
XF

∼= MF , with ME and MF transitive. Then letting i be as before,
we have that XE and i witness that λ is exacting. □

As in the case of ultraexacting cardinals, the theorem above moti-
vates the following re-definition of exacting cardinals, which may be
used in the context where DCλ fails:

Definition 3.5 (ZF). A cardinal λ is exacting if and only if for ev-
ery nonempty ordinal definable A ⊂ Vλ+1 there are x, y ∈ A and an
elementary embedding j : (Vλ, x) → (Vλ, y) with critical point < λ.

Similar considerations, as in Remark 3.3, also apply in this case.
Namely,

Remark 3.6. Given any cardinal λ, if ζ is the least element of C(2)

greater than λ, then the following are equivalent:

(1) λ is exacting.
(2) There is an elementary embedding j : (Vλ, x) → (Vλ, y), where

x, y belong to the subset A ⊆ Vλ+1 which is used in the proof of
the theorem and is ∆2-definable from the parameters λ and ζ.

3.1. Some corollaries. We shall next obtain several corollaries of
Theorem 3.1 above. The first one shows that the existence of an ul-
traexacting cardinal λ is equivalent to the existence of an elementary
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embedding j : Vλ+1 → Vλ+1 that preserves the Σ2-truth predicate of
V , an axiom first considered by Woodin in [Woo10, Theorem 200].

Corollary 3.7. A cardinal λ is ultraexacting if and only if there exists
an elementary embedding j : Vλ+1 → Vλ+1 such that for any Σ2-formula
φ(x) and any a ∈ Vλ+1, V ⊨ φ(a) if and only if V ⊨ φ(j(a)).

Proof. If λ is ultraexacting, then since the restriction A of the Σ2-
satisfaction predicate of V to Vλ+1 is ordinal definable, Theorem 3.1
yields the desired elementary embedding.

Conversely, suppose there is an elementary j : Vλ+1 → Vλ+1 such
that for any Σ2-formula φ(x) and any a ∈ Vλ+1, V ⊨ φ(a) if and
only if V ⊨ φ(j(a)). Suppose towards a contradiction that there is
an ordinal definable set A for which there is no elementary embedding
i : (Vλ+1, A) → (Vλ+1, A). Let A be the OD-least such set. Then the
satisfaction predicate S of (Vλ+1, A) is Σ2-definable over V from the
parameter λ. Fix a Σ2-formula φ(x) such that u ∈ S if and only if
V ⊨ φ(u, λ). Then by our hypothesis, u ∈ S if and only if V ⊨ φ(u, λ)
if and only if V ⊨ φ(i(u), λ) if and only if i(u) ∈ S. Since j maps
the satisfaction predicate of (Vλ+1, A) into itself, j is an elementary
embedding from (Vλ+1, A) to itself, contrary to our hypothesis that no
such embedding exists. □

Recall from [Woo10, Definition 132] that a cardinal δ is HOD-super-
compact if for all η > δ there exists an elementary embedding j :
V → M , M transitive, with critical point δ, j(δ) > η, VηM ⊆ M , and
j(HOD∩ Vδ)∩ Vη = HOD∩ Vη. Woodin’s Theorem [Woo10, 200] then
shows that, assuming the HOD Conjecture, the existence of a nontrivial
elementary embedding from Vλ+1 to itself that preserves the Σ2-truth
predicate of V implies there is no HOD-supercompact cardinal below
λ. He also notes that such an embedding exists in the forcing extension
of L(Vλ+1) that well-orders Vλ+1 in order-type λ+. Then the contrapos-
itive of Woodin’s theorem, together with Corollary 3.7, yields that if λ
is an ultraexacting cardinal, and there is a HOD-supercompact cardi-
nal below λ, then the HOD Conjecture fails. However, a stronger result
follows from [ABL24, section 6.1] together with Goldberg’s [Gol24, Sec-
tion 2.2] which shows that Woodin’s HOD Dichotomy follows from the
existence of a strongly compact cardinal, yielding that if there exists a
strongly compact cardinal below an exacting cardinal, then the HOD
Conjecture fails.

Theorem 3.1 also yields a simpler proof of the following result from
[ABL24, Theorem 3.22]:

Corollary 3.8. If λ is an ultraexacting cardinal and V #
λ+1 exists

1, then
I0 holds at λ.

1Recall that the existence of V #
λ+1 is equivalent to the existence of an elementary

embedding j : L(Vλ+1) → L(Vλ+1) with critical point above λ.
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Proof. First, recall that, by Solovay, V #
λ+1 exists if and only if there ex-

ists a remarkable character for Vλ+1 (see, e.g., [AEC]), and so V #
λ+1 can

be coded as an ordinal definable subset, A, of Vλ+1. Now by Theorem
3.1, ultraexactness yields an elementary embedding j from (Vλ+1, A) to
itself. The embedding j can then be extended to an elementary embed-
ding i from L(Vλ+1) to itself by setting i(t(x, ξ)) = t(j(x), ξ) whenever
t is a canonical weak Skolem term, x is an element of Vλ+1, and ξ is a
finite increasing sequence of Silver indiscernibles for L(Vλ+1). It is then
easily checked that i is well-defined and elementary, and so i witnesses
that I0 holds at λ. □

Proposition 3.9. If λ is an ultraexacting cardinal, then for every car-
dinal γ > λ there is a γ-directed closed forcing notion which forces that
λ remains ultraexacting and Vλ ⊆ HOD.

Proof. Let ζ ∈ C(2) and X ⪯ Vζ be such that Vλ ∪ {λ} ⊆ X, and
j : X → Vζ is an elementary embedding with crit(j) < λ, j(λ) = λ,
and j ↾ Vλ ∈ X. Let � be a wellordering of Vλ of order-type λ such
that j(�) = �. This can be obtained as follows: Let ⟨λn : n < ω⟩
be the critical sequence of j. Pick a wellordering �0 of Vλ0 , and let
�1 = j(�0) \�0. Given �m for some 0 < m < ω, set �m+1 = j(�m).
Finally, let � =

⋃
m<ω �m.

Note that, since j ↾ Vλ ∈ X, � ∈ X. So, as j(�) = �, arguing
like in the proof of Theorem 3.1, using � as a parameter, we have that
for all sets A ⊆ Vλ+1 that are ordinal definable from �, there is an
elementary embedding from (Vλ+1, A) to itself.

Given any γ > λ, we may code � into the power-set function on the
regular cardinals above γ by a γ-directed closed homogeneous forcing
that is ordinal definable from �. Then in the generic extension, V [G],
� is ordinal definable, hence Vλ ⊆ HOD.

By the homogeneity of the forcing, if A ⊆ Vλ+1 is ordinal definable
in V [G], then A is in V and A is ordinal definable from � in V . Thus,
there is, in V and therefore also in V [G], an elementary embedding
from (Vλ+1, A) to itself. Hence by Theorem 3.1, λ is ultraexacting in
V [G]. □

It was shown in [ABL24, 2.10] that if λ is exacting, then λ is regular
in HOD. Thus, Vλ+1 ⊈ HOD, so Proposition 3.9 is best possible.

Corollary 3.10. If λ is ultraexacting, then in some forcing extension
λ remains ultraexacting and there is no exacting cardinal below λ.

Proof. By Proposition 3.9, let V [G] be a forcing extension in which

λ remains ultraexacting and Vλ = V
V [G]
λ ⊆ HOD. Then in V [G] no

cardinal µ < λ can be exacting, as it would imply that µ is a regular
cardinal in HODVµ (by [ABL24, 2.10]), and therefore also in V [G]. □
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4. The strength of ultraexacting cardinals

In this section, we prove equiconsistencies between ultraexacting car-
dinals and strengthenings of I0, depending on the kinds of large car-
dinals which exist in inner models extending Vλ+1. In particular, we
establish the equiconsistency between the existence of an ultraexacting
cardinal and I0.

We work with models of the form L(Vλ+1, E), where E ⊆ Vλ+1,
assuming ZFC holds externally in V . All what follows is true also in
the particular case E = ∅. These models have a fine structure similar
to that of L(Vλ+1), just like L(x) has a fine structure similar to that of
L when x ∈ R, and just like how L(R, A) has a fine structure similar
to that of L(R) when A ⊆ R and DCR holds.

For an ordinal α, let AE
α be the theory of Lα(Vλ+1, E), with param-

eters in Vλ+1. Thus, AE
α may be identified with the set of all pairs

(φ, a) such that a ∈ Vλ+1, φ is a formula of the language of set the-
ory with an added predicate Ė and with only one free variable, and
Lα(Vλ+1, E) |= φ(a). Notice that AE

α ∈ Vλ+2.
Let us call an ordinal α an E-good ordinal (or just good, if E is

clear from context; see Laver [Lav01]) if every element of Lα(Vλ+1, E)
is definable in Lα(Vλ+1, E) from parameters in Vλ+1 in the language
L∈,Ė. It is easily seen that every good ordinal is strictly less than

ΘL(Vλ+1,E), where ΘL(Vλ+1,E) is the supremum of the set of ordinals γ
such that there exists a surjection f : Vλ+1 → γ with f ∈ L(Vλ+1).
Moreover, the argument of [Lav01, Lemma 1] shows that the good
ordinals are unbounded in ΘL(Vλ+1,E).

Lemma 4.1. Suppose that λ is ultraexacting and E ⊆ Vλ+1 is ordinal
definable. Then for every E-good ordinal α there exists an elementary
embedding i : Lα(Vλ+1, E) → Lα(Vλ+1, E), with λ being the supremum
of its critical sequence, and moreover i ∈ L(Vλ+1, E) and i(E) = E.

Proof. Since AE
α is ordinal definable, Theorem 3.1 implies that there is a

nontrivial elementary embedding j : (Vλ+1, A
E
α ) → (Vλ+1, A

E
α ). We ex-

tend j to an elementary embedding i : Lα(Vλ+1, E) → Lα(Vλ+1, E) us-
ing the fact that every element of Lα(Vλ+1, E) is definable in Lα(Vλ+1, E)
from parameters in Vλ+1 in the language L∈,Ė. More precisely, if a is de-
finable in Lα(Vλ+1, E) from parameters x ∈ Vλ+1 in the language L∈,Ė,
let i(a) be the element of Lα(Vλ+1, E) defined by the same formula from
j(x). This definition immediately yields i(E) = E.

The fact that i : Lα(Vλ+1, E) → Lα(Vλ+1, E) is well-defined and ele-
mentary is immediate from the elementarity of j on (Vλ+1, A

E
α ). More-

over, one can verify that i ↾ Vλ+1 = j since each x ∈ Vλ+1 is trivially
definable from itself. Finally, i ∈ L(Vλ+1, E) since i is definable over
Lα+1(Vλ+1, E) from parameters in {j, E} ⊆ L1(Vλ+1, E). □
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4.1. Internal I0. Let E ⊆ Vλ+1. We say that internal I0 relative to E
holds at λ if for all α < ΘL(Vλ+1,E), there is an elementary embedding
from Lα(Vλ+1, E) to itself fixing E, with λ the supremum of its critical
sequence. We speak of internal I0 rather than “internal I0 relative to
∅.”

Internal I0 was first isolated by Woodin in [Woo24]. The point is that
while I0 at λ cannot hold in L(Vλ+1), internal I0 is absolute between
L(Vλ+1) and V . Indeed, internal I0 relative to E ⊆ Vλ+1 is absolute
between L(Vλ+1, E) and V . The reason is that there exist arbitrarily
large good ordinals α < ΘL(Vλ+1,E). For such α, the existence of ele-
mentary embeddings from Lα(Vλ+1, E) to itself fixing E is equivalent
to the existence of elementary embeddings from (Vλ+1, A

E
α ) to itself. If

these exist, then they can be recovered from their restriction to Vλ as in
the proof of Lemma 4.1 and thus belong to L(Vλ+1, E). Moreover, the
existence of elementary embeddings from Lα(Vλ+1, E) to itself fixing E
for arbitrarily large α < ΘL(Vλ+1,E) easily implies the existence of such
embeddings for all α < ΘL(Vλ+1,E) by a minimization argument.

Woodin [Woo24] showed that the theory ZFC+“I0 at λ” is conserva-
tive over the theory ZFC+“Internal I0 at λ” for first-order statements
about L(Vλ+1).

Lemma 4.1, together with Laver’s argument [Lav01, Lemma 1] that
the good ordinals are unbounded in ΘL(Vλ+1,E), yields the following:

Corollary 4.2. Suppose that λ is ultraexacting and E ⊆ Vλ+1 is ordinal
definable. Then internal I0 relative to E holds at λ, both in V and in
L(Vλ+1, E).

The following lemma yields the converse implication in mild forcing
extensions of L(Vλ+1, E).

Lemma 4.3. Let E ⊆ Vλ+1. Suppose that internal I0 relative to
E holds at λ. Then, λ is ultraexacting in any generic extension of
L(Vλ+1, E) by an ordinal definable homogeneous forcing notion that
does not change Vλ+1.

Proof. We first show that λ is ultraexacting in L(Vλ+1, E). It suffices
to show that for any A ⊆ Vλ+1 that is OD in L(Vλ+1, E), there is
a nontrivial elementary embedding from (Vλ+1, A) to itself. By con-
densation, any such A is definable from E in Lγ(Vλ+1, E) for some

γ < Θ = Θ
L(Vλ+1,E)
Vλ+1

, and by Internal I0 there is an elementary embed-

ding from Lγ(Vλ+1, E) to itself fixing E, with critical point below λ;
this restricts to a nontrivial elementary embedding from (Vλ+1, A) to
itself (which belongs to L(Vλ+1, E) since it is induced by its restriction
to Vλ). This shows that λ is ultraexacting in L(Vλ+1, E).

Now suppose that P ∈ ODL(Vλ+1,E) is a homogeneous forcing notion
that does not change Vλ+1, and G ⊆ P is L(Vλ+1, E)-generic. Then
every set A ⊆ Vλ+1 that is OD in L(Vλ+1, E)[G] is already OD in
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L(Vλ+1, E), so the fact that λ is ultraexacting in L(Vλ+1, E) immedi-
ately implies that it is ultraexacting in L(Vλ+1, E)[G]. □

Since Lemma 4.1 holds in ZF+DCλ, Lemmata 4.1 and 4.3 yield the
following:

Corollary 4.4. In L(Vλ+1), λ is an ultraexacting cardinal if and only
if internal I0 holds.

Lemma 4.3 sharpens [ABL24, Theorem 3.29]: if there is an I0 em-
bedding at λ, then after forcing with Add(λ+, 1) over V , in L(Vλ+1)[G]
the cardinal λ is ultraexacting and ZFC holds. Moreover, if λ is ul-
traexacting, then, by Corollary 4.2 internal I0 holds at λ, and [Woo24,
Theorem 2.5] shows that in some generic extension of an inner model of
L(Vλ+1), ZFC holds and there is an I0 embedding at a cardinal greater
than λ. Thus, we have the following:

Theorem 4.5. The following two theories are equiconsistent:

(1) ZFC + There exists an ultraexacting cardinal.
(2) ZFC + I0 holds.

Let us note that the existence of an ultraexacting cardinal does not
suffice to prove I0 outright, since, as mentioned above, if λ is the least
such that I0 holds at λ, then after forcing with Add(λ+, 1) over V ,
λ is ultraexacting in L(Vλ+1)[G] by [ABL24, Theorem 3.29], yet I0
fails there. To see this, first note that by the minimality of λ, I0
does not hold for any γ < λ, since this is absolute between V and
L(Vλ+1)[G]; and obviously I0 does not hold for any γ > λ; finally I0

fails at λ, since L(Vλ+1)[G] is a set forcing extension of HODL(Vλ+1)

by Vopenka’s theorem [Jec02, Theorem 15.46] and therefore cannot

contain an elementary embedding from HODL(Vλ+1) to itself by a result
of Hamkins–Kirmayer–Perlmutter [HKP12, Corollary 9].

4.2. Vλ+1-premice. The statement of Theorem 4.8 below involves the
notion of a Mitchell-Steel Vλ+1-premouse. We do not assume familiarity
with inner model theory and indeed essentially only use it to derive
the conclusion of Lemma 4.6 below. Nonetheless, we summarize the
relevant definitions.

Let X be a set. A Mitchell-Steel X-premouse is a structure of the
form Jα(X)[E] (i.e., a level of the Jensen hierarchy constructed relative
to X and E) where E is a predicate for a fine extender sequence over
Vλ+1, in the sense of Steel [Ste08, Definition 2.6].
Given a Mitchell-Steel premouse M , one can define iteration trees

T over M . These are trees of iterated ultrapowers of very particular
kinds. A premouse is countably iterable if all its countable elementary
substructures are (ω1+1)-iterable. The reader who is not familiar with
this notion might simply elect to take Lemma 4.6 and the first couple of
lines in the proof of Theorem 4.8 on faith; we refer the reader to Steel
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[Ste10] for background. For definiteness, let us specify that “premouse”
and other inner model theoretic notions should be taken as defined
in [Ste10], although what follows is not too sensitive to the precise
definitions used. The relativized notion of a Vλ+1-premouse is defined as
in [Ste08]. We also refer to “soundness” (i.e., “ω-soundness”) of premice
in the sense of [Ste10]. This is a condition on the relation between the
structure and its partial Skolem hulls. We will not make use of the
definition directly, but only indirectly via comparison arguments (see
e.g., [Ste10, Corollary 10]).

Lemma 4.6. Suppose that M is a countably iterable, sound Mitchell-
Steel Vλ+1-premouse satisfying φ but none of whose proper initial seg-
ments satisfy φ. Then, M is definable from λ and there is a surjection
from Vλ+1 to M definable over M .

Proof. This is a routine argument, but we sketch it for the reader’s
convenience. First, that there is a surjection from Vλ+1 to M definable
over M follows from a Skolem hull argument as in the case of L. To see
thatM is ordinal definable, we show that it is unique. Suppose towards
a contradiction that M and M ′ are two different countably iterable,
sound Mitchell-Steel premice satisfying φ and none of whose proper
initial segments satisfy φ. Standard arguments now lead to a contra-
diction: let H be the transitive collapse of a countable elementary sub-
structure of some large Vθ containing M and M ′ and let π : H → Vθ

be the collapse embedding. Let A = π−1(Vλ+1), N0 = π−1(M), and
N1 = π−1(M ′). Then, N0 and N1 are A-premice, N0 ̸= N1, and N0

and N1 are (ω1 + 1)-iterable. Moreover, N0 and N1 are sound and
project to A. By the comparison theorem for Mitchell-Steel premice
(see Steel [Ste10, §3.2]), it follows that one of N0 or N1 is a proper
initial segment of the other, contradicting the fact that neither has a
proper initial segment satisfying φ. This proves that M ′ = M . □

4.3. Ultraexacting cardinals in the presence of other large car-
dinals. The goal of this section is to extend the equiconsistency proof
of Theorem 4.5 to describe the strength of ultraexacting cardinals in the
presence of other large cardinals. We shall need the following version
of Woodin’s [Woo24, Theorem 2.3] for models of the form L(Vλ+1,M).

Lemma 4.7. Suppose that M ⊆ Vλ+1 and internal I0 relative to M
holds in L(Vλ+1,M) at λ. Then there is an elementary embedding

j : (Vλ+1,M) → (Vλ+1,M)

such that, letting (Nω, M̄ , jω) be the ωth iterate of j, jω extends to an
elementary embedding

k : L(Nω, M̄) → L(Nω, M̄)

such that L(Nω, M̄)[k] ⊆ L(Vλ+1,M) and P(Nω) ∩ L(Nω, M̄)[k] =
P(Nω) ∩ L(Nω, M̄).
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Proof. This is proved by the same argument as Theorem 2.3 in Woodin
[Woo24] (which is stated in the particular case where M = ∅). □

We now state our equiconsistency result:

Theorem 4.8. Let φ be a formula in the language of set theory. Then,
the following two theories are equiconsistent, modulo ZFC:

(1) There is an ultraexacting cardinal λ and a countably iterable
Mitchell-Steel Vλ+1-premouse M satisfying φ.

(2) There is a countably iterable Mitchell-Steel Vλ+1-premouse M
satisfying φ and an elementary embedding

j : L(Vλ+1,M) → L(Vλ+1,M)

with critical point below λ.

Proof. First, assume that (2) holds and let Θ = Θ
L(Vλ+1,M)
Vλ+1

. By replac-
ing M with an initial segment if necessary, we may assume that M has
no proper initial segment satisfying φ. Replacing M with its core if
necessary, we may assume that M is sound. By Lemma 4.6, we may
thus replace M by a code in Vλ+2 definable from λ; abusing notation,
we denote this code by M too. By hypothesis, there is an elementary
embedding

j : L(Vλ+1,M) → L(Vλ+1,M)

with critical point below λ. Since M is definable from λ only we must
have j(M) = M , so internal I0 relative to M holds in V and thus also
in L(Vλ+1,M), as this principle is absolute (see the comment at the
beginning of §4.1).
It follows from Lemma 4.3 that if G ⊆ Add(λ+, 1) is V -generic, then

λ is ultraexacting in L(Vλ+1,M)[G]. Since Add(λ+, 1) does not change
Vλ+1 and in particular it does not add any new countable elementary
substructures of M or any new iteration trees of length ≤ ω1, M re-
mains countably iterable in L(Vλ+1,M)[G] and thus L(Vλ+1,M)[G] is
a model of ZFC satisfying (1).

We now suppose that (1) holds. As before, we may assume that
M ∈ Vλ+2 and that M is definable from the parameter λ. By Lemma
4.1, internal I0 relative to M holds in L(Vλ+1,M).
Let k be as in Lemma 4.7 and let λω = jω(λ). Thus, the following

hold in L(Nω, M̄)[k]:

(1) ZF + jω(λ)-DC,
(2) k : L(Nω, M̄) → L(Nω, M̄) is an elementary embedding,
(3) M̄ is a Mitchell-Steel (Vλω+1)

L(Nω ,M̄)[k]-premouse satisfying φ
and M̄ is countably iterable.

The first item follows from the elementarity of jω; the second, from
the choice of k; the third, from the elementarity of jω together with
the fact that Nω contains all sets of rank below the critical point of j
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and in particular is correct about the countable iterability of M̄ . Let
G ⊆ Add(λ+

ω , 1) be L(Nω, M̄)[k]-generic and consider the model

W = L(Nω, M̄)[k][G].

Then, W |= ZFC. Working in W , the forcing does not change Vλω+1,
and thus M̄ remains a countably iterable (Vλω+1)

W -premouse satisfying
φ and W satisfies that

k : L(Vλω+1, M̄) → L(Vλω+1, M̄)

is an elementary embedding with critical point < λω, so (2) holds in
W . This completes the proof of Theorem 4.8. □

Wemention as corollaries some particular cases of Theorem 4.8 which
might be of interest. First, the case where φ is 0 = 0 is Theorem 4.5.
The second one improves [ABL24, Theorem D]:

Corollary 4.9. The following are equiconsistent:

(1) There is an ultraexacting cardinal λ such that V #
λ+1 exists; and

(2) I0#, i.e., there is an elementary embedding

j : L(Vλ+1, V
#
λ+1) → L(Vλ+1, V

#
λ+1)

with critical point below λ.

The third corollary we mention is an equiconsistency result which
gauges the strength of Woodin cardinals above an ultraexacting cardi-
nal:

Corollary 4.10. The following schemata are equiconsistent as n ranges
over elements of N:

(1) λ is ultraexacting and there are n Woodin cardinals greater than
λ; and

(2) there is a transitive model M and an elementary embedding
j : M → M such that Vλ+1 ∈ M , crit(j) < λ, and there are n
Woodin cardinals above λ in M .

Proof. By Theorem 4.8, the consistency of an ultraexacting cardinal λ
below n+1 Woodin cardinals implies the consistency of an elementary
embedding

j : L(Vλ+1,M
#
n (Vλ+1)) → L(Vλ+1,M

#
n (Vλ+1))

with critical point below λ. By restricting j, we obtain an elementary
embedding

k : Mn(Vλ+1) → Mn(Vλ+1)

as desired.
Conversely, suppose that there is a transitive model M and an ele-

mentary embedding j : M → M such that Vλ+1 ∈ M , crit(j) < λ, and
there are n+1 Woodin cardinals above λ in M . Let M̄ be the result of
carrying out the Mitchell-Steel [SM94] construction of L[E] within M
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and relativized to Vλ+1. By the main theorem of Steel [Ste93], M̄ is a
countably iterable Vλ+1-premouse with n + 1 Woodin cardinals above
λ. Moreover, a comparison argument shows that M#

n (Vλ+1) is an ini-
tial segment of M̄ . By Lemma 4.6, M#

n (Vλ+1) is definable from λ, so
j(M#

n (Vλ+1)) = M#
n (Vλ+1); thus j restricts to an elementary embed-

ding
k : L(Vλ+1,M

#
n (Vλ+1)) → L(Vλ+1,M

#
n (Vλ+1)),

from which the desired equiconsistency follows now by an application
of Theorem 4.8. □

We remark that “Woodin cardinals” in the statement of Lemma 4.10
could be replaced by measurable cardinals, or by any large cardinal for
which an inner model theory has been developed.

5. The strength of exacting cardinals

We now investigate the consistency strength of exacting cardinals.
We shall see that it lies strictly between the principles I3 and I2. Recall
that I3 asserts the existence of a nontrivial elementary embedding j :
Vλ → Vλ with λ a limit ordinal. I2 asserts that for some λ there exists
an elementary embedding j : V → M with M transitive, Vλ ⊆ M ,
j ↾ λ ̸= Id, and j(λ) = λ.

Let j : Vλ −→ Vλ be an I3-embedding with critical sequence ⟨κm |m < ω⟩.
We then define

j+ : Vλ+1 → Vλ+1

A 7→
⋃
α<λ

j(A ∩ Vα).

It is well-known that this map is Σ0-elementary (see [AD19, Lemma
3.2]). Then there exists a unique commuting system

⟨jm,n : Vλ −→ Vλ | m ≤ n < ω⟩
of elementary embeddings with j0,1 = j, jn,n = idVλ

and

jn+1,n+2 = j+(jn,n+1) = j+n,n+1(jn,n+1)

for all n < ω (see [AD19, Lemmas 3.4 & 3.5]). Moreover, if n < ω,
then jn,n+1 is an I3-embedding with critical sequence ⟨κm+n | m < ω⟩.
In particular, we have jn,n+k(κm+n) = κm+n+k for all k,m, n < ω. We
now let

⟨M j
ω, ⟨jn,ω : Vλ −→ M j

ω | n < ω⟩⟩
denote the direct limit of the above system and we let W j

ω denote the
well-founded part of this model. In the following, we always identify
W j

ω with its transitive collapse. Easy computations now show that
Vλ ∪ {λ} ⊆ W j

ω and j0,ω(κ0) = λ.

Proposition 5.1. Let j : Vλ −→ Vλ be an I3-embedding with critical
sequence ⟨κm | m < ω⟩.
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(1) If A ∈ Vλ+1 is such that j+(A) = A, then A = jm,ω(A ∩ Vκm) ∈
W j

ω, for every m < ω.
(2) If A ∈ Vκ0+1, then j0,ω(A) ∈ Vλ+1 ∩ W j

ω and j+(j0,ω(A)) =
j0,ω(A).

Proof. (1) Fix A ∈ Vλ+1 with j+(A) = A. Since [AD19, Lemma 3.4]
ensures that

j+n+1,n+2(A) = (j+(jn,n+1))
+(A) = j+(j+n,n+1(A))

holds for all n < ω, an easy induction shows that j+n,n+1(A) = A holds
for all n < ω. Another application of [AD19, Lemmas 3.4] then shows
that j+m,n(A) = A holds for all m ≤ n < ω. This directly implies that
jm,n(A ∩ Vκm) = A ∩ Vκn holds for all m ≤ n < ω. Since we have
jn,ω(κn) = λ ∈ W j

ω and jn,ω ↾ Vκn = idVκn
for all n < ω, it now follows

that jm,ω(A ∩ Vκm) = A ∈ W j
ω for all m < ω.

(2) Fix A ∈ Vκ0+1. Then j(j0,0(A)) = j(A) = j0,1(A) and, if
j(j0,n(A)) = j0,n+1(A) holds for some n < ω, then

j(j0,n+1(A)) = j+(jn,n+1)(j(j0,n(A))) = jn+1,n+2(j0,n+1(A)) = j0,n+2(A).

This shows that j(j0,n(A)) = j0,n+1(A) holds for all n < ω. Addi-
tionally, if n < ω, then the fact that jn,ω ↾ Vκn = idκn ensures that
j0,ω(A) ∩ Vκn = j0,n(A). In combination, this shows that

j(j0,ω(A) ∩ Vκn) = j0,n+1(A) = j0,ω(A) ∩ Vκn+1

holds for all n < ω and we can conclude that j+(j0,ω(A)) = j0,ω(A). □

5.1. I3wf(n)-embeddings. Following [AD19, Section 3], we say that an
I3-embedding j : Vλ −→ Vλ is an I31-embedding if it is ω-iterable, i.e.,
if M j

ω = W j
ω. Note that if j : Vλ −→ Vλ is an I31-embedding, then

there exists a limit ordinal λ′ < λ and an I3-embedding i : Vλ′ −→ Vλ′

(see [AD19, Theorem 4.1]). In the following we will obtain exacting
cardinals from the following assumption.

Definition 5.2. Given n < ω, an I3-embedding j : Vλ −→ Vλ with
critical sequence ⟨κm | m < ω⟩ is an I3wf(n)-embedding if jn,ω[κ

+
n ] ⊆ W j

ω.

According to the following proposition, the existence of an I3wf(n)-
embedding is strictly weaker than an I31-embedding. Below, given a
transitive set M , we say that a map i : M → M is a partial elementary
embedding if i is an embedding with domain D ⊂ M and i : D → D′

is elementary, where D′ =
⋃
i[D] is the codomain.

Proposition 5.3. (1) If m < n < ω and j : Vλ −→ Vλ is an
I3wf(n)-embedding, then there exists a limit ordinal λ′ < λ and
an I3wf(m)-embedding i : Vλ′ −→ Vλ′.

(2) If j : Vλ −→ Vλ is an I31-embedding, then for every n < ω
there exists a limit ordinal λ′ < λ and an I3wf(n)-embedding
i : Vλ′ −→ Vλ′.
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Proof. (1) Fix natural numbers m < n and let j : Vλ −→ Vλ be an
I3wf(n)-embedding with critical sequence ⟨κℓ | ℓ < ω⟩. Assume, towards
a contradiction, that there is no I3wf(m)-embedding j : Vλ′ −→ Vλ′ with
λ′ < λ. Set γ = sup(jm,n[κ

+
m]). Since m < n, we have γ < κ+

n . We

define a tree T whose nodes are pairs ⟨i, r⟩ where i : Vκn

part−−→ Vκn is
a partial elementary embedding and r is an order-preserving mapping
on ordinals such that there are:

• a natural number k > m,
• a strictly increasing sequence ⟨µℓ | ℓ ≤ k + 1⟩ of cardinals less
than κn,

• a sequence ⟨iℓ : Vµk
−→ Vµk+1

| ℓ < k⟩ of elementary embed-
dings,

• a sequence ⟨Dℓ ⊆ µ+
ℓ | m ≤ ℓ < k⟩, and

such that the following statements hold:

(1) dom(i) = Vµk+1, i ↾ µ0 = idµ0 and i(µℓ) = µℓ+1 for all ℓ ≤ k.
(2) i0 = i ↾ Vµk

and iℓ+1 = i(iℓ ↾ Vµk−1
) for all ℓ ≤ k.

(3) Dm = µ+
m and Dℓ+1 = {ξ < µℓ+1 | ∃ζ ∈ Dℓ ξ ≤ iℓ(ζ)} for all

m ≤ ℓ < k − 1.
(4) r : Dk−1 → γ is an order-preserving function such that r ↾ µ+

m =
idµ+

m
and r(ζ) = r(iℓ(ζ)) whenever ζ ∈ Dℓ and ℓ < k − 1.

The ordering on T is the natural one: ⟨i, r⟩ < ⟨̂ı, r̂⟩ whenever ⟨i, r⟩, ⟨̂ı, r̂⟩ ∈
T , ı̂ extends i, and r̂ extends r. Thus, T is a tree of height at most ω.

Claim. Suppose i ∈ T . Then, the number k and the sequences of
cardinals µℓ, embeddings iℓ, and the sets Dℓ are uniquely determined
by i.

Proof of the Claim. Observe first that the corresponding sequence of
cardinals µl is uniquely determined as the (finite) critical sequence of
i. The embeddings iℓ are also obtained from i and the critical sequence
by definition of T . This uniquely determines each Dℓ as well. □

It follows from the claim that if ı̂ is an extension of i in T , then ı̂
must have a strictly longer critical sequence. Moreover, the definition
of T imposes agreement on the embeddings iℓ and sets Dℓ.

Claim. The tree T is well-founded.

Proof of the Claim. Assume, towards a contradiction, that there is a
branch B of order-type ω through T . The union of the first and sec-
ond components of B yields an embedding i and an order-preserving
mapping r. By the comment immediately before the claim, there is
a cardinal λ′ < κn with the property that i : Vλ′ −→ Vλ′ is an I3-
embedding. Let ⟨µℓ | ℓ < ω⟩ denote the critical sequence of i. Let us
denote by D the set of all elements of M i

ω, say iℓ,ω(ξ) with m ≤ ℓ < ω
and ξ < λ′, for which there is ζ < µ+

m with ξ ≤ im,ℓ(ζ). Observe that
this is precisely the union of the sets Dℓ determined by B.
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Similarly, r : D −→ γ has the property that

(r ◦ iℓ,ω)(ξ0) < (r ◦ iℓ,ω)(ξ1)
holds for all m ≤ ℓ < ω, ζ < µ+

ℓ and ξ0 < ξ1 < im,ℓ(ζ). But, this di-
rectly implies that im,ω[µ

+
m] ⊆ W i

ω and hence i is an I3wf(m)-embedding,
contradicting our initial assumption. □

Since T has cardinality at most κn, the above claim shows that there
is an ordinal ρ < κ+

n and an order-reversing (ranking) function, say
π : T −→ ρ. Now, set γ∗ = jn,ω(γ), ρ∗ = jn,ω(ρ), π∗ = jn,ω(π) and
T∗ = jn,ω(T ). Our setup then ensures that γ∗, ρ∗, π∗ and T∗ are all
elements of W j

ω and this directly implies that T∗ is a well-founded tree.

Claim. If k > m is a natural number, then (j ↾ Vκk+1, rk) is an element
of T∗ for some rk.

Proof of the Claim. We need to define rk and show that (j ↾ Vκk+1, rk) ∈
T∗. This will be witnessed by:

• the natural number k,
• the sequence ⟨κℓ | ℓ ≤ k + 1⟩,
• the sequence ⟨(jℓ,ℓ+1 ↾ Vκk

) : Vκk
→ Vκk+1

| ℓ < k⟩, and
• the sequence ⟨Dℓ | m ≤ ℓ < k⟩, where Dm = κ+

m and, for m <
ℓ < k, we have Dℓ = {ξ : ∃ζ < κ+

m ξ ≤ jm,ℓ(ζ)} =
⋃
jm,ℓ[κ

+
m].

The function rk : Dk−1 → γ∗ from the statement of the claim is defined
inductively, assuming rk−1 has been defined the same way and that
the pair (j ↾ Vκk−1+1, rk−1) has been shown to belong to T∗. First,
we set rk(ξ) = ξ for ξ < κ+

m. If ξ ∈ Dℓ for ℓ < k − 1, then we set
rk(ξ) = rk−1(ξ); otherwise if ξ ∈ Dk−1 \ Dk−2 (and m < k − 1), we
define rk(ξ) = jk−1,ω(ξ) < γ∗. Note that jℓ,ω[Dℓ] ⊆ γ∗holds for all
m ≤ ℓ < ω. Since γ∗ ∈ W j

ω, it follows that rk is order-preserving.
Let us check the (j ↾ Vκk+1, rk) satisfies all the clauses defining T∗ in

M j
ω. For (1), we directly see that j ↾ Vκk+1 has domain Vκk+1, critical

point κ0, and critical sequence ⟨κℓ : ℓ ≤ k⟩. Clause (2) follows from the
fact that jℓ+1,ℓ+2 ↾ Vκk

= j(jℓ,ℓ+1 ↾ Vκk−1
) for each ℓ < k. Clause (3)

holds by definition. Finally, for (4), let ξ ∈ Dℓ and suppose that ℓ is
least such. If ℓ < k − 2, then the fact that rk(ξ) = rk(jℓ,ℓ+1(ξ)) follows
from the inductive construction of rk and the inductive assumption that
(j ↾ Vκk−1+1, rk−1) ∈ T∗. Otherwise, if ℓ = k − 2, then jk−2,k−1(ξ) ∈
Dk−1 \Dk−2, and so according to the definition of rk we have

rk(jk−2,k−1(ξ)) = jk−1,ω(jk−2,k−1(ξ)) = jk−2,ω(ξ) = rk−1(ξ) = rk(ξ).

We had already checked that rk is order-preserving. This shows that
(j ↾ Vκk+1, rk) ∈ T∗, as desired. □

The above claim now directly yields a contradiction, because T∗ is
well-founded.

Part (2) of the proposition follows directly from part (1),as every
I31-embedding is an I3wf(n)-embedding for all natural numbers n. □
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5.2. Exacting cardinals and Prikry forcing. Given a normal ul-
trafilter U on a cardinal κ, we let PU denote the corresponding Prikry
forcing (see [Kan03, Section 18]).

Theorem 5.4. If j : Vλ −→ Vλ is an I3wf(0)-embedding with critical
sequence κ⃗ = ⟨κm | m < ω⟩,

U0 = {A ⊆ κ0 | κ0 ∈ j(A)}
is the normal ultrafilter on κ0 induced by j and G is PU0-generic over
V , then κ0 is an exacting cardinal in V [G].

Proof. Assume, towards a contradiction, that κ0 is not exacting in
V [G]. Then the weak homogeneity of PU0 ensures that every condi-
tion in this partial order forces that λ is not exacting. Fix α > λ with
the property that Vα is sufficiently elementary in V and pick an ele-
mentary substructure X of Vα of cardinality κ0 with Vκ0 ∪ {U0} ⊆ X.
Let π : X −→ N0 denote the corresponding transitive collapse. Then
Vκ0 ∪{κ0} ⊆ N0. Next, set Ū0 = π(U0) = N0∩U0 ∈ N0. Fix a bijection
b0 : κ0 −→ N0 with b0(0) = κ0, b0(1) = Ū0 and b0(ω · β) = β for all
β < κ0. Finally, let E0 be the unique well-founded and extensional
relation on κ0 with the property that N0 is the transitive collapse of
⟨κ0, E0⟩.

Now, set E = j0,ω(E0), N = j0,ω(N0), U = j0,ω(U0), Ū = j0,ω(Ū0)
and b = j0,ω(b0). Then E ∈ Vλ+1 ∩ W j

ω is a binary relation on λ.
Moreover, since N0 ∩Ord ∈ κ+

0 , it follows that

(N ∩Ord)M
j
ω = j0,ω(N0 ∩Ord) ∈ j0,ω[κ

+
0 ] ⊆ W j

ω.

Since M j
ω is a model of ZFC, we now know that N ∈ W j

ω is a transitive
set with Vλ ∪ {Ū , λ} ⊆ N and b : ⟨λ,E⟩ −→ ⟨N,∈⟩ is an isomorphism
with b(0) = λ, b(1) = Ū and b(ω · β) = β for all β < λ. It follows
that E is a well-founded and extensional relation on λ and N is the
transitive collapse of ⟨λ,E⟩. In addition, Proposition 5.1 shows that
j+(E) = E holds and therefore we can apply [AD19, Lemma 3.3] to
conclude that j ↾ λ is an elementary embedding of ⟨λ,E⟩ into itself. It
follows that

i = b ◦ j ◦ b−1 : N −→ N

is an elementary embedding with i(λ) = λ, i(Ū) = Ū and i ↾ λ = j ↾ λ.

(N,∈) (N,∈)

⟨λ,E⟩ ⟨λ,E⟩

i

b−1

j

b

Next, notice that our setup ensures that

U = {A ∈ P(λ) ∩W j
ω | ∃m < ω ∀n ∈ [m,ω) κn ∈ A} ∈ W j

λ
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and

Ū = N ∩ U = {A ∈ P(λ)N | ∃m < ω ∀n ∈ [m,ω) κn ∈ A} ∈ N.

Elementarity then ensures that Ū is a normal ultrafilter on λ in N .
Let PN

Ū
denote Prikry forcing with Ū in N . The fact that i(Ū) = Ū

holds then ensures that i(PN
Ū
) = PN

Ū
holds. Let G denote the filter on

PN
Ū

induced by κ⃗, i.e., the filter G consists of all conditions ⟨s, A⟩ in
PN
Ū

with the property that s(m) = κm for all m < lh(s) and κm ∈ A
for all lh(s) ≤ m < ω. The above equalities now allow us to use the
Mathias criterion for Prikry forcing (see [Kan03, Theorem 18.7]) to
conclude that G is PN

Ū
-generic over N with κ⃗ ∈ N [G]. Next, let H

denote the filter on PN
Ū

induced by the sequence ⟨κm+1 | m < ω⟩, i.e.,
the filterH consists of all conditions ⟨s, A⟩ in PN

Ū
with the property that

s(m) = κm+1 for all m < lh(s) and κm+1 ∈ A for all lh(s) ≤ m < ω. It
then follows thatH is also PN

Ū
-generic overN withN [G] = N [H]. Since

i[G] ⊆ H holds, standard arguments allow us to find an elementary
embedding

i∗ : N [G] → N [G]

τG 7→ i(τ)H

extending i to N [G].
By our initial assumption that κ0 is not exacting after Prikry forcing

with U0, elementarity now implies that λ is not an exacting cardinal
in N [G]. An application of Theorem 3.4 (see also Remark 3.6) now
shows that, in N [G], there is a non-empty subset A of Vλ+1 that is
definable by a formula with parameter λ and has the property that for
all x, y ∈ A, there is no non-trivial elementary embedding of ⟨Vλ,∈, x⟩
into ⟨Vλ,∈, y⟩. Pick x ∈ A and set y = i∗(x). Since i∗(λ) = λ and A is
definable from λ, we have i∗(A) = A and hence y ∈ A.
Define T to be the set of all non-trivial partial elementary embed-

dings p of ⟨Vλ,∈, x⟩ into ⟨Vλ,∈, y⟩ with dom(p) = Vκm and ran(p) ⊆
Vκm+1 for some 0 < m < ω. The fact that the sequence κ⃗ is an element
of N [G] then implies that the set T is also an element of N [G]. More-
over, if we order the elements of T by inclusion, then we obtain a tree
of height at most ω. It is now easy to see that for all 0 < m < ω, the
map i∗ ↾ Vκm is an element of the (m−1)-th level of T . This shows that
the tree T has height ω and it contains a cofinal branch in V . Since a
sufficiently strong fragment of ZFC holds in N [G], we now know that
there is a cofinal branch B through T in N [G]. But, this implies that⋃
B is a non-trivial elementary embedding of ⟨Vλ,∈, x⟩ into ⟨Vλ,∈, y⟩

in N [G], which is a contradiction. This proves the theorem. □

Corollary 5.5. The existence of an I3wf(0)-embedding implies the ex-
istence of a transitive model of ZFC together with Vopěnka’s Principle
and the existence of an exacting cardinal.
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Proof. Let j : Vλ −→ Vλ be an I3wf(0)-embedding with critical sequence
⟨κm | m < ω⟩ and let U = {A ⊆ κ0 | κ0 ∈ j(A)}. Then PU ∈ Vλ. Let G
be PU -generic over Vλ. Since G is also PU -generic over V , Theorem 5.4
shows that κ0 is an exacting cardinal in V [G]. Moreover, the fact that
Vλ[G] = V [G]λ ensures that κ0 is also an exacting cardinal in Vλ[G].
Using the weak homogeneity of PU , we can now conclude that, in Vλ,
every condition in PU forces κ0 to be an exacting cardinal.

Now work in V again and let X be a countable elementary submodel
of Vλ with U ∈ X. Let π : X −→ M denote the corresponding transi-
tive collapse and let H be π(PU)-generic over M . The above arguments
then show that π(κ0) is an exacting cardinal in M [H]. Moreover, since
Vopěnka’s Principle holds in Vλ, it also holds in any set-generic forcing
extension of Vλ ([BT11, Theorem 14]), and so it holds in M [H]. □

Corollary 5.6. If ZFC is consistent with the existence of an I2-embed-
ding, then ZFC is consistent together with the HOD Hypothesis and the
existence of an extendible cardinal above an exacting cardinal.

Proof. By [FHL15, Theorem 1.7] and [AD19, Section 3], the consistency
of ZFC with the existence of an I2-embedding implies the consistency
of ZFC with an I31-embedding and the assumption that for every inac-
cessible cardinal κ, there exists a well-ordering of Hκ+ that is definable
in Hκ+ by a formula without parameters. Work in a model of this
theory and fix an I31-embedding j : Vλ −→ Vλ with critical sequence
⟨κm | m < ω⟩. It then follows that Vλ is a model of ZFC in which
both V = HOD and Vopěnka’s Principle hold. In particular, the HOD
Hypothesis holds in Vλ. Set U = {A ⊆ κ0 | κ0 ∈ j(A)} and let G be
PU -generic over V . Then Vλ[G] is a model of both the HOD Hypoth-
esis and Vopěnka’s Principle, because both principles are preserved by
set-sized forcings (see [WDR13, Corollary 8]). Finally, Theorem 5.4
shows that, in Vλ[G], there is an extendible cardinal above an exacting
cardinal. □

5.3. Exacting cardinals and I3 embeddings. In the remainder of
this section, we consider lower bounds for the consistency strength of
exacting cardinals.

Proposition 5.7. If λ is an exacting cardinal and γ < (λ+)HODVλ ,
then there is an I3-embedding j : Vλ −→ Vλ with critical point κ that
satisfies γ ∈ W j

ω ∩ j0,ω[κ
+].

Proof. Assume, towards a contradiction, that the above implication
fails for some exacting cardinal λ and let γ < (λ+)HODVλ be the minimal
counterexample. Then there is z ∈ Vλ with γ < (λ+)HOD{z} . Let E be
the minimal element in the canonical well-ordering of HOD{z} that
is a well-ordering of λ of order-type γ. Then both γ and E can be
defined by formulas with parameters λ and z. Pick ζ > λ such that
Vζ is sufficiently elementary in V . By our assumption, there is an
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elementary submodel X of Vζ with Vλ ∪ {λ} ⊆ X and an elementary
embedding i : X −→ Vζ with i ↾ λ ̸= idλ, i(λ) = λ and i(z) = z. It
then follows that both γ and E are elements of X with i(γ) = γ and
j(E) = E.
Now, define j = i ↾ Vλ : Vλ −→ Vλ. Then j is an I3-embedding and

elementarity ensures that

j+ ↾ (Vλ+1 ∩X) = i ↾ (Vλ+1 ∩X).

In particular, we have j+(E) = E. Set κ = crit(j) and E0 = E ∩ Vκ.
Then Proposition 5.1 shows that E = j0,ω(E0) ∈ W j

ω. The elementarity
of j0,ω then implies that E0 is a well-ordering of κ. Let γ0 denote the
order-type of this well-order. By elementarity, in M j

ω the set E is a
well-ordering of λ of order-type j0,ω(γ0). Since λ and E are elements of
W j

ω , we can now conclude that j0,ω(γ0) ∈ W j
ω and j0,ω(γ0) is also the

order-type of E in V . This shows that

γ = j0,ω(γ0) ∈ W j
ω ∩ j0,ω[κ

+]

contradicting our initial assumption. □

We will next show that the conclusion of Proposition 5.7 implies that
there are many I3-embeddings below λ. To this purpose, we shall first
prove the following lemma, which we will apply to derive fragments of
the Principle of Dependent Choice in models of the form L(Vλ):

Lemma 5.8. Let λ be a strong limit cardinal, let M be an inner model
of ZF with Vλ ⊆ M and let T ∈ M be a tree of height ω whose under-
lying set is a subset of Vλ. If T has an infinite branch in V and λ is
regular in M , then T has an infinite branch in M .

Proof. We start by proving two claims.

Claim. If α < λ and f : D −→ λ is a function in M with D ⊆ Vα,
then ran(f) is bounded in λ.

Proof of the Claim. Since λ is a strong limit cardinal in V , it follows
that there is a wellordering of D of order-type less than λ in Vλ. The
fact that λ is regular now yields the statement of the claim. □

Claim. In M , there is a non-empty pruned (i.e., with no maximal
elements) subtree of T .

Proof of the Claim. Given a tree S, we let S ′ denote the subtree of S
consisting of all non-maximal elements of S. Now, let ⟨Tα | α ∈ Ord⟩
denote the unique sequence with T0 = T , Tα+1 = T ′

α for all α ∈ Ord
and Tλ =

⋂
α<λ Tα for every limit ordinal λ. Then there exists an

ordinal β with Tβ = Tβ+1. Since T has an infinite branch in V , the
elements of this branch are contained in Tα for every ordinal α. Thus,
Tβ is a non-empty pruned subtree of T that is an element of M . □



26 AGUILERA, BAGARIA, GOLDBERG, AND LÜCKE

Now work inM and fix a non-empty pruned subtree S of T . Let S(n)
be the n-th level of S. By our first claim, for all α < λ and all n < ω,
there exists α < β < λ with the property that for all s ∈ S(n) ∩ Vα,
there exists t ∈ S(n + 1) ∩ Vβ with s <S t. We may now recursively
define a strictly increasing sequence ⟨αn | n < ω⟩ of ordinals below λ
such that S(0)∩Vα0 ̸= ∅ and for every n < ω and every s ∈ S(n)∩Vαn ,
there exists t ∈ S(n+1)∩Vαn+1 with s <S t. Define U to be the subtree
of S with underlying set

⋃
{S(n) ∩ Vαn | n < ω}.

Set α = supn<ω αn. Our assumption on λ implies that α < λ. Since
U is non-empty and pruned, this tree contains a cofinal branch b in V .
But note that b ∈ Vα+1 ⊆ Vλ ⊆ M . □

We shall now derive the existence of many I3-embeddings from the
conclusion of Proposition 5.7.

Proposition 5.9. Let λ be a cardinal with the property that for every
γ < (λ+)L(Vλ), there exist an I3-embedding j : Vλ −→ Vλ with critical
point κ and δ0 < (κ+)L(Vκ) such that γ < j0,ω(δ0) ∈ W j

ω. Then λ
is regular in L(Vλ), and for every closed unbounded subset C of λ in
L(Vλ) there is an I3-embedding j : Vλ′ −→ Vλ′ with λ′ < λ whose
critical sequence consists of elements of C.

Proof. Fix a closed unbounded subset C of λ in L(Vλ) of order-type

cof(λ)L(Vλ). Pick λ < γ < (λ+)L(Vλ) with C ∈ Lγ(Vλ). By our assump-
tions, we can find an I3-embedding j : Vλ −→ Vλ with critical sequence
⟨κm | m < ω⟩ and an ordinal δ0 < (κ+

0 )
L(Vκ0 ) with γ < j0,ω(δ0) ∈ W j

ω.

Let D⃗ be an enumeration in length κ0 of all closed unbounded subsets
of κ0 in Lδ0(Vκ0), and let D0 be the diagonal intersection of D⃗. Set
δ = j0,ω(δ0) and D = j0,ω(D0). We then know that Lδ(Vλ) ∈ W j

ω. In
particular, this implies that λ is regular in Lδ(Vλ). Moreover, elemen-
tarity ensures that D is equal to a diagonal intersection of all closed
unbounded subsets of λ in Lδ(Vλ) and hence there exists m < ω with
D ∩ [κm, λ) ⊆ C. Since D0 has order-type κ0, it follows, by elemen-
tarity, that D, and therefore also C, have order-type λ. Hence, λ is a
regular cardinal in L(Vλ). Finally, note that we have κn ∈ D for all
n < ω and this implies that κn ∈ C for all m ≤ n < ω. This shows
that jm,m+1 : Vλ −→ Vλ is an I3-embedding whose critical sequence
⟨κn | m ≤ n < ω⟩ consists of elements of C.

Now define T to be the set of all partial elementary embeddings
i : Vλ −→ Vλ with the property that there exists a natural number
0 < ℓ < ω and a strictly increasing sequence ⟨λk | k ≤ ℓ⟩ of elements
of C with dom(i) = Vλℓ−1

, ran(i) ⊆ Vλℓ
, i ↾ λ0 = idλ0 , i(λk) = λk+1

and Vλk
≺ Vλ for all k < ℓ. Then T is an element of L(Vλ) and, if

we order the elements of T by inclusion, then we turn T into a tree
of height at most ω. Given 0 < ℓ < ω, it is now easy to see that the
sequence ⟨κm+k | k ≤ ℓ⟩ witnesses that jm,m+1 ↾ Vκℓ−1

is an element of
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the (ℓ−1)-th level of T . This shows that T has an infinite branch in V ,
and since, as we showed, λ is regular in L(Vλ), we may apply Lemma
5.8 to conclude that T has an infinite branch B in L(Vλ). Set i =

⋃
B.

Then the definition of T yields an ordinal λ′ ≤ λ of countable cofinality
with the property that i is a non-trivial elementary embedding from Vλ′

into itself whose critical sequence consists of elements of C. Since i is
an element of L(Vλ) and λ is regular in L(Vλ), we have that λ

′ < λ. □

Theorem 5.4 and Proposition 5.7 yield now the following chain of
implications:

Theorem 5.10. The consistency of each of the following theories im-
plies the consistency of the next one, modulo ZFC:

(1) There exists an I2-embedding.
(2) There exists an I3wf(0)-embedding.
(3) There exists an exacting cardinal.
(4) There is a cardinal λ which is regular in L(Vλ), and such that

in L(Vλ) the set of cardinals that are the critical point of an
I3-embedding is stationary.

(5) There exists an I3-embedding.

Proof. That (1) is strictly stronger than (2) follows from [AD19, Section
3]. Theorem 5.4 shows that the consistency of (2) implies that of
(3). That the consistency of (3) implies that of (4) is a consequence
of Propositions 5.7 and 5.9, because the conclusion of 5.7 yields the
assumption of 5.9, as (λ+)L(Vλ) ≤ (λ+)HODVλ . Finally, (4) is trivially
strictly stronger than (5), consistency-wise. □

I2 I31 I3wf(n+1) I3wf(0) Exacting I3

Figure 1. Large cardinals between I2 and I3, ordered
by consistency strength. None of the arrows reverse.

In particular, we obtain the following result which locates exacting
cardinals within the hierarchy of traditional large cardinals:

Corollary 5.11. The consistency strength of an exacting cardinal is
strictly between the existence of an I2-embedding and an I3-embedding.

6. Structural reflection

In this last section we will give characterizations of exacting and ul-
traexacting cardinals in terms of Structural Reflection, thus showing
that these cardinals fit nicely in the general framework of large car-
dinals as principles of Structural Reflection as presented in [Bag23].
While such characterizations were already given in [ABL24], the ones
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presented here are arguably more natural. As explained in the intro-
duction, they allow recasting exactingness as a two-cardinal variant of
unfoldability.

6.1. Ultraexacting structural reflection. We shall prove that the
existence of an ultraexacting cardinal is equivalent to a simpler form
of the principle of Ultraexact Structural Reflection from [ABL24].

First, recall that for a limit ordinal λ and a function f : Vλ → Vλ,
a square root of f is a function r : Vλ → Vλ with r+(r) = f , where
r+ : Vλ+1 → Vλ+1 is defined by r+(x) =

⋃
{r(x ∩ Vα) : α < λ}.

Given a first-order language L containing a distinguished unary pred-
icate symbol Ṗ , we say that an L-structure A has type ⟨µ, λ⟩ if the
universe of A has rank λ and ṖA has rank µ.

Definition 6.1. Given a first-order language L containing a unary
predicate symbol Ṗ , and given a class C of L-structures, the Ultraex-
acting Structural Reflection principle for C at a cardinal λ (UXSRC(λ))
asserts that there is a function f : Vλ → Vλ and a cardinal µ < λ with
the property that for every structure B in C of type ⟨µ, λ⟩, there exists
a structure A in C of type ⟨ν, λ⟩, for some ν < µ, and a square root r
of f such that the restriction of r to the universe of A is an elementary
embedding of A into B.

The naturalness of the UXSR principle is illustrated in the following
two propositions.

Proposition 6.2. The following are equivalent for a cardinal λ:

(1) UXSRC(λ) holds for the class C of L-structures of the form
⟨Vξ,∈, α⟩, where α < ξ.

(2) There exists an elementary embedding j : Vλ → Vλ.

Proof. Assume (1), and let f : Vλ → Vλ and µ < λ witness UXSRC(λ).
Then ⟨Vλ,∈, µ⟩ ∈ C is of type ⟨µ, λ⟩. So there is some ⟨Vλ,∈, ν⟩ ∈ C
with ν < µ and a square root r of f such that the restriction r ↾ Vλ :
Vλ → Vλ is an elementary embedding sending ν to µ, which yields (2).

Now assume j : Vλ → Vλ is an elementary embedding, and let us
show (1). Set f = j2 : Vλ → Vλ and let µ be any element of the critical
sequence of j greater than the critical point of j. We claim that f and
µ witness UXSRC(λ). Note that there is only one element of C of type
⟨µ, λ⟩, namely ⟨Vλ,∈, µ⟩. Letting ν = j−1(µ), we have that ν < µ,
and j, which is a square root of f , is an elementary embedding from
⟨Vλ,∈, ν⟩ to ⟨Vλ,∈, µ⟩, which yields (1). □

Proposition 6.3. The following are equivalent for a cardinal λ:

(1) UXSRC(λ) holds for all classes C of L-structures that are ∆1

definable (i.e., both Σ1 and Π1 definable) using Vλ as a param-
eter.

(2) There exists an elementary embedding j : Vλ+1 → Vλ+1.
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We defer the proof of the proposition above, since it will follow from
more general arguments given in the proofs of the next two lemmata.

Following [ABL24, Section 4], let now L∗ denote the first-order lan-
guage that extends the language of set theory by a unary function
symbol ḟ , a binary relation symbol Ė, and a unary predicate symbol
Ṗ . Define U to be the class of L∗-structures A such that there exists a
limit cardinal λ such that the following hold:

• The reduct of A to the language of set theory is equal to ⟨Vλ,∈⟩.
• If ζ is the least cardinal in C(2) greater than λ, then there is
an elementary submodel X of Vζ with Vλ ∪ {λ, ḟA} ⊆ X and a
bijection τ : X → Vλ with τ(λ) = ⟨0, 0⟩, τ(x) = ⟨1, x⟩ for all
x ∈ Vλ and

x ∈ y ⇐⇒ τ(x) ĖA τ(y)

for all x, y ∈ X.

It is easy to check that U is a ∆3 class (i.e., both Σ3 and Π3 definable,
without parameters). Then, similarly as in [ABL24, Lemma 4.7], we
have the following:

Lemma 6.4. If λ ∈ C(1) and UXSRU(λ) holds, then λ is ultraexacting.

Proof. Let f : Vλ → Vλ and µ < λ witness that UXSRU(λ) holds. Let
ζ be the least cardinal in C(2) greater than λ, let Y be an elementary
submodel of Vζ of cardinality λ with Vλ∪{λ, f} ⊆ Y , and let π : Y → Vλ

be a bijection with π(λ) = ⟨0, 0⟩, π(x) = ⟨1, x⟩ for all x ∈ Vλ. Then

there is an L∗-structure B extending ⟨Vλ,∈⟩ with ḟB = f , ĖB =
{⟨π(x), π(y)⟩ : x, y ∈ Y, x ∈ y} and ṖB = µ. It follows that B is
an element of U of type ⟨µ, λ⟩. Hence, there is a structure A in U of
type ⟨ν, λ⟩, with ν < µ, and a square root r : Vλ → Vλ of f that is an
elementary embedding of A into B. Notice that r is an I3-embedding
with r(ν) = µ. Also, we have that r(⟨m,x⟩) = ⟨m, r(x)⟩ holds for all
x ∈ Vλ and m < ω. Since A ∈ U , let X be an elementary submodel of
Vζ with Vλ ∪ {λ, ḟA} ⊆ X, and let τ : X → Vλ be a bijection such that
τ(λ) = ⟨0, 0⟩, τ(x) = ⟨1, x⟩ for all x ∈ Vλ, and

x ∈ y ⇐⇒ τ(x) ĖA τ(y)

holds for all x, y ∈ X. Now define

j := π−1 ◦ r ◦ τ : X → Vζ .

We claim that j is an ultraexact embedding at λ. First note that

j(λ) = (π−1 ◦ r ◦ τ)(λ) = (π−1 ◦ r)(⟨0, 0⟩) = π−1(⟨0, 0⟩) = λ

and

j(x) = (π−1 ◦ r ◦ τ)(x) = (π−1 ◦ r)(⟨1, x⟩) = π−1(⟨1, r(x)⟩) = r(x)
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holds for all x ∈ Vλ. Further, j is an elementary embedding: for every
a ∈ X and every formula φ(x) in the language of set theory,

X |= φ(x) iff ⟨Vλ, Ė
A⟩ |= φ(τ(a)) iff ⟨Vλ, Ė

B⟩ |=φ(r(τ(a))) iff

Y |= φ(π−1(r(τ(a)))) iff Vζ |= φ(j(a)).

Claim 6.5. j ↾ Vλ = ḟA.

Proof of the Claim. Assume, towards a contradiction, that the claim
fails and pick m < ω with j ↾ Vλm ̸= ḟA ↾ Vλm , where ⟨λm : m < ω⟩ is
the critical sequence of r. Elementarity then implies that

r(r ↾ Vλm) = r(j ↾ Vλm) ̸= r(ḟA ↾ Vλm) = ḟB ↾ Vλm+1 = f ↾ Vλm+1 .

But since r is a square root of f , we also have that

r(r ↾ Vλm) = r+(r) ↾ Vλm+1 = f ↾ Vλm+1

which yields a contradiction. □

This completes the proof of the lemma, because j ↾ Vλ = ḟA ∈ X,
thus showing that j is an ultraexact embedding at λ. □

The converse holds for all ordinal definable classes of L-structures,
namely,

Lemma 6.6. If λ is an ultraexacting cardinal, then for every ordinal
definable class C of L-structures, the principle UXSRC(λ) holds.

Proof. Let C be an ordinal definable class of L-structures, and let
Cλ+1 = C ∩ Vλ+1· Thus, Cλ+1 is an element of Vλ+2 that is ordinal
definable with λ as an additional parameter.
By Lemma 3.1, let j : (Vλ+1, Cλ+1) → (Vλ+1, Cλ+1) be an elementary

embedding with critical point, κ, less than λ. Let µ = j(κ), and let
f := j ↾ Vλ : Vλ → Vλ. We claim that UXSRC(λ) holds, witnessed by
f and µ.
So suppose A ∈ Cλ+1 is a structure of type ⟨µ, λ⟩. Then the el-

ementarity of j implies that j(A) ∈ Cλ+1, and the restriction map
j ↾ A : A → j(A) is an elementary embedding. Notice that j ↾ A is the
restriction to A of the function j ↾ Vλ, which is a square root of j(f).

We may now pull back the previous statement by j−1 and use elemen-
tarity to conclude that there is a structure B in Cλ+1 of type ⟨κ, λ⟩ and
there exists an elementary embedding i : B → A that is the restriction
to B of a function that is a square root of f . □

Lemmas 6.4 and 6.6 now yield the following characterization of ul-
traexact cardinals in terms of Ultraexacting Structural Reflection.

Theorem 6.7. A cardinal λ is ultraexacting if and only if the principle
UXSRC(λ) holds for all ordinal definable classes C (equivalently, for the
particular ∆3 class used in the proof of Lemma 6.4) of L-structures.
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Similar arguments as in the proofs of the two lemmata above yield
a proof of Proposition 6.3. Namely,

Proof of Proposition 6.3. Let C be the class of L∗ structures A such
that there exists a limit ordinal λ such that the following hold:

• The reduct of A to the language of set theory is equal to ⟨Vλ,∈⟩.
• There is a transitive setX with Vλ∪{λ, ḟA} ⊆ X and a bijection
τ : X → Vλ with τ(λ) = ⟨0, 0⟩, τ(x) = ⟨1, x⟩ for all x ∈ Vλ and

x ∈ y ⇐⇒ τ(x) ĖA τ(y)

for all x, y ∈ X.

Thus, C is ∆1 definable with Vλ as a parameter, since A ∈ C if and
only if M |= “A ∈ C”, for every transitive model M of a sufficiently-big
finite fragment of ZFC that contains Vλ ∪ {λ}.

Assume (1) and argue as in the proof of Lemma 6.4, working with
the class C, instead of the class U . Right before Claim 6.5, we have the
following:

X |= φ(x) iff ⟨Vλ, Ė
A⟩ |= φ(τ(a)) iff ⟨Vλ, Ė

B⟩ |=φ(r(τ(a))) iff

Y |= φ(π−1(r(τ(a)))) iff Y |= φ(j(a)).

Since, by Claim 6.5, j ↾ Vλ ∈ X, we also have that j ↾ (X ∩Vλ+1) ∈ X,
because if x ∈ X ∩ Vλ+1, then j(x) =

⋃
{j(x ∩ Vλm) : m < ω}. This

shows that in X there exists an elementary embedding from Vλ+1 to
itself. Hence, by the elementarity of j, such an elementary embedding
exists in V .
For the converse, let j : Vλ+1 → Vλ+1 be an elementary embedding.

Let f := j2 ↾ Vλ : Vλ → Vλ, and let µ be any cardinal in the critical
sequence of j greater than the critical point. We claim that f and µ
witness UXSRC(λ) for any class C of structures that is ∆1 definable
with Vλ as a parameter.

So let C be such a class and fix A ∈ C of type ⟨µ, λ⟩. Then

Vλ+1 |= “A ∈ C”

by downward absoluteness for transitive classes. By elementarity,

Vλ+1 |= “j(A) ∈ C”

and the restriction map j ↾ A : A → j(A) is an elementary embedding.
Note that j ↾ A is the restriction to A of the function j ↾ Vλ, which is
a square root of j(f).

By pulling back the previous statement via j−1 we have, by ele-
mentarity, that in Vλ+1 there is a structure B in C of type ⟨j−1(µ), λ⟩
together with an elementary embedding i : B → A that is the restric-
tion to B of a function that is a square root of f . Since Vλ+1 is correct
about B belonging to C, this completes the proof. □
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6.2. Exacting structural reflection. We will next show that the
following simpler form of Structural Reflection characterizes exacting
cardinals.

Definition 6.8. Given a first-order language L containing a unary
predicate symbol Ṗ , and given a class C of L-structures, the Exacting
Structural Reflection principle for C at a cardinal λ (XSRC(λ)) asserts
that there exists a cardinal µ < λ with the property that for some
structure B in C of type ⟨µ, λ⟩, if there is any, there exists a structure
A in C of type ⟨ν, λ⟩, for some ν < µ, and an elementary embedding of
A into B.

Observe that if C is the class of structures of the form ⟨Vξ,∈, α⟩,
where α < ξ, then XSRC(λ) is equivalent to the existence of an el-
ementary embedding j : Vλ → Vλ (see Proposition 6.2), hence also
equivalent to UXSRC(λ).

Let now L∗ denote the first-order language that extends the language
of set theory by a a binary relation symbol Ė and a unary predicate
symbol Ṗ . Define E to be the class of L∗-structures A such that there
exists a limit cardinal λ such that the following hold:

• The reduct of A to the language of set theory is equal to ⟨Vλ,∈⟩.
• If ζ is the least cardinal in C(2) greater than λ, then there is
an elementary submodel X of Vζ with Vλ ∪ {λ} ⊆ X and a
bijection τ : X → Vλ with τ(λ) = ⟨0, 0⟩, τ(x) = ⟨1, x⟩ for all
x ∈ Vλ and

x ∈ y ⇐⇒ τ(x) ĖA τ(y)

for all x, y ∈ X.

It is easily seen that E is a ∆3 class.

Lemma 6.9. If λ ∈ C(1) and XSRE(λ) holds, then λ is exacting.

Proof. Let µ < λ witness XSRE(λ). Let ζ be the least cardinal in C(2)

greater than λ, let Y be an elementary submodel of Vζ of cardinality λ
with Vλ∪{λ} ⊆ Y , and let π : Y → Vλ be a bijection with π(λ) = ⟨0, 0⟩,
π(x) = ⟨1, x⟩ for all x ∈ Vλ. Then there is an L∗-structure B extending
⟨Vλ,∈⟩ with ĖB = {⟨π(x), π(y)⟩ : x, y ∈ Y, x ∈ y} and ṖB = µ. It
follows that B is an element of E of type ⟨µ, λ⟩. By XSRE(λ) there
is a structure A in E of type ⟨ν, λ⟩, with ν < µ, and an elementary
embedding of A into B. Since A ∈ E , let X be an elementary submodel
of Vζ with Vλ ∪ {λ} ⊆ X, and let τ : X → Vλ be a bijection such that
τ(λ) = ⟨0, 0⟩, τ(x) = ⟨1, x⟩ for all x ∈ Vλ, and

x ∈ y ⇐⇒ τ(x) ĖA τ(y)

holds for all x, y ∈ X. Now letting

i := π−1 ◦ j ◦ τ : X → Vζ .

we can easily check that i is an exact embedding at λ. □
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The converse holds for all ordinal definable classes of structures in a
language containing a unary predicate symbol. Namely,

Lemma 6.10. Let L be a first-order language containing a unary pred-
icate symbol. If λ is an exacting cardinal, then for every n ≥ 2 there is
a cardinal µ < λ such that for every Σn-definable, with λ as a parame-
ter, class C of L-structures, the principle XSRC(λ) holds, witnessed by
µ.

Proof. Suppose λ is exacting and let j : X → Vζ be an elementary
embedding witnessing it, with ζ being the least element of C(n) greater
than λ. Let κ be the critical point of j, and let µ = j(κ).
Let C be a Σn-definable, with λ as a parameter, class of L-structures

and suppose there exists B ∈ C of type ⟨µ, λ⟩. Then this is true in
Vζ , and by elementarity there must exist A ∈ C of type ⟨κ, λ⟩ in X,
and therefore also in V . Now note that the restriction embedding
j ↾ A : A → j(A) is elementary, with j(A) being in C and of type
⟨µ, λ⟩, so it witnesses XSRC(λ). □

Lemmas 6.4 and 6.6 now yield the following characterization of ex-
acting cardinals in terms of Exacting Structural Reflection.

Theorem 6.11. A cardinal λ is exacting if and only if the principle
XSRC(λ) holds for all definable, with parameter λ, classes C (equiva-
lently, for the particular ∆3 class used in the proof of Lemma 6.9) of
L-structures.

We conclude with another characterization of exacting cardinals in
terms of Structural Reflection, which may be seen as a two-cardinal
version of the characterization of C(n)-strongly unfoldable cardinals
given in [BL24] (see also §1, where this characterization is re-stated),
and which bears some similarity with the Jónsson-like characterization
from [ABL24]. Namely,

Theorem 6.12. Let n ≥ 2. A cardinal λ is exacting if and only if for
some µ, for every class of structures C of the same signature, which
is Σn-definable from parameters in Vµ ∪ {λ}, and every B ∈ C of type
⟨µ, λ⟩, there is A ∈ C of type ⟨ν, λ⟩ with ν < µ and an elementary
embedding j : A → B.

Proof. For n ≥ 3, the fact that the hypothesis of the theorem implies
that λ is exacting follows from Theorem 6.11. To prove the optimal
result when n = 2, suppose towards a contradiction that A ⊆ Vλ+1 is
the OD-least counterexample to Definition 3.5. Fix some µ < λ wit-
nessing the hypothesis of the theorem, and let C be class of structures
(Vλ, γ, y) for γ < λ and y ∈ A. Fix any structure (Vλ, µ, y) ∈ C. By
hypothesis, there is some (Vλ, ν, x) ∈ C and an elementary embedding
j : (Vλ, ν, x) → (Vλ, µ, y). In particular, j is nontrivial and x, y ∈ A;
this contradicts that A is a counterexample to Definition 3.5.
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Conversely, fix n and let let µ be the critical point of an exact em-
bedding j : X → Vζ , where Vζ is sufficiently elementary in V . We
claim that this µ witnesses the Structural Reflection property in the
statement of the theorem. Suppose towards a contradiction that C is
a counterexample. So by the elementarity of X in V , we can find B in
X so that

• B ∈ C, both in V and in X,
• B is of type (µ, λ),
• there is no i : A → B, where A is in C and A is of type (ν, λ)
for some ν < µ.

By elementarity and the fact that j fixes all parameters from the
definition of C, we have j(C) = C, and j(B) witnesses that C is a
counterexample to the Structural Reflection property, so we have the
following in Vζ (and thus in V by elementarity):

• j(B) ∈ j(C) = C,
• there is no i : A → j(B), where A is in C and A is of type (ν, λ)
for some ν < j(µ).

However, taking A = B, i = j ↾ B, and ν = µ, we obtain a contradic-
tion. □

Ultraexacting cardinals admit a similar characterization in which
the embedding j : A → B is required to be a square root of a fixed
embedding f : Vλ → Vλ, as can be seen by arguing as in §6.1.

7. Open questions

Question 7.1. Does the theory ZFC + “there is an extendible cardinal
above an ultraexacting cardinal” disprove the HOD Hypothesis?

By [ABL24], the theory ZFC + “there is an extendible cardinal be-
low an ultraexacting cardinal” disproves the HOD Hypothesis, while
Corollary 5.6 shows that an extendible above an exacting cardinal does
not.

In view of Theorem 4.8, a negative answer to Question 7.1 might
require the construction of canonical inner models for extendible car-
dinals. Therefore, Question 7.1 could serve as a test question for inner
model theory, similar in spirit to the question of whether ODR deter-
minacy is consistent with an extendible cardinal. On the other hand, it
is conceivable that Question 7.1 could be resolved by forcing the HOD
Hypothesis over a model with an extendible above an ultraexacting
cardinal. This raises a basic question, having nothing to do with large
cardinals: given an ordinal α, is there a forcing extension V [G] that
preserves Vα and does not change OD subsets of Vα but V [G] satisfies
that every set is ordinal definable from parameters in Vα+ω?



LARGE CARDINALS BEYOND HOD 35

Acknowledgements. The authors would like to thank Hugh Woodin
for discussions. The work of the first-listed author was partially sup-
ported by FWF grants ESP-3N and STA-139. The work of the second-
listed author was supported by the Generalitat de Catalunya (Cat-
alonian Government) under grant 2021 SGR 00348, and by the Span-
ish Government under grant PID2023-147428NB-I00. Goldberg’s re-
search was supported by the National Science Foundation under Grant
No. DMS-2401789. The fourth-listed author gratefully acknowledges
support from the Deutsche Forschungsgemeinschaft (Project number
522490605).

References

[ABL24] Juan Aguilera, Joan Bagaria, and Philipp Lücke. Large Cardinals,
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[BL23] Joan Bagaria and Philipp Lücke. Huge reflection. Annals of Pure and
Applied Logic, 174(1), January 2023.
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