Games in Set Theory and Logic

Daisuke Ikegami






Games in Set Theory and Logic



ILLC Dissertation Series DS-2010-04

BTN
Eui

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam
Science Park 904
1098 XH Amsterdam
phone: +31-20-525 6051
fax: +31-20-525 5206
e-mail: 111lc@uva.nl
homepage: http://www.illc.uva.nl/



Games in Set Theory and Logic

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties
ingestelde commissie,
in het openbaar te verdedigen in de Aula der Universiteit
op dinsdag 1 juni 2010, te 11.00 uur

door
Daisuke Tkegami

geboren te Tokio, Japan.



Promotiecommissie:

Promotores:
Prof. dr. B. Lowe
Prof. dr. J. Vaananen

Co-promotor:
Prof. dr. R.-D. Schindler

Overige leden:

Prof. dr. J. Bagaria

Prof. dr. J.F.A.K. van Benthem
Prof. dr. J. Brendle

Dr. Y. Venema

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The investigations were supported by a GLoRiClass fellowship funded by the
European Commission (Early Stage Research Training Mono-Host Fellowship
MEST-CT-2005-020841).

Copyright (©) 2010 by Daisuke Tkegami

Back cover design on two mice with sumo fighting, (¢) by Masako Nishimura@Acorn
Village.
Used by permission.

Printed and bound by Ipskamp Drukkers.
ISBN: 90-5776-208-6



To My Father and My Mother,

who have been proud of me and ashamed of me since my birth.






Contents

Acknowledgments ix
1 Introduction 1
1.1 Outline. . . . . .. . . 1
1.2 Choice principles . . . . . . . .. ... 2
1.3 Trees . . . . . . e 2
1.4 General topology . . . . . . ..o 3
1.5 Borel sets, projective sets, and definability in the second-order
arithmetics . . . . . . . . ... . . 5
1.6 Gale-Stewart games . . . . . . .. ..o 8
1.7 Pointclasses, parametrization, and Recursion Theorem . . . . . . 10
1.8 The Baire property and Banach-Mazur games . . . . . .. .. .. 12
1.9 Forcing . . . . . . . . 15
1.10 Large cardinals . . . . . . .. .. ... 19
1.11 Inner models and inner model theory . . . . . .. ... ... ... 20
1.12 Absoluteness . . . . . . . . . ... 22
1.13 Borel codes and oco-Borel codes . . . . . ... ... 24
1.14 Blackwell games . . . . . . . . ... 26
1.15 Wadge reducibility and Wadge games . . . . . . . .. ... .. .. 29
2 Games and Regularity Properties 33
2.1 P-Baireness and P-measurability . . . . . ... ... ... ... .. 33
2.2 Forcing absoluteness . . . . . ... ... 44
2.3 The transcendence properties over inner models . . . . . . . . .. 46
2.4 The equivalence results . . . . . . ... ... ... .. L. o1
2.5 Applications . . . . . ... 64
2.6 Conclusion and Questions . . . . ... ... ... ......... 67

vil



3 Games themselves 71

3.1 Real Blackwell Determinacy and R* . . . ... ... ... .... 71
3.2 Real Blackwell Determinacy and regularity properties . . . . . . . 75
3.3 Toward ADgr from BI-ADr . . . . . . . .. ... ... ... .. .. 87
3.4 Toward the equiconsistency between ADr and BI-ADg . . . . .. 103
3.5 Questions . . ... 104
4 Games and Large Cardinals 107
4.1 The consistency strength of the existence of alternating chains . . 107
4.2 Questions . . . . . ... 112
5 Wadge reducibility for the real line 113
5.1 Wadge reducibility for the real line . . . .. ... ... ... ... 113
5.2 Conclusion and Questions . . . . ... .. ... ... ....... 122
6 Fixed-Point Logic and Product Closure 123
6.1 Basic notions and background . . . .. .. ... 0oL 124
6.2 The case for the modal p-calculus . . . . . .. ... ... ... .. 128
6.3 Thecase for PDL . . . . . .. ... ... ... ... .. ...... 132
6.4 Thecasefor CF . . . . . ... ... ... .. ... .. 135
6.5 Conclusion and questions . . . . . . .. .. ... ... ... . ... 137
Bibliography 139
Samenvatting 147
Abstract 149

viil



Acknowledgments

When T receive a thesis from a colleague of mine, I always start with acknowl-
edgments and usually end with them :) This is not only because their work is
not interesting to me but also because acknowledgments are the best part in their
theses to see their personalities. Keeping this in mind, I decided to write not only
about the list of people I am grateful but also about myself so that the readers can
get more information about me. So this is longer than usual acknowledgments in
Ph.D. theses and rather informal and filled with personal thoughts. I hope you
can enjoy reading it.

To those who are also interested in mathematical parts of this thesis: The rest
is formal and does not contain any personal thing. So please do not worry about
being fed up with reading about my personality and enjoy the rest!

[ first thank my father who introduced mathematics to me. When I was a
kid, T was good at calculations (not anymore) and was eager to encounter difficult
problems. When I entered some special private school for the exams of private
junior high schools, they gave me lots of math problems I could not solve and I
would often ask my father how to solve them (even when he was sleeping, I often
woke him up and asked). Although he was not the best teacher in my life, he
is the first person who taught me how to think in mathematics and since then,
mathematics is not just a calculation to me and that led me to decide to become
a mathematician when I was 10.

Secondly, I am grateful to Kurt Godel for proving Incompleteness Theorems
(the first and the second) which excited me a lot when I was a high school student.
Although there was no person around me (including me) who knew about the
precise statements of the theorems, they got me into foundations of mathematics
and made me to study mathematical logic in my bachelor. Of course his work is
much more than Incompleteness Theorems and it has been affecting my academic
life even now, but this is the part of his work which changed my life the most.

X



I would like to thank Paul Cohen for inventing forcing and proving the inde-
pendence of the Continuum Hypothesis from ZFC. After learning Godel’s Incom-
pleteness Theorems, I got into axiomatic set theory thanks to the nice lectures of
a professor in mathematical department and started to read a book in axiomatic
set. theory. In the last part of the book, it mentions the independence of CH
from ZFC and T still remember how much I was shocked at it. While the Godel
sentence is a rather artificial statement to be independent from a suitable axiom
system, CH seemed very natural to me and I wondered how on earth one could
prove such statement to be independent, which led me to become a set theorist.

[ am grateful to W. Hugh Woodin for developing such a beautiful connection
between determinacy and large cardinals. When I was a senior undergraduate
student, I was reading a book in set theory and found his theorem that the
existence of a supercompact cardinal implies ADL(R), which was stunning to me
and made me wonder how come such large objects could have strong effect on the
world of real numbers. This had been a big mystery to me until I got into inner
model theory and learned further results on determinacy and large cardinals and
this is why I decided to major in descriptive set theory.

So after finishing my bachelor, I went to Nagoya, a city in Japan between
Tokyo and Kyoto, to study set theory. I am indebted to Yo Matsubara, Yasuo
Yoshinobu, and Sakaé Fuchino for their constant and patient support during my
stay in Nagoya. Without their encouragement, I would not be able to imagine go-
ing abroad for my study. Besides them, I am also grateful to Tadatoshi Miyamoto,
Hiroshi Sakai, and Toshimichi Usuba for arranging a warm atmosphere and for
being always eager to teach me set theory and listen to me. Especially I have
learned a lot from Sakai and Usuba by an enormous amount of discussions with
them. I often recall the days when we talked about set theory until midnight
(sometimes with alcohol), which is a precious memory to me.

I would like to thank Joan Bagaria for giving a mini course on forcing absolute-
ness in Kobe in 2005. Through his lecture, I got interested in forcing absoluteness
and wrote a master’s thesis on this topic. (The work in Chapter 2 is also the con-
tinuation of the work in my master’s thesis.) He has been always quick to respond
to my e-mails and always helpful to me, which also made me consider studying
in Barcelona.

During the final stage of my master, I was more or less determined to study
abroad and the first place I had in mind was California, which is the best place
for studying the connection between determinacy and large cardinals. But since
I had never been abroad at that time, my English was pretty poor and I would
not be able to be a teaching assistant, which is a usual job to earn on their
living for graduate students in the States. So I decided to try to find a position
in Europe and I met Benedikt LLowe, who is my supervisor, the person whom I
am most indebted to during my Ph.D. When I found an advertisement of Ph.D.
positions in GLoRiClass project, I contacted him and after a few e-mails, he
strongly encouraged me to apply for the position. Since then, he has been always



helpful for me not only mathematically but also non-mathematically. Without his
encouragement, [ would not be able to study in Amsterdam and overcome many
problems which happened to me during my Ph.D. He has been always patient to
me no matter how lazy I am about my work and sometimes he gave me certain
amount of pressure on my mathematical & non-mathematical work, which was
very calm and not irritating at all. He always let me do whatever I wanted to do
and watched me from a certain distant position, which I truly appreciate because
it is one of the most difficult things to do for supervisors worrying about their
students. Without his encouragement and patience, I would not be able to finish
this thesis. Also, whenever I need help from him, he is always quick to respond
and does his best for me, which is a surprising amount of work for him. T am
very happy to have such a great academic father.

At the beginning of my Ph.D., I sometimes considered leaving Amsterdam as a
Ph.D. student because it seemed hard to study inner model theory in Amsterdam,
which was one of the main reasons why I decided to study abroad. That led
Benedikt to introduce Ralf Schindler to me, who is my second supervisor, and I
am really happy to have met him. His point of view so-called “Everything must
come from mice” has changed my set theory lifestyle a lot as you see the cover
of this thesis. When he talked to me about inner model theory, I often felt that
mice are really living their lives in set theory since he treats them as if they
were ‘creatures’, which was a nice experience and I have learned a lot from him
especially about intuitions and pictures he has in mind on inner model theory. I
am also grateful for his warmful hospitality in Miinster for one and a half years
and for taking care about me for such a long time. I thank him and people in
Miinster for introducing Hefeweizen and Skat to me, both of which T enjoy a lot
even after my stay in Miinster.

[ am grateful to Jouko Vaananen for treating me as a good set theorist, for
informing me a lot of events in mathematical logic, and for encouraging me to
organize several events in set theory in Amsterdam. Without his encouragement,
I would not have applied for the fall semester program in Mittag-Leffler and would
not be able to enjoy such a wonderful semester with world-wide researchers in
set theory and model theory. Also, without his suggestion, I would not have
organized a series of seminars on Y2 forcing absoluteness and would not have
given talks, which led me to understand the connection between saturations of
ideals on w; and forcing absoluteness and the strong impact of Martin’s Maximum
on modern set theory.

I would like to thank Johan van Benthem and Yde Venema for sharing their
knowledge with me and being open to me to discuss mathematical logic. Both of
them are very energetic about their work, which attracted me to work on some
problems in fixed point logics that you can see in Chapter 6 of this thesis. Thanks
to them, I have not felt so isolated as a set theorist at ILLC.

Jorg Brendle was always helpful to me when I asked questions in set theory and
he was very patient and careful to respond to my e-mails. Some of his responses

xi



are included in the work of Chapter 2 of this thesis.

I thank W. Hugh Woodin once again for discussing Blackwell determinacy,
determinacy, and large cardinals. His great insights on the above topics were
very inspiring and I often gained more motivation and ideas from him.

When I came to Amsterdam, I needed to adjust myself to an European culture
and it took me some time and energy to manage it. During the beginning of my life
in Amsterdam, many people have helped me for surviving and enjoying life here.
Among them, Toanna Dimitriou, Stefan Bold, Jakub Szymanik, Andreas Witzel,
Karol Oslowski, Ichiro Hasuo, Clemens Kupke, Fenrong Liu, Nick Bezhanishvili,
Olivier Roy, Merlijn Sevenster, Aline Honingh, Leigh Smith, Ulle Endriss, Ingrid
van Loon, Tanja Kassenaar, Jessica Pogorzelski, Marjan Veldhuisen, and Rene
Goedman have been very helpful and T am grateful to all of them. Especially
Jakub and Andi have been nice to me while we had difficult time during the first
year of GLoRiClass project and I am glad that I had both of them as the same
fellows.

After getting used to life in Amsterdam before going to Miinster, I have fur-
ther met many nice people at ILLC such as Yurii Khomskii, Herman Stel, Brian
Semmes, Jocob Vosmaer, Amélie Gheerbrant, Gaélle Fontaine, Olivia Ladnig,
Nina Gierasimczuk, Tikitu de Jager, Jonathan Zvesper, Lena Kurzen, Raul Leal
Rodriguez, Joel Uckelmann, Sara Uckelmann, Maria Alina, Joost Joosten, Fan
Yang, Thomas Icard, Christian Kissig, Balder Ten Cate, Yanjing Wang, Michael
Franke, Eric Pacuit, Levan Uridia, and Petter Remen. Among them, I especially
thank Joost for being a nice colleague and teaching me a lot about teaching assis-
tants and also for helping me some formal issues in the Netherlands while I was
staying in Miinster.

After one year in Amsterdam, I went to Miinster for half a year to study
inner model theory. Benjamin Claverie, Philipp Doebler, Gunter Fuchs, Philipp
Schlicht, Daniel Busche, Thilo Volker Weinert, Christoph Duchhardt, and Giulia
Uckelmann have been very nice friends and I had a nice time with them. I
have been especially close to Ben, Philipp Doebler, and Philipp Schlicht and I
am grateful to them. T also thank people in the boat house (Andi, Olivia, and
Tikitu) for hosting me from time to time when I visited Amsterdam.

After coming back to Amsterdam, I met many new people at ILLC such
as Jarmo Kontinen, Lauri Keskinen, Juha Kontinen, Marc Staudacher, Cédric
Dégremont, Yun Qi Xue, Inés Crespo, Ivano Ciardelli, Hideto Kamei, Thomas
Quella, Fernando Velazquez-Quesada, Stefan Minica, Karin Gigengack, and Peter
van Ormondt. I especially remember hanging out with Jakub, Nina, Jarmo,
Lauri, Jonathan, Maria, and other people playing poker or drinking and discussing
something, which is a nice memory to me. I also thank Dick de Jongh for working
together on problem sessions in the course of basic logic. It was nice for me to
look at him and see how he deals with students.

After one year in Amsterdam, I went back to Miinster and stayed there for
11 months. This time I stayed at a house with German speaking people for the

xii



whole year, which was a unique experience to me. Tomasz Samek, the house
owner, is a very frank & cheerful person. He travels a lot and always brings nice
alcohol as a souvenir. Jan Peltzer and Emre Burma have been always helpful
and we often had fun with drinking alcohol or doing barbecue together. It was
nice to talk with Tchelet Ram about Jewish cultures and art. Besides living in a
German culture, it was a pleasure to chat with Ben about Japanese cultures and
French cultures. It was also nice to meet new people at Universitat Miinster such
as Philipp Liicke, Dominik Adolf, Lars Scheele, and Antongiulio Fornasiero.

After the second stay in Miinster, I stayed at Institut Mittag-Leffler for 3.5
months to attend the semester program in model theory and set theory, where
many famous researchers gathered and worked together. It was really an expe-
rience and nice to talk with such great people and work together. Besides the
academic benefit, since we lived in the same institute, we had many opportuni-
ties to have parties and enjoy sightseeing. I really had a nice time with Jana
Flaskova, Vadim Kulikov, Philipp Schlicht, Marcin Sabok, Teppo Kankaanpaa,
Agatha C. Walczak-Typke, Benno van den Berg, Andrés Villaveces, Natasha Do-
brinen, Meeri Kesala, and Kaisa Kangas. I would like to thank Jouko and Juliette
Kennedy for organizing such a great semester and great meetings with Saharon
Shelah, W. Hugh Woodin, Stevo Todrcevic, and Menachem Magidor.

Finally I came back to Amsterdam and was going to finish my Ph.D. while
I again met lots of interesting people such as Bruno Loff, Umberto Grandi, Vin-
cenzo Ciancia, Pietro Galliani, Tejaswini Deoskar, Maxim Khalilov, Sophia Ka-
trenko, and Carmelita Kiibler. It was nice to see all of them.

[ have also been traveling other places and have met many nice people (mainly
set theorists) such as Hisao Tanaka, David Aspero, Miguel Augel Mota Gaytan,
Bernhard Irrgang, Neus Castells, Christoph Weiss, Farmer Schlutzenberg, Grigor
Sargsyan, Tetsuya Ishiu, Adrian Mathias, Andrés Caicedo, Piotr Borodulin-Nadzieja,
Raphaél Carroy, Assaf Rinot, Matteo Viale, Wolfgang Wohofsky, Andrew Brooke-
Taylor, Dana Bartosova, David Schrittesser, Katie Thompson, Radek Honzik,
Remi Strullu, Sean Cox, Tristan Bice, Vera Fischer, Mirna Dzamonja, Paul Lar-
son, Victoria Gitman, Ali Enayat, Joel Hamkins, Samuel Coskey, Stefan Geschke,
Karen Résch, Jonas De Vuyst, Namit Chaturvedi, Alexandru Baltag, Sonja
Smeets, Allen Mann, Tomohiro Hoshi, Katsuhiko Sano, Lilit Martirosyan, Hao
Cheng, Julia Erhard, Li Yanfang, Zhu Yi Zheng, Huiling Zhu, Teoh Zu Yao, and
Liu Zhen Wu. Thank you very much for interesting chats at some conferences,
workshops, or summer schools.

I am so absent-minded and lazy that it has become one of the main ways to get
close to people that I bring some troubles, they try to help me, and we get close
each other. Certainly, at least some secretaries in academia should be mentioned
here: Ingrid, Karin, Peter, Tanja, Marco Vervoort, Thés Smeets, Marie-Louise
Koskull, Martina Pfeifer, and Alexander Koponen. The more they feel close to
(or annoyed with) me, the more I owe them my gratitude.

Special thanks go to Yurii and Philipp Schlicht for being my paranimfs, Her-

xiil



man for constantly supporting some formal issues living in Amsterdam, Sara
for proofreading this thesis and some papers of mine, Jocob and Rogier Jacobsz
for translating the abstract of this thesis into samenvatting, Pietro for helping
me to make the cover design of this thesis, and Masako Nishimura for giving a
permission to use her painting at the back cover of this thesis.

Finally and mostly I thank my family for having been taking care of the most
selfish person in the world for over 25 years.

Amsterdam, April 2010,
Daisuke Tkegami

Xiv



Chapter 1

Introduction

Games have been used in many areas of mathematics, especially mathematical
logic as well as theoretical computer science. It was the Polish school of math-
ematicians who connected infinite games with analysis (e.g., Lebesgue measura-
bility) and topology (e.g., the Baire property) and obtained many results. In this
thesis, we give several results on games in set theory and logic or obtained by
application of games.

1.1 Outline

In this thesis, we discuss the following topics. All the definitions and the notions
given in this outline can be found in the later sections of this chapter.

In Chapter 2, entitled ‘Games and Regularity Properties’, we characterize
almost all the known regularity properties for sets of reals via the Baire property
for some topological spaces and use Banach-Mazur games to prove the general
equivalence theorems between regularity properties, forcing absoluteness, and the
transcendence properties over some canonical inner models. With the help of
these equivalence results, we answer some open questions from set theory of the
reals. Almost all the results in this chapter are contained in my paper [35].

In Chapter 3, entitled ‘Games themselves’, we compare the Axiom of Real
Determinacy (ADg) and the Axiom of Real Blackwell Determinacy (Bl-ADg).
We show that the consistency strength of Bl-ADy is strictly greater than that of
the Axiom of Determinacy (AD) in §3.1 and that BI-ADg implies almost all the
known regularity properties for every set of reals in §3.2. In § 3.3, we discuss the
possibility of the equivalence between ADr and BI-ADg under ZF+DC. In § 3.4,
we discuss the possibility of the equiconsistency between ADgr and Bl-ADg. The
results in §3.1 are joint work with David de Kloet and Benedikt Léwe [36]. The
results in §3.2, §3.3, and § 3.4 are joint work with Hugh Woodin.

In Chapter 4, entitled ‘Games and Large Cardinals’, we work on the connec-
tion between the determinacy of Gale-Stewart games and large cardinals. We
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investigate the upper bound of the consistency strength of the existence of al-
ternating chains with length w, which are essential objects to prove projective
determinacy from Woodin cardinals. This is joint work with Ralf Schindler.

In Chapter 5, entitled ‘Wadge reducibility for the real line’, we study the
Wadge reducibility for the real line. Unlike the Wadge order for the Baire space,
the Wadge order for the real line cannot be characterized by infinite games. We
show that the Wadge Lemma for the real line fails and the Wadge order for the
real line is ill-founded and we investigate more properties of the Wadge order for
the real line. All the results in this chapter are joint work with Philipp Schlicht
and Hisao Tanaka.

In Chapter 6, entitled ‘Fixed-Point Logic and Product Closure’, we define
a product construction of an event model and a Kripke model and discuss the
product closure of modal fixed point logics. We show that PDL, the modal pu-
calculus, and the continuous fragment of the modal p-calculus are product closed.
Most of the results are joint work with Johan van Benthem [12].

In the remaining sections of this chapter, we give the mathematical back-
ground and results used in this thesis.

1.2 Choice principles

We use the following two types of choice principles in this thesis.

The first one is the family of the Choice Principles ACx(Y). Let X,Y be
nonempty sets. The Choice Principle ACx(Y') states that for any family {A, |
x € X} of nonempty subsets of Y, there is a function f: X — Y such that
f(z) € A, for every # € X. The Aziom of Choice AC states that ACx (Y") holds
for all nonempty sets X and Y. The following is easy to see:

Remark 1.2.1. Let X, Y7, Y5 be nonempty sets and suppose there is a surjection
from Y5 to Y;. Then ACx (Y3) implies ACx (V7).

Furthermore, we consider the Dependent Choice Principles DCx. Let X be a
nonempty set. The Dependent Choice Principle DCx states that for any relation
Ron X (ie, RC X x X), if (Vx € X) (Jy € X) (z,y) € R, then there is a
function f: w — X such that (f(n), f(n+ 1)) € R for every n € w. The Aziom
of Dependent Choice DC states that DCx holds for every nonempty set X.

Throughout this thesis, we work in ZF + AC,(R), where ZF is the axiom
system of Zermelo-Fraenkel set theory. When we need more choice principles, we
explicitly mention them (especially at the beginning of each chapter).

1.3 Trees

Trees are basic objects in mathematical logic, especially descriptive set theory and
recursion theory. We fix some notation and introduce definitions about trees.
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If f is a function from X to Y and A is a subset of X, then f[A denotes
the restriction of f to A, ie., fl[A = {(a,f(a)) | a € A}. For a relation R
between X and YV (i.e., RC X xY), dom(R) = {z € X | (Jy) (z,y) € R} and
ran(R) = {y € Y | (Iz) (x,y) € R}.

Given a nonempty set X, <“X denotes the set of all finite sequences of ele-
ments in X and a nonempty subset T of <“X is a tree on X if it is closed under
initial segments, i.e., if s is in 7" and ¢ is a subsequence of s (i.e., t = s|n for
some n), then ¢ is in 7. For a finite sequence ¢ of elements in X, 1h(¢) denotes
the length of .

By nodes, we mean elements of trees. For a tree T on X, two nodes s,t of
T are incompatible (denoted by s_Lt) if there is an n in dom(s) N dom(¢) such
that s(n) # t(n). Note that s, ¢ are incompatible if and only if there is no w in T'
such that s,¢ C u. For a node ¢t of T and an element z of X, ¢~ (z) denotes the
one-step extension of ¢ with z, i.e., t™(x) =t U {(1h(¢), z)}.

A tree T on X is called perfect if for any node s in 7', there are two nodes
t1,t of T such that s C ¢; for i = 1,2 and ¢, Lt,. For a tree T on X, [T] denotes
the set of all infinite paths through [T, i.e., [T] = {z € “X | (Vn € w) z[n € T}.
For a tree T" on X and a node t in T, t is called splitting in T if there are x and y
in X such that x # y and both ¢~ (x) and ¢~ (y) are in T. For a tree T', the stem
of T (denoted by stem(T")) is the minimal splitting node in 7T if it exists.

If T"is a tree on X and X is of the form Y x Z, then we often identify a node s
of T with the pair (t1, t2) where t; = (s(0);,...s(n—1);) for i = 1,2, n = dom(s),
and s(j) = (s(j)1,s(j)2) for j < n. The same identification will be applied in
case X is of the form Y]} x ... x Y}, for a finite natural number m > 1.

1.4 General topology

Topological spaces are fundamental objects in mathematics. Throughout this
thesis, we assume the basic theory of topological spaces which can be found in,
e.g., [49]. We mainly use the following three types of topological spaces:

The spaces “X. Let X be a nonempty set. The set “X is the set of all w-
sequences of elements in X and we topologize it via the product topology where
X is always regarded as the discrete space. Hence for each finite sequence s of
elements in X, the set [s] = {z € “X | x D s} (i.e., the set of all w-sequences of
elements in X extending s) is a basic open set in this topology and any open set
is a union of basic open sets of this form.

Our main interest is when X = 2 (i.e., {0,1}) or w. The space “2 is called
the Cantor space and the space “w is called the Baire space.

One of the special properties of this type of topological spaces is that closed
sets have a tree representation: A subset A of “X is closed if and only if there
is a tree T on X such that A = [T]. Also, there is a one-to-one correspondence
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between perfect subsets of “X and perfect trees on X, where a subset A of “X is
perfect if it is closed and it has no isolated points: A subset A of “X is perfect if
and only if there is a perfect tree T on X such that A = [T].

A subset A of the Baire space or the Cantor space has the perfect set property
if either it is countable or it contains a perfect set. It is easy to see that for any
perfect set C', there is a bijection between C' and the Cantor space. Hence sets A
with the perfect set property satisfy Cantor’s Continuum Hypothesis (CH), i.e.,
either A is countable or there is a bijection between A and the Cantor space. For
this reason, it is interesting to see what kind of sets have the perfect set property.
We discuss this in §1.11.

The spaces St(P). Stone spaces are fundamental topological spaces not only
in mathematical logic but also in general mathematics. We give basic definitions
and the basic properties of Stone spaces of partial orders in our context.

Let P and Q be partial orders. A map i: P — Q is called a dense embedding
if it satisfies the following:

e i preserves the order, i.e., if p; < ps in P, then i(p;) < i(p2) in Q,

e | preserves the incompatibility, i.e., given two elements p;, py of P, if there
is no p in P with p < p; and p < py, then there is no ¢ in Q with ¢ < i(py)
and q < i(py), and

e the image of 7 is dense, i.e., for any ¢ in QQ there is a p in P such that
i(p) <gq.

Dense embeddings are important in forcings in the sense that if there is a dense
embedding from P to Q, then forcing with P and forcing with Q are essentially
the same. (See §1.9 about forcing.)

It is well known that if P is a partial order, then there is a complete Boolean
algebra B and a dense embedding i from P to B. Moreover, the pair (B,7) is
unique up to isomorphism in the sense that if there are two such pairs (B, i)
and (B,,i2), then there is an isomorphism ¢ between B, and B, as complete
Boolean algebras such that i o i; = i5. We call such a pair (B,7) a completion of
P and write (Bp,ip) for (B,1).

Let P be a partial order. A nonempty subset u of P is a filter on P if it is
upward closed (i.e., if p € u and p < ¢, then ¢ is also in u) and any two elements
of u have an extension in u (i.e., if p and ¢ are in u, then there is an r in u such
that » < p and r < ¢). A filter u on P is an ultrafilter if u # P and u is maximal
with respect to inclusions (i.e., if v is a filter containing u, then v = u or v = P).

We now define Stone spaces of partial orders. Given a partial order P, the set
St(PP) is the collection of all ultrafilters on Bp. For each b € Bp, we define the set
Op = {u € St(P) | u > b} and the Stone space of P (also denoted by St(P)) is the
topology on the set St(P) generated by the set {O, | b € Bp}.
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For example, if P is the pair (<“w,D), i.e., the set of all finite sequences
of natural numbers ordered by reverse inclusion, then the Stone space of P is
homeomorphic to the Cantor space “2.

There are two advantages for taking ultrafilters on Bp rather than on P itself
as a definition of the Stone space of P: The first one is that it has several nice
properties as topological spaces (e.g., it is a compact Hausdorff zero-dimensional
space). The second is that it does not depend on the representation of P, i.e., if
there is a dense embedding from P to Q, then St(P) and St(Q) are homeomorphic.

The real line R. We use R to denote the set of all real numbers except in
Chapter 2, where we use it for Mathias forcing (we use R for Mathias forcing
because it is closely related to the Ramsey property). As usual, the topology of
the real line is generated by open intervals (a,b) = {x € R | a < x < b} for
a,beR.

1.5 Borel sets, projective sets, and definability
in the second-order arithmetics

Let X be a topological space. Starting from open sets (or closed sets), we form
the two hierarchies of sets of subsets of X. One is called the Borel hierarchy and
the other is called the projective hierarchy:

Definition 1.5.1. Let X be a topological space. The Borel hierarchy of X
(22, I, A2 |1 <E< wi) is defined as follows:

Case 1: £ =1.

By X0, we mean the set of all open subsets of X and II{ denotes the set of
all closed subsets of X. The set of all clopen subsets of X is denoted by AY.

Case 2: £ > 1.

By 27, we mean the set of all countable unions of sets in |J, .. IT), and IT}
denotes the set of all countable intersections of sets in Un<g 22. The intersection
of X and TIY is denoted by A.

Elements of X2, TT{ and A are called X7 sets, TI{ sets and Ag sets respec-

tively. We set B =J,_,, %2 and elements of B are called Borel sets.

It is immediate that A = X2 N1ITY for each 1 < § < wy. By induction on ¢,
it is easy to show that IT} = {X \ A | A € X} for each 1 < ¢ < w;. With the
help of AC,(R), it is easy to show that w; is a regular cardinal and hence that
the set of all the Borel sets B is closed under complements and countable unions
and it contains the empty set. Such a family of subsets of X is called a o-algebra
on X. Note that the set of all the Borel subsets of X is the smallest o-algebra
on X containing all the open sets.
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Theorem 1.5.2 (Lebesgue). Let X be the Cantor space, the Baire space, or the
real line. Then the following strict inclusions hold for each 1 < & < w;:

3
0 “ N 0
A At
O v
0
IT
Proof. See, e.g., [45, Theorem 22.4]. O

Definition 1.5.3. Let X be a topological space. The projective hierarchy of X
(2,00, Al |1 <n <w) is defined as follows:

Case 1: n=1.

By X1, we mean the set of all subsets A of X such that there is a closed subset
C of X x “w such that A is the first projection of C, i.e., A = dom(C'), where
X X “w is topologized as the product space of X and “w. The set of all subsets
A of X whose complements are in X1 is denoted IT}. The intersection between
> and IT! is denoted Al

Case 2: n > 1.

By 2!, we mean the set of all subsets A of X such that there is a subset C' of
X x “w in IT} | such that A is the first projection of C. The set of all subsets A
of X whose complements are in X! is denoted IT!. The intersection between X!
and II! is denoted Al.

Elements of ! II! and Al are called X! sets, IT! sets and Al sets respec-
tively. Sets in X! for some n are called projective sets.

Elements of 31 are also called analytic sets, and co-analytic sets are the same
as IT; sets. Tt is immediate that A} = 2] NII}, for each n and that IT, = { X'\ A |
A € 2!} for each n.

Theorem 1.5.4 (Suslin). Let X be the Cantor space, the Baire space, or the
real line. Then B = Al

Proof. See, e.g., [45, Theorem 14.11]. a

Theorem 1.5.5 (Lusin). Let X be the Cantor space, the Baire space, or the real
line. Then the following strict inclusions hold for each 1 < n < w:
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In particular, every Borel set is a X{ set and there is a 3| set which is not a
Borel set.!

Proof. See, e.g., [45, Theorem 37.7]. O

Definable sets in the second-order arithmetic are related to X0 sets, I sets,
3! sets, and II! sets in the Baire space. By the second-order structure, we
mean the two-sorted structure A? = (w,“w,app, +,+,=,0,1), where app is the
function from “w x w to w such that app(z,n) = z(n) and +, -, = are summation,
multiplication, and equality on the natural numbers. By Y2 -formulas, we mean
the formulas in the language of the second-order structure of the form

(Fz1) (YVu2) ... (Quzn) &,

where 3%, V0 are the existential quantifier and the universal quantifier for natural
numbers respectively, @, is ¥ if n is even and 3 if n is odd, x; (1 <4 < n) are
variables for natural numbers, and ¢ is a quantifier-free formula. By I1° -formulas,
we mean the formulas in the language of the second-order structure of the form

(V1) (F22) ... (Quzn) &,

where @, is 3° if n is even and V° if n is odd, x; (1 < i < n) are variables for
natural numbers, and ¢ is a quantifier-free formula. By arithmetical formulas, we
mean Y -formulas or II2-formulas for some natural number n. By X! -formulas,
we mean the formulas in the language of the second-order structure of the form

(') (V'aa) ... (Qury) &,

where 3*, V! are the universal quantifier and the existential quantifier for elements
in the Baire space respectively, @, is V' if n is even and 3" if n is odd, z; (1 <
i < n) are variables for elements in the Baire space, and ¢ is an arithmetical
formula. By II!-formulas, we mean the formulas in the language of the second-
order structure of the form

(Vizy) (F'as) .. (Quzn) 6,

where @, is 3" if n is even and V' if n is odd, z; (1 < i < n) are variables for
elements in the Baire space, and ¢ is an arithmetical formula. Let n be a natural
number with n > 1, A be a subset of the Baire space and a be an element of
the Baire space. We say A is a ¥0(a) set if there is a ¥0-formula ¢ such that
A={z| A*E ¢(x,a)}. One can define I1° (a) sets, ¥ (a) sets, and IT! (a) sets in
the same way. We also use ¥2(a),11°(a), ! (a), and TI! (a) to denote the set of
all 39 (a) sets, TI%(a) sets, L (a) sets, and IT! (a) sets respectively.

!The last statement is due to Suslin [82].
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Theorem 1.5.6. Let n be a natural number with n > 1. Then

== U=, m = m,

ac¥w acYw
== She), 1= m(a).
ac¥w ac¥w
Proof. See, e.g., [66, 8B.5 & 8B.15]. O

1.6 Gale-Stewart games

In this section, we introduce Gale-Stewart games, which are infinite games with
perfect information.

In 1913, Ernst Zermelo [93] investigated finite games with perfect information
as a formalization of the game of chess and proved the determinacy of these games.
In 1953, Gale and Stewart [27] developed the general theory of infinite games,
so-called Gale-Stewart games, which are two-player zero-sum infinite games with
perfect information. The theory of Gale-Stewart games has been investigated
by many logicians and now it is one of the main topics in set theory and it has
connections with other topics in set theory as well as model theory and computer
science.

Let us start with the definition of Gale-Stewart games.

Definition 1.6.1 (Gale-Stewart games). Let X be a nonempty set and A be a
subset of “X. The Gale-Stewart game Gx(A) is played by two players, player I
and player II. They play elements of X w-many times in turn, i.e., player I starts
with choosing an element x, of X, then player IT responds with z; € X, then
player I moves with o € X and player II chooses x5 and so on. After w moves,
they have produced an w-sequence x = (z, | n € w) € “X. Player I wins if z is
in A and player II wins if x is not in A.

This game is an infinite zero-sum game with perfect information because one
of the players always wins and when one player wins, the other loses, and because
both players know what they have previously played and they can decide the next
move considering their previous moves.

We are interested in whether one of the players has a winning strategy in
the game Gy (A), i.e., whether one of the players has a way to play this game
such that no matter her opponent moves, she will always win this game. Let us
formulate the notion of winning strategies.

Definition 1.6.2. A strategy for player I is a function o: X®" — X where
XEven ig the set of finite sequences of elements in X with even length. A strategy
for player II is a function 7: X994 — X where X9 is the set of finite sequences
of elements in X with odd length. Given a strategy o for player I and a strategy
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7 for player II, one can produce the run o % 7 of the game Gx(A) according to
o and 7 by letting player I follow o and player II follow 7, more precisely, the
run o * 7 of the game Gx(A) is a unique w-sequence of elements in X with the
following property: For any natural number n,

(0*7)(n) = Vpyr ((a *T) [n),

where for a finite sequence s of elements in X, v, (s) = o(s) if the length of s
is even and v, ,(s) = 7(s) if the length of s is odd. A strategy o for player I is
winning in the game Gx(A) if for any strategy 7 for player I, o x 7 is in A. A
strategy 7 for player 1T is winning in the game G x(A) if for any strategy o for
player I, o % 7 is not in A. A subset A of “X is determined if one of the players
has a winning strategy in the game Gx(A).

Hence we are interested in what kind of sets A are determined. Let us list
some results concerning this question. Recall from § 1.4 that the topology of “X
is given by the product topology where each coordinate (i.e., X) is seen as the
discrete space.

Theorem 1.6.3 (Gale and Stewart). (AC) Let X be a nonempty set.

1. Any closed subset of “X and any open subset of “X are determined. If X
is well-ordered, one does not need AC.

2. There is a subset of “w which is not determined.
Proof. See, e.g., [37, Lemma 33.1, Lemma 33.17]. O

Theorem 1.6.4 (Martin). (AC) Let X be a nonempty set. Then every Borel
subset of “X is determined.

Proof. See, e.g., [45, Theorem 20.5]. O

Theorem 1.6.5 (Davis; Godel and Addison). ZFC cannot prove that every X}
subset of the Baire space is determined.

Proof. The statement follows from the combination of the following two results:
The first is that if every X1 subset of the Baire space is determined, then every
I} subset of the Baire space has the perfect set property and the second one is
that ZFC cannot prove that every IT} subset of the Baire space has the perfect set
property. The first result is due to Davis [23] and the second result was announced
by Godel [28] and the details of the proof given by Addison [1]. For the proofs,
see, e.g., [66, p. 224 & 225] and [37, Corollary 25.37]. O

Gale-Stewart games are general enough that they can be used to simulate
several kinds of infinite games in mathematics (e.g., Banach-Mazur games; for
the definition of Banach-Mazur games, see §1.8). In particular, the determinacy
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of Gale-Stewart games implies that of several other kinds of games. From this,
one can prove several properties of sets of reals assuming the determinacy of
Gale-Stewart games such as Lebesgue measurability, the Baire property (for the
definition, see §1.8), and the perfect set property (for the definition, see §1.4).

Myecielski and Steinhaus [68] introduced the Aziom of Determinacy (AD),
which states that every subset of the Baire space is determined, and investigated
the consequences of this axiom. They proved that AD implies that every set of
reals is Lebesgue measurable and that every subset of the Baire space has the
Baire property and the perfect set property where each of these statements con-
tradicts the Axiom of Choice. Beside such properties for sets of reals, AD supplies
a beautiful structural theory. Moreover, models of AD have been investigated for
a long time and they are essential for the research on inner models with large
cardinals (for inner models, see §1.11). In this way, the study of AD has been
one of the central topics in set theory despite the fact that AD contradicts AC.

One can define ADx for a nonempty set X as follows: Every subset of “ X is
determined. Let us list some known observations on ADy:

Proposition 1.6.6.

1. Let X,Y be nonempty sets and assume that there is an injection from X
to Y. Then ADy implies ADx. In particular, ADg implies AD, = AD.

2. The axioms AD,, and ADp) are inconsistent.

Proof. The first statement is a folklore and it is easy. For the second statement,
the inconsistency of AD,, is due to Mycielski [67] and that of ADpg) follows
from the inconsistency of AD,,, the fact that there is an injection from w; into
P(R), and the first item of this proposition. (One can send a countable ordinal
« to the set of all reals z such that (w,x) is isomorphic to («, €) and this is an
injection from wy into P(R).) O

We investigate AD and ADg further in Chapter 3.

1.7 Pointclasses, parametrization, and Recur-
sion Theorem

As with Borel sets, one often looks at the properties of a class of sets of reals rather
those of a set of reals. Such classes are called pointclasses. In this section, we
introduce basic properties for pointclasses. When we are talking about “reals”,
we mean elements of the Cantor space “2 and we use R to denote the Cantor
space.

A pointclass is the union of sets of subsets of w™ x R™ for natural numbers
m > 0,n > 1. If I is a pointclass, I' is called a boldface pointclass if it is closed
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under continuous preimages, i.e., for natural numbers m;, ms > 0 and ny,ny > 1,
a continuous function f: w™ xR — w™2xR"2, and a subset A € T' of w™2 xR"2,
f7Y(A) is also in T'. Closure under recursive preimages is similarly defined with
recursive functions.

A pointclass I' is w-parametrized if for all natural numbers m > 0 and n > 1
there is a subset G™" of w™*! x R" in I" such that for any subset A of w™ x R" in
', there is a natural number e such that A = GJ"" = {(z,y) | (e,z,y) € G™"}.
The following lemma is useful: Let I be a pointclass and x be a real. Then the
pointclass ['(x) is the set of all sets A such that there is a set C' € T such that
A=C, where C, ={y e R | (y,z) € C}. Set T' = {J, . ['().

Lemma 1.7.1. Suppose T is an w-parametrized pointclass which is closed under
recursive preimages. Then for each natural number n > 1, there is a set G C
R x R™ in I" such that the following hold:

1. For each n > 1, G™ is universal for subsets of R” in I', i.e., for any subset
A €T, there is a real x such that A = G7,

2. For ACR" in I, there is a recursive real = such that A = G?, and

3. For all natural numbers n,m > 1, there is a recursive function S™™: R X
R™ — R such that for any real a, z € R*, and y € R™, G"™""(a,z,y) <+
G™(S™(a, ), y).

Proof. See [66, 3H.1]. O

We fix some notions for projections. For natural numbers m > 0 and n > 1
and a subset A of w x W™ X R", let I*A = {(x,y) € W xR" | (Fe € w) (e, z,y) €
A} and VWA = {(2,y) € w™ X R" | (Ve € w) (e,x,y) € A}. The sets I°A4 and
VR A are defined in the similar way. A pointclass ' is closed under 3¢ if for any
Ain T, 3*Ais in I'. Closure under ¥, 3%, and V¥ is defined in the similar way.

Definition 1.7.2. A pointclass I is a Spector pointclass if it satisfies the following:
1. It contains all the X9 sets and it is closed under recursive substitutions,
finite intersections and unions, 3“, and V%,
2. It is w-parametrized,
3. It has the substitution property, and
4. Tt has the prewellordering property.

For the definition the substitution property and the basic theory of I'-recursive
functions, see [66, 3D & 3G]. For the definition of prewellordering property, see
[66, 4B]. Typical examples of Spector pointclasses are [T} and ¥}. Assuming the
determinacy of all the projective sets, one can prove that IT}, ., and X} ., are
also Spector pointclasses for each natural number n.

We use the following general form of Kleene’s Recursion Theorem for Spector
pointclasses in Chapter 3:
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Theorem 1.7.3 (Recursion Theorem). (Kleene) Let T be a Spector pointclass
and suppose f: RxR — R is I'-recursive on its domain. Then there exists a fixed
real a* such that for all reals x, if f(a*, z) is defined, then f(a*, z) = {a*}(x),
where {a*} is the I-recursive function on its domain coded by a*.

Proof. See [66, TA.2]. O

1.8 The Baire property and Banach-Mazur games

In this section, we introduce the Baire property and Banach-Mazur games and
discuss the connection between them. In the Scottish Café “Kawiarnia Szzkocka”
in Lwow, Polish mathematicians in the Lwoéw School of Mathematics would often
meet and spend their afternoons discussing mathematical problems in 1920s and
1930s. Their discussions produced the famous book so-called “the Scottish book
of problems”. In this book (see [63]), Mazur described infinite games nowadays
called Banach-Mazur games and conjectured their connection to the Baire prop-
erty. The conjecture was confirmed by Banach in 1935 and the statement was
generalized to arbitrary topological space by Oxtoby [69] in 1957.
We start with the definition of the Baire property:

Definition 1.8.1. Let X be a topological space and A be a subset of X.

1. We say A is nowhere dense if the interior of the closure of A is empty.

2. We say A is meager if it is a countable union of nowhere dense sets.

3. We say A is comeager if the complement of A is meager.

4. We say A has the Baire property if there is an open subset U of X such
that the symmetric difference between A and U (i.e., ((A\U)U(U\ A)), denoted
by AAU) is meager.

Nowhere dense sets and meager sets are small in the sense of topology, e.g.,
on the Baire space, the Cantor space and the real line, any singleton is nowhere
dense and any countable set is meager. Sets with the Baire property can be
approximated by open sets modulo such small sets. But if some nonempty open
set, was meager, this property would not make sense. To avoid that problem, we
introduce a property for topological spaces: A topological space X is called a
Baire space if any nonempty open subset of X is not meager.? All the topological
spaces that appear in this thesis will be Baire spaces.

If X is a topological space, many subsets of X have the Baire property in
X: Trivially every open set has the Baire property, also every closed set has the
Baire property (if we take U to be the interior of the given closed set A, then
symmetric difference between A and U is A \ U and it is nowhere dense by the

2Note that being a Baire space is different from being the Baire space “w. Being a Baire
space is a property for topological spaces while the Baire space is one particular topological
space.



D. Ikegami, Games in Set Theory and Logic 13

definition of interior, hence meager). From this, we can conclude that the set of
subsets of X with the Baire property is closed under complements. Moreover,
since the set of meager sets is closed under countable unions, the set of subsets
with Baire property is also closed under countable unions and hence every Borel
subset of X has the Baire property.

It is natural to ask whether the converse is true for the Baire space, i.e., if a
subset of the Baire space has the Baire property, then is it Borel? The answer is
‘No’. In 1923, Lusin and Sierpinski [57] proved that every 31 set of reals has the
Baire property and there is a 31 set of reals which is not Borel by Theorem 1.5.5.
So one could ask, “How far can we go?” Actually, in the constructible universe
L, there is a AJ set of reals without the Baire property.®> On the other hand,
starting with a model of ZFC, one can construct a model of ZFC extending the
given model such that every Al set has the Baire property. Hence the statement
that every Al set of reals has the Baire property is independent from ZFC. Then
one could naturally ask the following: When is it true and when is it not? We
discuss this question in Chapter 2. Next, we introduce Banach-Mazur games,
which characterize meagerness of topological spaces:

Definition 1.8.2 (Banach-Mazur games). Let X be a topological space and A be
a subset of X. The Banach-Mazur game of A, denoted by G**(A) (or G*(A, X)),
is defined as follows: Players I and II choose alternatively nonempty open sets V,
(n €w) with VDV, DV, D V3 D ... in w moves,

I Va

II Vi V3

Player IT wins this run of the game if () _ V, N A ={.

new

The notions of strategies and winning strategies are defined in the same way
as for Gale-Stewart games in §1.6.

Theorem 1.8.3 (Banach and Mazur, Oxtoby). Let X be a topological space
and A be a subset of X. Then A is meager if and only if player II has a winning
strategy in the game G**(A).

Proof. See, e.g., [45, Theorem 8.33]. O

One can characterize when a subset A of X has the Baire property in X in
terms of Banach-Mazur games: Let U, be the union of all open sets U in X such
that U \ A is meager in X. Then A has the Baire property if and only if the

3Although Gédel [28] announced the similar result for Lebesgue measurability in 1938 and
seemed to know about this result at that time, it seems to have been first made explicit in [67,
p. 216] (cf. [44, p. 169]).
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set A\ Uy is meager, hence if and only if player IT has a winning strategy in the
Banach-Mazur game G*™* (A \ Uy).

It is natural to ask whether one could characterize when player I has a winning
strategy in Banach-Mazur games in terms of topology. The answer is: If X is a
completely metrizable topological space, then player I has a winning strategy in
G**(A) if and only if there is a nonempty open subset U of X such that U \ A is
meager in U, where U is equipped with the relative topology of X in this case.
(But this characterization is not true if X is a general topological space. For
the proof, see, e.g., [45, Theorem 8.33].) It follows from this result that player I
cannot have a winning strategy in the Banach-Mazur game G**(A \ U,). Hence
we can conclude that a subset A of X has the Baire property if and only if the
Banach-Mazur game G**(A \ Uy) is determined, i.e., either player I or IT has a
winning strategy in this game. Now we have reduced the problem of the Baire
property of a given set to the problem of determinacy of Banach-Mazur games.
This is how the Polish school of mathematics found out the following: Assume
every Banach-Mazur game in the Baire space is determined, then every set of
reals has the Baire property.

We also use a variant of Banach-Mazur games so-called the unfolded Banach-
Mazur games:

Definition 1.8.4 (The unfolded Banach-Mazur games). Let X be a topological

space and F' be a subset of X x “w. Define the unfolded Banach-Mazur game
G (F) (or GH*(F, X)) as follows:

I Vo;@/o ‘/27y1

II Vi Vs

Players I and II choose V;, V4, ... as in the Banach-Mazur game, but additionally
[ plays a natural number y, in her nth move. Let y = (y, | n € w). Player II
wins if (e, Vo x {y}) N F = 0.

We have the same kind of characterization theorem as Banach-Mazur games:

Theorem 1.8.5 (Folklore). Let X be a topological space and F' be a subset of
X x“w. Let A =3RF.

1. If A is meager in X, then player II has a winning strategy in the game
G (F).

2. Suppose that F is of the form (f x id)"'(C), where f: X — “w is a
continuous function, f x id: X X “w — “w X “w is defined by (f x id) (z,y) =
(f(x),y), and C is a subset of “w x “w. Then if player II has a winning strategy
in the game G*(F'), then A is meager in X.
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Proof. We show the first item. By Theorem 1.8.3, if A is meager, then player
IT has a winning strategy 7 in the game G**(A, X). But 7 can be viewed as a
winning strategy for player IT in the game GX*(F') by ignoring I's moves of y,s.
Next we show the second item. The point is that given a winning strategy 7
for player I in the game G*(F'), she can modify 7 so that in her nth move, she
can decide the nth digit of f(z) by the continuity of f. The rest of the argument
is the same as in [45, Theorem 21.5]. O

Using Theorem 1.8.5, one can characterize when player I has a winning strat-
egy in the game G*(F) as well: Player I has a winning strategy in the game
Gi*(F) if and only if there is a nonempty open set U in X such that U \ A is
meager in U. As before, it follows from this fact that a subset A of X has the
Baire property if and only if the game G*(F") is determined, where F’ is a subset
of X x “w with I*F" = A\ Uy and U, is the same as in the paragraphs after
Theorem 1.8.3.

The advantage of the unfolded Banach-Mazur games over Banach-Mazur games
is that one can reduce the complexity of the payoff sets (from A to F'in the above
definition). If A is a X set in the Baire space, then A\ Uy is also X1, hence there
is a closed subset F of “w x “w such that 3¥F = A\ U,. Since there is no dif-
ference between playing basic open sets and playing open sets for Banach-Mazur
games and the unfolded ones and basic open sets in the Baire space are easily
coded by natural numbers, one can simulate the unfolded Banach-Mazur games
by Gale-Stewart games in a simple way. By the first item of Theorem 1.6.3, all
the closed Banach-Mazur games and the unfolded ones are determined. Hence
we can conclude that every X1 set of reals has the Baire property.?

1.9 Forcing

While Zermelo-Fraenkel set theory with the axiom of choice (ZFC), which is a
set-theoretic axiomatization for the foundation of mathematics, is a very good
basis for most of mathematical practice, some mathematical questions remain
undetermined by ZFC and one such typical question is whether the Continuum
Hypothesis (CH) is true or not. In 1963, Cohen introduced forcing to prove
that CH does not follow from ZFC and since then, forcing has been one of the
most important basic tools in set theory. Starting from a model of ZFC (called
the “ground model”), Cohen produced an extension of the given model (called
a “generic extension”) which is a model of ZFC and the negation of CH. This
technique is so general that one can define a generic extension for each partial
order in the given ground model, and one can change the truth-value of many
mathematical statements between ground models and their generic extensions
which yield the consistency and the independence of those statements from ZFC.

4This is not the original proof of Lusin. It is due to Solovay (cf. [44, Exercise 27.14]).
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In Chapter 2 and Chapter 3, we assume the basic theory of forcing which can
be found in, e.g., [52, §7, 8]. Let us fix the notation concerning forcing and list
the partial orders we will use in this thesis.

The Universe is the class of all sets and it is denoted by V. Let M be a model
of ZF, P be a partial order belonging to M, and G be a P-generic filter over M.
By MIG], we mean the generic extension of M via G. For a P-name 7 in M, 7¢
denotes the interpretation of 7 via GG. For a set x, & denotes the standard P-name
for z, i.e., ¢ = z for any filter G.

The following is the list of partial orders we will use:

Cohen forcing. The partial order is (“w, D) denoted by C where D is reverse
inclusion on finite sequences of natural numbers. Given a model M of ZF and
a C-generic filter G over M, set 2o = |J{p € C | p € G}. By the genericity of
G, r¢ is a function from w to itself (i.e., an element of the Baire space). Such
objects are called Cohen reals over M. Also one can reconstruct G from x4 and
C as follows: G = {p € C | p C x¢}. Hence there is a canonical one-to-one
correspondence between C-generic filters over M and Cohen reals over M. We
often identify these two objects.

Random forcing Elements of the partial order are Borel sets in the Baire
space (or in the real line) with positive Lebesgue measure ordered by inclusion
and it is denoted by B. Given a model M of ZF+AC,(R) and a B-generic filter
G over M, the set N{B"!¢l | B € G} is a singleton {z¢}, where BMI¢ is the
interpretation of B in M[G] via Borel codes for B in M.*> Such reals z¢ are called
random reals over M. As with Cohen reals, one can recover G from zg and M
as follows: G = {B € B | z¢ € BM%}. Hence there is a canonical one-to-one
correspondence between B-generic filters over M and random reals over M. We
often identify these two objects.

Hechler forcing. Elements of the partial order are pairs (n, f) where n is a
natural number and f is a function from w to itself and it is denoted by D. Given
(n, f) and (m,g) in D, (n,f) < (m,g) if n > m, fim = gm and f(k) > g(k)
for any £ > m. Given a model M of ZF and a D-generic filter G over M,
ze = U{fIn | (n,f) € G} is a function from w to itself by the genericity of G.
Such reals xg are called Hechler reals over M. One can recover G from x5 and
M as follows: G ={(n,f) € D|zg D fin and (Vk > n) f(k) < zg(k)}. Hence
there is a canonical one-to-one correspondence between D-generic filters over M
and Hechler reals over M. We often identify these two objects.

SFor the definition and the basic properties of Borel codes, see §1.13.
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Mathias forcing. FElements of the partial order are pairs (s, A) where s is a
finite set of natural numbers and A is an infinite set of natural numbers such that
max(s) < min(A) and the forcing is denoted R.® Given (s, A) and (¢, B) in R,
(s,A) < (t,B)if sNn(n+1)=t, AC Band s\t C B, where n = maxt. Given
a model M of ZF and a R-generic filter over M, z¢ = [J{s | (3A) (s, A) € G}
is an infinite set of natural numbers by the genericity of (G. Such reals are called
Mathias reals over M. One can reconstruct G from z¢ and M as follows: G =
{(s,A) e R | s C zg and ¢ C sU A}. Hence there is a canonical one-to-one
correspondence between R-generic filters over M and Mathias reals over M. We
often identify these two objects.

Sacks forcing. Elements of the partial order are perfect trees on 2 ordered by
inclusion and it is denoted by S. Given a model M of ZF and an S-generic filter
G over M, g = |J{stem(T') | S € G} is a function from w to 2 by the genericity
of GG. Such reals are called Sacks reals over M. One can recover G from zs and
M as follows: G = {S € S | zg € [S]}. Hence there is a canonical one-to-one
connection between S-generic filters over M and Sacks reals over M. We often
identify these two objects.

Silver forcing. Elements of the partial order are uniform perfect trees on 2
ordered by inclusion and it is denoted by V, where a perfect tree T on 2 is
uniform if for any s and ¢ in 7 with the same length and i = 0,1, s~(i) € T if
and only if ¢~ (i) € T. Given a model M of ZF and a V-generic filter G over M,
one can define xg in the same way as Sacks reals and such reals are called Silver
reals over M. There is a canonical one-to-one correspondence between V-generic
filters over M and Silver reals over M as in Sacks forcing. We often identify these
two objects.

Miller forcing. FElements of the partial order are superperfect trees on w or-
dered by inclusion and it is denoted by M, where a tree T on w is superperfect if for
any node ¢ of T, there is an extension v of ¢ in T such that {n € w | u™(n) € T} is
infinite. Given a model M of ZF and a M-generic filter G over M, one can define
x¢ in the same way as Sacks reals and such reals are called Miller reals over M.
There is a canonical one-to-one correspondence between M-generic filters over M
and Miller reals over M as in Sacks forcing. We often identify these two objects.

Laver forcing. Elements of the partial order are trees T on w such that for
each node t O stem(T) of T, the set {n € w | ¢~ (n) € T} is infinite and they
are ordered by inclusion. The partial order is denoted by L. Given a model M
of ZF and a L-generic filter G over M, one can define x5 in the same way as

6We use this notation only in Chapter 2 where we do not use R either for the real line, the
Baire space or the Cantor space. Hence there will be no confusion for this notation.
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Sacks reals and such reals are called Laver reals over M. There is a canonical
one-to-one correspondence between IL-generic filters over M and Laver reals over
M as in Sacks forcing. We often identify these two objects.

Eventually different forcing. FElements of the partial order are pairs (s, F)
where s is a finite sequence of natural numbers and F' is a finite set of functions
from w to itself and it is denoted by E. Given (s, F) and (¢, F') in E, (s, F) <
(t,F')if s Dt, F' C F and (Vf € F') (Vn € dom(s \ t)) s(n) # f(n). Given a
model M of ZF and a E-generic filter G over M, z¢ = |J{s | (3F) (s, F) € G}
is a function from w to itself by the genericity of G. Such reals are called E-
generic reals over M and one can reconstruct G from xs and M as follows:
G={(s,F) €E|s Cuagand (Vf € F) (Vn > dom(s)) z¢(n) # f(n)}. Hence
there is a canonical one-to-one correspondence between E-generic filters over M
and E-generic reals over M. We often identify these two objects.

Next, we introduce useful classes of forcings that we use in Chapter 2. Let
P be a partial order. For p and ¢ in P, p and ¢ are compatible (denoted by pl|q)
if there is an r in P such that » < p and r < ¢. They are called incompatible
(denoted by pLq) if they are not compatible. A subset A of P is an antichain if
any two different elements of A are incompatible. A subset D of P is dense if for
any p in P there is a d in D such that d < p. Let D be a subset of P and p be an
element of P. The set D is predense below p if for any ¢ < p in PP there is a d in
D such that ¢ and d are compatible.

For a regular cardinal 6, Hy denotes the set of all sets a such that |TC(a)| < 6,
where TC(a) denotes the transitive closure of a, i.e., the smallest set b containing
a and which is transitive, i.e., (Vz € b) x C b.

The countable chain condition (ccc). A partial order P has the countable
chain condition (or P is ccc) if every antichain of P is countable. Since the
invention of forcing, ccc forcings have been fundamental partial orders and they
enjoy many nice properties, e.g., they preserve cardinalities, i.e., given a ccc
partial order P and a P-generic filter G over V, for any ordinal o, « is a cardinal
in V if and only if it is a cardinal in V[G]. In particular, w} = wY[G}. Typical
examples of ccc forcings are Cohen forcing, random forcing, Hechler forcing, and
eventually different forcing. Mathias forcing, Sacks forcing, Silver forcing, Miller

forcing, and Laver forcing are not ccc.

Proper forcings. A partial order P is proper if for any sufficiently large regular
cardinal # (e.g., # > 2"l) and any countable elementary substructure X of H,
with P € X, and any p in PN X, there is a ¢ < p in P such that ¢ is (X, P)-generic,
i.e., for any dense set D of P in X, D N X is predense below ¢. Proper forcings
were introduced by Shelah and they are also fundamental in modern set theory.
They are a generalization of ccc forcings (i.e., every ccc forcing is proper) and
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they enjoy several properties ccc forcings satisfy, e.g., for a proper forcing P, a
P-generic filter G over V, and any countable set of ordinals A in V[G], there is
a countable set of ordinals B in V such that A C B. In particular, w; = wY[G}.

All the examples of forcings listed above are proper.

1.10 Large cardinals

Large cardinals are cardinals with certain transcendence properties over cardinals
smaller than them. Many such properties are the analogies of the ones w has over
finite numbers. For the basics and background for large cardinals, we refer the
reader to [44]. Let us list the large cardinals (or the large cardinal properties) we
will use in this thesis:

Inaccessible cardinals. Inaccessible cardinals are the least and the oldest large
cardinals. An uncountable cardinal k is inaccessible if it is regular, i.e., for any
ordinal @ < k and any function f: a — k, f is bounded, i.e., there is a § < k
such that ran(f) C f, and it is strong limit, i.e., for any o < &, 2¢ < k. If K is
inaccessible, then V, is a model of ZFC. Hence the existence of an inaccessible
cardinal implies the consistency of ZFC and by Godel’s Incompleteness Theorem,
the consistency of ZFC+ “There is an inaccessible cardinal” is strictly stronger
than that of ZFC.

Sharps. Let X be a set. By X#, we mean the complete theory of L(X) in the
language (€, {¢n }news {da}tacTc(x)) With some special properties, where ¢, is the
constant for the n-th indiscernible for L(X') and d,, is the constant for a € TC(X).
For the details, see, e.g., [22]. The existence of X# is equivalent to the existence of
a closed unbounded proper class of indiscernibles for L(X) with some properties.
Also it is equivalent to the existence of an elementary embedding j from L(X) to
itself whose critical point is above the rank of X. (Here the critical point of j is
the least ordinal x such that j(k) > k.) We say every real has a sharp if for any
real z, 27 exists. We say every set has a sharp if for any set X, X# exists.

Measurable cardinals. Measurable cardinals are one of the most fundamental
large cardinals. An uncountable cardinal x is a measurable cardinal if there is an
elementary embedding from V' to a transitive proper class whose critical point is
k. There is a first-order characterization of measurable cardinals: An uncountable
cardinal k is measurable if and only if there is a non-trivial k-complete ultrafilter
on k; here a filter is non-trivial if it is not principal and it is k-complete if it
is closed under intersections with <x many sets. It is easy to see that if k is a
measurable cardinal, then for any set X € V,,, X# exists.
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Strong cardinals. Most large cardinals stronger than measurable cardinals
assert the existence of elementary embeddings from V' to a transitive class M
with certain properties. The more M is close to V, the stronger the large cardinal
property is. Strong cardinals are one of the natural strengthening of measurable
cardinals in this sense. Let o be an ordinal. An uncountable cardinal k is a-strong
if there is an elementary embedding 7 from V to M such that M is transitive,
the critical point of j is k, and V, C M. An uncountable cardinal k is strong
if it is a-strong for any ordinal «. It is immediate that any a-strong cardinal is
measurable. If k is (k + 2)-strong, then there are unboundedly many measurable
cardinals below k.

Woodin cardinals. Woodin cardinals were introduced when Shelah and Woodin
tried to decide the optimal upper bound for the consistency strength of the sat-
uration of the nonstationary ideal on w; and they are tightly connected to the
determinacy of projective sets in Gale-Stewart games. Let o < ¢ be ordinals and
A be a subset of V5. An uncountable cardinal k < 0 is «a-A-strong if there is
an elementary embedding j from V to a transitive class M such that k is the
critical point of j, V, C M, and ANV, = j(A) NV,. An uncountable cardinal
k is <0-A-strong if it is a-A-strong for every o < 6. An inaccessible cardinal ¢§
is Woodin if it is a limit of <d-A-strong cardinals for any subset A of Vj. If § is
Woodin, then Vj satisfies “There is a proper class of strong cardinals”.

1.11 Inner models and inner model theory

Inner models are transitive proper class models of ZF. The study of inner model
theory is about canonical inner models with large cardinals. The Godel’s Con-
structible Universe L is the most basic canonical inner model. It always exists
in ZF and it is the least inner model of ZFC. Godel introduced L to prove the
consistency of AC, CH, and moreover the Generalized Continuum Hypothesis
(GCH) with ZF. Beside this fact, . has many interesting properties, e.g., in L,
there is a A} set of reals without the Baire property and which is not Lebesgue
measurable, and there is a II} set of reals without the perfect set property. As
at the end of §1.8, every X! set of reals has the Baire property. Also every X!
set of reals is Lebesgue measurable and has the perfect set property. Hence the
above facts about L show that 3| sets of reals are the limit for proving the above
regularity properties in ZFC.

One can relativize the construction of L. to any set in the following two ways:
For a set A, L[A] denotes the least inner model such that A N L[A] € L[A4] and
L(A) denotes the least inner model containing A as an element. The model L[A] is
always a model of ZFC and A might not belong to L[A] in general (e.g., L[R] = L
and R does not belong to L in general) while L(A) might not be a model of AC
(e.g., if there are w-many Woodin cardinals and a measurable cardinal above all
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of them, then AC fails in L(R)). For a set of ordinals A, L[A] = L(A).
Let us list the basic properties of L. we use later:

Lemma 1.11.1 (Gdodel).

1. The relation {(x,a) € “w x “w | x € L[a]} is a ¥} set of reals.

2. For any real a, L[a] F “There is a Al(a) wellordering of the reals”.

Proof. See, e.g., [66, Theorem 8F.7, 8F.23, 8F.24]. O

Core models are canonical inner models with the following special properties:
first they are fine structural (constructed with Jensen’s .J, Hierarchy), second,
they are forcing invariant (they are absolute between ground models and their
forcing extensions), and lastly they are close to V', e.g., they have covering prop-
erties or weak covering. If 0% does not exist, L is the basic core model. Unlike
many canonical inner models, one needs to assume some anti-large cardinal hy-
pothesis to prove the existence of core models. The following is a general result
for the existence of the core model:

Theorem 1.11.2 (Dodd and Jensen [24]; Koepke [50]; Jensen [38]; Mitchell [64];
Jensen [39]; Steel [79]; Jensen and Steel [41, 40]). Suppose every real has a sharp.
If there is no inner model of ZFC with a Woodin cardinal, then the core model K
exists. More generally, if Al-determinacy fails, then there is a real ag such that
for any a >7 ag, the a-relativized version of the core model K, exists, where <t
is the Turing order.” Moreover, the core models have the following properties:

1. the relation {(z,a) € “w x “w | z € K,} is a 33 set of reals, and
2. for any real a, K, F “There is a Aj(a) wellordering of the reals”.

Proof. When there is a real a such that a' does not exist, see [24]. In the other
case, see [79]. Note that in [79], Steel assumed the existence of a measurable
cardinal to construct K. But Jensen and Steel [41, 40] omitted this assumption.

U

To build core models, one needs to study fragments of core models or more
general objects, which are called mice. Standard examples of mice are L. and the
core model K. For a set a, there are a-relativized version of mice called a-mice.
Basic examples are L[a] and K,. The following two theorems are essential to
study mice:

Theorem 1.11.3 (Comparison Lemma). Let M, N be mice and § = max{|M|", |N|"}.
After <6 steps of coiterations, one of them is an initial segment of the other.

"Note that Al-determinacy (lightface) is equivalent to the existence of an inner model of
ZFC with a Woodin cardinal. This is why we said “More generally,”.
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Proof. See, e.g., [92, Lemma 9.1.8]. O]

Theorem 1.11.4 (Dodd-Jensen Lemma). Let A be a mouse and i: M — M’
be an iteration map according to the unique iteration strategy of M. Suppose
there is a 3* preserving map o: M — M'. Then

1. there is no drop in the iteration tree for i, and
2. for any ordinal £ in M, i(§) < o(&).

In particular, any two iteration maps without drops from a mouse to a mouse are
the same.

Proof. See, e.g., [92, Lemma 9.2.10]. O

1.12 Absoluteness

We speak of absoluteness if a sentence or a class of sentences does not change
truth values of mathematical statements between models of set theory and it is
one of the basic and central notions in set theory. Given models of set theory
M and N with M C N and a formula ¢, ¢ is absolute between M and N if
for any finite sequence of elements Z in M, M E ¢(¥) if and only if N E ¢(Z).
For example, the formula “x is w” is absolute between any two transitive models
of ZF. The first nontrivial and important absolute notion is wellfoundedness. A
relation R on a set A is wellfounded if for any nonempty subset B of A, there is
an R-minimal element of B, i.e., there is a b € B such that for any element a of
B, (a,b) ¢ R.

Lemma 1.12.1. The formula “R is a wellfounded relation on A” is absolute
between any two transitive models of ZF.

Proof. See, e.g., [37, Lemma 13.11] and the two paragraphs preceding it. O

Given a IT} formula ¢, one can recursively compute a tree T on w X w such that
{z | A2E ¢(x)} = {z | [Tz] = 0}, where T, = {t € <“w | (z|dom(t),t) € T} in
ZF+AC,(R). But [T;] = 0 if and only if (T, D) is wellfounded. Hence A% F ¢(x)
if and only if (T, D) is wellfounded. Hence the problem of membership for a II}
set is reduced to the one for the wellfoundedness of certain trees. Combining with
Lemma 1.12.1,

Theorem 1.12.2 (Mostowski). Every Il formula is absolute between transi-
tive models of ZF+AC,(R). Hence every ¥} formula is also absolute between
transitive models of ZF+AC, (R).

Proof. See, e.g., [37, Theorem 25.4]. O
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In general, a T} formula is not absolute between transitive models of ZF.
Shoenfield proved that any TT} formula is absolute between inner models of ZF+

AC,(R):

Theorem 1.12.3 (Shoenfield). For any IT} formula ¢ and real a, there is a tree T
on wxw; in L[a] such that for any real x, A? F ¢(x, a) if and only T}, is wellfounded.
This tree is called a Shoenfield tree and one can construct a Shoenfield tree in
any inner model of ZF+AC, (R) and the construction depends only on ¢, a, and
a fixed uncountable ordinal (in this case, wy’)

Hence Shoenfield trees are absolute and thus every IT3 formula (and 33 for-
mula) is absolute between between inner models of ZF+AC,(R), especially be-
tween L and V.

Proof. See, e.g., [66, 8F.8, 8F.9, 8F.10]. O

In general, a IT} formula is not absolute between L and V', e.g., the statement
“Every real is in I.” is equivalent to a IT} formula and one can add nonconstructible
real (e.g., a Cohen real over L) via forcing starting from L. Using sharps for reals,
Martin and Solovay constructed a tree called Martin-Solovay tree for a IT3 formula
which is like a Shoenfield tree for a IT} formula. We will give a sufficient condition
for the absoluteness of Martin-Solovay trees. Assume every real has a sharp. For
a real a, let I, be the closed unbounded class of indiscernibles derived from a*
and set I = (),cu,, Lo- The class I is called the class of uniform indiscernibles and
uy denotes the second element of I and is called the second uniform indiscernible.

Theorem 1.12.4 (Martin and Solovay). Let M, N be inner models of ZFC+ “Every
real has a sharp”. If u)’ = u} with M C N, then Martin-Solovay trees are abso-
lute between M and N and hence every I} formula (and X} formula) is absolute
between M and N.

Proof. See, e.g., [33, Theorem 2.1]. O
Every 33 formula is absolute between the core model K and V' when K exists:

Theorem 1.12.5 (Dodd and Jensen; Steel). Assume every real has a sharp. If
A%—determinaey fails, then there is a real ag such that for any a >1 ag, the a-
relativized version of the core model K, exists and every X1 formula is absolute
between K, and V.

Proof. In case there is a real a such that a' does not exist, this is due to Dodd and
Jensen [24]. If every real has a dagger, then this is due to Steel [79, Theorem 7.9].%
O

8In [79, Theorem 7.9], he assumed two measurable cardinals. But one can replace this
assumption with daggers for reals. See [71, Theorem 0.1].
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Before closing this section, we discuss the absoluteness of being a winning
strategy for Gale-Stewart games with closed payoff sets:

Theorem 1.12.6 (Folklore). Let X be a nonempty set and M be a transitive
model of ZF with X € M. For any closed subset A of “X, given a strategy o for
player I in M, M F “o is winning in A” if and only if V F “o is winning in A”.
The same holds for player II.

Proof. As described in [45, 20.B], if there is a winning strategy for player I in the
game Gx(A) for a closed set A, then there is a canonical winning quasistrategy
¥4 for player I and a strategy o for I is winning for the game G x(A) if and only
if o C ¥ 4. Since the construction of ¥ 4 is absolute between transitive models of
ZF, the statement “o is winning in A” is absolute between transitive models of
ZF, as desired. O

1.13 Borel codes and co-Borel codes

If X is the Baire space, the Cantor space, or the real line, it is easy to show
that there is a surjection from the Cantor space to the set of all Borel subsets of
X. (By induction on 1 < & < wy, one can construct surjections from the Cantor
space to 22 subsets of X and one can amalgamate them into one surjection.)
Borel codes are effective realizations of such surjections introduced by Solovay.
To introduce them, we first fix some notions and notations. Let Y be a set. A
tree T on Y is wellfounded if (T, D) is wellfounded. A node s of T is terminal if
there is no node ¢ in T extending s. Let Term(T') denote the set of all terminal
nodes of T'. Let s,t be nodes of T'. The node t is a successor of s in T if t extends
s and lh(¢) = lh(s) + 1. For a node s of T'; Succy(s) denotes the set of successors
of sin T.

We introduce Borel codes for Borel subsets of the Cantor space. One can
introduce Borel codes for the Baire space and the real line in the same way. Borel
codes are pairs (T, f) where T is a wellfounded tree on w and f is a function from
Term(7') to <¥2. One can simply regard Borel codes as elements of the Cantor
space by identifying trees on w with a map from <“w to {0, 1} and fixing a simple
bijection between <“w and w. With this identification, we regard Borel codes as
elements of the Cantor space. Given a Borel code ¢ = (T, f), the decode B. is
defined as follows: For each node t of T',

f(t)] if ¢t € Term(T)
B, =< “2\ By if (3s € T') {s} = Sucer(t)
Usesucer(ny Bs  otherwise.
We set B. = By. This is well-defined because T is wellfounded. One can easily

check any Borel set is of the form B, for some Borel code ¢. The following are
basic observations on Borel codes:
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Lemma 1.13.1 (Solovay). The set of Borel codes and the relations z € B,
r ¢ B, are I} sets and hence they are absolute between transitive models of
ZF+AC,(R).

Proof. See, e.g., [37, Lemma 25.44 & Lemma 25.55]. O

Infinitary Borel codes (oco-Borel codes) are a transfinite generalization of Borel
codes: Let Lo o({an}tnew) be the language allowing arbitrary many conjunctions
and disjunctions and no quantifiers with atomic sentences a,, for each n € w. The
oo-Borel codes are the sentences in Lo o({ay, }new) belonging to any I' such that

e the atomic sentence a, is in I' for each n € w,
e if ¢ isin I, then so is —¢, and

e if o is an ordinal and (¢ | # < «) is a sequence of sentences each of which
isin T, then \/4_, ¢p is also in T".

To each oco-Borel code ¢, we assign a set of reals By in the same way as decoding
Borel codes:

o if  =a,, then B, = {z € “2 | z(n) =1},
o if $ =), then B, =“2\ By, and

® 1f¢ = VB<awf3’ then B¢ = UB<0¢B"//’B'

A set of reals A is called co-Borel if there is an co-Borel code ¢ such that A = By.

As Borel codes, one can regard oco-Borel codes as wellfounded trees with atomic
sentences a, on terminal nodes and decode them by assigning sets of reals on each
node recursively from terminal nodes. (If a node has only one successor, then it
means ‘negation” and if a node has more than one successors, then it means
“disjunction”.) The only difference between Borel codes and oco-Borel codes is
that trees are on w for Borel codes while trees are on ordinals for co-Borel codes.
From this visualization, it is easy to see that the statement “¢ is an oco-Borel
code” is absolute between any transitive models of ZF by Lemma 1.12.1.

Given an oo-Borel code ¢ and a real z, the problem whether z is in B,
can be easily translated into the following kind of satisfaction game using the
above visualization of oo-Borel codes via wellfounded trees: Let us regard ¢ as a
wellfounded tree T}, on ordinals with terminal nodes labeled by atomic sentences.
In the game G.(T}), there are two players, Spoiler and Duplicator, and a counter
designating which player should move next. We start with the top node (the
empty sequence) with the counter designating Duplicator. If the node has only
one successor, no player is supposed to decide anything and they move to the
unique successor and exchange the name in the counter. (This is for the negation.)
If the node has more than one successors, then the player designated by the
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counter chooses one of the successors and keeps the name of the counter. (This
is for the disjunction.) If the node is a terminal node, then look at the atomic
sentence labeled at the node, say a,. If the real x satisfies that x(n) = 1, then
the player designated by the counter wins, otherwise the other player wins. It is
fairly easy to see that a real z is in By if and only if Duplicator has a winning
strategy in the game G.(T,). By the fact that the payoff set of this game is a
clopen subset of “v for some ordinal v, being a winning strategy in this game is
absolute in any transitive model of ZF by Theorem 1.12.6. Hence the statement
“a real x is in By” is absolute between transitive models of ZF.
The following characterization of co-Borel sets is very useful:

Fact 1.13.2 (Folklore). Let A be a set of reals. Then the following are equivalent:
1. A is oo-Borel, and

2. There is a formula ¢ in the language of set theory and a set S of ordinals
such that for each real x,

r€A < L[S 2| E ¢(z).

Proof. See [80)]. O

Standard examples of co-Borel sets are Suslin sets. A set of reals A is Suslin
if there are an ordinal vy and a tree T' on 2 X 7 such that A = p[T], where p[T] is
the projection of [T] to the first coordinate, i.e.,

p[T]={z €2 (3f € ) (z,f) € [T]}.

By the above fact, every Suslin set is oco-Borel. Assuming the Axiom of Choice,
it is easy to see that every set of reals is Suslin, in particular co-Borel. Hence
the property oo-Borelness is trivial in the ZFC context while it is nontrivial and
powerful in a determinacy world, as we will see in Chapter 3.

1.14 Blackwell games

In this section, we introduce Blackwell games, which are infinite games with
imperfect information and compare them with Gale-Stewart games.

In 1928, John von Neumann proved his famous minimax theorem which is
about finite games with imperfect information. Infinite versions of von Neumann'’s
games were introduced by David Blackwell [15] where he proved the analogue of
von Neumann’s theorem for Gj sets of reals (i.e., ITJ sets of reals). The games he
introduced are called Blackwell games and they were called by him “games with
slightly imperfect information” in his paper [16].
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We start with the definition of Blackwell games.® Let X be a nonempty set
and assume AC, (“R). Recall from §1.4 that the topology of “X is given by the
product topology where each coordinate (i.e., X) is seen as the discrete space.
In Blackwell games, players choose probabilities on X instead of elements of X
and with those probabilities, one can deduce a Borel probability on “X, i.e., a
measure assigning probability to each Borel subset of “X. Player I wins if the
probability of a given payoff set is 1 and player II wins if the probability of the
payoff set is 0. Let us formulate this in detail.

Definition 1.14.1. A mized strategy for player I is a function o: XFvr —
Prob,, (X), where Prob,, (X) is the set of functions pi: X — [0,1] with ) _\ p(z) =
1.1 A mized strategy for player II is a function 7: X944 — Prob, (X).

Given mixed strategies o, T for player I and II respectively, let v(o, 7): <¥X —
Prob, (X)) be as follows: For each finite sequence s of elements of X,

v(o,T)(s) =

o(s) ifse XBven
T(s) if s € X©dd,

For each finite sequence s of elements of X, define

Th(s)—1

Hor([s) = [ vlo,m)(shi) (s(2).

1=0

Recall that [s] denotes the set of x € “X such that # D s and these sets are basic
open sets in the space “X. With the help of AC,(“X), we can uniquely extend
Lo, to a Borel probability on “X, i.e., the probability whose domain is the set
of all Borel sets in the space “X. Let us also use ji, . for denoting this Borel
probability.

Let A be a subset of “X. A mixed strategy o for player I is optimal in A
if for any mixed strategy 7 for player II, A is p, -measurable and p, .(A) = 1.
A mixed strategy 7 for player II is optimal in A if for any mixed strategy o for
player I, A is p, -measurable and i, .(A) = 0. A set A is Blackwell-determined
if one of the players has an optimal strategy in A. The axiom BI-AD x states that
every subset of “X is Blackwell-determined. We write BI-AD for BI-AD,,.

Note that since there is a bijection between R and “R, by Remark 1.2.1,
AC,(R) implies AC,(“R) and hence one can formulate Blackwell games in “R and
BI-ADg within ZF+AC,(R). The following is an analogy with Proposition 1.6.6:

90ur definitions of Blackwell games and Blackwell determinacy are different from the original
ones given by Blackwell [16] where Blackwell determinacy is formulated as an extension of von
Neumann’s minimax theorem, but our formulation is equivalent to the original one when it is
about the Cantor space (i.e., when X = 2). For the original formulation of Blackwell games
and Blackwell determinacy, see, e.g., [56, §3 & §5].

0We use Prob,, (X) to denote such functions because they are the same as Borel probabilities
p on X with countable support, i.e., there is a countable subset A of X with u(A4) = 1.
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Proposition 1.14.2.

1. Let X,Y be nonempty sets and suppose that there is an injection from X
to Y and assume AC,(“Y). Then BI-ADy implies BI-ADx. In particular,
BI-ADg implies BI-AD.

2. The axioms BI-AD and BI-AD, are equivalent.

Proof. The first item is easy to see. For the second item, see [55, Corollary 4.4].
O

As for Gale-Stewart games, one could ask what kind of subsets of “X are
Blackwell-determined for a nonempty set X. After proving that every Ggs subset
of the Cantor space is Blackwell-determined, Blackwell asked whether every Borel
subset of the Cantor space is determined. It was Donald Martin who found a
general connection between the determinacy of Gale-Stewart games and Blackwell
determinacy.!!

Theorem 1.14.3 (Martin). Let X be a set and assume AC,(“X). If there is
a winning strategy for player I (resp., II) in a subset A of “X, then there is

an optimal strategy for player I (resp., IT) in A. In particular, AD implies that
BI-AD and ADg implies that Bl-ADxg.

Proof. Given a strategy o for player I (resp., IT), one can naturally translate o
into a mixed strategy & for player I (resp., II) by setting &(s) to be the Dirac
measure concentrating on o(s). It is easy to see that if o is winning in A, then &
is optimal in A. O

By Theorem 1.6.4, every Borel subset of the Cantor space is Blackwell-determined
in ZFC and this answers the question of Blackwell. After proving Theorem 1.14.3,
Martin conjectured the following:

Conjecture 1.14.4 (Martin). BI-AD implies AD.

This conjecture is still not known to be true. The best known result toward
AD from BI-AD is as follows: Recall the notion of Suslinness from §1.13. A set
of reals is co-Suslin if its complement is Suslin.

Theorem 1.14.5 (Martin, Neeman, and Vervoort). Assume BI-AD. Then every
Suslin and co-Suslin set of reals is determined.

Proof. See [59, Lemma 4.1].'2 O

"Tn [58], Martin proved the Blackwell determinacy in the original formulation as mentioned
in Footnote 9, not in our formulation.

12Tn [59, Lemma 4.1], they assume the Blackwell determinacy for sets of reals in a weakly
scaled pointclass. But the argument shows the statement in Theorem 1.14.5.
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Together with the following result, one can establish the equiconsistency be-
tween AD and BI-AD:

Theorem 1.14.6 (Kechris and Woodin). Assume that every Suslin and co-Suslin
set of reals is determined. Then AD"® holds.

Proof. See [46]. O

Corollary 1.14.7 (Martin, Neeman, and Vervoort). In L(R), AD and BI-AD are
equivalent. In particular, AD and BI-AD are equiconsistent.

Also, BI-AD has some consequence on regularity properties:

Theorem 1.14.8 (Vervoort). Assume BI-AD. Then every set of reals is Lebesgue
measurable.

Proof. See [86]. O

We discuss the connection between Blackwell determinacy and other regularity
properties such as the Baire property in §3.2.

It is not difficult to see that if finite games are Blackwell determined, then
they are determined. As a corollary, one can obtain the following:

Theorem 1.14.9 (Léwe). Assume Bl-ADg. Then every relation on the reals can
be uniformized by a function.

Proof. See [56, Theorem 9.3]. O

Since there is a relation on the reals which cannot be uniformized by a function
in L(R), BI-ADg does not hold in L(R). Since BI-ADg implies BI-AD by the first
item of Remark 1.14.2 and BI-AD implies AD"® by Corollary 1.14.7, AD does
not imply BI-ADxg.

In Chapter 3, we discuss the connection between ADgr and BI-ADg.

1.15 Wadge reducibility and Wadge games

When we study descriptive set theory, we often would like to compare given two
sets of reals via some measure of complexity, i.e., we would like to ask the question
“Which set of reals is more complex than the other?”. In 1972, Wadge [88]
introduced Wadge reducibility for sets of reals in the Baire space, which is an
analogue of many-one reducibility in recursion theory: A set of reals A is Wadge
reducible to a set of reals B if there is a continuous function f from the Baire
space to itself such that A = f~'(B). After its introduction, set theorists in
California developed a beautiful theory of Wadge reducibility under the Axiom
of Determinacy (AD) plus the principle of Dependent Choice (DC). Nowadays
this theory is one of the basic tools in the research of determinacy and is essential
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to the study of descriptive set theory. The key tool of the analysis of Wadge
reducibility is a type of infinite games called Wadge games, which characterize
continuous functions from the Baire space to itself.

For a subset A of a topological space X, A° denotes the complement of A and
A denotes the closure of A in X.

We start with the definition of Wadge reducibility for a general topological
space. Let X be a topological space and A, B be subsets of X. The set A is Wadge
reducible to B (write A <3, B) if there is a continuous function f: X — X such
that A = f~!(B). Hence the problem of the membership of A can be reduced
to that of the membership of B via a continuous function, and in this sense B
is more complicated than (or as complicated as) A. This notion reminds us of
the many-one reducibility for subsets of w in recursion theory given by replacing
continuous functions with recursive functions. We define three other notions of
Wadge reducibility. A subset A of X is Wadge equivalent to a subset B of X
(A= B)if A< Band B <\, A. A subset A of X is strictly Wadge reducible
to a subset B of X (A <3\, B) if A <y B and B &3 A. A subset A of X is
Wadge comparable to a subset B of X if A <, B or B <3\, A holds. Tt is easy
to see that the Wadge order <3y is a preorder (i.e., reflexive and transitive) and
that the Wadge equivalence =3, is an equivalence relation on subsets of X. An
equivalence class of this equivalence relation is called a Wadge degree.

When X is the Baire space, the study of Wadge degrees is interesting to
descriptive set theorists in the way that Turing degrees are interesting to recursion
theorists. Since each boldface pointclass is closed under continuous preimages, it
consists of an initial segment of all the subsets of reals via Wadge reducibility and
hence the study of Wadge degrees gives us a finer analysis of boldface pointclasses
such as Borel classes 22 and projective classes X1. Wadge introduced Wadge
games to analyze Wadge reducibility for the Baire space. Given two set of reals
A, B in the Baire space, the Wadge game Gw(A, B) is played by two players
I and II in the following way: I plays a natural number z(, then II plays a
natural number gy, or she can pass, then I plays again a natural number z; and
IT plays a natural number or she can pass. After w rounds of this process, they
will produce sequences x = (z,, | n € w) and y = (y, | n < i) where i < w.
Player II wins if i = w (i.e., player II plays natural numbers infinitely often) and
r € A <= y € B. Otherwise player I wins. It is easy to see that A <\¥ B if
and only if player IT has a winning strategy in the Wadge game G (A, B). Since
Wadge games can be easily simulated by Gale-Stewart games, under AD, we can
conclude the following:

Theorem 1.15.1 (Wadge’s Lemma). Assume AD and let A, B be two sets of
reals in the Baire space. Then either A <{% B or B <{¢ A° holds.

Proof. Suppose A £\ B. Then by the above observation, player I has a winning
strategy in the game Gy (A, B). But using this strategy, player II can win the
game Gyw(B, A°) because the negation of x € A <= y € B is the same as
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y € B < 1z € A° Hence player II has a winning strategy in the game
Gw(B, A°) and B <\ A O

By the above theorem, we can deduce that the Wadge order <{# is almost
linear in the following sense: Let X be a topological space and A be a subset of
X. We say A is selfdual if A <3y, A® (equivalently A <, A) and non-selfdual if
A £y A (equivalently A° £, A). Let A be a selfdual set of reals and B be a set
of reals in the Baire space. Then either i) B <{ A, ii) B =\¢ A, or iii) A <\ B
holds. Let A be a non-selfdual set of reals and B be a set of reals in the Baire
space. Then either i) B <y A and B <y A%, ii) B =\ 4, iii) B = A°, or iv)
A < B and A° < B holds.

Donald Martin and Leonard Monk proved that the Wadge order < is well-
founded. Hence we can measure the complexity of sets of reals via ordinals by
taking their rank in the Wadge order.

Theorem 1.15.2 (Martin and Monk). Assume AD+DCg. Then the Wadge
order <y is wellfounded.

Proof. See, e.g., [83, Theorem 2.2]. O]

The above two theorems are essential parts of the basic theory of the Wadge
order for the Baire space. In Chapter 5, we show that both theorems fail for the
Wadge order for the real line.






Chapter 2
Games and Regularity Properties

In this chapter, we focus on the connection between infinite games and reqularity
properties for sets of reals. Roughly speaking, a set of reals with a regularity
property can be approximated by some simple sets (e.g., open sets or Borel sets)
modulo some small sets.

We characterize almost all the known regularity properties for sets of reals via
the Baire property for some topological spaces and use Banach-Mazur games to
prove the general equivalence theorems between the regularity properties, forcing
absoluteness, and the transcendence properties over some canonical inner models.
With the help of these equivalence results, we answer some open questions from
set theory of the reals.

In this chapter, we work in ZFC. We assume that readers are familiar with the
elementary theories of forcing and descriptive set theory. (For basic definitions
not given in this paper, see [37, 66].) When we are talking about “reals”, we
mean elements of the Baire space “w or of the Cantor space “2. In this chapter,
we use R for Mathias forcing and we will not use it for the real line or the set of
all reals.

2.1 P-Baireness and P-measurability

In this section, we introduce two kinds of regularity properties for sets of reals
for a wide class of forcing notions P and compare them. The first one is called
P-Baireness, which was implicitly mentioned in the paper by Feng, Magidor,
and Woodin [25]. The idea of P-Baireness is to reduce properties for sets of
reals to the Baire property in the Stone space of P by taking the continuous
preimages of sets of reals in the Stone space of P. Sets of reals with the P-
Baireness behave nicely in forcing extensions by PP because continuous functions
from the Stone space of P to the reals correspond to P-names for reals. The
second one is called P-measurability, which is a generalization of almost all the
known regularity properties for sets of reals. Since almost all the known regularity

33
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properties come from tree-type forcings, we first introduce a wide class of tree-
type forcings called strongly arboreal forcings. Asis mentioned in the introduction
of this chapter, a set of reals with a regularity property can be approximated by
some simple sets modulo small sets. To each strongly arboreal forcing P, we will
associate a o-ideal Ip which will be the set of small sets in this context and give the
definition of P-measurability. After introducing these two regularity properties,
we will investigate the connection between them.

From now on, we work with only separative partial orders: A partial order P
is separative if for any two elements p,q of P, if p ;é q, then there is an r < p
with r Lg. Every Boolean algebra is separative. The advantage of working with
separative partial orders is that one can identify P and its image via ip in Bp where
(Bp, ip) is a completion of P, namely the embedding i is isomorphic between P and
its image. From now on, we always identify P and its image inside a completion
of P.

We start with P-Baireness. We recall the definition of Stone spaces from §1.4.
For a partial order P, the Stone space of P (denoted by St(P)) is the set of all
ultrafilters on Bp equipped with the topology generated by {Oy | b € Bp}, where
Bp is a completion of P and O, = {u € St(P) | v > b}. For example, if P is
Cohen forcing C, then St(C) is homeomorphic to the Cantor space “2. Dense
sets in P are the same as open dense subsets in St(P): If D is a dense subset of
P, then the set |J{O, | p € D} is open dense in St(P), where ¢ is a unique dense
embedding from P to Bp. Conversely, if U is an open dense subset of St(P), then
{p€eP| O, CU} is a dense open subset of P.

Next, we discuss meagerness and the Baire property in St(P). We should first
observe that this space meets our requirement:

Lemma 2.1.1. Let P be a separative partial order. Then St(IP) is a Baire space,
i.e., any nonempty open set in St(P) is not meager.

Proof. We show that O, is not meager for each b in Bp. Since P is dense in Bp, it
suffices to show that O, is not meager for each p in P. Since any nowhere dense
set is a subset of a closed nowhere dense set (the closure of a nowhere dense set
is again nowhere dense by definition) and the complement of a closed nowhere
dense set is an open dense set, it suffices to show that O, intersects with the
countable intersection of any open dense sets in St(IP) for each p € P.

Take any p € P and let {U, | n € w} be a countable set of open dense
subsets of St(P). We would like to prove that the intersection O, with (1, ., Uy
is nonempty. We construct a descending sequence (p, € P | n € w) such that
po < pand O,, C U, for each n € w. This is possible because each U, is open
dense in St(P). Then consider any ultrafilter v extending {p, | n € w} (we use
Zorn’s Lemma here). Then u belongs to O, and U, for each n € w. Hence the
intersection O, with (., U, is nonempty. O

Before defining P-Baireness, let us see the connection between Baire mea-
surable functions from St(P) to the reals and P-names for reals. Let X,Y be



D. Ikegami, Games in Set Theory and Logic 35

topological spaces. Then a function f: X — Y is Baire measurable if for any
open set U in Y, f~!(U) has the Baire property in X. Baire measurable func-
tions are the same as continuous functions modulo meager sets: Let X,Y be
topological spaces and assume Y is second countable, i.e., there is a countable
base for the topology of Y. Then it is fairly easy to see that a function f: X — YV
is Baire measurable if and only if there is a comeager set D in X such that f[D
is continuous.

There is a natural correspondence between Baire measurable functions from
St(P) to the reals and P-names for reals:

Lemma 2.1.2 (Feng, Magidor, and Woodin). Let P be a separative partial order.
1. If f: St(P) — “w is a Baire measurable function, then

77 ={(m,n),p) | Op\ {u € St(P) | f(u)(m) = n} is meager}

is a P-name for a real.
2. Let 7 be a P-name for a real. Define f, as follows: For u € St(P) and
m,n € w,

f-(u)(m)=n < (3p €u) plk1(m) =n.

Then the domain of f. is comeager in St(P) and f; is continuous on the domain.
Hence it can be uniquely extended to a Baire measurable function from St(IP) to
the reals modulo meager sets.

3. If f: St(P) — “w is a Baire measurable function, then f;, and f agree on
a comeager set in St(P). Also, if 7 is a P-name for a real, then |- 7p = 7.

Proof. The result is due to Feng, Magidor, and Woodin [25, Theorem 3.2]. For
the sake of completeness, we will give a proof.

Let us first fix some notation. When f is a function from St(P) to “w and
m,n are natural numbers, we write Af, = {u € St(P) | f(u)(m) = n}.

Let us start with proving the first item. We show that 7 is a P-name for a
real assuming f: St(P) — “w is Baire measurable. Take any P-generic filter G
over V. We prove that TfG is a function from w to w. By the definition of 7y, it is
easy to show that TfG is a subset of w x w.

We first claim that it is a function. Suppose (m,ny), (m,ns) € Tf for natural
numbers m,nq, and n,. We show that ny = n,. By the assumption, there are
pi € G (i = 1,2) such that ((m,n;),p;) € 74 for i = 1,2 . By the definition of 7,
Oy, \ Af, .. is meager in St(P) for ¢ = 1,2. Since p1,p; € G and G is a filter, there
is a p such that p < py,ps. Hence O, \ Af , is meager in St(P) for i = 1,2. By

Lemma 2.1.1, O, is not meager in St(P). Hence O,NAL . NAJ isnot meager
By the

m,ni m,na
and especially non-empty. Take any element u from O, N Af  NAS .
definition of Af  fori=1,2, ny = f(u)(m) = ny, as desired.

We prove that m € dOIIl(TfG) for every natural number m. Fix an m. Since f

is Baire measurable, the set D = {p € P | (In € w) O,\ Af, , is meager} is dense.
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By the genericity of G, there is a p both in G and D. Then O, \ A{f,m is meager
for some n and hence ((m,n),p) € 7y which means that 7f(m) = n, as desired.

We show the second item. Let 7 be a P-name for a real. We first show that the
domain of f. is comeager in St(P). If we set D,,, = {p € P | (In) p Ik 7(1h) = n}
and U, = U{O, | p € Dy} for each m € w, dom(f;) = (,,c,, Um- Since 7 is a
P-name for a real, D,, is dense and hence U, is open dense in St(P) for each m.
So dom(f;) is comeager in St(P).

We next show that f; is a function. Let u € dom(f;) and assume f,(u)(m) =
ny and f.(u)(m) = ny for natural numbers m, ny, and ny. We show that n; = n,.
By the definition of f,, there are p; € u such that p; I () = 1; for i = 1,2.
Since wu is a filter, there is a p such that p < p; for each i = 1,2, which yields
p Ik 1y = 7(mh) = 1. Hence ny = no.

We finally show that f; is Baire measurable. We prove that Ag;’n has the
Baire property in St(P) for all natural numbers m and n. Let U = (J{O, |
p Ik 7(m) = n}. We show that U N dom(f;) = Az Nndom(f;). If u is in
U N dom(f,), then there is a p € u such that p I- 7(7h) = n. By the definition
of fr, fr(u)(m) = n and hence u € Aflr N dom(f;). Conversely, if u is in
Alr Ndom(f;), then f;(u)(m) =n and there is a p € u such that p |- 7(m) = 7.
Hence u € U N dom(f).

We prove the third item. We first show that f;, and f agree on a comeager set
if f is Baire measurable. First note that if Op\A{;’n is meager, then f; and f agree
on O,NAJ . Forlet ubein O,NA/f . Since O,\ Al , is meager, ((m,n),p) € 74,
in particular, p I 7;(m) = 7. By the definition of f.,, f-,(u)(m) = n, as desired.
Since f is Baire measurable, the set D = {p € P | (In € w) O, \ A/, , is meager}
is dense and hence the set A = (JU,c {0, N AL, | O, \ AL, is meager} is
comeager. But f.. and f agree on A, as desired.

We next show that TfGT = 79 for each P-name 7 for a real and a P-generic filter
G over V. Suppose 7f (m) = n. We show that 7¢(m) = n. Since 7§ (m) = n,
there is a p € G such that ((m,n),p) € 74,. By the definition 7, O, \ Alr is
meager. Then by the definition of f;, the set {u € St(P) | (I’ € u) p’ IF 7(1h) =
n} is comeager in O,, which means that the set {p' < p | p' IF 7(1h) = n} is
dense below p. Since p € GG, by the genericity of GG, there is a p’ € G such that
p' Ik 7(1h) = . Hence 7¢(m) = n, as desired. O

Now we define the property P-Baireness. Let P be a separative partial order
and A be a set of reals. Then A is P-Baire if for any Baire measurable function
f:St(P) — “w, f~'(A) has the Baire property in St(P). Tt is easy to see that
every Borel set of reals is P-Baire for any P by the same argument as for the Baire
property we gave in the paragraphs after Definition 1.8.1.

Next we introduce P-measurability. We start with defining a class of tree-
type forcings we will work on from now on. A partial order P is arboreal if its
conditions are perfect trees on w (or on 2) ordered by inclusion. But this class of
forcings contains some trivial forcings such as P = {<“w}. We need the following
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stronger notion:

Definition 2.1.3. A partial order P is strongly arboreal if it is arboreal and the
following holds:

VT eP) (VteT) T, €P,
where T; = {s € T | either s C t or s D t}.

Note that every strongly arboreal forcing is separative (if S ;é T, then there
isan s € S\ T and hence S; < S and S, LT).

With strongly arboreal forcings, we can code generic objects by reals in the
standard way: Let P be strongly arboreal and G' be P-generic over V. Let x4 =
U{stem(T") | T € G}. Then x5 is a real and G = {T € P | z¢ € [T}, where [T]
is the set of all infinite paths through 7. Hence V[z¢] = V[G]. We call such real
ra a P-generic real over V.

Almost all typical forcings related to regularity properties are strongly arbo-
real:

Example 2.1.4.

1. Cohen forcing C: Let Ty be <“w. Consider the partial order ({(T3), | s €
Ww}, g). Then this is strongly arboreal and equivalent to Cohen forcing.

2. Random forcing B: Consider the set of all perfect trees 7" on 2 such that
for any ¢ € T, [T;] has a positive Lebesgue measure, ordered by inclusion. Then
this forcing is strongly arboreal and equivalent to random forcing.

3. Hechler forcing D: For (n, f) € D, let

Tn,p) = {t € ““w | either t C fn or

(t D fIn and (Ym € dom(t)) t(m) > f(m)) }

Then the partial order ({7, | (n, f) € D}, C) is strongly arboreal and equiva-
lent to Hechler forcing.
4. Mathias forcing R: For a condition (s, A) in R, let

T(s,4) = {t € ““w | t is strictly increasing and s C ran(t) C s U A}.

Then {75 4y | (s,A) € R} is a strongly arboreal forcing equivalent to Mathias
forcing.
5. Eventually different forcing E: For a condition (s, F') in E, let

Tis,p) = {t € ~“w | either ¢t C s or
(t O s and (Vf € F) (Vn € dom(t\ 5)) (n) # f(n))}.

Then {T(, r) | (s, F) € E} is a strongly arboreal forcing equivalent to eventually
different forcing.

6. Sacks forcing S, Silver forcing V, Miller forcing M, Laver forcing I.: These
forcings can be naturally seen as strongly arboreal forcings.
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We now introduce a o-ideal Ip on the reals expressing “smallness” for each
strongly arboreal forcing PP.

Definition 2.1.5. Let P be a strongly arboreal forcing. A set of reals A is P-null
if for any T in P there is a 7" < T such that [T'] N A = (). Let Np denote the set
of all P-null sets and Ip denote the o-ideal generated by P-null sets, i.e., the set
of all countable unions of P-null sets.

Example 2.1.6.

1. Cohen forcing C: C-null sets are the same as nowhere dense sets in the
Baire space “w and I¢ is the ideal of meager sets in the Baire space.

2. Random forcing B: B-null sets are the same as Lebesgue null sets in the
Baire space and [ is the Lebesgue null ideal.

3. Hechler forcing I: D-null sets are the same as nowhere dense sets in the
dominating topology, i.e., the topology generated by {l[s, f] | (s, f) € D} where

[s,f]={z € “w|s Cxand (Yn > dom(s)) z(n) > f(n)}.

Hence I is the meager ideal in the dominating topology.

4. Eventually different forcing E: E-null sets are the same as nowhere dense
sets in the eventually different topology &, i.e., the topology generated by {[s, F] |
(s, F') € E} where

[s, F]={r €“w|sCxand (Vf € F) (Vn>dom(s)) z(n) # f(n)}.

Hence I is the meager ideal in the topology £.

5. Mathias forcing R: A set of reals A is R-null if and only if {ran(z) | z €
AN Ay} is Ramsey null or meager in the Ellentuck topology, where Ay is the set
of strictly increasing infinite sequences of natural numbers. Hence Igx = Ng.

6. Sacks forcing S: In this case, Is = Ng by a standard fusion argument. The
ideal I is called the Marczewski ideal and often denoted by sy.

As with Sacks forcing, all the typical non-ccc tree-type forcings admitting a
fusion argument satisfy the equation Ip = Np. In the case of ccc forcings, Ip is
often different from Np (e.g., Cohen forcing and Hechler forcing).

We now introduce P-measurability:

Definition 2.1.7. Let P be strongly arboreal. A set of reals A is P-measurable
if for any T in P there is a 7" < T such that either [T']N A € Ip or [T']\ A € Ip.

As is expected, P-measurability coincides with a known regularity property
for P when P is ccc:

Proposition 2.1.8. Let P be a strongly arboreal, ccc forcing and let A be a set
of reals. Then A is P-measurable if and only if there is a Borel set B such that
AAB € Ip, where AAB is the symmetric difference between A and B.
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Proof. The direction from right to left follows from the fact that every Borel set
of reals is P-measurable which will be proved in Lemma, 2.1.15.

For the other direction, suppose A is P-measurable and we will find a Borel
set approximating A modulo Ip. Since A is P-measurable, the set D = {T € P |
either [T]NA € Ipor [T]\ A€ Ip} is dense. We take a maximal antichain A in
D and define B = J{[T] | T € A and [T]\ A € Ip}. Then since A is countable
by the ccc-ness of P, B is Borel and AAB € Ip because D is dense. O

This argument does not work for non-ccc forcings such as Sacks forcing. For
example, assuming every II] set has the perfect set property (i.e., either the set
is countable or contains a perfect subset), there is no X! Bernstein set (i.e., a set
where neither it nor its complement, contains a perfect subset) but for a X1 set
of reals A, A is approximated by a Borel set modulo I if and only if A is Borel.
This is because Ig restricted to analytic sets (or co-analytic sets) is the set of all
countable sets of reals by the assumption that every II] set has the perfect set
property.

But P-measurability is almost the same as the regularity properties for non-
cce forcings P, e.g., for Mathias forcing, a set of reals A is R-measurable if and
only if {ran(z) | x € AN Ay} is completely Ramsey (or has the Baire property
in the Ellentuck topology), where A, is the set of all strictly increasing infinite
sequences of natural numbers. Also, for Sacks forcing, the following holds:

Proposition 2.1.9 (Brendle, Lowe). Let T' be a topologically reasonable point-
class on the Cantor space “2, i.e., it is a set of subsets of the Cantor space closed
under continuous preimages on the Cantor space and any intersection between a
set in I" and a closed set in the Cantor space. Then every set in I is S-measurable
if and only if there is no Bernstein set in T'.!

Proof. See [20, Lemma 2.1]. O

We now introduce a (possibly finer) ideal Ip* which will be central to our
theorems:

Definition 2.1.10. Let P be a strongly arboreal forcing. A set of reals A is in
Ip™ if for any T in P there is a 7" < T such that [T'] N A is in Ip.

Question 2.1.11. Let P be a strongly arboreal, proper forcing. Can we prove
Ip = Ip*?

We give some easy observations concerning Question 2.1.11:

'In general, the property not being a Bernstein set does not imply S-measurability while
the converse is true. By using the axiom of choice, we can construct a set of reals which is not
S-measurable but is not a Bernstein set.
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Lemma 2.1.12. Let P be a strongly arboreal forcing.

1. The ideal Ip is a subset of Ip*.

2. A set of reals A is P-measurable if and only if for any 7" in P there is a
T" < T such that either [T'|N A € Ip* or [T'] \ A € Ip* holds. Hence we get
the same notion of measurability even if we replace Ip by Ip* in the definition of
P-measurability.

3. If P is ccc, then Ip = Ip*.

4. If Iy = Np, then Ip = Ip*. Hence Ip = Ip* for any typical non-ccc tree-type
forcing admitting a fusion argument.

5. (Brendle) Suppose P satisfies the following condition: For any maximal
antichain A in P, there is a maximal antichain A’ such that for any two distinct
elements T, T" of A', [T] and [T"] are disjoint and A’ refines A, i.e., for any 7" in
A’ thereisa T in A with 7" C T. Then Ip = Ip".

Sacks forcing is a typical example of the condition in 5. But we do not know
of any strongly arboreal P satisfying the condition but which are neither ccc nor
satistying Ip = Np.

Proof. We will prove only 5. The rest are straightforward. Suppose P satisfies
the above condition and let A be in Ip*. We prove A is in Ip. Since A is in Ip”*,
the set of all T in P such that [T] N A € Ip is dense in P. Hence we can take
a maximal antichain A contained in this set. By the condition, we may assume
for any two distinct elements 77, Ty of A, [T1] and [T3] are pairwise disjoint. For
each T'in A, [T]N A € Ip. So we can pick {N,r | n € w} such that each N, r
is P-null and |J, ., No,r = [I]1N A. Let Ny, = Upey N, for each n € w. Since
A\ U, e Nn is P-null, the proof is complete if we prove the following:

Claim 2.1.13. For each n € w, N,, is P-null.

Proof of Claim 2.1.13. Take any T" in P. Since A is a maximal antichain, we can
take a T' € A such that 7" and 7" are compatible. Take a common extension 1"
of T'and T". Then [T"] N N,, = [T"] N N, because of the property of .A. But we
know that N, r is P-null. Hence we can take a further extension of 7" disjoint
from N,,. O (Claim 2.1.13)

O

Before investigating the relation between P-Baireness and P-measurability,
we first look at the P-name for a generic real we defined in the paragraph after
Definition 2.1.3 and its corresponding Baire measurable function from St(P) to
the reals given in Lemma 2.1.2. Recall that z is a generic real constructed from
a generic object G for any strongly arboreal forcing P. Let x; be a canonical
P-name for zs.

Example 2.1.14. Let P be strongly arboreal. Then f,(u)(m) = n if and only
if there is a 7" in u such that stem(7)(m) = n, where f,, is the corresponding
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Baire measurable function from St(IP) to the reals given in Lemma 2.1.2. Hence
fog(w) = U{stem(T) | T € u} for u € dom(f,,), as is expected.

From now on, we use 7 for denoting f,,, throughout this chapter.

We give the relation between P-Baireness and P-measurability. Recall that
Ip* is a technical ideal introduced in Definition 2.1.10 which is the same as Ip for
most cases.

Lemma 2.1.15 (P-Baireness vs. P-measurability). Let P be a strongly arboreal,
proper forcing and A be a set of reals. Then

1. Ais in Ip* if and only if 77'(A) is meager in St(P), and

2. A is P-measurable if and only if 77 '(A) has the Baire property in St(P).
In particular, if A is P-Baire, then A is P-measurable. Hence every Borel set is
P-measurable by the paragraph after Lemma 2.1.2.

Note that P-measurability does not imply P-Baireness in general.?

Proof of Lemma 2.1.15. Note that the domain of 7 is comeager in St(P) and 7 is
continuous on it by Lemma 2.1.2.
The following are useful for the proof:

Claim 2.1.16. (a) For T'in P and u € dom(7), if T € u, then 7(u) € [T].
(b) For T'in P, the converse of (a) holds for comeager many u, i.e., for comeager
many u in St(P), u is in the domain of 7 and if 7(u) € [T], then T € u.

Proof of Claim 2.1.16. For (a), suppose T € u. We prove 7(u)[n € T for each
n € w. Fix a natural number n. Then by Example 2.1.14, there is a 7" in u
such that stem(7") D 7(u)[n. Since both T and 7" are in u, they are compatible,
especially stem(7") € T (otherwise [T] N [T"] = (). Hence 7(u)[n € T.

For (b), take any T'in P. Then theset Dy = {T" € P | T" C T or [T'|N[T] = 0}
is dense in P. (Take any 7”. If 7" ¢ T, then there is a ¢’ € 7"\ T. By strong
arborealness of P, T, € P and [T},] N [T] = (.) Since Dr is dense, the set
{u | uwn Dy # (0} is open dense in St(P). Hence it suffices to show that if u is in
dom(7), uN Dy # 0 and w(u) € [T], then T € u. Suppose T ¢ u. Then since
uN Dy # (), there is a T" € u such that [T'] N [T] = 0. By (a), n(u) € [T"], hence
m(u) ¢ [T], a contradiction. O (Claim 2.1.16)

We prove the first item of Lemma 2.1.15. We start with the direction from
left to right.

We first show that m='(A) is meager if A is in Np. If A is in Np, then the
set D ={T | [T]N A =0} is dense in P. Hence the set of all u € dom(w) with

2For example, if A is a ¥ (lightface) set of reals universal for £3 (boldface) sets of reals and
if every X1 (lightface) set of reals has the Baire property but there is a 31 (boldface) set of reals
without the Baire property, then A is C-measurable by Proposition 2.1.8, but A is not C-Baire
because every X3 subset of the Cantor space is a continuous preimage of 4 and every continuous
preimage of A has to have the Baire property in the Cantor space for the C-Baireness of A.



42 Chapter 2. Games and Regularity Properties

uN D # () is comeager. But if u is in the comeager set, then thereisa T € unN D
and by Claim 2.1.16 (a), 7(u) € [T] and [T] N A = 0, in particular 7(u) ¢ A.
Therefore 71(A) is meager.

We have seen that 7 '(A) is meager assuming A is in Np. Since Ip is the
o-ideal generated by sets in Np, 7 '(A) is meager for all A in Ip.

We show that 77'(A) is meager if A is in Ip*. Since A is in Ip*, the set
D'={T |[T)NA € Ip} is dense in P. We use the following well-known fact:

Fact 2.1.17. Let X be a topological space and A be a subset of X. Then
(U{U | U is open and U N A is meager }) N A is meager.

Proof of Fact 2.1.17. See, e.g., [45, Theorem 8.29]. O

Since D' is dense, | J{Or | T € D'} is open dense. By the above fact, it suffices
to prove that Or N7 (A) is meager for any T in D'.

Take any T in D'. By the definition of D', we know that [T]N A isin Ip. Hence
77 ([T]NA) is meager in St(P). But by Claim 2.1.16 (a), OrN7~'(A)Ndom(m) C
7~ Y([T]N A). Since dom(r) is comeager in St(P), OrN7~'(A) is almost included
in the meager set 7 !([T] N A). Therefore, O N7~ 1(A) is meager as desired.

Next, we see the direction from right to left for the equivalence of the first
item of Lemma 2.1.15. Suppose 7 '(A) is meager. Take any T in P and we will
find an extension 7" of T such that [T"] N A is in Ip. Since 77'(A) is meager,
then there is a sequence (U, | n € w) of open dense sets in St(P) such that
Nyew UnNmH(A) = 0. For each n € w, let D, = {S € P | Og C Uy,}. Since U, is
open dense in St(P), D, is dense open in P. We choose a sequence (A, | n € w)
of maximal antichains such that A,, C D,, for each element S of A,, the length
of stem(S) is greater than n, and A, refines A,, i.e., every element of A, is
below some element in A,,.

Now we use the properness of P to treat each A, as “countable”. Let 6 be a
sufficiently large regular cardinal and X be a countable elementary substructure
of Hy such that P, T, (A, | n € w) are in X. By properness, there is an (X, P)-
generic condition 7" below T'. We show that [T']N A is in Ip, which will complete
the proof of the first item of Lemma 2.1.15.

Consider the set

B= SIS e A nXI\ [ J{SIN[S]]S.S" € A,NX and S # S'}.

new new

So B is the set of all xs uniquely deciding which condition from .4,, contains it
for each n. By the property of (A, | n € w), it will generate a filter coming from
elements in A,s. The point is that any ultrafilter u extending that filter satisfies
7(u) = x, the given element, and that u is in U, for each n. This will play a role
for the argument.

Now we claim [T"]\ B € Ip and BN A = (). We will be done if we prove them.
The fact that [T']\ B € Ip follows from the fact that {S | S € A, N X} is predense
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below [T'] for each n because T' is (X, P)-generic and from that [S] N [S'] € Ip
for each S, 5" € A, N X with S # S because A, is an antichain, and from that
A, N X is countable for each n.

To prove BN A = (), take any element x from B. As we mentioned above, for
each n € w, there is a unique element S, in A, N X with = € [S,]. Since A, 1
refines A, S,11 < S, for each n. Hence the set {S,, | n € w} generates a filter
F,. Take any ultrafilter u extending F,,. We claim that 7(u) = x and u € U, for
each n. By the property of (A, | n € w), the length of stem(S,,) is greater than
n. Hence, by Example 2.1.14, 7(u) is already decided to be = by S,, (n € w). The
fact that v € U, for each n follows from the fact that S, € A, C D, and the
definition of D,,. Since we have assumed that (", ., U, N7~ (A) = 0, = does not
belong to A. Hence we have seen BN A = () as desired.

We have shown the first item of Lemma 2.1.15. Next, we show the equiv-
alence in the second item of Lemma 2.1.15. For left to right, we assume A is
P-measurable. Then the set

D=1{T cP| either [T]NA€ Iy or [T]\ A€ L}

is dense and the set U = (J{Or | T € D} is open dense in St(P). Let U; =
U{OT | [T] \ Ae€ Ip} and Uy = U{OT | [T] NAe€ I]p} Then U = U; U Us.

We claim that U; NU; = (). First we note that [T] ¢ Ip (even [T] ¢ Ip*) for
any T € P. If [T] is in Ip for some T, then 7 !([T]) is meager in St(P) by the
first item of Lemma 2.1.15. Since Or C 7~ '([T]) by Claim 2.1.16 (a), O would
be also meager in St(P), which would contradict Lemma 2.1.1. Hence [T] ¢ Ip
for any T € P. We show that U; N U, = (). Suppose there is a u in U; NU,. Then
there are T}, Ty € u with [T1]\ A € Ip and [T5] N A € Ip. Since u is a filter, there
is a T3 in u with T3 < T7,T. But then [T3]\ A and [T3] N A are both in Ip, which
means [7T3] itself is in Ip. Contradiction!

Hence, it suffices to show that U; \ 7='(A), Uy N 7~'(A) are meager because
that will imply U;An~'(A) is meager. We will only see that U, N 7~ '(A) is
meager. The case for U; \ 7 }(A4) being meager is similar. By Fact 2.1.17, it
suffices to see that Or N7 1(A) is meager when [T]N A € Ip. But if [T]N A € Ip,
then OrNa 1 (A) C 7 Y([T]NA) and 7 *([T] N A) is meager by Claim 2.1.16 (a)
and the first item of Lemma 2.1.15. Hence we are done.

Now we see the direction from right to left. Assume 77'(A) has the Baire
property in St(P). Then there are open sets U;, U, such that U Ar—'(A),
UpAr 1 (“w \ A) are meager. By Lemma 2.1.1, Uy N Uy = @ and U; U U, is
open dense in St(P). Let D; = {T € P | Or C U;} for i = 1,2. Then D; U D is
dense in P. Hence by Lemma 2.1.12 (2), it suffices to prove that [T]\ A € Ip" for
each T in Dy and that [T] N A € Ip* for each T in Ds.

We only prove [T\ A € Ip* for each T'in D;. By the first item of Lemma 2.1.15,
it is enough to see that 7 *([T] \ A) is meager in St(P). But by Claim 2.1.16,
7 H([T]\ A) is almost the same as Or\ 7 !(A). Since T is in Dy, by the definition
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of Uy, Or \ 77 '(A) is meager. This completes the proof of the second item of
Lemma 2.1.15. O

Note that if P satisfies the condition in Lemma 2.1.12 (5), then we do not
need the properness of P for the proofs of Lemma 2.1.15.

Before closing this section, let us mention the connection between our frame-
work and Zapletal’s setting. In [91], Zapletal starts from a o-ideal I on a Polish
space X (a separable, completely metrizable space) and considers the quotient of
the set of all Borel sets in X modulo I and develops the general theory of this forc-
ing so-called “idealized forcing” as a Boolean algebra. The following proposition
shows that our forcings are all idealized forcings:

Proposition 2.1.18. Suppose P is a strongly arboreal, proper forcing. Then the
map i: P — (B/Ip*) \ {0} defined by

i(T) = the equivalence class represented by [T,

is a dense embedding, where B denotes the set of all Borel sets of the reals and
B/Ip" is the quotient Boolean algebra via Ip*.

Hence, our situation is a special case of Zapletal’s.?

Proof of Proposition 2.1.18. First we see that the map i is well-defined, i.e., [T]
is not in Ip* for each T in P. But this is just the same argument as the proof of
[T] ¢ Ip for each T"in P in Lemma 2.1.15.

It is clear that if T} < Ty, then i(T7) < i(T3). To show the converse, assume
Ty £ Ty and we prove that i(T}) £ i(Tz). Since Ty & Ty, there is a t € Ty which
is not in Ty. By strong arborealness of P, (T1), € P and [(T}),] N [T] = (. Hence
i((Th)) £ i(T3). Since (T1), < Ty, i((T1):) < i(T1). Therefore, i(T7) £ i(T3).

So it suffices to show that the range of 7 is dense in (B/I*) \ {0}. Let B be
a Borel set which is not in Ip*. We will find a T in P with [T]\ B € Ip". By
Lemma 2.1.15, B is P-measurable. Since B is not in Ip*, there is a T" such that
[T]\ B € Ip, hence [T]\ B € Ip* by Lemma 2.1.12, as desired. O

2.2 Forcing absoluteness

Recall from §1.12 that absoluteness is one of the central notions in set theory,
and it is the unchangingness of the truth-values of statements between models
of set theory. Forcing absoluteness is the absoluteness between ground models
and their generic extensions, which plays an important role in many areas in set

3In [91, Corollary 2.1.5], Zapletal proved a more general result. In the corollary, the ideal T
he constructed is essentially the same as our Ip*in the following sense: If we use b, = |Egen(R2) =
1] (n € w) instead of by (¢t € <2) for the generators of C, then Zapletal’s I is exactly the same
as our Ip* on Borel sets.
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theory. In this section, we focus on the forcing absoluteness of statements in
second-order arithmetic. We start with its definition:

Definition 2.2.1 (X]-P-absoluteness). Let P be a forcing notion and n be a
natural number with n > 1. Then X! -P-absoluteness is the following statement:

For any X! formula ¢, real r in V, and P-generic filter G over V,
V E ¢(r) if and only if V[G] E o(r).

By definition, it is immediate that 3!-P-absoluteness is equivalent to IT!-
P-absoluteness for each P and each n > 1, where IT}-P-absoluteness is defined
similarly. By Theorem 1.12.3, 3)-P-absoluteness holds for any P. How about
31-P-absoluteness? In L, Xi-P-absoluteness fails if P adds a new real, i.e., there
is a new real in a generic extension by P. This is because the statement “There
is a non-constructible real” is X! and it is true in a generic extension of L by
P while it is false in L. On the other hand, typical forcing axioms imply Xi-P-
absoluteness for many P, e.g., MAy, implies X}-P-absoluteness for any ccc forcing
P.* Since one can force MAy, starting from a model of ZFC, the statement that
31 P-absoluteness holds for a ccc forcing P is independent from ZFC. Tt is natural
to ask: When is the statement true and when is it not? We discuss this question
in §2.4.

From now on, we will restrict our attention to definable forcings. Let n be
a natural number with n > 1. A partial order P is provably Al if there are X!
formula ¢ and TI} formula + such that the statement “¢ and ¢ define the same
partial order (P, <p) with the incompatibility relation Lp” is provable in ZFC.
All the typical strongly arboreal forcings are provably Al. We will need this
definability condition for forcings when we compute the complexity of Ip*.

In some of our results in § 2.4, we shall need a strengthening of the standard
notion of properness for definable forcings. Let P be a provably A! forcing for
some n > 1. We say P is strongly proper if for any countable transitive model M of
a finite fragment of ZFC, if P, <p, Lp are absolute between M and V respectively,
(i.e., PM <M 1M are the same as PN M, <p N(M x M), LpN (M x M) respec-
tively), then for any condition p in PM (or PN M), there is an (M, P)-generic
condition ¢ below p, i.e., if M E “A is a maximal antichain in P”, then A N M is
predense below ¢.5 Let us compare strong properness with properness. (For the
definition of properness, see §1.9.) Here (M, P)-generic conditions are the same
as (X, P)-generic conditions for a countable elementary substructure X of Hy: If
P is provably A! for some n > 1, X is a countable elementary substructure of

4For the proof, see [5, Theorem 13]. For basic definitions and properties of forcing axioms,
see [37].

% Although we will not explicitly mention the finite fragment of ZFC we will use for the
definition of strong properness, it will be large enough that we can proceed all the arguments in
this chapter within the fragment as usual. From now on, we say “countable transitive models
of ZFC” instead of “countable transitive models of a finite fragment of ZFC” for simplicity.
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Hy for some large enough regular 6 and M is the transitive collapse of X, then a
condition p is (M, P)-generic if and only if it is (X, P)-generic in the usual sense.
In particular, if P is provably Al for some n > 1 and strongly proper, then P
is proper. All the typical examples of proper, provably Al forcings are strongly
proper. But there is a ccc, provably Al forcing which is not strongly proper.®

We use strong properness instead of properness as it allows us to leave out
the quantification “€ H,” which would increase the complexity of our statements
in the relevant results (Proposition 2.3.3, Theorem 2.4.8, Theorem 2.4.9) beyond
projective.

2.3 The transcendence properties over inner mod-
els

By “transcendence over an inner model M”, we refer to properties that express
that the universe is different from A in some concrete sense. E.g., the property
wM < w! is such a transcendence property; another transcendence property
would be “there are P-generics over M” for some nontrivial forcing P. (Here,
by inner models, we mean proper class transitive models of ZFC.) In §2.1, we
have seen that the generic filters of any strongly arboreal forcing can been seen as
generic reals of the forcing. All such generic reals cannot exist in a given ground
model: A partial order P is called non-trivial if for any condition p in P there are
two extensions ¢, of p such that they are incompatible (¢_Lr). It is easy to see
that if P is non-trivial and G is a P-generic filter over V', then G does not belong
to V. Since G can be coded by a generic real over V' for each strongly arboreal
forcing, such a generic real does not belong to V' either. Hence the existence of
generic reals over an inner model M can be seen as a transcendence property over
M.

Although this transcendence property measures the difference of two models
of set theory very well and often plays an important role in set theory of the
reals, it is sometimes too strong when we consider some specific problems. We
now introduce a weaker notion called quasi-generic reals, which are obvious gen-
eralization of Cohen reals and random reals. This notion will give us the right
transcendence property to characterize the regularity properties for sets of reals.

Definition 2.3.1 (Brendle, Halbeisen, and Léwe [19]). Let P be strongly arboreal
and M be a transitive model of ZFC. A real z is quasi-P-generic over M if for

6 Assuming w; is not ¥;-Mahlo in L, Bagaria and Bosch constructed a ccc, provably Al forc-
ing which adds a real  such that L[z] correctly computes w; (see the proof of [7, Theorem 6.1]).
This partial order is not strongly proper because every X1 strongly proper forcing preserves
the statement “L(R) is a Solovay model over L” by [6, Theorem 1] and this statement implies

wy > wf[a] for every real a.
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any Borel code ¢ in M with B. € Ip*, z is not in B., where B, is the decoded
Borel set from c.

Example 2.3.2.

1. Cohen forcing C: Quasi-C-generic reals are the same as Cohen reals by
definition. Hence quasi-C-genericity coincides with C-genericity.

2. Random forcing B: Quasi-B-generic reals are the same as random reals by
definition. Hence quasi-B-genericity coincides with B-genericity.

3. Hechler forcing I: Quasi-D-generic reals are the same as Hechler reals.
Hence quasi-D-genericity coincides with D-genericity.

4. Sacks forcing S: If M is an inner model of ZFC, quasi-S-generic reals over
M are the reals which are not in M because any Borel set in Is* = Ng is countable
and this is also true in M if the code is in M by Shoenfield absoluteness (the
absoluteness we mentioned in the paragraph after Definition 2.2.1). Therefore,
quasi-S-genericity does not coincide with S-genericity.

The last example explains the difference between genericity and quasi-genericity
for non-ccc strongly arboreal forcings: There is a model of set theory where there
is a quasi-Sacks-generic real over L but there is no Sacks real over L, e.g., add one
Cohen real over L. As is expected, genericity implies quasi-genericity for all the
typical strongly arboreal forcings and the converse is true for most ccc forcings:

Proposition 2.3.3. Let P be a strongly arboreal, strongly proper, provably Al
forcing. Then

1. The set {c | B. € Ip*} is TI}. Hence the statement “c codes a Borel set in
Ip™” is absolute between inner models of ZFC.

2. Suppose P is also X{ and provably ccc, i.e., there is a formula ¢ defining P
and the statement “¢ is ccc” is provable in ZFC. Then the set {c | B, € Ip*} is
also X1 and hence Al

3. If M is a transitive model of ZFC and a real z is P-generic over M, then x
is quasi-P-generic over M.

4. Suppose P is provably ccc. Then if M is an inner model of ZFC and a real
x is quasi-P-generic over M, then x is P-generic over M.

Proof. We show the first statement. By Lemma 2.1.15, a set of reals A is in
Ip* if and only if 71(A) is meager in St(P). Hence, it suffices to show that
{c | 7 1(B,) is meager} € II..

We prove the following:

7 !(B,) is meager <= (VM > ¢) (M: a c.t.m. of ZFC (%)
— M F “r '(B,) is meager”).

First note that the right hand side makes sense: The statement “IP is a strongly
arboreal forcing” is IT} by the assumption that P is provably Al so by downward
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absoluteness, this is also true in M and then we can define a P-name for a P-
generic real and the function 7 in M. Since the right hand side is IT}, it suffices
to show the above equivalence.

The following claim is the key point where we use the unfolded Banach-Mazur
games essentially:

Claim 2.3.4. Let M be a countable transitive model of ZFC with ¢ € M. If
M E “r='(B,) is meager”, then for any T € PN M, there is a 7" < T such that
Or N7~ '(B,) is meager in V.

Proof of Claim 2.8.4. Take any T in PN M. Since PP is provably AL, P, <p, Lp are
absolute between M and V. Hence M satisfies the assumption in the definition
of strong properness and we can take a 7" < T such that 7" is (M, P)-generic by
strong properness of P.

We show that T” satisfies the desired property, i.e., Op N7 ~!'(B,) is meager in
V. For that, we will use the unfolded Banach-Mazur games introduced in §1.8.
Let U be a tree on w X w, recursive in ¢ such that B, = p[U] holds in any transitive
model N of ZFC with ¢ € N, where p[U] is the projection of [U] to the first
coordinate.” Since 7 is continuous in dom(r) and 7! (B,) = I¥(7 xid) 1 ([U]), we
can apply Theorem 1.8.5 for A = 77!(B,), F = (7 x id)"'([U]) and X = dom(r)
(or X = dom(m) N O).

Since dom(7) is comeager in St(P), it suffices to show that player IT has a win-
ning strategy in the game G*((r x id) ! ([U]), dom(7) N O7+) (call it G'), namely
player T first chooses (Sy’, o), where Sy’ < T". Since M F “r~!(B,) is meager”,
by applying Theorem 1.8.5 in M, we can find a winning strategy o for player
IT in the game G*((7 x id)~'([U]), dom(r)) in M (call it GM). The idea is to
transfer o to a winning strategy for player Il in G’ in V. Instead of writing down
a winning strategy for player II in G', we describe how to win the game G’ for
player IT as follows:

I (So' (£T"),u) (S2',11)
GI
II 5’1’ 53,
I (Sﬂayﬂ) (52,y1)
GM
11 S, S

We construct sequences (S, | n € w), (S,' | n € w), (y, | n € w) with the
following properties:

e ((S)/|n€w),(ys|n€w))is arun in the game G' in V,

e ((Sh|n€w),(y,|n€w))isarun in the game G in V,

"For the existence of such U, see, e.g., [66, Theorem 7B.5].



D. Ikegami, Games in Set Theory and Logic 49
e S,," and y, are arbitrarily chosen by player I for each n,
e player II follows o in GM, and
e Sonii’ < Sonyq for each n.

Assuming we have constructed the above sequences, we prove that player II
wins in the game G’. First note that GM is a closed game for player II, hence the
strategy o remains winning in V. Therefore, (7 (u),y) ¢ [U] for any u € (.., Os.,
in V. But since Sy, 11" < So,41 for each n, (7(u),y) ¢ [U] for any u € (), -, Os,’,
hence player II wins the game G'.

new

We describe how to construct the above sequences. Suppose we have ((S;', S;, y;) |
i < 2n) for some n. We decide Ss,', Soni1’, Son, Sony1 and y,. By the above
properties, Sy,," and y,, are arbitrarily chosen by player I and Ss,, 1 will be decided
by the rest and o. So let’s decide S, and Ss, ;.

Let D be the set of all possible candidates for Sy, by ¢ and the previous
play (S; | i < 2n),(y; | i < n). Then in M, D is dense below Sy,_1 (if n > 0).
Since Sy, < So,_y" < Sop_y and T" is (M, P)-generic, D N M = D is predense
below Ss,’. Take an element from D which is compatible with Ss,” and choose
S5, so that the element we have taken becomes Sy,.; by o and let Sy, be a
common extension (in V) of Sy," and Sy, 1. This finishes the construction of the
sequences. O (Claim 2.3.4)

Now let us prove the equivalence (x):

Suppose ' (B,) is meager and assume there is a countable transitive model
M of ZFC with ¢ € M such that M F “r—!(B,) is not meager”. We will derive
a contradiction. Since every Borel set is P-Baire, 77! (B,) has the Baire property
in M. Hence if 77!(B,) is not meager in M, then there is a T € PM such that
7 1(B.) is comeager in Or (i.e., 7 '(B,) N Or is comeager in Or) in M. By
Claim 2.1.16 (b), 7 '([T]\ B.) is almost included in the meager set Or\ 7 (B.),
hence, in M, 7—!([T] \ B.) is meager in St(P). Now apply the above claim for
the Borel set [T]\ B.. Then we get a 7" < T such that O N7~ '([T] \ B.)
is meager in V. But this means that Op is almost included in 7='(B,). Since
O is not meager by Lemma 2.1.1, 7~ 1(B,) is not meager, which contradicts the
assumption that 7—!(B.) is meager.

For the other direction, suppose the right hand side holds for 7—!(B.) and we
show that it is actually meager in V. By Fact 2.1.17, it suffices to show that for
any T in P, there is a T" < T such that Op N7~ '(B,) is meager. So fix any T
and pick a countable transitive model M with ¢, T € M. Then by Claim 2.3.4,
there is a T" < T such that Op N7~ 1(B,) is meager, as desired.

We next show the second statement of this proposition. For that, it suffices
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to see the following by Lemma 2.1.15:

7 '(B,) is meager <= (3M > ¢) (M : a countable transitive model
of ZFC and M F “r~'(B,) is meager”)
< (VM > ¢) (M: a countable transitive model
of ZFC = M F “r (B,) is meager”),

where m = f,;, as before.

We only show the first equivalence. For left to right, if we take a countable
elementary substructure X of #H, for enough large € such that X has all the
essential elements, then the transitive collapse of X will do the job for M in the
right hand side.

For right to left, take an M with the property in the right hand side. The
idea is the same as the proof of Claim 2.3.4 in the first item of Lemma 2.3.3. This
time, we use the unfolded Banach-Mazur game G* (7 x id) ™' ([U])dom(r)) both
in M and V and translate a winning strategy in GM to the one in G".

By the assumption, in M, player II has a winning strategy o’ in GM. The
construction of a winning strategy for II in G’ in V' from ¢’ is exactly the same
as Claim 2.3.4. But instead of using the (M, P)-genericity for a condition 7", we
use the following:

Claim 2.3.5. Let D be a dense subset of P in M. Then D is predense in P in V.

Proof of Claim 2.3.5. Let D be a dense subset of Pin M. Then since IP is provably
cce, in M, there is a countable maximal antichain A C D. But since P is X1, the
statement “a real codes a maximal antichain” is 3] ATI} and therefore A remains
a maximal antichain in V. Hence D is predense in P in V. O(Claim 2.3.5)

The rest is exactly the same as Claim 2.3.4.

We show the third statement of this proposition. Let x be P-generic over M.
Then the set G, = {T' € PM | z € [T]} is a PM-generic filter over M. We show
that = ¢ B. when ¢ is a Borel code in M with B, € Ip".

First, we make a small observation about x and Borel sets with their codes

M
in M. Let i™ be the dense embedding from P to ((B/Ip*) \ {0}) defined in

Proposition 2.1.18 applied in M and i}/ (G,) be the (B/Ip*)-generic filter over M
induced by i and G,. Using the fact that Ip* is a o-ideal, it is routine to check
that B € i (G,) if and only if x € B for any Borel set B with a code in M.

Now let ¢ be a Borel code in M with B, € Ip* in V. By the first item of in this
proposition and the downward absoluteness for T} formulas, M F “B. € Ip*”.
Suppose that = does belong to B.. Then by the above observation, B, € i (G,).
But this implies that M & “B, ¢ Ip*”, hence by upward absoluteness for ¥}
formulas, B, ¢ Ip*. Contradiction!
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We show the last statement of this proposition. Let x be a quasi-P-generic
real over M and put G, = {T € PM | z € [T]}. We show that G, is a PM-generic
filter over M.

We first show that G, meets every maximal antichain of PM in M. Take any
maximal antichain A of PM in M. Since P is provably ccc, A is countable in M.
Now consider B = |J{[T] | T € A}. Then B is a Borel set with a code in M and
M E ““w\ B € Ip*”. By the first item of this proposition, this is also true in V.
Since z is quasi-P-generic over M, x ¢ “w\ B, i.e., x is in B. Hence G, meets A.

Now we show that G, is a filter. Take any two elements 77,75 in G,. We will
find a common extension of T3, T, in G,. Consider D = {S € P | ([S]N[T}] =
() and [S]N[Tz] = 0) or (S < Tj and [S]N[T3] = 0) or (S < Ty and [S]N[T] =
M) or (S < T1,T3)} in M. Then by strong arborealness of P, D is dense in M.
Hence G, meets D. Take a condition S from G, N D. Then only the last case in
D happens because S € G, <= = € [S]. Hence S < T, T5. Therefore, G, is a
PM_generic filter over M. O

2.4 The equivalence results

In §1.8 and §2.2, we have asked when every Al set of reals has the Baire property
and when Xl-P-absoluteness holds for a strongly arboreal forcing P. In fact,
the answer to the first question is exactly the same as the one for the second
question, for Cohen forcing: Bagaria [4] and Woodin [89] showed that every AJ
set of reals has the Baire property if and only if 3}-C-absoluteness holds where
C is Cohen forcing. They also proved the same equivalence holds for Lebesgue
measurability and random forcing and the same holds for the Baire property
for dominating topology (D-measurability) and Hechler forcing (see [42, 20]).
These are the typical cases for ccc, strongly arboreal forcings. How about non-ccc
forcings? Halbeisen and Judah [30] showed the same equivalence for completely
Ramseyness (R-measurability) and Mathias forcing and the author [34] proved it
for the property not being a Bernstein set (S-measurability) and Sacks forcing.
Therefore, the regularity properties for Al sets and 3! forcing absoluteness are
closely related. We can further connect the transcendence property over L. with
these two properties: E.g., Judah and Shelah [43] proved that every A} set of
reals has the Baire property if and only if for any real x, there is a Cohen real
over L[z]. They also proved the same equivalence for Lebesgue measurability
and random reals. Similarly Brendle and Lowe [20] showed that there is no Al
Bernstein set if and only if for any real x there is a real not in L{z]. As we have
seen in § 2.3, these latter statements can be seen as the existence of quasi-generic
reals over L[x] for reals x while the existence of generic reals might not work, e.g.,
for the last statement, there is a model of set theory where for any real x there
is a real not in L[z] but there is no Sacks real over L.

8For example, start with L and add w; many Cohen reals.
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In this section, we prove the above equivalence results for a wide class of
strongly arboreal forcings in a uniform way and explore the equivalence between
regularity properties for A} sets (or X! sets), 3! forcing absoluteness, and the
transcendence properties over the core model K.

Now we are ready to state our main theorems in this chapter:

Theorem 2.4.1. Let P be a strongly arboreal, proper forcing. Then the following
are equivalent:

1. Every Al set of reals is P-measurable, and

2. X1-P-absoluteness holds.

Theorem 2.4.2. Let P be a strongly arboreal, strongly proper, X3 forcing. As-
sume the following:

{c] cis a Borel code and B, € I*} € 3. (%)

Then the following are equivalent:
1. Every Al set of reals is P-measurable,
2. X1-P-absoluteness holds, and
3. For any real a and T € P, there is a quasi-P-generic real z € [T] over L|a].

Before going to the proofs of these theorems, let us see the general equivalence
theorem between P-Baireness and the forcing absoluteness via P:

Theorem 2.4.3 (Castells). Let P be a partial order. Then the following are
equivalent:

1. Every Al set of reals is P-Baire, and

2. X1-P-absoluteness holds.

Proof. The idea for this argument goes back to [25, Theorem 3.1].°

We first show the direction from P-Baireness to forcing absoluteness. We
assume every Al-set of reals is P-Baire and we show that X1-P-absoluteness. To
derive a contradiction, suppose it fails. Then there are a 3! formula ¢, a real
a, and a P-generic filter G over V' such that V[G] E ¢(a) but V ¥ ¢(a). This
is because any Xj formula is upward absolute from V to V[G] by Shoenfield
absoluteness.

Let v be the ¥} formula such that ¢ = (3z) (Vy) . Then there are p € G
and a P-name 7 for a real such that p IF (Vy) ¢(7,y,a). By the assumption, in
V, (Vz) (Jy) - (z,y,a). Since ¢ is a ] formula, by the Kondo-Addison theo-
rem [51], there is a ¥} function g: “w — “w such that V' F “(Vz) = (z, g(x),a)” .1

9We would like to thank Neus Castells for providing her notes with a proof of Theorem 2.4.3.
Our statement of Theorem 2.4.3 and presentation of the proof differ slightly from Castells’s note.

10 Actually, g can be taken as a ITi function in this case. But for the analogous argument for
Theorem 2.4.7, we write X3.
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Now we claim go f, is Baire measurable, where f; is defined in Lemma 2.1.2. Tt
suffices to check that (go f,)~'([s]) has the Baire property for each finite sequence
of natural numbers s, where [s] = {z € “w | x D s}, the basic open set from s in
the Baire space. Take any such s. Since g is 31, the set ¢~ !([s]) is Al. By the
first assumption, it is P-Baire, in particular, f, g 7!([s]) = (g o f;) '([s]) has the
Baire property in St(PP).

The idea is to approximate 7, 7yor, and a witness for 1) by a tree and using the
absoluteness of the wellfoundedness of the tree between V' and V'[G], we will derive
a contradiction. Let T be a tree on w X w X w such that (Vz,y) (¢(z,y,a) <
(32) (z,y,2) € [T]).

Since fr . (u) = go f;(u) for comeager many u, there is a sequence (D, | n €
w) of dense open sets in P such that f, (u) = go f;(u) for each u € [, ({0, |
p € D,}. Consider the following tree U on P X w X w X w in V:

(p,s,t,v) € U <= p'is a decreasing sequence in P,
if p= (p; | i < n), then lh(s) = lh(¢) = lh(v) = n,
(s,t,v) €T,po=p, (Vi <n)p; € ﬂDj, and

j<i
(Vi <n)pilF “sli C 7, t]i C 7yop,”

We claim that U is wellfounded in V' but ill-founded in V[G]. Suppose there
is an infinite path through U in V and call it (p,x,y,2). Take any u € St(P)
containing each element in 7 (i.e., any ultrafilter on P extending the set ). Then
U € Ve ULOp | p € Dy} and hence f; . (u) = go f;(u). Furthermore, by the
definition of f, and f, ., f-(u) =z, f. . (u) = go f-(u) =y and (z,y, 2) € [T].
But this implies ¢ (z, g(z), a), contradicting (Vx) =) (x, g(x),a) in V. Hence U is
wellfounded in V. On the other hand, U is certainly ill-founded in V[G] because
G, 79 = fT(G),T;f,fT = g o f;(G) and a witness for w(TG,T;f,fT,a) easily give an
infinite path through U. Contradiction!

Next we show the direction from forcing absoluteness to P-Baireness. Take
any Al set A and a Baire measurable function f from St(P) to the reals. We
show that f~'(A) has the Baire property in St(P).

Since A is A}, there are X3 formulas ¢ and ¢ defining A with a real parameter
a, in particular,

(Vz) ¢(2,0) <= (z,a). (1)

Note that this statement is I1}(a). Hence by 3i-absoluteness for P, the statement
() remains true in V. This is the only part we use the second assumption.
Now we use Shoenfield trees to get the absolute tree representation for A
and “w \ A between V and VF. Let s be sufficiently large so that x remains
uncountable in V¥. Let U, U, be Shoenfield trees on w x & for ¢ and . Since &
remains uncountable in V¥, the Shoenfield trees for ¢ and 1 up to x constructed
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in V¥ are the same as Uy, U, respectively. Moreover, since (f) remains true in
VP, we have the following:

A=p[lh], “w\A=p[ls],
IFp “p[U1] U p[Us] = “w, p[Uh] Np[Uz] = 07,

Let D; ={p|plF “rr € p[U:]”} and O; = J{O, | p € D;} for i = 1,2, where
7¢ is from Lemma 2.1.2. Then D; U D, is dense in P and any two elements p;
of D; are incompatible for i = 1,2. Hence O; U Oy is dense open in St(P) and
O N Oy = . So it suffices to show that O; \ f~'(p[U;]) is meager in St(P) for
i=1,2.

We only show that Oy \ f~'(p[Ui]) is meager in St(P). By Fact 2.1.17, it
suffices to show that O, \ f!(p[U:]) is meager for each p in D;. The following
claim is the key point, where we use Banach-Mazur games essentially. Let 6 be
sufficiently large regular cardinal.

Claim 2.4.4. Let a be any set in Hy. Then the set A of all G € St(P) such
that there is a countable elementary substructure X of Hy with a € X such that
G N X is P-generic over X is comeager in St(P).

Proof of Claim 2.4.4. Fix a set a in Hy. We prove the claim by using the Banach-
Mazur game G**(A, St(P)). By Theorem 1.8.3, it suffices to show that player II
has a winning strategy in this game. Since {O, | p € P} forms a basis in St(P),
we may assume that two players will pick elements of P instead of nonempty open
sets in St(P).

Instead of specifying a winning strategy for player I, we describe how to win
the game for player IT. We will also construct a <-decreasing sequence (p,, | n € w)
and an C-increasing sequence (X, | n € w) of countable elementary substructures
of Hy such that

L4 G,P € XO, Pon—1,DP2n € Xna
® 1, is arbitrarily chosen by player I, and
e any dense set of P in X, contains p,, for some m.

We can easily arrange this construction by a standard book-keeping argument.
Now we are done: Let X be the union of all X,,. Then for any G containing each
Pny G N X is P-generic over X because GN X D {p, | n € w} and any dense set
of P in X must contain p,, for some m. O (Claim 2.4.4)

We now prove that O, \ f~'(p[U;]) is meager if p € D;. By the claim, it is
enough to see that f(G) € p[U;] for G satisfying the property in the claim for
some suitable a and p € G. Also we may assume f(G) = f;,(G) because it is
true for comeager many GG by Lemma 2.1.2.



D. Ikegami, Games in Set Theory and Logic 25

Take a countable elementary substructure X of Hy for GG as in the claim for
a= (P,Uy,p, f, 7). Then GNX is P-generic over X. Since p € Dy, p IF 74 € p[Ui]
and hence X E “p I 77 € p[U;]”. Since GNX C X, we can apply forcing theorem
to X and G N X and get X[G'N X] F 7¢"% € p[U1]. By upward absoluteness,
7¢"X € p[l;] in V. Note that 7f™* = f, (G) because for any natural numbers
m and n,

7 (m)=n <= (peGnX)plr(m) =1

< (FpeG)plkr(m)=n
= fr;(G)(m) = n.

Hence f(G) = f-;(G) € p[Ui] as desired. O
Now we prove Theorem 2.4.1 and Theorem 2.4.2:

Proof of Theorem 2.4.1. By Theorem 2.4.3, it suffices to show that every Al
set of reals is P-measurable if and only if every Al set of reals is P-Baire. By
Lemma 2.1.15, it is enough to see that every A} set of reals is P-Baire assuming
every Al set of reals is P-measurable.

The following claim is the key point:

Claim 2.4.5. Let P be a strongly arboreal, proper forcing and 7 be a P-name for
a real. Then for any T in P, there is a 7" < T and a Borel function g: [T"] — “w
such that 7" IF 7 = g(2g).

Proof of Claim 2.4.5. This is a combination of Proposition 2.1.18 in this thesis
and [90, Proposition 2.3.1]. O

Now take any Al-set A and a Baire measurable function f from St(P) to
the reals. We show that f~'(A) has the Baire property. It suffices to show that
{T| Or N f~1(A) is meager or O7 \ f~'(A) is meager} is dense in P.

So take any T in P and we will find an extension S of T with the above
property. By the above claim, there is a 7" < T and a Borel function g: [T"] —
“w such that 7" IF 74 = g(r¢), where 74 is the P-name for a real defined in
Lemma 2.1.2. Hence, by Lemma 2.1.2, f = g o f;, almost everywhere in Oy.
Since g7'(A) is A}, it is P-measurable by the assumption. By Lemma 2.1.15,
far (g7 (A)) = (g0 fa) ' (A) has the Baire property. Hence f~'(A) has the Baire
property in Oz. In particular, there is an S < T” such that either Og N f~'(A)
is meager or Og \ f~!(A) is meager, as desired. O

Proof of Theorem 2.4.2. We have seen the equivalence between the regularity
property and forcing absoluteness. We will show the direction from forcing abso-
luteness to the transcendence property and the direction from the transcendence
property to the regularity property.
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We first show the direction from forcing absoluteness to the transcendence
property. Take a real @ and T in P. We will find a quasi-P-generic real x over
L[a] with = € [T]. But by the assumption (x), the statement “There is a quasi-P-
generic real = over L[a] with z € [T]” is X1 and this is true in a generic extension
VIG] with T € G by the same argument as in Proposition 2.3.3. (Although P
might not be provably A} as we assumed in Proposition 2.3.3, we used it only
to see M F B, € Ip* when B, € Ip* in V' and this is ensured by the assumption
(x) and Shoenfield absoluteness without using P being provably Al.) Hence by
>i-forcing absoluteness, the statement is also true in V.

We show the direction from the transcendence property to the regularity prop-
erty. Take any Al set A and we will show that A is P-measurable. Take any T
in P.

Case 1: w,

< wy for every real a.

In this case, we can actually show that every X} set of reals is P-measurable
as follows (now we assume A is X! instead of Al): Pick a real a such that
T € Lla] and A is Zi(a) and L[a] contains a parameter of the 31 definition
of P. Take a Shoenfield tree U for A in Lal], i.e., A = p[U] Then there is
an extension 7" < T in P9 such that either La] E “T" I- 2z € p[U]” or
Lla] E “T" I+ x¢ ¢ p[U]”, where 2z is a canonical P-name for a generic real. We
may assume that La] E “T" I ¢ € p[U]”. (The other case is similar.)

By the assumption, the set of all dense sets of P in L[a] is countable. Hence
there is a countable transitive model M C Lla] of ZFC such that M contains
all the reals and all the dense subsets of P in L[a]. (E.g., take a countable
elementary submodel of Lj[a] containing all the reals and the dense subsets in
L[a] and collapse it.) Since P is XJ, L[a] computes P correctly, M also computes
P correctly. Now we apply the strong properness of P and get an extension
T" < T such that T" is (M, P)-generic condition and hence also (L[a], P)-generic.
Therefore maximal antichains in P stay maximal in V' below T". Together
with the condition that the set of all dense sets in L[a| is countable, we can
conclude that almost all the reals are P-generic over L[a] below T". Since we
have L[a] E “T" IF 2z € p[U]”, almost all the reals below T" belong to p[U] = A,
as desired.

[a]

L
Case 2: w,"" = w} for some real a.

The idea for this argument goes back to [19, Proposition 2.1]. Pick a real a
with T € L[a] such that w}™ = wY and A is Al(a). The idea is to decompose
[T] N A and [T] \ A into Borel sets in an absolute way between L[a] and V/,
then a Borel set containing a quasi-P-generic real over L[a] must be Ip*-positive
and below that Borel set we will find an extension of 7" as a witness for the
P-measurability of A.

Since [T]N A and [T]\ A are ¥}(a) sets, there are Shoenfield trees U; and U,
in Lfa] for [T] N A and [T] \ A respectively. From these trees, we can naturally
decompose [T] N A and [T] \ A into w; many Borel sets as in [66, 2F.1-2F.3],
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i.e., there are sequences (c, | @ < wy), (do | @ < wy) of Borel codes in Lia]
such that [T]N A =J,.,, B, and [T]\ A = J,.,, Ba,- The point is that the
above equations are absolute between L[a] and V' because those two sequences
only depend on Uy, Us, and w;, and we have wf[a] = w/ as we assumed.

By assumption, there is a quasi-P-generic real  over L[a] with x € [T]. Hence
there is an o < wy such that either v € B, or x € By,. Without loss of generality,
we may assume x € B, . Since ¢, is in L[a], by the definition of quasi-P-genericity,
B., is not in Ip*. Since every Borel set is P-measurable, there is a condition 7"
such that [T']\ B., € Ip. Since B., C [T]N A, we have T’ < T and [T']\ A € Ip,
as desired. 0

We do not know whether we could eliminate the condition (x) in Theorem 2.4.2
under some reasonable assumptions for P. For further discussions about this issue,
see §2.6.

So far we have investigated the connection between P-measurability for A}
sets, X1-P-absoluteness, and the transcendence property over L. How about
P-measurability for 3} sets? Is there any such equivalence? Solovay proved
that every XJ set has the Baire property if and only if for any real a, the set
of all Cohen reals over L[a] is comeager. He also proved the same equivalence
for Lebesgue measurability and random reals. Similar equivalences have been
obtained for other forcings (see, e.g., [20, Proposition 5.12]). We now give a
general equivalence result for this phenomenon:

Theorem 2.4.6. Let P be a strongly arboreal, strongly proper, X} forcing. As-
sume

{c| cis a Borel code and B, € Iz*} € X3, (*)
and
Ip is Borel-generated or Ip = Np, (%)

where Ip is Borel-generated if any element of Ip is a subset of an element of Ip
which is Borel.

Then the following are equivalent:

1. Every X1 set of reals is P-measurable, and

2. For any real a, “w \ {z | x is quasi-P-generic over L[a]} € Ip".

The ideal Ip is Borel-generated if P is ccc and Ip = Np for all the typical
non-ccc forcings admitting a fusion argument as we discussed in Lemma 2.1.12.
Hence the condition (xx) is always true for typical strongly arboreal forcings.

Proof. We show the direction from the regularity property to the transcendence
property. Take any real a and we show that the set A = {z | x is quasi-P-generic
over L[a]} is of measure one with respect to Ip*. Suppose not. Then “w\ A ¢ Ip*.
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By the assumption (x), “w\ A is J. So by the assumption 1, it is P-measurable.
Hence there is a T in P such that [T]\ (“w\ A) = [T]N A € Ip. We show that
this cannot happen.

Case 1: Ip is Borel-generated.

Since [T] N A € Ip, there is a Borel set B C [T] in Ip such that [T] N A C B.
Let ¢ be a Borel code for B. By Theorem 2.4.2, there is a quasi-P-generic real x
over Lla, c] with = € [T]. Since B € Ip, x ¢ B. But this is impossible because x
is also quasi-P-generic over L[a] and hence 2 € [T]N A C B.

Case 2: Ip = Np.

In this case, [T] N A is P-null, hence there is a 7" < T such that [T']N A = .
By Theorem 2.4.2, there is a quasi-P-generic real x over L[a] with = € [T"]. Hence
xz € [T'] N A, a contradiction.

We now show the direction from the transcendence property to the regularity
property. Take any 31 set A. We show that A is P-measurable. Let T be in
P. We will find an extension 7" of T approximating A as in the definition of
P-measurability. If [T]N A € Ip*, we are done. So we assume [T| N A ¢ Ip*.

[a]

L
Case 1: w;"" < w/ for every real a.

The same as Case 1 in Theorem 2.4.2.

[a]

L
Case 2: w;'" = w{ for some real a.

Let a be a real such that [T]N A is ©3(a) and w™ = Y. Then we have a
Shoenfield tree in L[a] for [T]N A and we get an w; many Borel decomposition of
[T]N A into Borel sets {B., | o < w;} with ¢, € L]a] for each « as in the proof of
Theorem 2.4.2. Since [T]NA ¢ Ip* and the set of quasi-P-generic reals over Lia] is
of measure one with respect to Ip* by the assumption 2, there is a quasi-P-generic
real x over L]a] with x € [T] N A, so there is an « such that = € B,,.

The rest is the same as in the proof from the transcendence property to the
regularity property in Theorem 2.4.2. Since ¢, € L[a] and x is quasi-P-generic
over L[a], B, ¢ Ip*. Since any Borel set is P-measurable, there is a 7" in P such
that [T'] \ B., € Ip. But B., C [T]N A. Hence 7" < T and [T'] \ A € Ip, as
desired. O

We do not know if there is a forcing absoluteness statement corresponding
to P-measurability for ) sets in general. For some forcings, it is true, e.g.,
Judah [42] proved that X}-D-absoluteness is equivalent to the Baire property (in
the usual topology in the Baire space) for all XJ sets. (The same equivalence
holds for amoeba forcing and Lebesgue measurability.) But we do not know how
to uniformly find a forcing corresponding to P-measurability for X1 sets given P.

We have linked P-measurability for A} sets and ) sets with forcing abso-
luteness and the transcendence properties over L. How about P-measurability for
Al sets and X} sets? Unfortunately we cannot prove the equivalence between
P-measurability for Al sets and X}-P-absoluteness in ZFC in general, e.g., start
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from L and add w; many Cohen reals, then in this model, ¥}-forcing absoluteness
for Cohen forcing holds but there is a 3J set of reals without the Baire property.
With an additional assumption (sharps for sets), we will establish the analogues
of the equivalence results we have obtained for P-measurability for Al sets and X}
sets, B1-P-absoluteness, and the transcendence property over the core model K:

Theorem 2.4.7. Let P be a strongly arboreal, proper forcing.

1. Assume that every real has a sharp and that Al-determinacy fails. Then
if every A} set of reals is P-measurable, then X}-P-absoluteness holds.

2. Suppose that every set has a sharp. Then if ¥}-P-absoluteness holds, then
every Al set of reals is P-measurable.

In particular, if every set has a sharp, then either Al-determinacy holds or
every Al set of reals is P-measurable if and only if X}-P-absoluteness holds.

Theorem 2.4.8. Let P be a strongly arboreal, strongly proper, provably Al
forcing. Suppose every real has a sharp. Then either Al-determinacy holds or
the following are equivalent:

1. Every A} set of reals is P-measurable,

2. Xj-P-absoluteness holds, and

3. For any real a and any T € P, there is a quasi-P-generic real = € [T] over
K,, where K, is the core model constructed from a-mice.

Theorem 2.4.9. Let P be a strongly arboreal, strongly proper, provably Al
forcing. Suppose every real has a sharp. Assume

Ip is Borel-generated or Ip = Np. (xx)

Then either Al-determinacy holds or the following are equivalent:

1. Every X} set of reals is P-measurable, and

2. For any real a, “w \ {z | = is quasi-P-generic over K,} € Ip*, where K, is
the core model constructed from a-mice.

Note that the additional assumption “Every set has a sharp” is equivalent
to every X set of reals being P-Baire for any P (or universally Baire). So our
setting is that, assuming that X} sets of reals behave nicely for any forcing P, we
consider the equivalence mentioned above.

Also note that we do not need the analogue of the assumption (x) in Theo-
rem 2.4.2 in the above theorems because the set of all Borel codes whose decodes
are in Ip* is TI} as we proved in Proposition 2.3.3.

Proof of Theorem 2.4.7. We start with proving the first item of this theorem,
i.e., we show the direction from the regularity property to forcing absoluteness
assuming that every real has a sharp and that Al-determinacy fails. First note
that we may assume that every Al set is P-Baire by the same argument for
the same direction in Theorem 2.4.1. The argument is basically the same as in
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Theorem 2.4.3. What we need is to uniformize a IT} relation by a X} function
as we uniformized a ITj relation by a ¥) function in Theorem 2.4.3. The rest
is exactly the same. But such uniformization is possible assuming the failure of
Al-determinacy.

Theorem 2.4.10 (Folklore'!). Suppose every real has a sharp. Then either Al-
determinacy holds or 3! has the uniformization property, i.e., any X! relation
can be uniformized by a X3 function.'?

Proof of Theorem 2.4.10. Tt suffices to show that every I} relation can be uni-
formized by a 3} function. Suppose Al-determinacy fails. By Theorem 1.12.5,
there is a real ag such that for any a >7 ag, the a-relativized version of the core
model K, exists and every 33 formula is absolute between K, and V. (Recall that
<7 is the Turing order on the reals.) For each a >r aq, let <, be the canonical
good Al(a) well-ordering on the reals in K, ensured by Theorem 1.11.2. Given a
real b and a TI}(b) relation R, define the uniformization function f as follows:

f(x) =y <= yis the <(34,p-least element with (z,y) € R,

where (x,ag,b) is the real coding x,a, and b. For each x € dom(R), such a y
always exists because every Y1 formula is absolute between K(z,a0,0) and V. So f
uniformizes R and considering the fact that <, is a good Al(a) well-ordering in
K, for each a >t ag in a uniform way, it is easy to see that f is 31. O

Now we show the second item of Theorem 2.4.7, i.e., the direction from forcing
absoluteness to the regularity property assuming sharps for sets. The argument is
the same as for the implication in Theorem 2.4.3. By Theorem 1.12.4, it suffices
to check that every real has a sharp in V[G] and u} = u¥™ for any P-generic
filter G over V.

We first show that every real has a sharp in V|G| whenever G is a P-generic
filter over V assuming sharps for sets in V. Take any P-generic filter G over V and
areal z in V[G]. Let 7 be a P-name with 7 = x. Since we have a sharp for (7, P)
in V', we have an elementary embedding j from L(7,P) to itself with critical point
above the ranks of 7 and P in V. Since the critical point of j is above the ranks
of 7 and P, j preserves 7 and P and we can lift j to 7: L(7, P)[G] — L(7,P)[G] in
VI[G] in the following standard way:

for any P-name o in L(7,P). Since z = 7¢ € L(r,P)[G], 7/L[z] gives us a non-
trivial elementary embedding from L[z] to itself, hence 2# exists as desired.

"'The author would like to thank Hugh Woodin for pointing out this fact to him.
12Gince A}-determinacy implies that IT3 has the uniformization property, this fact states the
dichotomy of the uniformization property for X} and II}.
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We now show that u) = u;/ A for any P-generic filter G' over V' which will com-

plete the proof. First note that us is the length of a provably Al prewellordering
given in Schlicht [75, Example 3.2.7] assuming sharps for reals. But by a result
of Schlicht [75, Theorem 2.1.9], the length of the prewellordering is the same be-
tween in V' and V|G|, assuming sharps for sets and P being proper. Therefore,
wy = uyel, 0
2 2

Proof of Theorem 2.4.8. In Theorem 2.4.7, we have seen the equivalence between
the regularity property and forcing absoluteness. We show the direction from
forcing absoluteness to the transcendence property and the one from the tran-
scendence property to the regularity property. (Note that the assumption, the
existence of sharps for reals, is weaker than the existence of sharps for sets. But
we used sharps for sets only for (2) in Theorem 2.4.7, i.e., for the direction from
forcing absoluteness to the regularity property, which we will not use here. We
will prove the equivalence of the three statements just from sharps for reals.)

We show the direction from forcing absoluteness to the transcendence prop-
erty. All we need is that the statement “there is a quasi-P-generic real x over
K, with z € [T]” is ¥} for each real a and each T € P. But this is true by
Proposition 2.3.3 and the fact that the set of reals in K, is ¥3(a) in V.

We now show the direction from the transcendence property to the regular-
ity property. The argument is basically the same as the one in Theorem 2.4.2.
Assume the failure of Al-determinacy. By Theorem 1.12.5, there is a real aq
such that K, exists and every ¥} formula is absolute between K, and V for any
a 2T agp.

Case 1. w;* < wy for every real a >t ap.

As in Theorem 2.4.2, we can conclude that every Al set of reals (even X}
set of reals) is P-measurable by using the fact that every ¥} formula is absolute
between K, for a >1 ay.

Case 2. w;** = w/ for some real a.

We need the absolute decomposition of X} sets into Borel sets between K,
and V for some real a >t ag. The following result is essential; its proof was
communicated to us by Ralf Schindler:

Theorem 2.4.11 (Schindler). If uy® < uy for every real a >7 ag, then w;** < wy’
for every real a > ay.

Proof. Here we use the machinery of inner model theory.

For simplicity, we assume K,, = K and only prove wX < w}" assuming uy* <
uy for each real a. The general case will be proved in the same way.

Toward a contradiction, we assume wf = w{". The following is the first point:

Claim 2.4.12. Let a be a real. The mouse K,|w; is universal for countable a-
mice, i.e., M <* K,|w; for any countable a-mouse M, where <* is the mouse
order.
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Proof of Claim 2.4.12. Suppose there is a countable a-mouse M with M >*
Kg|wi. Coiterate M and K,|w; and let 7,U be the resulting trees for M and
K, |w; respectively.

Case 1: 1h(7) is countable.

Since M >* K,|wi, U does not have a drop. But then the last model of
U cannot be an initial segment of the last model of 7 since the length of T is
countable, a contradiction.

Case 2: 1h(7) is uncountable.

Since M >* K |wi, U does not have a drop. If U was non-trivial, then the
final model of & would be non-sound and could not be a proper initial segment
of the final model of 7. Hence U is trivial and K,|w; is an initial segment of the
final model of 7. But this means w; is a limit of critical points of embeddings via
T, hence w; is inaccessible in K,, contradicting the assumption w;* = w* = wy'.

O (Claim 2.4.12)

Case 1: There is a real a such that a¥ does not exist.

This case was taken care of by Steel and Welch. In [81, Lemma 3.6], they
assumed uy = wy, which is stronger than u?“ < uy for each real a, and proved
there is a countable mouse stronger than K|w; with respect to mouse order. But
assuming wi = w!” and the non-existence of 09, we can run the same argument
only assuming uX < uy and get the same conclusion. Furthermore, we can easily
relativize this argument to K,. Hence assuming wl = w} (even wi* = w}) and
the non-existence of a¥, if ub® < uY, then there is an a-mouse stronger than
K, |wy with respect to mouse order, which contradicts the a-relativized version of

Claim 2.4.12.

Case 2: For every real a, a¥ exists.

This case is new. Since uf < ud, there is a real a such that u¥ < (w;")",

The idea is to use a' (which exists since a¥ exists) and linearly iterate it with the
lower measure in a! with length w;. Then the height of the last model is bigger
than uX since u¥ < (w;)"%. Now we restrict this linear iteration map to K in
a! constructed up to the point with the top measure. The point is this is an
iteration map on it and the final model of this iteration has height bigger than
uX. Since it is a countable mouse, by Claim 2.4.12, we get a countable mouse in K
with the same property, which yields a contradiction by a standard boundedness
argument.

We discuss this idea in detail. Let i be the linear iteration map of a' derived
from the iterated ultrapower starting from the lower measure in it with length
w;. Then the target N of i has height bigger than u¥ since uX < (w)"4, the
critical point of 7 goes to wy, and N has a cardinal bigger than w; and a € N.
Let K212 be the K in af|Q, where € is the critical point of the top measure in
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at.’® Then K9 is a mouse and we call it M.

We claim that if we restrict ¢ to M, then it is an iteration map on M. Since
¢ is from a linear iteration of ultrapowers via measures, by applying the result
of Schindler [72, Corollary 3.1] in each ultrapower in the iteration, we can prove
that the restriction of ¢ to M is an iteration with length w; (which itself might be
very complicated). Moreover, the final model of this iteration has height greater
than uX because i maps Q greater than or equal to (w;")™. Let us call the tree
of this iteration 7 and let M, be the ath iterate via T and iZ;B: M, — Mjg be
the induced maps for a < § < wy.

Since M is a countable mouse, by Claim 2.4.12, there is an ay < w; such
that M <* K|ap. We will show that K|ay has the same property, i.e., there is
an iteration from K|ag with length w; such that the height of the final model is
greater than uX. (Note that there might be a drop.) Coiterate K|oy and M and
let m: M — N be the resulting map. Note that there is no drop from the M-side
because M <* K|wp.

We will construct (N, | @ < wq), (mq: My — N, | @ < wy), and (ig,ﬂ: N, —
Ng | a < B < wy) with the following properties:

(1) The diagrams below all commute,

(2) M, ~* N, ~* My, for each o, i.e., they are equal with respect to mouse
order,

(3) N, is the direct limit of N3 (8 < «) for limit «, and

(4) ig’a 41 and 7,4 are the maps resulting from the comparison between N,
and M, for each a.

ig iy i +1
5 s o,
K|QOMN:NO Ny N, N,
Tﬂ':ﬂ'o T?rl Tﬂ'a Tﬂ'wl
M = My —> My —>-- My —> - M,
20,1 2,2 La,at1

The above properties uniquely specify (N, | @ < wy), (mq: My — N, | a <
wi), and (¥ ;: Ny = Ng | o < § < wy). Hence it suffices to check (1) and (2)
above for this construction.

For (1), it suffices to show that i/ , | o Tq = Ta41 0L 4,y for each o By the
Dodd-Jensen Lemma (Theorem 1.11.4), any two iteration maps without drops
from a mouse to a mouse are the same. By (2) for o, 7q, Taq1, i) opy, and &
are all iteration maps without drops. Hence we get the desired commutativity.
(2) follows from the fact that all the maps constructed before are simple iteration
maps.

Since the height of N,, is greater than or equal to that of M, , there is an
iteration from K| with length w; whose final model has height greater than uX,

13Note that af|Q is a transitive model of ZFC and obviously there is no inner model with a
Woodin cardinal in that model. Hence by Theorem 1.11.2, one can construct K in af|Q.
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as desired.

Since K]ap is in K and «y is countable in K, there is a real z in K coding
K|ag. We show that the height of N, is less than (w;")“*). In L[], we collapse
wy with the forcing Coll(w,w]’). Let g: w — w{ be a generic surjection over L[x].
Since K |ayg is coded by x and the length of iteration is w] which is countable in
L[z][g] witnessed by g, by the boundedness lemma in L[z][g], the height of N,
is less than w9 = ()Ml as desired. Since z is in K, (wi)"? < uX and
hence the height of N,, is less than uX. But the height was greater than uX.
Contradiction! O

Now by the assumption in Case 2 and Theorem 2.4.11, there is a real a such
that w,** = w}" and u,® = uy. By Theorem 1.12.4, the Martin-Solovay trees for
31 sets are absolute between K, and V. Hence we get the absolute decomposition
of 3% sets into Borel sets between K, and V, as desired. The rest is exactly the
same as in Theorem 2.4.2. O

Proof of Theorem 2.4.9. The argument is exactly the same as Theorem 2.4.6 by
replacing L[a] with K, and using the analogous facts about K, stated in Theo-
rem 1.11.2 and Theorem 1.12.5. O

2.5 Applications

We now use our theorems to answer some open questions in set theory of the
reals.

The first one is about Silver forcing V, whose conditions are uniform perfect
trees on 2 ordered by inclusion, where a tree T' on 2 is uniform if for any two nodes
s and t of T' with the same length, s~(i) € T <= ¢~(i) € T fori =0,1. In [19],
Brendle, Halbeisen, and Lowe proved that every Al set of reals is V-measurable
assuming that for any real a there is a quasi-V-generic real over L[a]. Then they
asked whether the converse is true. We answer this question positively:

Proposition 2.5.1. Assume every Al set of reals is V-measurable. Then for any
real a, there is a quasi-V-generic real over Lia].

Proof. Since Silver forcing is strongly arboreal and proper, by Theorem 2.4.2, it
suffices to show that the set of Borel codes with B, € Iy* is ). We use the
following fact:

Fact 2.5.2 (Zapletal). Let G be the graph on “2 connecting two binary sequences
if they differ in exactly one place. Let I be the o-ideal generated by Borel G-
independent sets (i.e., Borel sets in “2 such that any two distinct elements of
them are not connected by GG). Then every analytic set is either in I or contains
[T] for some T € V.

Proof. See [90, Lemma 2.3.37]. O
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We show how to use Fact 2.5.2 to prove Proposition 2.5.1. We first show that
I C Iy. Tt suffices to see that every Borel G-independent set is in Ny. Take such
Borel set B. Since every Borel set is V-measurable and Iy = Ny, for each T' € V,
there is a 7" < T such that either [T"] C B or [T'] N B = (). But the former
case cannot happen because [T’] contains many G-dependent elements. Hence
[T'] N B = (). Therefore B is V-null.

With the above fact, this means every Borel set is either in Iy* or contains [T
for some T € V. Since sets in Iy" cannot contain [T'] for some T in V, B, € Iy* if
and only if B, is in I, i.e., it is the union of a countable set of G-invariant Borel
sets. This is easily seen to be X3, as desired. O

Regarding Iy = Ny, the following is a direct consequence of Theorem 2.4.6
and Proposition 2.5.1 (or an easy consequence of [19, Lemma 3.1]):"

Corollary 2.5.3. The following are equivalent:

1. Every X! set of reals is V-measurable, and

2. For any real a, the set of quasi-V-generic reals over L[a] is of measure one
with respect to Ny.

Another application is for eventually different forcing E by Brendle and Lowe [21].
They used Theorem 2.4.6 to prove that the Baire property in eventually different
topology for every X1 set of reals is equivalent to the statement “w; is inaccessible
by reals”, i.e., for every real a, w} is inaccessible in L[a], which is the strongest
regularity property for X1 sets (Hechler forcing also has this feature).

We state their results and their proofs here. Recall the definition of eventually
different forcing from §1.9 and the definition of the eventually different topology
& from Example 2.1.6. Also, the meager ideal in the topology £ is the same as Iy
by Example 2.1.6. As mentioned in 1.9, eventually different forcing is ccc. Hence
by Lemma 1.9 3., Iz = Iz. By Proposition 2.1.8, the Baire property in the
topology &€ coincides with E-measurability. Since E is provably ccc and simply
definable, by Proposition 2.3.3 (3), quasi-E-genericity is the same as E-genericity.

Theorem 2.5.4 (Brendle and Léwe [21]). The following are equivalent:

1. Every Al set of reals has the Baire property in the eventually different
topology &,

2. Xl-E-absoluteness holds, and
3. For any real a, there is an E-generic real = over Lla].

Proof. By Theorem 2.4.2, it suffices to check the condition (x) in Theorem 2.4.2.
But since E is provably ccc and simply definable, the condition (x) follows from
Proposition 2.3.3 (2). O

14This answers [19, Question 3] positively.
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Theorem 2.5.5 (Brendle and Lowe [21]). The following are equivalent:

1. Every X} set of reals has the Baire property in the eventually different
topology &,

2. For any real a, the set of E-generic reals over L[a] is comeager in the even-
tually different topology &, and

L[a]

3. For any real a, w;"" < w;.

Proof. For the equivalence between (1) and (2), by Theorem 2.4.6 it suffices to
see that [y is Borel-generated. But as mentioned in the paragraph after Theo-
rem 2.4.6, Ip is Borel-generated if P is ccc.

We show the direction from (3) to (2). Let a be a real. Since E-generic reals
over L[a] are the same as quasi-E-generic reals over Lla], it suffices to show that
the set of quasi-E-generic reals over Lla] is comeager in the topology €. Since
w%[a} and CH holds in La], the set of Borel codes in L]a] is countable in V. Hence
the union of Borel meager sets in the topology £ with a Borel code in L[a] is also
meager in the topology £. Therefore the set of quasi-E-generic reals over Lia] is
comeager in the topology £.

Next, we show the direction from 2. to 3. Toward a contradiction, assume
there is a real a such that w?[a} = wy. Then, in L[a], there is a sequence (f, €
“w | a < wy) of pairwise eventually different functions, i.e., for any o < 8 < wy,
there is a natural number ny such that f,(n) # fz(n) for all n > ny. For each
a < wy, let E, be the set of reals not eventually different from f,. It is easy to
see that E, is meager in the topology £. The following is the key point:

Theorem 2.5.6 (Brendle). If A is meager in the topology &, then the set {a <
w1 B, C A} is countable.

Proof. See [54, Theorem 4.7]. O

Since E,, is meager in the topology £ with a Borel code in L[a], by 3., ., Fa
must be meager in the topology £. But this contradicts Theorem 2.5.6. O

Brendle and Lowe have also investigated the relation between the Baire prop-
erty in the eventually different topology and other regularity properties. Here are
the relations they listed in their paper [21] as in Figure 2.1:

In Figure 2.1, the letters B,C,D,E,L,M,R,S, and V stand for random,
Cohen, Hechler, eventually different, Laver, Miller, Mathias, Sacks, and Silver
forcing, respectively. X1(P) stands for the statement that every X1 set is P-
measurable and the same for Al(P). All the non-existence of implications means
“one statement does not imply the other in ZFC”, e.g., A}(R) does not imply
Al(C) in ZFC, except for the non-implications from AJ(L) to and X}(V) and
from AL(L) to AL(V) (it is currently not known whether AL(L) does not im-
ply £1(V) and whether Al(LL) does not imply A}(V)). All the implications and
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Figure 2.1: Regularity properties for A} sets and X1 sets

the non-implications not involving E have been known before their work and they
have established the implications and the non-implications involving [E using The-
orem 2.4.2 and Theorem 2.4.6 in this chapter. Here characterizing the regularity
properties in terms of the transcendence properties over L (rather forcing abso-
luteness) is essential, which was not known for eventually different forcing before
our work.

Using Theorem 2.4.8 and Theorem 2.4.9, we can establish the same implica-
tions and non-implications for Al sets and 3} sets assuming sharps for reals as
in Figure 2.2:

Again, we do not know whether Al(L) does not imply 31(V) and whether
Al(L) does not imply AL(V) assuming sharps for reals. The proofs of the impli-
cations and non-implications are exactly the same as for Al sets and X} sets by
replacing L with K. We suspect many of the implications and the non-implications
for A} sets and X} sets we have shown above are also well-known to experts in
this area.

2.6 Conclusion and Questions

We introduced two general regularity properties, P-Baireness and P-measurability,
and reduced the problems of P-measurability to ones of P-Baireness with the
flavor of Baire category and used Banach-Mazur games and their variants. Then
we proved general equivalence theorems between the regularity properties, forcing
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Figure 2.2: Regularity properties for Al sets and X} sets

absoluteness, and transcendence properties over some canonical inner models in
a uniform way and applied the theorems to answer some open questions in set
theory of the reals. This is one of the instances where reducing problems to the
ones of infinite games gives us clear intuition and solutions.

We close this chapter by raising several questions and discussing them.

On Ip and Ip*. Although Ip* is the same as Ip for most cases as we have seen
in Lemma 2.1.12, as in Question 2.1.11, we still do not know whether this is true
in general. What we could hope is that this is true at least for Borel sets:

Question 2.6.1. Let P be a strongly arboreal, proper forcing. Then can we prove
B € Ip if and only if B € Ip* for any Borel set B?

If this is true, we do not have to mention Ip* in our theorems.

On the condition (x) in Theorem 2.4.2. Tt is interesting to give sufficient
conditions for P satisfying (%) in Theorem 2.4.2, i.e., the set of all Borel codes
with B. € Ip* is 1. These conditions could be definability conditions on Ip* or
directly on P. For the first case, we have a useful sufficient condition: We say
that a o-ideal T on the reals is 3} on X! if for any analytic set A C “2 x “w, the
set {c | A, € I} is ). Tt is easy to check that if Ip* is £J on X}, then (*) holds.
Since Ip is ¥} on X{ and Ip = Ip* for most cases, (*) is true for most P. For the
second case, we ask the following:
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Question 2.6.2. Let P be a strongly arboreal, strongly proper, provably Al-
forcing. Then can we prove (x)?

Although the condition (k) is true for most typical forcings, we have one
example, namely Mathias forcing, that we do not about the answer of the above
question. Solving this particular question might give us another intuition of this
problem.

Al-determinacy and X)-forcing absoluteness. In Theorem 2.4.7, we use
the failure of Al-determinacy to prove the equivalence between the regularity
property and forcing absoluteness. But it could be that both are consequences of
Al-determinacy. Since we have not used the failure of Al-determinacy for the
direction from forcing absoluteness to the regularity property, it is enough to ask
whether Al-determinacy implies X }-forcing absoluteness:

Question 2.6.3. Suppose Al-determinacy holds. Then can we prove X}-P-
absoluteness for each strongly arboreal, proper, provably Al-forcing P?

Sharps for sets vs. sharps for reals. In Theorem 2.4.7, we have assumed
the existence of sharps for sets. Since the result is about reals, it is natural to
ask whether we can reduce this assumption to sharps for reals. The obstacle is
whether proper forcings preserve the statement “every real has a sharp” and wu,:

Question 2.6.4. Suppose every real has a sharp. Let P be a strongly arboreal,
proper, provably Al-forcing. Then can we prove that every real has a sharp in
VE and ul = ugp?

Finally, we show that in the case of provably ccc, Xi-forcings, things work
perfectly:

Proposition 2.6.5. Let P be a strongly arboreal, provably ccc, E1-forcing. Then:

1. I]p = [[p*.

2. Ip is Borel-generated.

3. The condition () holds. Moreover, {c | B. € Ip*} € Al.

4. Let M be a transitive model of ZFC. Then a real z is P-generic over M if
and only if x is quasi-P-generic over M.

5. If Al-determinacy holds, then so does X}-P-absoluteness.

6. If every real has a sharp, then every real has a sharp also in VF and u) =

V]P’
Uy .

Proof. (1) is already mentioned in Lemma 2.1.12, (2) is already mentioned in the

paragraph after Theorem 2.4.6, and (3) is already shown in Proposition 2.3.3.
The argument for (4) is exactly the same as for Lemma 2.3.3. For (5), see [75,

Lemma 2.2.4]. For (6), see [75, Lemma 2.2.2, Theorem 2.2.7, Example 3.2.7]. O

Note that the assumption of Proposition 2.6.5 is true for all the typical ccc,
strongly arboreal forcings.






Chapter 3

Games themselves

In this chapter, we compare the stronger versions of determinacy of Gale-Stewart
games and Blackwell games, i.e., the Axiom of Real Determinacy ADgr and the
Axiom of Real Blackwell Determinacy Bl-ADg. In §3.1, we show that BI-ADg
implies that R¥ exists and that the consistency of Bl-ADg is strictly stronger than
that of AD. In §3.2, we show that BI-ADg implies that every set of reals is co-
Borel. From this, we can derive almost all the regularity properties for every set
of reals. In §3.3, we discuss the possibility of the equivalence between ADr and
Bl-ADg under ZF+DC. In § 3.4, we discuss the possibility of the equiconsistency
between ADr and BI-ADg.

Throughout this chapter, we use standard notations from set theory and as-
sume familiarity with descriptive set theory. By reals, we mean elements of the
Cantor space and we use R to denote the Cantor space.

3.1 Real Blackwell Determinacy and R*

In this section, we prove that Bl-ADg implies that R# exists and that the con-
sistency of Bl-ADg is strictly stronger than that of AD.

Solovay [77] proved that ADg implies that R* exists. Our plan is to mimic
Solovay’s proof using Blackwell games. In order to do so, we analyze his proof
which has two main components:

Theorem 3.1.1 (Solovay). The axiom ADg implies that there is a fine normal
measure on P, (R), where P,, (R) is the set of all countable subsets of R.

Proof. See [77, Lemma 3.1]. O

Theorem 3.1.2 (Solovay). Suppose there is a fine normal measure on P,, (R)
and every real has a sharp. Then R¥ exists.

Proof. See [77, Lemma 4.1 & Theorem 4.4]. O

71



72 Chapter 3. Games themselves

Hence it suffices to show that there is a fine normal measure on P,, (R) from
BI-ADg because BlI-ADg implies AD in L(R), which implies that every real has
a sharp by the result of Harrington [31].

Theorem 3.1.3. Assume Bl-ADgr. Then there is a fine normal measure on
P, (R).

Let us first see what is a fine normal measure. Let X be a set and x be an
uncountable cardinal. As usual, we denote by P.(X) the set of all subsets of X
with cardinality less than k, i.e., subsets A of X such that there are an o < &k
and a surjection from « to A. Let U be a set of subsets of P, (X). We say that U
is k-complete if U is closed under intersections with <x-many elements; we say it
is fine if for any z € X, {a € P.(X) | € a} € U; we say that U is normal if for
any family {A, € U | z € X}, the diagonal intersection A,cx A, is in U (where
NpexAzr = {a € Pu(X) | (Vx € a) a € A,}). We say that U is a fine measure if
it is a fine k-complete ultrafilter, and we say that it is a fine normal measure if it
is a fine normal k-complete ultrafilter.

Proof of Theorem 3.1.3. The following is the key point: A subset A of “R is
range-invariant if for any 7 and ¢ in “R with ran(Z) = ran(9), £ € A if and only
if y € A.

Lemma 3.1.4. Assume Bl-ADgr. Then every range-invariant subset of “R is
determined.

Proof of Lemma 3.1.4. Let A be a range-invariant subset of “R. We show that
if there is an optimal strategy for player I in A, then so is a winning strategy for
player I in A. The case for player II is similar and we will skip it.

Let us first introduce some notations. Given a function f: <“R — R, a
countable set of reals a is closed under f if for any finite sequence s of elements
in a, f(s) is in a. For a strategy o: R**" — R for player I, where R™" is the set
of all finite sequences of reals with even length, a countable set of reals a is closed
under o if for any finite sequence s of elements in a with even length, o(s) is in
a. For a function F': <“R — P,, (R), a countable set of reals a is closed under F
if for any finite sequence s of elements in a, F(s) is a subset of a.

The following two claims are basic:

Claim 3.1.5. There is a winning strategy for player I in A if and only if there is
a function f: <“R — R such that if a is a countable set of reals and closed under
f, then any enumeration of a belongs to A.

Proof of Claim 3.1.5. We first show the direction from left to right. Given a
winning strategy o for player I in A, let f be such that if a is closed under f,
then a is closed under o. (Since o is a function from R*¥" to R, any function
from <“R to R extending o will do.) We see this f works for our purpose. Let
a be a countable set of reals closed under f. Then since a is closed under o and
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countable, there is a run x of the game following ¢ such that its range is equal
to a. Since o is winning for player I, x is in A and by the range-invariance of A,
any enumeration of a is also in A.
We now show the direction from right to left. Given such an f, we can arrange
a strategy o for player I such that if x is a run of the game following o, then
the range of x is closed under f: Given a finite sequence of reals (ag, -+ ,as, 1),
consider the set of all finite sequences s from elements of {ay, - - - as, 1} and all the
values f(s) from this set. What we should arrange is to choose o(ag, - -, a2,—1)
in such a way that the range of any run of the game via o will cover all such
values f(s) when (ag,- - ,as,_1) is a finite initial segment of the run for any n
in w moves. But this is possible by a standard book-keeping argument. By the
property of f, this implies that x is in A and hence ¢ is winning for player I.
O (Claim 3.1.5)

Claim 3.1.6. There is a function f: <“R — R such that if a is a countable set
of reals and closed under f, then any enumeration of a belongs to A if and only
if there is a function F': <“R — P, (R) such that if a is a countable set of reals
and closed under F', then any enumeration of a belongs to A.

Proof of Claim 3.1.6. We first show the direction from left to right: Given such
an f, let F'(s) = {f(s)}. Then it is easy to check that this F' works.

We show the direction from right to left: Given such an F', it suffices to show
that there is an f such that if @ is closed under f then a is also closed under
F. We may assume that F(s) # for each s. Fix a bijection 7: R — “R. Let
g: <“R — R be such that ran(m(g(s)))= F(s) for each s (this is possible because
every relation on the reals can be uniformized by a function by Theorem 1.14.9).
Let h: <“R — R be such that h(s) = 7 (s(0)) (Ih(s) — 1), where lh(s) is the length
of s when s # (), if s = () let h(s) be an arbitrary real.

It is easy to see that if a is closed under g and h, then so is under F: Fix
a finite sequence s of reals in a. We have to show that each = in F(s) is in a.
Consider ¢(s). By the closure under g, g(s) is in a. By choice of g, we know
that ran(mw(g(s))) = F(s), so it is enough to show that x is in a for any z in
ran(m(g(s)). Suppose z is the nth bit of 7(g(s)). Consider the finite sequence ¢ =
(9(s),...,g(s)) of length n + 1. Then h(t) = «(¢(0))(1h(t) — 1) = 7 (g(s))(n) = z.
But g(s) is in a and a was closed under h, so x is in a.

Now it is easy to construct an f such that if a is closed under f, then so is
under ¢ and h. O (Claim 3.1.6)

By the above two claims, it suffices to show that there is a function F': <“R —
P, (R) such that if a is a countable set of reals and closed under F', then any
enumeration of a belongs to A.
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Let o be an optimal strategy for player I in A. Let F' be as follows:

F(s) = {@ it Ih(s) is odd,
{y e R|o(s)(y) #0} otherwise.

Then F is as desired: If a is closed under F', then enumerate a to be {(a, | n €

w) and let player I follow o and let player II play the Dirac measure for a,, at her
nth move. Then the probability of the set {x € “R | ran(z) = a} is 1 and since
o is optimal for player I in A, there is an x such that the range of x is ¢ and z
is in A. But by the range-invariance of A, any enumeration of a belongs to A.
O (Lemma 3.1.4)

We shall be closely following Solovay’s original idea. We define a family U C
P(P,, (R)) as follows: Fix A C P, (R) and consider the following game G 4:
Players alternately play reals; say that they produce an infinite sequence ¥ =
(z; | i € w). Then player IT wins the game G 4 if ran(%) € A, otherwise player T
wins. Since the payoff set of this game is range-invariant as a Gale-Stewart game,
by Lemma 3.1.4, it is determined.

We say that A € U if and only if player IT has a winning strategy in G 4. We
shall show that it is a fine normal measure under the assumption of Bl-ADg, thus
finishing the proof of Theorem 3.1.3.

A few properties of U are obvious: For instance, we see readily that () ¢ U
and that P, (R) € U, as well as the fact that U is closed under taking supersets.
In order to see that U is a fine family, fix a real z, and let player II play x in her
first move: This is a winning strategy for player IT in é{ak,;ea}.

We next show that for any set A C P,, (R), either A or the complement of A is
in U. Given any such set A, suppose A is not in U. We show that the complement
of Ais in U. Since the game G4 is determined, by the assumption, there is a
winning strategy o for I in G.a. Setting 7(s) = o (s[(Ih(s) — 1)) for s € RO it
is easy to see that 7 is a winning strategy for player II in the game G e.

We show that U is closed under finite intersections. Let A; and A, be in
U. Since the payoff sets in the games éAl and @A2 are range-invariant, by the
analogue of Claim 3.1.5, there are functions f;: <R — R and f5: <“R — R such
that if a is closed under f;, then a is in A; for ¢+ = 1,2. Then it is easy to find
an f: <“R — R such that if a is closed under f, then a is closed under both f;
and f,. By the analogue of Claim 3.1.5 again, this f witnesses the existence of a
winning strategy for player II in the game CNJAIM?

We have shown that U is an ultrafilter on subsets of P, (R). We show the
wi-completeness of U as follows: By Theorem 1.14.8, every set of reals is Lebesgue
measurable assuming BI-AD. If there is a non-principal ultrafilter on w, then there
is a set of reals which is not Lebesgue measurable. Hence there is no non-principal
ultrafilter on w, which implies that any ultrafilter is wi-complete. In particular,
U is wi-complete.
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The last to show is that U is normal. Let {A, | x € R} be a family of sets
in U. We show that A,erA, is in U. Consider the following game G: Player
I moves x, then player II passes. After that, they play the game CNJAI. This is
Blackwell determined and player II has an optimal strategy 7 since each A, is in
U. Let F: <“R — P,, (R) be as follows:

F(s) = 0 if Ih(s) is even,
{y e R|7(s)(y) #0} otherwise.

We claim that if a is closed under F', then a is in A crA,. Then, by the analogues
of Claim 3.1.5 and Claim 3.1.6, F' will witness the existence of a winning strategy
for player II in the game éAIeRAm and we will have proved that A, crA, € U.
Suppose a is closed under F'. We show that a € A, for each z € a. Fix an =
in a and enumerate a to be (z, | n € w). In the game G, let player I first move
x and then they play the game C?Az. Let player II follow 7 and player I play the
Dirac measure concentrating on x,, at the nth move. Then the probability of the
set {# € YR | xyp = x and ran(¥) = a} is 1 and since 7 is optimal for player II in
the game G, there is an # such that the range of # is @ and # is a winning run
for player I in G, hence a is in A,. O (Theorem 3.1.3)

Corollary 3.1.7. The consistency of BI-ADg is strictly stronger than that of
AD.

Proof. Since BlI-ADg implies BI-AD by the first item of Proposition 1.14.2 and
BI-AD implies AD"® by Corollary 1.14.7, BI-ADg implies AD"*® . By Theo-
rem 3.1.3, BI-ADg also implies the existence of R#. By the property of R¥,
one can construct a set-size elementary substructure of L(R). Hence AD*® and
the existence of R# imply the consistency of AD. Therefore, Bl-ADg implies the
consistency of AD and by Godel’s Incompleteness Theorem, the consistency of
BI-ADgy is strictly stronger than that of AD. O

3.2 Real Blackwell Determinacy and regularity
properties

In this section, we show that Bl-ADg implies almost all the regularity properties
for every set of reals. Note that DCg follows from the uniformization for every
relation on the reals. Hence by Theorem 1.14.9, BlI-ADg implies DCg. For the
rest of the sections in this chapter, we freely use DCg when we assume Bl-ADg
and we fix a fine normal measure U on P, (R), which exists by Theorem 3.1.3.

We start with proving the perfect set property for every set of reals. Recall
that a set of reals A has the perfect set property if either A is countable or A
contains a perfect subset, where a perfect set of reals is a closed set without
isolated points.
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Theorem 3.2.1. Assume Bl-ADgr. Then every set of reals has the perfect set
property.

Proof. The theorem follows from the following two lemmas:

Lemma 3.2.2. Assume Bl-ADgr. Then every relation on the reals can be uni-
formized by a Borel function modulo a Lebesgue null set, i.e., for any relation
R on the reals, there is a Borel function f such that the set {z | (z, f(z)) €
R or there is no real y with (z,y) € R} is of Lebesgue measure one.

Proof of Lemma 3.2.2. The conclusion follows by a folklore argument from Lebesgue
measurability and uniformization for any relation on the reals both of which are
consequences of BI-ADg by Theorem 1.14.8 and Theorem 1.14.9).

Let R be an arbitrary relation on the reals. We may assume the domain of R
is the whole space, i.e., for any real z, there is a real y such that (z,y) € R. We
will find a Borel function uniformizing R almost everywhere.

By the uniformization principle, there is a function ¢ uniformizing R. For
each finite binary sequence s, the set ¢~1([s]) is Lebesgue measurable by Theo-
rem 1.14.8. Hence for each s there is a Borel set B, such that ¢='([s])AB; is
Lebesgue null. Now define f so that the following holds: For each finite binary
sequence s,

f(z) € [s] = z € B,.

Then by the property of By, f is defined almost everywhere, Borel, and is equal to
g almost everywhere. Hence any Borel extension of f will be the one we desired.
O (Lemma 3.2.2)

Lemma 3.2.3 (Raisonnier and Stern). Suppose every relation on the reals can
be uniformized by a Borel function modulo a Lebesgue null set. Then every set
of reals has the perfect set property.

Proof of Lemma 3.2.3. See [70, Theorem 5]. O
O (Theorem 3.2.1)

Next, we show that Bl-ADgr implies that every set of reals has the Baire prop-
erty. We first introduce the Blackwell meager ideal as an analogue of the meager
ideal. A set A of reals is Blackwell meager if player II has an optimal strategy in
the Banach-Mazur game G**(A). Let Igy denote the set of all Blackwell meager
sets of reals.

Lemma 3.2.4. Assume BI-AD. Then any meager set is in Iy, [s] ¢ Ipy for
each finite binary sequence s, and Igy is a o-ideal. Moreover, every set of reals
is measurable with respect to Igwy, i.e., for any set A of reals and finite binary
sequence s, there is a finite binary sequence ¢ extending s such that either [t] N A
or [t] \A is in IBM-
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Proof. By Theorem 1.8.3, if a set A of reals is meager, then player II has a
winning strategy in the Banach-Mazur game G**(A) and in particular player 1T
has an optimal strategy in G**(A) by Theorem 1.14.3. Hence A is Blackwell
meager.

It is easy to see that [s] ¢ Igy for each finite binary sequence s by letting
player I first play the Dirac measure concentrating on s in the game G**([s]).

We show that Igyr is a o-ideal. The closure of Igy under subsets is immediate.
We prove that it is closed under countable unions.

In order to prove this, we need to develop the appropriate transfer technique
(as discussed and applied in [55]) for the present context. Let # C w be an
infinite and co-infinite set. We think of 7 as the set of rounds in which player
I moves. We identify m with the increasing enumeration of its members, i.e.,
m = {m | i € w}. Similarly, we write 7 for the increasing enumeration of w\m,
i.e., w\m = {7; | © € w}. For notational ease, we call 7 a I-coding if no two
consecutive numbers are in 7 and 0 € 7 (i.e., the first move is played by I). We
call 7 a II-coding if no two consecutive numbers are in w\7 and 0 € 7.

Fix A C “w and define two variants of G with alternative orders of play as
determined by 7. If 7 is a I-coding, the game G’X‘”’I is played as follows:

I sz =50 Smy

II Smot+ls -y Smo—1 Smi+ly -y Sma—1

sk, [T

If 7 is a II-coding, then the game G’y is played as follows:

[ S0y - -5 S7—1 Stotly -9 ST—1
IT S0 57,

In both cases, player II wins the game if s5s7 ... 7 s ... ¢ A. Obviously, we
have
G = G**Even,II
A =Gy

where Even is the set of even numbers.

Lemma 3.2.5. Let A be a subset of the Baire space and 7 be a I-coding. Then
there is a translation ¢ — o, of mixed strategies for player I such that if o is an
optimal strategy for player I in G, then o, is an optimal strategy for player I
in G,

Similarly, if 7 is a II-coding, there is a translation 7 — 7, of mixed strategies
for player II such that if 7 is an optimal strategy for player II in G, then 7 is
an optimal strategy for player IT in G,

Proof of Lemma 3.2.5. We prove only the lemma for the games G*™', the other
proof being similar. If § = (s; | i € w) is an infinite sequence of finite binary
sequences, we define

b; =85 41 Smipi-1-
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Note that in order to compute bf, we only need the first 7;,, bits of 5. The idea
is that now the G”’-run

I s, Sy Sy -

I b b b (+)
yields the same output in terms of the concatenation of all played finite sets as
the run § in the game G%™'. We can define a map 7* on infinite sequences of
finite binary sequences by

cioy _ ) Sm, iLi=2k,
(w (5))1_{ bi ifi=2k4+1,

and see that sgs7 ... = (7%(8))5 (7*(8))T - . ..
Now, given a mixed strategy o for player I in G and a run § of the game
G5 we define o, via 7* as follows:

_ 5 g §
(S0 -y Smm—1) = O(Sngs Oy - -+ Smiy Uiy ooy Sy 1 U0 1)-

Assume that o is an optimal strategy for player I in G and fix an arbitrary
mixed strategy 7 in the game G*™'. We show that the payoff set for A in G*™"'
iS fiy, --measurable and p,_ ,(A) = 1. In order to do so, we construct a mixed
strategy 7,-1 for player II in G so that the game played by o, and 7 is essentially
the same as the game played by ¢ and 7,-1.

Given a sequence b of moves in %, we need to unravel it into a sequence of
moves in G in an inverse of the maps §+— b} according to (%), i.e., byiyy = bi.
Thus, we define

ALy = (B0 = by},
AI;SZiJrl = mAng-
J<i
Note that only a finite #fragment of § is needed to check whether bf = by 4,
and thus we think of A%,;,, as a set of (w11 — (i 4+ 1))-tuples of finite binary

sequences. In the following, when we quantify over all “5 € Aggi”, we think of
this as a collection of finite strings of finite binary sequences. In order to pad the

*77, 1

moves made in G'y"", we define the following notation: For infinite sequences §
and b, we write

§b
Z;

== (b2i7 S7Ti+17 ey S7ri+171)-

Compare (%) to see that if § corresponds to moves in G*™" and b to the moves in
G*, then these are exactly the finite sequences that player IT will have to respond
to in G*™". Moreover, for a given sequence Z of finite binary sequences, we let

P (20, .0y 2n) = H T(20y -y 2ic1) (24)-

i<nyi¢n
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Fix a sequence b of finite binary sequences with even length and define 7,-1
as follows:

-

5b~ o~ 5
deAFSMHPT(xO’ S ay)

H;nzl Tw—l(bo, cee b2i—2)(b2z’—1) -

Using the two operations o — o, and 7+ 7,-1, since the payoff set for G is
invariant under 7*, it now suffices to prove for all basic open sets [¢] induced by a
finite sequence t = (bo, ..., bin(py—1) that pier _, ([t]) = pe, - ((7*) 7 ([t])). We prove
this by induction on the length of ¢, and have to consider three different cases:
Case 1. lh(¢) = 0. This is immediate.

Case 2. lh(t) = 2m + 1 with m > 0. By induction hypothesis, we have that
X = Hor 1 ([b07 SRR b2m71]) = /’l’(fﬂ—,T((Tr*)_l([bUJ SR b2m71]))- ThUS,

MU’Tﬂ_il([bo,...,me]) = X'O’(bo,...,bgm_l)(bgm)
= top (7)) ([bos - - bam]))-

Tr—1 (bg, RN me)(bgm+1)

Case 3. 1h(t) = 2m + 2 with m > 0.

m

fog (1) = H o(boy - b2i1)(b2) - Z Pz o 2t
=0 §6A22m+1
= ll’o'n—,‘l'((ﬂ-*)il([bm R b2m+1]))-
This calculation finishes the proof of this lemma. O (Lemma 3.2.5)

We now show that Iy is closed under countable unions. Let {4, | n € w}
be a family of sets in Igy. Take an optimal strategy 7, in the game G**(A4,,) for
each n. We prove that |, ., An is also in Iy

Fix a bookkeeping bijection p from w X w to w such that p(n,m) < p(n, m+1)
and p(n,0) > n. We are playing infinitely many games in a diagram where the first
coordinate is for the index of the game we are playing, and the second coordinate
is for the number of moves. Hence the pair (n,m) stands for “mth move in the
nth game”. Define a II-coding 7, = w\{2p(n,i)+1 | i € w} corresponding to the
following game diagram:

I so,..., S2p(n.,0) S2p(n,0)+25 - - + » S2p(n,1)
II 52p(n,0)+1 S2p(n,1)+1

By Lemma 3.2.5, we know that for each n € w, we get an optimal strategy (7,,),,

KKy,

for the game G’ I Let 7 be the following mixed strategy

7-(807 SRR 32p(n,m)) = (Tn)Trn (307 ) s2p(n,m))-
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The properties of p make sure that this strategy is well-defined. We shall now

ok

prove that 7 is an optimal strategy for player IT in GU o An
Pick any mixed strategy o for player I in G’G‘ e An and define strategies o, for

G ™. Let m = p(k, (), then

on(S0s- -y Som_1) = 0(Soy---,Som_1), and

0n(S0y- -y Som) = (Tk)m, (S0, -, Som) (if & # n).

Note that for each n € w, pior = lo,,(r0)n, -

The payoff set (for player II) in GG A, s A={5|s0s" ... & Upeo An}
We show that fi,,(A) = 1. Since A = (), o, 1515550 ... ¢ An}, it suffices
to check that the sets B, = {§ | sg’s7 ... ¢ A,} has p,,-measure 1. But
Lo (Bn) = Lo (ra)e, (Bn) = 1. Thus we have shown that Igy is a o-ideal.

We finally show that every set A of reals is measurable with respect to Iy,
i.e., for any finite binary sequence s, there is a finite binary sequence ¢ extending
s such that either [t} N A or [t] \ A is in Igy. Fix such A and s. If [s]N A is
in Igy, we are done. So suppose not. Then player II does not have an optimal
strategy in the game G**([s] N A). By BI-AD, there is an optimal strategy o for
player I in the game G**([s] N A). Let ¢ be any s’ with o(0)(s") # 0. Then since
o is optimal, ¢ extends s and the strategy o easily gives us an optimal strategy
for player I in the game G**([t]\ A). Hence [t]\ A isin Igy. O (Lemma 3.2.4)

Recall the notions of Stone space St(P) and P-Baireness for a partial order P
from chapter 2. The based set of St(P) was the set of all ultrafilters on Bp where
Bp is a completion of P. Without the Axiom of Choice, it might be empty if P is
big. But in this chapter, we only consider partial orders P which are elements of
H,, in V', i.e., the transitive closure of P is countable in V. If PP is an element of
H.,, then St(P) is essentially the same as St(C) where C is Cohen forcing, hence
the Cantor space “w

Since every meager set is Blackwell meager as we have seen in Lemma 3.2.4,
if P is in H,,, then one can consider Blackwell meagerness for subsets of St(P)
by identifying St(P) with the Cantor space.

We are now ready to prove the Baire property for every set of reals from Bl-ADxg.

Theorem 3.2.6. Assume Bl-ADg. Then every set of reals has the Baire property.

Proof. Take any set A of reals. We show that A has the Baire property. Let
A? be the second-order arithmetic structure with A as a unary predicate. Since
any relation on the reals can be uniformized by a function by Theorem 1.14.9,
we can construct a Skolem function F' for A% and by a simple coding of finite
sequences of reals and formulas via reals, we regard it as a function from the
reals to themselves. Let I'pr = {(z,s) € R x <2 | F(x) D s}. The following
are the key objects for the proof (they are called term relations): Recall from
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Lemma 2.1.2 that for a P-name 7 for a real, f, is the Baire measurable function
(which is continuous on a comeager set) corresponding to 7.

74 = {(P,p,0) € H,, | 0 is a P-name for a real and
(VG e St(P)) pe G = f,(G) € A},
Tae = {(P,p,0) € H,, | 0 is a P-name for a real and
(VG € St(P)) pe G = f,(G) € A%},
. ={(P,p,0,s) € H,, | 0 is a P-name for a real and
(V*G eSt(P)) pe G = (f+(G),s) €Tr},
Trpe = {(P,p,0,5) € Hy, | 0 is a P-name for a real and
(VG e St(P)) pe G = (f,(G),s) € Tpe},

where (VG € St(P)) means “for all G modulo a Blackwell meager set in

St(P)...”. Let M = HODry s = and for G € St(P), let Ag = {£,(G) |
(Ip € G) (P,p,0) € TaNM}. Note that for any countable ordinal a, P(a) N M is
countable: Since M is a transitive model of ZFC, if P(«) N M was uncountable,
then there would be an uncountable sequence of distinct reals which would con-
tradict Lebesgue measurability for every set of reals. Hence for any P € H,,, N M,
the set of P-generic filters over M is comeager, in particular Blackwell comeager
(i.e., its complement is Blackwell meager). Therefore, when we discuss statements
starting from (V>*G € St(PP)), we may assume that G is P-generic over M.

Claim 3.2.7.

1. Let P be a partial order in M. Then (VG € St(P)) A¢ = ANM[G] € M[G]
and M]G] is closed under F.

2. Let P = Coll(w, 2¢)™, where Coll(w, 2¢) is the forcing collapsing the car-
dinal 2 into countable with finite conditions. Then (VG € St(P)) Ag has the
Baire property in M[G].

Proof. We first show that A = AN M|G] for Blackwell comeager many G. Since
Igy is a o-ideal, for Blackwell comeager many G, G is P-generic over M and if
(P,p,0) € T4 N M (resp., Ta4c N M) and p € G, then f,(G) =% € A (resp., A°).
We show that Ag = AN M[G] for any such G.

Fix such a G. We first prove that As C A N M[G]. Take any real z in
Ag. Then there is a p € G and a o such that (P,p,0) € 74N M and 0% = z.
Then by the property of G, v = 0% = f,(G) € A, as desired. We show that
AN M[G] C Ag. Let x be a real in M[G] which is not in Ag. We prove that
x is also not in A. Since z is in M|[G], there is a P-name o for a real in M
such that 0% = z. Since A is measurable with respect to Igy by Lemma 3.2.4,
the set {p € P | either (P,p,0) € TAN M or (P,p,0) € T4c N M} is dense and
it is in M. Since G is P-generic over M, there is a p € G such that either
(P,p,0) € T4 or (P,p,0) € T4e. But (P,p,0) € 74 cannot hold because it would
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imply » = 0% € Ag. Hence (P,p,0) € T4c and = 0¥ = f,(G) € A° by the
property of GG, as desired.

Let pa = {(o,p) | (P,p,0) € Ta N M}. Since the comprehension axioms with
T4 as a unary predicate hold in M, p, is a P-name for a set of reals in M and
PS5 = Ag € M[G]. Hence Ag = AN M[G] € M|G] for Blackwell comeager many
GG, as desired.

Next, we show that M[G] is closed under F' for Blackwell comeager many G.
We prove this for any G' which is P-generic over M such that if (P, p, 0, s) € mr,
(resp., 7r,.) and p is in G, then F(c®) D s (resp., F(c“) 2 s). Fix such a G and
let & be a real in M[G]. We show that F'(z) is also in M[G]. Since z is in M[G],
there is a P-name o for a real in M such that 0% = z. Since every subset of St(P)
is measurable with respect to Igy, the function G’ — F(fg(G’)) is continuous
modulo a Blackwell meager set in St(P). Hence for any finite binary sequence s,
the set of all p € P such that either (V°G’ € St(P)) p € ¢' = F(f,(G")) D s
or (V°G' € St(P)) pe G = F(f,(G') 2 sis dense and is in M. By the
genericity and the property of G, for any s, there is ap € G such that F(c%) D s if
and only if (VOOG’ € St(IP’)) pelG — F(f(,(G’)) D sifand only if (P, p, 0, s) €
. N M. Hence F(z) = F(c%) =U{s | (3p € G) (P,p,0,s) € v, N M}, which
is in M[G], as desired.

Finally, we show that Ag has the Baire property in M[G] for Blackwell comea-
ger many G when P = Coll(w, 2*)™. Actually, we show that Ay has the Baire
property in M[G] for any P-generic G over M. Let s be a finite binary sequence.
We show that there is a ¢ extending s such that either [t] N Ag or [t] \ Ag is
meager in M[G]. Let ¢ be a canonical name for a Cohen real. Since one can
embed Cohen forcing into Coll(w,2%)™ in a natural way in M, we may regard ¢
as a P-name for a Cohen real. Since 2¥ in M is countable in M[G], the set of
Cohen reals over M is comeager in M[G]. Take any Cohen real ¢ over M with
s C cin M[G]. We may assume c is in Ag (the case ¢ ¢ Ag can be dealt with
in the same way). Recall that p“ = A and hence by the forcing theorem, there
isap e Gand a o such that M E p Ik “¢ =0 D & and (P,p,0) € TAN M,
which implies (P, p,¢) € 74 N M, namely (¢,p) € pa. But the value of ¢ will be
decided within Cohen forcing and by the definition of 74, we may assume that
p is a condition of Cohen forcing extending s. Hence for any Cohen real ¢’ over
M with p C ¢ in M[G], ¢ is in Ag. Since the set of all Cohen reals over M is
comeager in M|G], this is what we desired. O (Claim 3.2.7)

We now finish the proof of Theorem 3.2.6 by showing that A has the Baire
property. Let G be such that the conclusions of Claim 3.2.7 hold. By the first item
of Claim 3.2.7, the structure (w,“wNMI[G], app, +,+,=,0, 1, Ag) is an elementary
substructure of A%. Since the Baire property for A can be described in the
structure A% in this language and Ag has the Baire property in M[G], A also
has the Baire property, as desired. [0 (Theorem 3.2.6)

Next, we show that every set of reals is co-Borel assuming Bl-ADg. For that
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purpose, we introduce the Vopénka algebra and its variant, which is a main tool
for our argument. The original motivation for the Vopénka algebra is to make
every set to be generic over HOD, the class of all the hereditarily ordinal definable
sets, i.e., any element of the transitive closure of a given set is ordinal definable.
HOD is an important inner model of ZFC containing all the (possible) important
inner models with large cardinals and it is close to V' in the sense that any set in
V' can be generic over HOD via the Vopénka algebra.

We define the Vopénka algebra and its variant for HODy, where X is an
arbitrary set, ODx is the class of all sets ordinal definable with a parameter X,
and HODy is the class of sets a where any element of the transitive closure of a
isin ODx.

Take any arbitrary set X and fix an ordinal definable injection ix: ODx —
HODx. Then consider the Vopénka algebra Py x in HODx as follows: Py x =
{ix(A) | A € ODx and A C P(w)}. For p,q € Pyx, p < q if i (p) C ix (q).
It is easy to see that the definition of Py x does not depend on the choice of ix,
i.e., if there are two such injections, then the corresponding two partial orders
are isomorphic in HODy. Vopénka [87] proved that Py is a complete Boolean
algebra in HOD (when X = )) and each real in V' can be seen as a Py g-generic
filter over HOD in the following way: For each real z in V, the set G, = {p €
Pvo | © € i, (p)} is a Pyg-generic filter over HOD and HOD[z] = HODI[G,].
Conversely, if G is a Py,g-generic filter over HOD, then the set (\{i,"(p) | p € G}
is a singleton. We call the element of the singleton a Vopénka real over HOD and
denote it yg. Then yg, = z for each real z in V. The analogue of the above
results holds for HOD y for arbitrary set X.

We now introduce a variant of the Vopénka algebra, namely the Vopénka alge-
bra with oo-Borel codes. Given a set X, consider the following partial order Py,
in HODx: Conditions of IP’"{,,X are oo-Borel codes in HODx where the ordinals
used in their trees are below © in HODx and for ¢, ¢ in Py, v, ¢ < ¢ if B, C Byt
Then we can prove the analogue of Vopénka’s theorem in exactly the same way:

Theorem 3.2.8 (ZF). (Folklore) Let X be an arbitrary set.

1. Py, x is a complete Boolean algebra in HODx.

2. For each real v in V, the set G, = {¢ € Py, | © € By} is P}, y-generic
over HODx and HODx[z] = HODx[G,]. Conversely, if G is a P}, y-generic filter
over HODy, then the set (\{B, | ¢ € G} is a singleton and we call the real in
the singleton a Vopénka real over HODy and denote it yg. Then HODx[yq] =
HODx[G] and yg, = x for each G and z.

Proof. The proof is exactly the same as for the Vopénka algebra which can be
found, e.g., in Jech’s textbook [37, Theorem 15.46). O

!For any co-Borel code ¢ in HODx, there is an co-Borel code 1) where the ordinals used in
the tree of v is less than © in HODx such that ¢ < ¢ and ¥ < ¢. Hence the restriction of
ordinals for co-Borel codes will not affect the structure of this partial order.
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The difference between Py, x and Py,  is that yg might not recover GG from
HODy for Py x while HODx[ys] = HODx[G] for Py 5. This is because the
injection ix is not in HODx in general while the definition of Py, y does not refer
to OD. For our purpose, we will use Py, y.

Theorem 3.2.9. Assume Bl-ADg. Then every set of reals is oo-Borel.

Proof. We modify the argument for the following theorem by Woodin:

Theorem 3.2.10 (Woodin). Assume AD and that every relation on the reals
can be uniformized. Then every set of reals is co-Borel.

Let A be an arbitrary set of reals. We show that A is oo-Borel.

By Theorem 3.2.6, every set of reals has the Baire property. Hence every
subset of St(P) has the Baire property for any P € #,,. We freely use this fact
later. We fix a simple coding of elements of H,, by reals and if we say “a real x
codes. ..”, then we refer to this coding.

Let 74 and R4 be as follows:

74 = {(P,p,0) € H,, | 0 is a P-name for a real and
(VoG € St(P)) p e G = £,(G) € A},
Rs = {(z,y) | if z codes a (P,p,0) € T4, then y codes a (D; | i < w)
such that (Vi) D; is dense in P and
(VG € St(P)) (p€ G, (Vi) GND; # 0 = f,(G) € A)},

where “(V*°G € St(P))...” means “For comeager many G in St(P)...”. Note
that the term relation 74 defined here is different from the one in Theorem 3.2.6 in
the sense that now we use comeagerness for the quantifier V*° instead of Blackwell
comeagerness.

Let F4 uniformize R4 and T'4 be the graph of Fly, i.e., [y = {(x,s) | s €
<“w, Fa(x) 2 s}. Define 1, as follows:

={(P,p,0,5) € Hy, | 0 is a P-name for a real and
(VG eSt(P)) pe G = (f,(G),s) € Ta},

TFA

here we also use comeagerness for the quantifier V°°.

Let A° be the complement of A and define and construct 74c, Rac, Fac, [ 4c,
and . as above.

The following is the key point:

Claim 3.2.11 (Woodin). Let M be a transitive subset of H,,, and (M, €, 74,1 ,)
is a model of ZFC.% Let (P,p,0) € M N74. Then for every P-generic filter G over
M, if pisin G, then 0% € A. The same holds for A°.

2Here it satisfies Comprehension scheme and Replacement scheme for formulas in the lan-
guage of set theory with predicates for 74 and mr, .
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Proof of Claim 3.2.11. Let Q = Coll(w,TC(IP’)), where Coll(w,TC(]P’)) is the
standard forcing collapsing TC(PP) into a countable set with finite sets as condi-
tions. Since P,p,o are countable in M@, there is a Q-name ¢’ for a real in M
coding the triple (P, p, o).

Subclaim 3.2.12. There is a Q-name p for a real in M such that in V, for
comeager many H in St(Q), f,(H) = Fa(f»(H)).

Proof of Subclaim 3.2.12. First note that the map f: H — Fy (fg/(H)) is con-
tinuous on a comeager set in St(Q), i.e., Baire measurable. This is because every
subset of St(Q) has the Baire property in St(Q) and we can do the same argument
as the one in Proposition 3.2.2 to uniformize a relation almost everywhere (since
we use open sets in St(Q) to approximate subsets in St(Q) in this case, we get a
continuous function instead of a Borel function).

Let p = 7y where the notation 74 is from Lemma 2.1.2. Then p is a Q-name
for a real because the map f is Baire measurable as we observed. Moreover, p is
in M because

((m,n),q) € p <= (Is € 2) (s(m) =n and (Q,q, (0,5)) € 7r,)

and the right hand side of the equivalence is definable in (M, 74, mr,), which is a
model of ZFC by assumption. Finally, by Lemma 2.1.2, it is easy to see that for
comeager many H in St(Q), f,(H) = Fa(f»(H)). O (Subclaim 3.2.12)

Now let G be a P-generic filter over M with p € G. We show that f,(G) € A.
Take a Q-generic filter H over M[G] with p = F,(c’"). This is possible by
Subclaim 3.2.12 and that M[G] C H,,. Then G is also a P-generic filter over
M[H] and F4(co'") = pf € M[H]. But by the definition of F4, F(c'?) codes a
sequence (D; | i € w) such that D; is a dense subset of P in M[H] for each i € w
and for any G’ in St(P), if G' N D; # for each i, then f,(G') € A. But G is a
P-generic filter over M[H] and each D; is in M[H]. Hence G N D; # ) for each
i € wand f,(G) € A, as desired. O (Claim 3.2.11)

Let X = (A, 74,7, Tac, ). Recall that U is the fine normal measure
on P, we fixed at the beginning of this section. Let M = L(X,R)[U]. Since
the statement “a real is in the decode of an co-Borel code” is absolute between
transitive models of ZF as in §1.13 and M contains all the reals, if A is co-Borel
in M, soisin V.

From now on, we work in M and prove that A is oo-Borel in M, which
completes the proof of this theorem. The benefit of working in M is that we have
DC in M because DCg implies DC in M while DC might fail in V' in general.
Note that U N M is a fine normal measure on P,, (R) in M and we use U to
denote U N M from now on.

We find a set of ordinals S and a formula ¢ such that for any real z,

r €A = L[S, z] E ¢(x). (3.1)
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By Fact 1.13.2, this implies that A is co-Borel.
For a in P,, (R), let M,,Q:, and b, be as follows:

Loy [X](a)

M, =HOD%:¥1@)
Q* :P*{/,X in M(l)

a

bo =sup{q € Q | (Q,q,yq) € Ta} in M,,

where y¢; is a canonical (Q¥-name for a Vopénka real given in Theorem 3.2.8.

Note that M, is a transitive subset of H,, and (M,, 74, v, ) and (M, Tac, Tr . )
are models of ZFC because L, [X](a) is a transitive model of ZF (to check the
power set axiom, we use the condition that there is no uncountable sequence of
distinct reals ensured by Lebesgue measurability). Note also that b, is well-defined
because Q¢ is a complete Boolean algebra in A, by Theorem 3.2.8.

Then we claim that for each a € P,, (R) and real x which induces the filter G,
that is Py, y-generic filter over M,, v € A <= b, € G,. Fix a and x. Assume
bo € Gz. We show that = € A. If we apply Claim 3.2.11 to M = M,, (P,p,7) =
(Q¢, ba, yg), and G = G, then we get x € A because yg, = = as in Theorem 3.2.8.
For the converse, we assume b, is not in G, and prove that z is not in A. Let b,’
be the one corresponding to b, for A° instead of for A, i.e.,

b’ =sup {q € Q; | (Q;,q,9a) € Tac}.

Then b, V b,' = 1. This is because f;-;(A) has the Baire property in St(Q).
Since b, ¢ G, and G, is Py, x-generic over M,, b, is in G,. Hence we can apply
Claim 3.2.11 to M,, A¢, (Q¢, b, ,yc), and G, and we get x € AS, i.e., x is not in
A, as desired.

Fix an a € P, (R). Note that since P},  is the Vopénka algebra with oo-Borel
codes defined in M,, any real in L,,[X](a) is P}, y-generic over M,. Hence for
any real z in Ly, [X](a), z € A <= b, € G,.

Now we use this local equivalence in L, [X](a) to get the global equiva-
lence (3.1) by taking the ultraproduct of M, via U. Let My, Qu,bs be as
follows:

Moo :HMaa Qoo :HQ:” boo :Hba-
U U U

Note that Lo$’s theorem holds for M. because there is a canonical function
mapping a to a well-order on M,.*> By DC (in M), M, is wellfounded. So we
may assume M, is transitive. Hence, M, is a transitive model of ZFC, Q. is a
partial order consisting of co-Borel codes, and by € Q.

We claim that for each real z, x € A <= x € B,_. This will establish the
equivalence (3.1) because the pair (Qy, bs) can be seen as a set of ordinals since
they are objects in the transitive model M., of ZFC.

*Lo¢’s theorem fails for [];; Ly, [X](a). This is because Ly, [X](a) is not a model of ZFC for
almost all a and we cannot assign a well-order on L, [X](a) to each a as we did for [, M,.
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Let us fix a real z. By the fineness of U, x € a for almost all @ w.r.t. U. Then

r €A <—b, € G, for almost all a
<= z € By, for almost all a
< 1 € By,

where the first equivalence is by the local equivalence we have seen and the third
equivalence follows from Lo§’s theorem for [[,; M,[z] (note that M,[z] is a generic
extension of M, given by G, and we can prove Lo§’s theorem for [[,;; M,[z] in
the same way as for [[;; M,). This completes the proof. O

Together with the non-existence of uncountable sequences of distinct reals,
the co-Borelness for every set of reals gives us almost all the regularity properties
we introduced in chapter 2 for every set of reals. Recall that P-measurability
for a strongly arboreal forcing P was the regularity property we introduced in
Definition 2.1.7. Also recall that strongly proper forcings are strengthening of
proper forcings for projective forcings.

Proposition 3.2.13. Assume that there is no uncountable sequence of distinct
reals and every set of reals is co-Borel. Then every set of reals is P-measurable
for any strongly arboreal, strongly proper forcing P.

Proof. The results for Cohen forcing, random forcing, and Mathias forcing are
well-known and the proof is the same as the one in Case 1 in Theorem 2.4.2. We
just replace L[a] in Theorem 2.4.2 with L[S], where S codes a given set of reals
and a given partial order P. The fact that the set of all dense subsets of P in L[S]
is countable follows from the non-existence of uncountable sequences of distinct
reals (because L[S] is a ZFC model) and the fact that L[S] correctly computes
P follows from that S codes P. The rest is exactly the same as in Case 1 in
Theorem 2.4.2. O

Corollary 3.2.14. Assume BlI-ADg. Then every set of reals is P-measurable for
any strongly arboreal, strongly proper forcing P.

3.3 Toward ADg from BIl-ADg

In this section, we discuss the following conjecture:
Conjecture 3.3.1 (DC). ADg and BI-ADg are equivalent.

Since ADg implies BI-ADg by Theorem 1.14.3, the question is whether BI-ADg
implies ADg in ZF+DC. Woodin proved the following:

Theorem 3.3.2 (Woodin). Assume AD and DC. Then the following are equiv-
alent:
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1. Every set of reals is Suslin,
2. The axiom ADg holds, and
3. Every relation on the reals can be uniformized.

Hence, to prove Conjecture 3.3.1, it suffices to show that every set of reals
is Suslin from BI-ADg: If every set of reals is Suslin, then by Theorem 1.14.5,
AD holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADg holds assuming
BI-ADg and DC. Note that Martin’s Conjecture (i.e., BI-AD implies AD) implies
Conjecture 3.3.1 by Theorem 3.3.2. Hence it is interesting to see whether this is
Conjecture is true or not.

We try to mimic the arguments for the implication from uniformization to
Suslinness in Theorem 3.3.2 and reduce Conjecture 3.3.1 to a small conjecture.
Throughout this section, we fix U as a fine normal measure on P,, (R), which
exists by Theorem 3.1.3.

First, we show that every set of reals is strong oco-Borel assuming Bl-ADg.
Before giving a definition of strong oo-Borel codes, we start with a small lemma:

Lemma 3.3.3. Assume Bl-ADg and DC. Let j: V' — Ult(V, U) be the ultrapower
map via U. Then j(w;) = ©.

Proof. We first show that j(w;) > ©. Let a be an ordinal less than © and R be
a prewellorder on the reals with length . Define f: P, (R) — w; be as follows:
For a € P,, (R), f(a) is the length of the prewellorder RN (a x a) on a. Since a is
countable, f(a) is also countable. Hence f €y ¢,,, where €y is the membership
relation for Ult(V,U) and ¢, is the constant function on P,, (R) with value w;.

We show that the structure ([f]y, €) is isomorphic to («, €) and hence [f]y =
«, which implies @ < j(w;) because f €y ¢,,. For any a € P,, (R), let 7(a) be
the transitive collapse of (a, RnN(a x a)) into (f(a), e). Then by Lo$’s Theorem
for simple formulas, [r];; is an isomorphism between ([id]y, 7(R) N ([id]y x [id]r))
and ([f]u, €), where id is the identity function on P, (R).

Claim 3.3.4. The identity function id represents R, i.e., [id]y = R.

Proof of Claim 3.3.4. By the fineness of U, for any real z, {a | x € a} € U.
Hence [c;|y € [id]y. By the countable completeness of U, [c,;]y = = and hence
x € [id]y for any real z. Suppose f is a function on P,, (R) with f € id. Then by
the normality of U, there is a real x such that {a | x = f(a)} € U, i.e., ¢, =¢ f.
Hence [f]y = x and [f]y is a real, which finishes the proof. O (Claim 3.3.4)

By Claim 3.3.4, we have [id]y = R and j(R) N ([id]y x [id]y)) = R. Since
(lid]er, 5 (R)N([id]y x[id]i7)) and ([f], €) are isomorphic, ([f]i7, €) is isomorphic to
(R, R), which is isomorphic to («, €), as desired. Hence o < j(wy) and j(w;) > ©.

Next, we show that j(w;) < O. Let f be a function from P,, (R) to w;. We
show that [f]y < ©. By uniformization for every set of reals, there is a function
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e from the reals to themselves such that if a real z codes an a € P,, (R), then
e(x) codes f(a). Let S be an oo-Borel code for the graph I, of e which exists by
Theorem 3.2.9.

Claim 3.3.5. For all a € P, (R), f(a) < O"51@),

Proof of Claim 3.3.5. Note that P(x) N L[S](a) is countable in V for any = €
H.,, NL[S](a). Hence there is a Coll(w, a)-generic g over L[S](a) in V. Fix such
a g. Let z, be a real coding a from g. Then since S is an oco-Borel code for
I'c, one can compute whether e(x,) O s for each finite binary sequence s or not
in L[S](a, g), hence e(x,) € L[S](a, g). Therefore f(a) is countable in L[S](a, g).
But O stays an uncountable cardinal in L[S](a,g). Hence f(a) < @)@
as desired. O

By the normality of U, the following choice principle holds: For any function
F: P, (R) = V such that () # F(a) € L[S](a) for almost a with respect to U,
then there is a function f: P, (R) — V such that f(a) € F(a) for almost all a
with respect to U. This implies Lo§’s Theorem for the ultraproduct [[;; L[S](a).

Let S* = j(S). Then ([],L[S](a),€r) is isomorphic to (L[S*](R),€) by
looking at the map g — j(g)(R). (Note that Ult(V,U) is wellfounded by DC.)
Hence

[flo < [a — ©M81@)], = @US"I®) < gV
as desired. 0

We now introduce strong co-Borel codes. An oo-Borel code S is strong if the
tree of S is a tree on v for some v < © and for any f: <“R — R and surjection
m: R — 7, there is an a € P,, such that a is closed under f, S[r[a] is an oo-
Borel code, and Bgir,) € Bs. Note that the choice of v does not depend on the
definition of strong co-Borel codes. A set of reals A is strong oo-Borel if A = Bg
for some strong oo-Borel code S. There is a finer version of Fact 1.13.2 as follows:

Fact 3.3.6.

1. Let S be a strong oco-Borel code and v < © be such that S is a tree on (3
for some < v and L,[S, z] F “KP + ¥;-Separation” for any real z. Let ¢(S,z)
be a ¥;-formula expressing “r € Bg”. Then for any function f: <“R — R and
surjection 7: R — +, there is an a € P, (R) such that a is closed under f and
for any real z, if L;[S,z] £ ¢(S,z), then L,[S,z] E ¢(S, ), where L;[S] is the
transitive collapse of the Skolem hull of 7[a] U {S} in L,[S].

2. Let v be an ordinal with v < ©, ¢ be a ¥;-formula, and S be a bounded
subset of v such that L,[S,z] F “KP 4 X;-Separation” for any real x. Set A =
{r € R | L,[S,z] E ¢(S,x)}. Assume that for any function f: <R — R and
surjection 7: R — +, there is an a € P, (R) such that a is closed under f and
for any real z, if L;[S,z] & ¢(S,z), then L,[S,z] E ¢(S, ), where L,[S] is the
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transitive collapse of the Skolem hull of 7[a] U {S} in L,[S]. Then A is strong
oo-Borel.

Proof. This can be done by closely looking at the argument for Fact 1.13.2 in [80].
U

Theorem 3.3.7. Assume BI-ADr and DC. Then every set of reals is strong
oo-Borel.

Proof. Fix a set of reals A. We show that A is strong co-Borel. Let ((M,, Q% b,) |
a € P, (R)) and (M, Q% ,bx) be as in the proof of Theorem 3.2.9, but we
construct them in V', not in M. Since we have DC now, we can prove the following
equivalences in exactly the same way as in Theorem 3.2.9: For all a € P, (R)
and all real x inducing the filter G, which is Q-generic over M,,

r€e€A —=b, € G, (in Q).
Also,
(VreR) z € A < by € G, (in Q).

For any a, let D, be the set of all dense subsets of Q} in M, and let D, = [[; D,.
Let ¢ be a ¥;-formula such that for all a,

&(Q:, by, Dy, ) <= x determines the filter G, C Q such that
(VD € D,) G,N'D # (0 and b, € G,
O(Q,, boo, Doy ) <= 1z determines the filter G, C Q% such that
(VD € D) Go N D # 0 and by € G,

Let S, and S, be sets of ordinals coding the two triples (Q,b,, D,) and
(Q,, by Do) respectively. For an a € P, (R), let a, be the least ordinal «
such that S, is a bounded subset of o and for all = € a, L,[S,, ] is a model of
KP+3-Separation and let a,, be the least ordinal o such that S, is a bounded
subset of @ and for all z € R, L,[S«, x] is a model of KP+X;-Separation. Note
that by Lo§’s Theorem, ([[;; La, [Sa, 2], €r) is isomorphic to (La, [Ss, 2], €) for
every real x. Since each «, is countable, by Lemma 3.3.3, as, < ©. Also, by the
above equivalences, for all a € P, (R) and all reals z,

r €A <Ly I[Ss, 2] E o (S,, 1)
T €A <= Ly [0, %] F ¢ (S, ).

By the second item of Fact 3.3.6, it suffices to show the following: For any
function f: <R — R and surjection 7: R — ., there is an a € P, (R) such
that a is closed under f and for any real z, if Lo [Sw,2] F #(Ss, ), then
Law [Seos 7] B ¢(Sa, 1), where L,z [So] is the transitive collapse of the Skolem
hull of 7[a] U {Sx} in Ly, [Seol-

Let us fix f: <R — R and 7: R — ay. Since z € A <= L, [S,z] F
¢ (S, z) for each real x and b € P, (R), the following claim completes the proof:
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Claim 3.3.8. There are a and b in P,, (R) such that a is closed under f and
(X4, €) is isomorphic to (Lg, [Sp], €), where X, is the Skolem hull of 7[a] U {Sw}
in L, [Seol-

Proof of Claim 3.3.8. Let T'y = {(z,s) € R x <2 | f(x) 2 s}. For each b,
consider the following game G}, in L[S, Soo, T'f, 7]: In w rounds,

1. Player I and II produce a countable elementary substructure X of Ly, [Sh],
2. Player II produces an a € P, (R) which is closed under f, and

3. Player II tries to construct an isomorphism between (X, €) and (X,, €),
where X, is the Skolem hull of 7[a] U {S} in L, [Ss]-

Player IT wins if she succeeds to construct an isomorphism between (X, €) and
(X4, €). This is an open game on some set of the form 7, x R where T} is
wellorderable. Hence by DCg, it is determined.

Subclaim 3.3.9. Thereis a b € P,, (R) such that player II has a winning strategy
in the game Gy.

Proof of Subclaim 3.3.9. To derive a contradiction, suppose there is no b such
that player II has a winning strategy in the game G in L[Sy, Soo, I'f,m]. By
the determinacy of the game Gb, player I has a winning strategy in the game
Gy Let j:V — Ult(V,U) be the ultrapower map. Then by Los’s Theo-
rem, HU(L[Sb,SOO,Ff,ﬂ'],EU,Ff,ﬂ') is isomorphic to (L[Soo,j(Soo),Ff,j(ﬂ)],E
,Ff,j(ﬂ')). Then the game C?oo =11y éb is an open game on some set of the
form T, x R where T, is wellorderable in L[S, j(Sx), s, j(7)] such that in w
rounds,

1. Players I and IT produce a countable elementary substructure Y of L,__ [Swo],
2. Player II produces an a € P, (R) which is closed under f, and

3. Player II tries to construct an isomorphism between (Y, €) and (Y, €),
where Y, is the Skolem hull of j(7)[a] U {j(Ss)} in Lj(a.)[i(Ss)]-

Player II wins if she succeeds to construct an isomorphism between Y and Y,.
By Lo§’s Theorem, player I has a winning strategy o in L[S, j(Sx), s, j(7)].
By Theorem 1.12.6, ¢ is also winning in V. In V| let player II move in such
a way that she can arrange that a is closed under f, j[Y] = Y,, and j|Y is
the candidate for the isomorphism. This is possible by a bookkeeping argument.
But then player IT wins because j[Y is an isomorphism between Y and j[Y] and
defeats the strategy o, contradiction! O (Subclaim 3.3.9)
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Hence there is a b € P, (R) such that player IT has a winning strategy 7
in the game G, in L[Sy, Soo, [y, w]. By Theorem 1.12.6, 7 is also winning in V.
Since L, [Sp] is countable in V', we can let player I move in such a way that
X = L,,[Ss] and let player II follow 7. Since 7 is winning in V/, there is an
a € P,, (R) such that a is closed under f and L,,[S,] = X is isomorphic to X,
as desired. O (Claim 3.3.8)

O

We are now ready to prove the key statement toward Conjecture 3.3.1: Recall
that for a natural number n with n > 1 and a subset A of R**!, %A = {2 ¢
R* [ (Jy € R) (z,y) € A}.

Theorem 3.3.10. Assume Bl-ADy and DC. Let A be a subset of R? and assume
%A is a strict well-founded relation on a set of reals. Suppose A has a strong
oo-Borel code S and let v be an ordinal less than © such that the tree of S is on
7. Then the length of 3% A is less than 7.

Proof. Let A, S, and v be as in the assumptions. We show that the length of
F® A is less than v*. Fix a surjection 7: R — v. Let us start with the following
lemma:

Lemma 3.3.11. There is a function f: <“R — R such that if a is closed under
f, then Sirla] is an co-Borel code and Bgj.[q) C Bs.

Note that the assertion of the above lemma is the strengthening of the defini-
tion of strong oo-Borel codes.

Proof of Lemma 3.5.11. Let us consider the following game: Player 1 and II
choose reals one by one and produce an w-sequence x of reals. Setting a = ran(f),
player I wins if S[n[a] is an co-Borel code and Bgj.jq) C Bg. Since S is a strong
oo-Borel code, player I can defeat any strategy for player II because strategies can
be seen as functions from <“R to R by Claim 3.1.5. Since the payoff set of this
game is range-invariant, by Lemma 3.1.4, this game is determined. Hence player
I has a winning strategy and by Claim 3.1.5, there is a function f as desired.

O (Lemma 3.3.11)

We fix an fj satisfying the conclusion of Lemma 3.3.11 for the rest of this proof.
Recall that U is the fine normal measure on P,, (R) we fixed at the beginning of
this section. Using m, we can transfer this measure to a fine normal measure on
P, (7) as follows: Let m.: Py, (R) — Py, (7) be such that m,(a) = 7]a] for each
a € P,,(R). For AC P, (), A€ Uy if r;'(A) € U. Tt is easy to check that U,
is a fine normal measure on P, (7).

We now prove the key lemma for this theorem:
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Lemma 3.3.12. Let G be Coll(w, 7)-generic over V. Then in V[G] there is an
elementary embedding j: L(R, S, fo,m) = L(j(R),j(S),j(fo), j(r)) such that all
the reals in V[G] are contained in L(j(R), j(S),5(fo), j( ))

Proof of Lemma 3.5.12. The argument is based on the result of Kechris and
Woodin [47, Theorem 6.2]. We first introduce the notion of weakly meager sets.
A subset B of “v is weakly meager if there is an X € U, such that (Vb € X)“bNB
is meager in the space “b. Since b is countable, the space “b is homeomorphic to
the Baire space in most cases. Note that if B is a meager set in the space “7,
then it is weakly meager. A subset B of “~v is weakly comeager if its complement
is weakly meager. Let I be the set of weakly meager sets.

Sublemma 3.3.13.

1. The ideal I is a o-ideal on “7.
2. For any s € <“7, [s] is not weakly meager.

3. If a subset B of “v is not weakly meager, then there is an s € <“v such that
[s] \ B is weakly meager.

4. Let g be a function from “7y to On. Then for any B which is not weakly
meager, there is a B’ C B which is not weakly meager such that for all z
and y in B’, if ran(z) = ran(y), then g(z) = g(y).

Proof. The first statement follows from the o-completeness of U,. The second
statement follows from the fineness of U,.

For the third statement, suppose B is not weakly meager. Then since U; is
an ultrafilter, there is an X € U, such that (Vb € X) “bN B is not meager in “b.
We may assume that each b in X is infinite because the set of finite subsets of ~
is measure zero with respect to U, by the fineness of U,. Take any b in X. Since
the space “b is homeomorphic to the Baire space, the set “b N B has the Baire
property in “b. Hence there is an s, € <“b such that [sy] \ B is meager in “b. By
normality of Uy, there is a Y € U, such that Y C X and there is an s € <“~ such
that s, = s for any b € Y. Hence [s] \ B is weakly meager.

For the last statement, let g be such a function and B be not weakly meager.
Then there is an X € U, such that Vb € X, “bN B is not meager in “b. Since
“b N B has the Baire property in “b, there is an s, € <“b such that [s;] \ B is
meager in “b. By normality of U, there are a Y C X and s, € <“v such that
Y € U, and s, = sq for every b € Y. We use the following fact:

Fact 3.3.14 (Folklore). Assume every set of reals has the Baire property. Then
the meager ideal in the Baire space is closed under any wellordered union.
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Take any b € Y. Since [so] N “b is homeomorphic to the Baire space, we
can apply Fact 3.3.14 to the space [so] N “b and hence there is an «; such that
[so)] N“bN g1 (ap) is not meager in [so] N“b. Since the set [so] N “b N g ' (ay)
has the Baire property in [so] N “b, there is an s, € <“b such that s, O so and
[s5] \ ¢ ' () is meager in “b. By normality of Uy, there are a Z € U, with Z CY
and an s; D sy such that [s;] \ ¢7'(ay) is meager in “b for each b € Z. Then
B'=BnN[s)]N{z|g(x) = cvan(z)} is as desired. [0 (Sublemma 3.3.13)

Now we prove Lemma 3.3.12. Let G be Coll(w, v)-generic over V. Consider
the Boolean algebra P(“v)/I. Then it is naturally forcing equivalent to Coll(w, ):
In fact, for s € <“~, let i(s) = [s]/I. Then by the third item of Sublemma 3.3.13,
i is a dense embedding from Coll(w,v) to P(“v)/I \ {0}. Define U’ as follows:
For a subset B of Yy in V, B is in U’ if there is a p € G such that [p] \ B is
weakly meager. By the genericity of G and the third item of Sublemma 3.3.13,
U’ is an ultrafilter on (“v)" and U’ contains all the weakly comeager sets. Take
an ultrapower Ult(L(R, S, fo,7),U’) = ((w7)VL(R, S, fo,m) NV)/U" and let j be
the ultrapower map. (Note that we consider L(R, S, fy, 7)-valued functions in V’
which are not necessarily in L(R, S, fo, 7).)

We show that j is the desired map. We first check Lo$’s Theorem for this
ultrapower. It is enough to show that for any B € U’ and a function F' from B to
L(R, S, fo, ) such that all the values of F' are nonempty, then there is a function
fon Bin V such that f(x) € F(z) for all z in B’. Since there is a surjection from
R x On to L(R, S, fo, 7), we may assume that the values of F' are sets of reals.
But then by uniformization for every relation on the reals by Theorem 1.14.9, we
get the desired f.

Next, we check the well-foundedness of Ult(L(R, S, fo, ), U’). By DC, we
know that the ultrapower Ult(V,U,) is wellfounded. Hence it suffices to show
the following: For a function f: P, (v) — On, let gf: “y — On be as follows:

gs() = f(ran(z)).

Sublemma 3.3.15. The map [f]y, — [g/]r is an isomorphism from ((P<1(¥Onn
V)/Uﬂ—, GU”) to ((MVOH N V)/UI, GUI).

Proof of Sublemma 3.5.15. We first show that if f; €y, fo, then gy, € gy,.
Since fi; €y, fa, there is an X € U, such that for any b in X, f1(b) € fo(b). Fix
a bin X. Since the set {x € “b | ran(z) = b} N“b is comeager in “b, the set
{z €“b| fi(ran(z)) € fo(ran(z))} is comeager in “b. Hence for every b € X, the
set {z € “b| gy, () € gs,(x))} is comeager in “b and the set {z € “v | gz, (z) €
g7, (z)} is weakly comeager and hence is in U’. Therefore, g, €y gy,. In the
same way, one can prove that if f; =¢_ fo, then gy =p gy, .

Next, we show that the map is surjective. Take any function ¢g: “y — On in
V. We show that there is an f: P, (y) = On in V such that g; =¢ ¢g. By the
last item of Sublemma 3.3.13 and the genericity of G, there is an Y in U’ such
that if z and y are in Y with the same range, then g(z) = g(y). Since Y is in U’,
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there is a p € G such that [p]\Y is weakly meager, hence there is an X in U, such
that for all bin X, ([p]\Y)N“b is meager in “b. This means that ¢ is constant on
a comeager set in [p] N “b for each b € X. Let oy be the constant value for each
b€ X and f be such that f(b) = ap if bisin Y and f(b) = 0 otherwise. Then it
is easy to check that gy =¢ g, as desired. [0 (Sublemma 3.3.15)

We have shown that j is elementary and we may assume that the target
model of j is transitive. Then j is an elementary embedding from L(R, S, fo, 7)
tOL(J(R)vj(s)vj(fﬂ)vj(ﬂ-)) Let M = L(](R)aj(s)aj(fO)aj(ﬂ-)) We ﬁnally check
that all the reals in V[G] are in M. Let x be a real in V[G] and 7 be a P-name
for a real in V such that 7¢ = 2. We claim that [f,];» = z, where f, is the
Baire measurable function from St(Coll(w,v)) to the reals induced by 7 from
Lemma 2.1.2, which completes the proof.

Take any natural number n and set m = x(n). We show that [f.]p(n) = m.
Since x(n) = m, there is a p € G such that p IF 7(7) = m. By the definition of
fr, for any = € [p], fr(x)(n) = m}. Since p is in G, by the definition of U’, the
set {z | fr(z)(n) =m isin U’, as desired. O (Lemma 3.3.12)

We now finish the proof of Theorem 3.3.10. Let us keep using M to denote
L(j(R),5(S),5(fo),7(m)). We first claim that S and j[S] are in M. Since v is
countable in V[G], there is a real z coding S in V[G]. But by Lemma 3.3.12,
such an z is in M. Hence S is also in M. Since 7 is countable in V[G], there is
an a € P, (R) such that 7[a] = S and hence j(7)[a] = j[S] in V[G]. But since
j(m) € M and a € M by Lemma 3.3.12, j[S] = j(7)[a] is also in M, as desired. By
Lemma 3.3.11 and elementarity of j, the following is true in M: For any a closed
under j(f), 7(S)[a is an co-Borel code and Bjs)ja € Bjsy. Also, by elementarity
of j, 3Bjs) is a well-founded relation on a set of reals in M. Set a = j[S].
Since @ is closed under j(f), in M, j(S)[a is an co-Borel code, Bj(s)1a € Bj(s),
and 3¥Bjg) is also a wellfounded relation on a set of reals in M. Since j[S] is
countable in M, the relation 3*Bjg) is £} and hence by Kunen-Martin Theorem
(see [66, 2G.2]), its rank is less than wy in M which is the same as 4% in V.
Finally, since S and j[S] are equivalent as Borel codes, 3% Bg has length less than

wy in M and since M has more reals than V, (EIRBS)V C (EIRBS)M. Therefore,
the length of (EIRBS)V is less than w{’ = (y7)V, as desired. O

Becker proved the following:

Theorem 3.3.16 (Becker). Assume AD, DC, and the uniformization for every
relation on the reals. Suppose that the conclusion of Theorem 3.3.10 holds, i.e.,
let A be a subset of R?® and assume %A is a well-founded relation on a set of
reals. Suppose A has a strong oo-Borel code S and let v be an ordinal less than
© such that the tree of S is on . Then the length of 3% A is less than v*. Then
every set of reals is Suslin.



96 Chapter 3. Games themselves

Proof. See [9]. O

We try to simulate Becker’s argument, make a small conjecture, and reduce
Conjecture 3.3.1 to the small conjecture.

As preparation, we prove a weak version of Moschovakis’ Coding Lemma. Let
us introduce some notions for that. Let A be a set of reals. Let IND(A) be the
set of all posX! (A)-inductive sets of reals for some natural number n > 1. For
the definition of posX! (A)-inductive sets, see [66, 7C]. All we need is as follows:

Fact 3.3.17. For any set of reals A, IND(A) is the smallest Spector pointclass
containing A and closed under I* and V.

Proof. The argument is the same as [66, 7C.3]. O

Theorem 3.3.18 (Weak version of Moschovakis’ Coding Lemma). Assume Bl-AD.
Let < be a strict wellfounded relation on a set A of reals with rank function
p: A — v onto and let I be a Spector pointclass containing < and closed under
3% and V®. Then for any subset S of +, there is a set of reals C' € T such that
p[C] = S.

By Fact 3.3.17, IND(<) satisfies the conditions for T".

Proof. The argument is based on Moschovakis’ original argument [66, 7D.5].

Let S be a subset of v. We show that for any a < ~, there is a set of reals
C, € T with p[C,] = S N a by induction on «.

It is trivial when o = 0 and it is also easy when « is a successor ordinal
because I' is a boldface pointclass. So assume « is a limit ordinal and the above
claim holds for each £ < o. We show that there is a C' € T with p[C] = SN a.

Since T' is w-parametrized and closed under recursive substitutions, we have
{G" CRxR" | n > 1} given in Lemma 1.7.1. Let G2 = {z € R | (a,2) € G?*}
for each real a. For a real a, we say G2 codes a subset S' of S if G2 C A and
plG7] = 5"

Let us consider the following game G,: Player I and II choose 0 or 1 one by
one and they produce reals a and b separately and respectively. Player II wins if
either (G2 does not code SN ¢ for any € < ) or (G2 codes SN & for some € < «
and G7 codes S N7 for some n < a with n > ). By BI-AD, one of the players
has an optimal strategy in this game.

Case 1: Player I has an optimal strategy o in G,.

For a real b, let 7, be the mixed strategy for player II such that player II
produces b with probability 1 no matter how player I plays. Since ¢ is optimal
for player I, for each real b, for j, ,-measure one many reals a, G2 codes S N &
for some £ < a. Fix a real b. We use the following fact analogous to Fact 3.3.14:

Fact 3.3.19 (Folklore). Let u be a Borel probability measure on the Baire space
and assume every set of reals is y-measurable. Then the set of u-null sets is closed
under wellordered unions.
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Since every set of reals is Lebesgue measurable by Theorem 1.14.8, every set
of reals is p,-,-measurable. By Fact 3.3.19, there is a unique & < « such that
for p,,,-positive measure many reals a, G2 codes S N &, and the set of reals a
such that G2 codes S N ¢ for some & < & i8 p,,-measure zero. Let C' be the
following: A real x is in C' if there is a real b such that for p, ,,-positive measure
many reals a, they code the same subset S’ of v, and no proper subsets of S’ can
be coded by ji,,-positive measure many reals, and z € G2 for some real a such
that G2 codes S'. Since T is closed under F¥ and V¥, C' is in I'(s). By induction
hypothesis, for any £ < a, there is a real b such that G7 codes S N¢. Since o is
optimal, C' codes S N a, as desired.

Case 2: Player II has an optimal strategy 7 in G,.

Let (a,x) — {a}(x) be the partial function from Rx R to R which is universal
for all the partial functions from R to itself that are I'-recursive on their domain.
For reals a and w, define a set of reals A, ,, as follows: a real = is in A,,, if there
exists z < w such that {a}(2) is defined and ({a}(z),z) € G2. It is easy to see
that A,, isin I'. By Lemma 1.7.1, there is a I-recursive function 7: Rx R — R
such that A, ., = G?r(a,w) for each a and w.

For each real a and w, define a set of reals C, ,, as follows: A real z is in C, ,,
if for [0 oy, - POSIEIVE measure many b, they code the same subset S’ of v, no
proper subsets of S’ can be coded by (i, ,,-positive measure many reals, and z is
in G for some real b such that G? codes S'. It is easy to see that C,, is in T.
Hence by Lemma 1.7.1, there is a ['-recursive function 7’: R x R — R such that
Cow = Ggr’(a,w) for each a and w.

Since the function (a, w) — 7'(a, w) is T-recursive in 7 and total, by Recursion
Theorem 1.7.3, we can find a fixed a* such that for all w, {a*}(w) = 7'(a*, w).

Let g(w) = {a"}(w).

Claim 3.3.20. For each w € A with p(w) < «, there is some n(w) < « with
p(w) < n(w) such that G%, codes S N n(w).

Proof of Claim 3.3.20. We show the claim by induction on w. Suppose it is done
for all x < w. Then A, ,, codes SN & where & = sup{n(z) | x < w} > p(w).
Since 7 is optimal for II, Cy- ,, codes S N7 for some 1 > . Since Gi(w) = Co w)

setting n(w) = n, n(w) > p(w) and Gg(w) codes S N n(w). [0 (Claim 3.3.20)
Let C' = UweA’p(w)m Gs(w). Then by Claim 3.3.20, C' codes SN« and C' is in
T, as desired. 0

We also need a weak version of Wadge’s Lemma: Let A be a set of reals. For
a natural number n > 1, a set of reals B is 3} in A if B is definable by a %}
formula in the structure 4% that is the second order structure with A as an unary
predicate with a parameter = for some real x. A set of reals B is projective in A
if Bis X! (A) for some n > 1.
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Lemma 3.3.21 (Weak version of Wadge’s Lemma). Assume BI-AD. Then for
any two sets of reals A and B, either A is £} in B or B is ¥ in A.

Proof. Recall the Wadge game Gw(A, B) from §1.15. By BI-AD, one of the
players has an optimal strategy in Gw(A, B). Assume player II has an optimal
strategy 7 in Gw(A, B). Then for any real z,

reAd = p,.({(@y)|2 =zandyeB}) =1.

It is easy to see that the right hand side of the equivalence is 3J in B. If player
I has an optimal strategy in Gw (A, B), then one can prove that B is X} in A® in
the same way and hence B is X1 in A. O

For the rest of this section, we assume BI-ADg and DC. We fix a set of reals
A and give a scenario to prove that A is Suslin. We fix a simple surjection p from
the reals to {0,1}, e.g., x — z(0).

Claim 3.3.22. There is a sequence ((Fn, <nyYny ) | M < w) such that for all n,
1. ', is a Spector pointclass closed under I and V*, ', C ', 41, and A € Ty,

2. every relation on the reals which is projective in a set in I', can be uni-
formized by a function in T';, 1,

3. <pisin I, and a strict wellfounded relation on the reals with length ,, and
every set of reals which is projective in a set in I',, has a strong oo-Borel
code whose tree is on v,11.

Proof of Claim 3.3.22. We construct them by induction on n. For n = 0, let T’y
be any Spector pointclass closed under I* and V* containing A which exists by
Fact 3.3.17, and <y be any strict wellfounded relation on the reals in I'y. Then
they satisfy all the items above.

Suppose we have constructed (T, <,,¥,) with the above properties. We con-
struct ', 11, <p41, and 7,41 . First note that there is a set B, of reals which
is not projective in any set in I',, by uniformization for every relation on the
reals. Then by Lemma 3.3.21, every set projective in a set in T, is X} in B,.
Let H, and H! be universal sets for 3J(B,) sets of reals and 3}(B,) subsets of
R?, respectively. By uniformization, there is a function f, uniformizing H!. By
Theorem 3.3.7, there is a v < © such that H, has a strong oco-code whose tree is
on 7. Let v,41 = 7, <p11 be a strict wellfounded relation on the reals with length
Ynt1, and let T,y be a Spector pointclass closed under I and V* containing
[, U{H,, H), fn, <ni1}. We show that they satisfy all the items above for n + 1.
The first item is trivial. The second item is easy by noting that if f, uniformizes
H] then (f,), uniformizes (H} ), for any real a. The third item follows from that
if H, has a strong oo-code whose tree is on 7,1, then (H,), has a strong oco-code
whose tree is on 7, for every real a. O (Claim 3.3.22)
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Note that in the proof of Claim 3.3.22, we have essentially used DC.

We fix ((Fn, <n,Tn) | M < w) as above and let T =Ty, T =Ty, 1, <! be
induced by p, <M=<y,,1, 72 = w and Y = 45,41, Let p}, = p and pI be the
surjection between the reals onto "y, 1 induced by <s,1. Let 7l be the function
a — p[G"] where G™ is a universal set for Tl sets of reals (we do not use .).
Then by Theorem 3.3.18, 7!l is a surjection from the reals onto "y!'. Consider
the following game Ga: Player I plays 0 or 1 and player II plays reals one by one
in turn and they produce a real z and a sequence t € “R, respectively. Setting
T, = mlX(t(n)), player II wins if for all n < m, T,41[n C Ty, Tpy1In = Ty, 0, and
z€ A <= U,c, Tn1In is illfounded, where T),,[n = {sIn | s € T,}. This is
an integer-real game in the sense player I chooses integers and player IT chooses
reals.

We introduce an integer-integer game G4 simulating the game G4. In the
game Ga, players choose pairs of 0 or 1 one by one and produce a pair of re-
als (zg,y0) and (ag,by) in w rounds respectively. From (x¢, o) and (aq, by), we
“decode” a real z and an w-sequence of reals t respectively as follows: For each

pointclass I above, we fix a set U" universal for relations in '. Setting Fjy = U;Ej),
F, is a function from the reals to perfect sets of reals (or codes of them) (other-
wise player I loses). Let P,, = F(xg). Then yp is an element of P,, (otherwise
player T loses) and is identified with a triple (ug, 1, 1) of reals by looking at a

canonical homeomorphism between P,, and R®. Then setting F; = U;Il, Fiisa
function from the reals to perfect trees on 2 (or codes of trees) (otherwise player
I loses). Let P,, = F(x1). Then y; is an element of P,, (otherwise player I loses)
and is identified with a triple (u1, z9, y2) of reals by looking at a canonical homeo-
morphism between P,, and R3. Continuing this process, one can unwrap (z,,, yn)
and obtain (un, Tpi1,Yns1) for each n and get an w-sequence (u, | n < w). Let
z(n) = p(u,). In the same way, one can obtain an w-sequence (¢, | n < w) of reals
from (ao, by). Setting T}, = 7 (t(n)), player Il wins if for all n < m, T,41In C T,
ToiiIn=Tyn,and z € A <= J,,c, Tn+1In is illfounded.
Becker proved the following:

Lemma 3.3.23.

1. If player I has a winning strategy in the game G, then player I has a
winning strategy o in the game G4 such that o is a countable union of sets
in T} for some n as a set of reals.

2. If player II has a winning strategy in the game G 4, then player II has a
winning strategy in the game G 4.

Proof. See [9, Lemma A & B]. O

We show and conjecture the following: Let B C “R. A mixed strategy o for
player I is weakly optimal in B if for any s € REY" the set {z | o(s)(z) # 0} is
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finite and for any w-sequence y of reals, ji5, (B) > 1/2. One can introduce the
weak optimality for mixed strategies for player IT in the same way. Note that if
player I has an optimal strategy in some payoff set, then player I has a weakly
optimal strategy in the same payoff set. The same holds for player II.

Lemma 3.3.24. If player I has an optimal strategy in the game G 4, then player
I has a weakly optimal strategy o in the game G4 such that o is a countable
union of sets in Tl for some n as a set of reals.

Conjecture 3.3.25. If player IT has an optimal strategy in the game G 4, then
player IT has a weakly optimal strategy in the game G 4.

Proof of Lemma 3.3.24. We first topologize the set Prob(R) of all Borel proba-
bilities on the reals. Consider the following map ¢: Prob(R) — ~“2[0,1]: Given a
Borel probability p on the reals, for any finite binary sequence s, t(u)(s) = p([s])-
We topologize ““2[0,1] by the product topology where each coordinate [0, 1] is
equipped with the relative topology of the real line and we identify Prob(R) with
its image via + and topologize it with the relative topology of ““2[0,1]. Then the
space Prob(R) is compact.

Claim 3.3.26. For any set B of reals, the map u +— pu(B) is a continuous map
from Prob(R) to [0, 1].

Proof of Claim 3.3.26. This is easy when B is closed or open. In general, it
follows from the following equations: For any p € Prob(R),

pu(B) = sup{u(C) | C C B and C' is closed}
= inf{u(O) | O 2 B and O is open}.

[0 (Claim 3.3.26)

Next, we introduce a complete metric d on Prob(R) compatible with the
topology we consider. Let (s, | n € w) be an injective enumeration of finite binary
sequences. For p and g in Prob(R), d(u, ') = >, [n[sn]) — 1/ ([sa])] /271
Then d is a complete metric compatible with our topology. Since Prob(R) is
compact, the map p +— p(A) is uniformly continuous with the metric d. Hence
there is an € > 0 such that if d(u, 4') < ¢, then |p(A) — p'(A)| < 1/2. Let us fix a
sequence (€, | n € w) of positive real numbers such that Y., €,/2"" <e. For
any finite binary sequence s’, let ny be the natural number such that s, = s.

Let o be an optimal strategy for player I in the game G4. We show that
there is a weakly optimal strategy & for player I in the game G 4. Given a real
a. Consider the function FV: R — %[0, 1] as follows: Given a real b, F2(b)(i) =
Lm0 ) ({(z0,v0) | p(uo) = i}) for i = 0,1, where y, is identified with (ug,z1, 1)
as discussed. Since every set of reals has the Baire property, F? is continuous on
a comeager set. Then there is a perfect set P of reals such that for any b and b’
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in P, |F)(b)(i) — FY(V')(i)| < €n,,- Since the set Xo = {(a, P) | (V,b' € P) (Vi <
2) |[F7(b)(1) = FR(V')(i)] < €ng,, } is projective in Ty, there is a real ag such that the
function fo = UL® uniformizes Xo. Let &(0)(0) = max{F2 (b)(0) | b € fo(ao)}
and 5(0)(1) =1 —5(0)(0). We have specified & for the first round.

Next, suppose player II played a real ¢y for her first round. We decide the
probability 7(¢y) on 2. Let a be a real. Consider the function F!: R — 2[0,1] as
follows: For a real b, F,}(0)(i) = fio,roy (10 0y ({ (%0, %0) | p(ur) = i}) for i = 0,1,
where y; = (t1,%9,y2) as discussed. Then the function F! is continuous on a
comeager set. Then there is a perfect set P of reals such that for any b and b’
in P, |F;(b)(i) — F,;(0")(4)| < min{e, -, | s € "2} for i = 0,1. Since the set
X1 ={(a,P) | (Vb, 1 € P) (Vi < 2) |[F,(b)(i) — F, (V') (i) < min{ey -, |s€'2}}
is projective in ', there is a real a; such that the function f; = UarlIIl uniformizes
Xi. Let 6(tp)(0) = max {F} (b)(i) | b € fi(ar1)} and 6(to)(1) =1 — (o) (0).

Continuing this process, we can specify ¢ with the following property: For
any natural number m and m-tuple reals (to,...,tm 1), |0(to, .- tm-1)(7) —
Fr (0)(9)| < min{e,, ., | s € ™2} for each b € fi(am). Also we have speci-
fied the reals a,, and b,, for all m < w.

We show that & is weakly optimal in the game G 4. Let (£, | n < w) be an
w-sequence of reals such that the tree |J,_, Ths1[n is illfounded. We show that
the probability of the payoff set via yzr, ..., is greater than 1/2. (The case
when the tree is wellfounded is dealt with in the same way.)

First note that together with (¢, | n < w), & produces a Borel probability p
on the reals such that for any finite binary sequence s, u([s]) = [[,.,,7(t; | j <
i)(s(j)), where m is the length of s. Since the tree from (£, | n < w) is illfounded,
it suffices to show that u(A) > 1/2. On the other hand, the measure pgr,
induces a Borel probability measure v on the reals as follows: For a finite binary
sequence s, v([s]) = ,u(,,T(aO,bO)({(xg,yg) | (Vi < m) p(t;) = s(i)}), where m is
the length of s. By the property of &, d(u,v) < e. Hence |u(A) —v(A)| < 1/2.
Since ¢ is optimal for player I in the game G4 and the tree from (t, | n < w) is
illfounded, v(A) = 1. Therefore, p(A) > 1/2, as desired. O

From Lemma 3.3.24 together with Theorem 3.3.10, one can conclude the fol-
lowing:

Lemma 3.3.27. There is no optimal strategy for player I in the game G 4.

Proof. To derive a contradiction, suppose player I has an optimal strategy in the
game G 4. Then by Lemma 3.3.24, player I has a weakly optimal strategy o in
the game G 4 such that o is in a countable union of sets in T'% for some n as a set
of reals.

Consider the following set:

X ={(t,s) €“R X ““R| pto,({(z,¢') | ' =t and z € A}) > 1/2 and
(9 < 5) (15(0) g (i) ) € oo,
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where [s(i)| i is the rank of s(i) with respect to the wellfounded relation <" and
T; = pi'(t(i)). For (¢, s) and (¥, ') in X, (t,s) < (¢,s') if t and ¢’ code the same
tree T and s codes a node in T extending a node coded by s’. Note that for
any (¢,s) in X, if T is the tree coded by ¢, T is wellfounded because o is weakly
optimal in the game G'4. Hence (X, <) is a strict wellfounded relation on X. Let
Yo = sup{¥ | n € w}. By DC, the cofinality of © is greater than w. Hence
Y < ©. Note that for any ordinal o < 7, there is a wellfounded tree T coded
by some real ¢ as in the definition of X such that the length of T is a. Hence the
length of (X, <) is /.

Since o is a countable union of sets in 'l for some n as a set of reals, the set
<on X isin I¥ A”V/“ U, e, Ths i-e., it is a projection of a countable intersection
of countable unions of sets in T'}, for some n. Since every set in T'} has a strong
co-Borel code whose tree is on 4y for every n, every set in A“\/*“ U, c, I'» has
a strong oo-Borel code whose tree is on 7. By Theorem 3.3.10, the length
of < must be less than 7, which is not possible because it was equal to 1.
Contradiction! O

We close this section by proving that Conjecture 3.3.25 implies Conjecture 3.3.1.

Proof of Congecture 3.3.1 from Conjecture 3.3.25. By Lemma 3.3.27, player [ does
not have an optimal strategy in the game G4. Hence by BI-AD, player II has
an optimal strategy in the game G4. By Conjecture 3.3.25, player II has a
weakly optimal strategy 7 in the game Ga. Note that 7 can be seen as a
real because each measure on the reals given by 7 is with finite support by
the weak optimality of 7. For each finite binary sequence s with length n, let
t,={ue"R|(Vi<n) T((sm x (ul(i— 1))) (s(i)) # 0}, where (s}i)* (ul(i— 1))
is the concatenation of s[i and u[(i — 1) bit by bit. For each finite binary se-
quence s, we identify ¢, with a set of n-tuples of natural numbers via a map 7
by using the isomorphisms between (a,<g) and (n, €) for a finite set of reals a
and a natural number, where <p is a standard total order on the reals. For any
real z, t, = |U,c, ten is @ tree on natural numbers and (7, | s € <“w) induces a
homeomorphism 7, between [t,] and [{t' € ““R | u,, ~([t']) # 0}]. Consider the
following tree:

T ={(s,t,u) € U ("2 x "w x "y,) | t € m(ts) and (Vi < 1h(s)) u(i) = 73] cur},

new

where z; is the #(i)th real of the set of successors of (z; | j < @) in ¢,[i. Then
by the weak optimality of 7, the following holds: Setting B = {(z,y) € R X “w |
(3f € “1) (x,y, f) € [T]}, for any real z,

€A >y, (m[B,]) > 1/2
< (37" : atree on 2) [T'] C B, and p,, (7, [[T"]]) > 1/2.
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Since B is Suslin, the set {(z,7") | [T'] € B,} is also Suslin. Hence A is
Suslin, as desired.

We have shown that every set of reals is Suslin. Then by Theorem 1.14.5, AD
holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADg holds. O

3.4 Toward the equiconsistency between ADg
and Bl-ADg

In the last section, we have discussed the possibility of the equivalence between
ADg and BI-ADgr under AD+DC. Solovay proved the following:

Theorem 3.4.1 (Solovay). If we have ADg and DC, then we can prove the
consistency of ADg. Hence the consistency of ADr+DC is strictly stronger than
that of ADg.

Proof. See [78]. O

Hence assuming DC to see the equivalence between ADgr and Bl-ADg is not
optimal. One can ask whether they are equivalent without DC. So far we do not
have any scenario to answer this question. Instead, one could ask the equicon-
sistency between ADgy and BI-ADg. In this section, we discuss the following
conjecture:

Conjecture 3.4.2. ADgr and BI-ADg are equiconsistent.
Woodin conjectured the following:

Conjecture 3.4.3 (Woodin). Assume the following:
1. The principle DCg holds,
2. Every Suslin & co-Suslin set of reals is determined, and
3. There is a fine normal measure on P,, (R).

Then either there is an inner model of ADy or there is an inner model M of AD™
such that M contains all the reals and O = 0V

We show that Conjecture 3.4.3 implies Conjecture 3.4.2.

Proof of Conjecture 3.4.2 from Conjecture 3.4.3. First note that the assumptions
in Conjecture 3.4.3 hold if we assume BI-ADg. Hence by Conjecture 3.4.3, there
is an inner model of ADy or there is an inner model M of AD' such that M
contains all the reals and © = @V If there is an inner model of ADg, then we
are done. Hence we assume that there is an inner model M of AD™ such that M
contains all the reals and O = QY.
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We show that ADgr holds in V. First we claim that M contains all the sets
of reals. Suppose not. Then there is a set of reals A which is not in M. Then
by Lemma 3.3.21, every set of reals in M is $1(A). Then © must be less than
©V because one can code all the prewellorderings by reals using A in V, which
contradicts the condition of M. Hence every set of reals is in M. Since we have
uniformization for every relation on the reals in V, it is also true in M. We use
the following fact:

Fact 3.4.4. Assume AD". Then the following are equivalent:
1. The axiom ADg holds, and
2. Every relation on the reals can be uniformized.

By Fact 3.4.4, since every relation on the reals can be uniformized in M, M
satisfies ADg. Since P(R) N M = P(R), ADg holds in V, as desired. O

3.5 Questions

We close this chapter by raising questions.

The equivalence between ADyr and Bl-ADy under ZF4+DC As discussed
in § 3.3, it is enough to show Conjecture 3.3.25 to prove the equivalence between
ADg and Bl-ADg. In the proof of Lemma 3.3.24, in each round, we shrank the re-
als into a perfect set sufficiently enough so that the strategy we constructed gives
us a measure on the reals which is close enough to the measure derived from a
given optimal strategy and the opponent’s moves, which yields the weak optimal-
ity of the strategy. But the same argument does not work for Conjecture 3.3.25
because one cannot shrink the reals into a perfect set to get the continuity of a
given function from R to ®[0,1]. Nonetheless, we can proceed the similar argu-
ment to the coded space [],., P("v,) from the space “R by using the fact that
the meager ideal on the reals is closed under any wellordered union and deciding
the probability on the space [, ., P("7.) is enough to determine the probability
of the payoff set. Although the details of the argument seem complicated and it
is not yet done, we believe it is possible and it is not so difficult.

The equiconsistency between ADyr and BI-ADgr By the argument in § 3.4,
it is enough to show Conjecture 3.4.3 to prove the equiconsistency between ADg
and Bl-ADg. It seems possible because BI-ADg gives us a generic embedding
similar to the one obtained by an w;-dense ideal on w;, CH and “The restriction
of the generic embedding given by the ideal to On is definable in V. Let us see
more details. If one takes a generic filter G' of the partial order <“R ordered by
reverse inclusion, then this filter generates an ultrafilter U’ extending the dual
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filter of the meager ideal in “R in the same way as we have seen in Lemma 3.3.12.
If one takes the generic ultrapower of V' via U’ and lets M be the target model
of the ultrapower embedding j, then Los’s Theorem holds for M if the cofinality
of © is w, the reals in V' belongs to M as an element (as a real), M contains all
the reals in V[G] and j[On is definable in V' (the last statement is ensured by the
existence of a fine normal measure U in Theorem 3.1.2, in fact, the ultrapower
embedding via U’ agrees with j on ordinals as we have seen). In general, M is
not well-founded (in the case cof(©) = w). But O is always in the well-founded
part of M. Together with the determinacy of Suslin & co-Suslin sets of reals, this
seems enough to proceed the Core Model Induction up to © = ©,,, i.e., a minimal
model of ADg.

A stronger weak Moschovakis’ Lemma As we have seen in § 3.3, a weak ver-
sion of Moschovakis’s Lemma 3.3.18 holds assuming Bl-AD. One can ask whether
one can prove a stronger version of Moschovakis’s Lemma formulated in [66,
7D.5] from BI-AD. If this is possible, it would be plausible to show that the set
of strong partition cardinals is unbounded in © and that every Suslin set of reals
is determined from BI-AD.






Chapter 4

Games and Large Cardinals

In this chapter, we investigate the upper bound of the consistency strength of the
existence of alternating chains with length w, which are essential objects proving
projective determinacy from Woodin cardinals.

4.1 The consistency strength of the existence of
alternating chains

In late 1980s, Martin and Steel [60] proved that if there are n Woodin cardi-
nals and a measurable above them, then every IT} | set of reals is determined for
each natural number n, where they introduced the notion of iterations trees which
originally comes from the development of the inner model theory for strong cardi-
nals. To build the inner model theory above one strong cardinal, one would have
to iterate premice not only linearly but in more complicated way which would
give us tree structures labeled with extenders that they call iteration trees. This
generalization gives us another difficulty when we iterate premice more than w
times: In a limit stage, there could be many cofinal branches in the tree we have
constructed and we have to choose one of them so that the direct limit through
that branch will be wellfounded. This problem occurs when we reach the region
of Woodin cardinals and Martin and Steel used this obstacle to prove projective
determinacy by coding one second-order existential quantifier by the existence of
cofinal wellfounded branch of suitable iteration trees (in their case, they arranged
the iteration trees in such a way that the wellfounded branch is always unique).
Alternating chains are the simplest iteration trees with this obstacle: They are
iteration trees with length w such that their tree structure is given as follows: For
all natural numbers n, m,

miIn <= m =0 or n— mis a positive even number.
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Odd Even
| |
| |
M+ 1 + + M + 2
| |
| |
3 ° ° 4
1 ° ° 2
\./
0

Figure 4.1: An alternating chain with length w

This is the simplest tree structure with two cofinal branches. Let us call
these two branches Even (= {2n | n € w}) and Odd (= {2n+1 | n € w} U
{0}). Since these two branches are completely symmetric with respect to the tree
structure, there is no canonical way to choose one of them so that the chosen one
is wellfounded. This gives us the basic idea of how to code certain information via
iteration trees. Actually, in the proof of projective determinacy, Martin and Steel
replaced the odd part by <“w and ensured that the branch Even is ill-founded
and that exactly one of the cofinal branches is wellfounded. This is how they
code a real via a wellfounded cofinal branch.

But the above argument works only when there is only one wellfounded co-
final branch in the iteration tree. So the question is: Is there any iteration tree
with length w with more than one wellfounded branches? Martin and Steel [61]
(independently by Woodin) proved that if there is a Woodin cardinal, then there
are a countable transitive model M of (a large enough fragment of) ZFC and
an alternating chain on M such that both branches are wellfounded. Conversely,
they proved that if there is an iteration tree with limit length and two cofinal well-
founded branches, then there is a transitive model of ZF which satisfies “There
is a Woodin cardinal”. Hence there is a tight connection between Woodin cardi-
nals and the existence of iteration trees with more than one cofinal wellfounded
branches. In fact, what they proved is stronger:

Theorem 4.1.1 (Martin and Steel). Suppose there is an iteration tree T' with
limit length and two cofinal branches b and c¢. Let § be the supremum of the
length of extenders used in 7" and a be an ordinal with @ > § and « is in the
wellfounded part of both M, and M, where M, and M, are the direct limit of
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models in T through b and ¢ respectively. Then L, (V;"") £ “5 is Woodin”.
Proof. See [62, Corollary 2.3]. O]

This theorem gives us more information: Note that 1/5M” = V(SMC and it is
always a subset of the wellfounded part of both models. Since every wellfounded
part of a model of KP is also a model of KP, we have the following: If one of M,
and M, is wellfounded and 6 is the least ordinal that is not in the wellfounded
part of one of M, and M, and 0 > &, then Ly(V;"®) E “KP + ¢ is Woodin”.
Hence we get the Woodin-in-the-next-admissibleness from the assumption, here
we say 0 is Woodin-in-the-next-admissible if there is an ordinal # > § such that
Ly(Vs) E “KP+4 is Woodin”. Andretta [2] proved the following stronger converse:

Theorem 4.1.2 (Andretta). Suppose ¢ is Woodin-in-the-next-admissible. Then
for any tree order on w with an infinite branch, there is an iteration tree such that
for any infinite branch b of the tree, ¢, is in the wellfounded part of M;, where
0, is the supremum of the length of extenders in the iteration tree.

Proof. See [2, Theorem 1.3]. O

Hence Woodin-in-the-next-admissible cardinals are intimately correlated to
iteration trees with more than one cofinal branches. The natural question would
be: What if we do not demand that ¢, is in the wellfounded part of M,? In this
section, we partially answer this question in the case of alternating chains. In fact,
we do not need Woodin-in-the-next-admissible cardinals to construct alternating
chains:

Theorem 4.1.3. Suppose ¢ is an ordinal such that § is ¥5-Woodin and Vy <5, V.
Then there is an alternating chain with length w.

The assumption of the above theorem (which we will explain later) is much
weaker than Woodin-in-the-next-admissibleness. Hence we do not need Woodin-
in-the-next-admissibleness just to construct alternating chains.

Let us prepare for introducing the notions in the above theorem. For a tran-
sitive model M of ZFC and an ordinal « in M, we write M|« for abbreviating
VM Furthermore, for a subset A of M, Thyp(M; €, A) denotes the I-theory of
M with parameters in A where I is 3, for some natural number n > 1. Also, for
a set A and an ordinal a, A [ a denotes A NV,,.

Let £ <  be ordinals and I" be ¥, for some natural number n > 1. We say
k is <0-T'-strong if it is <d-A-strong where A = Thy(V0; €, V|9), i.e., for any
ordinal o < ¢ there is a non-trivial elementary embedding j: V' — M with critical
point k where M is transitive such that V,, C M, j(k) > aand A | a = j(A4) | a.
If § is a limit of inaccessible cardinals, such an embedding can be easily coded by
an extender in V5. An ordinal ¢ is I'-Woodin if it is a limit of <¢-I'-strongs.

Note that if § is a limit of <d-strong cardinals, then § is 3;-Woodin and Vj
is a ¥ elementary substructure of V. Hence we cannot replace ¥y with ¥; in
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Theorem 4.1.3 because if we could, then we could run the argument in a mouse
below 07 with a cardinal § which is a limit of <d-strong cardinals, which is
impossible by [73, Lemma 2.4].

Also note that X,,-Woodinness for a natural number n is much weaker than
Woodin-in-the-next-admissibleness. In fact, if § is Woodin-in-the-next-admissible,
then for any natural number n > 1, § is a limit of <d-strong cardinals x such that
the set of <k-A,-strong cardinals is stationary in x where A, = Thyy (V|d;€
,V|9), which immediately gives us that the set of ¥,-Woodin cardinals §' with
Vs <x, Vi is stationary in k. Hence the assumption of Theorem 4.1.3 is much
weaker than Woodin-in-the-next-admissibleness.

Proof of Theorem 4.1.3. We will construct ((/-cn,En,Bn) | n < w) with the fol-
lowing properties:

(2), Kop is <d-Yg-strong in My,

(3)n Thyy, (M2n+1|5n+1 +1; €, Mony1|Kont1 + 1) = Thyy, (M2n|5 +1; €,
Moy |Kont1 + 1); and

(4)n Kont1 18 <Bpi1-Yg-strong in Mo, q,

where n—1 = max{n — 1,0}, My =V and M, ; = Ult(M,,-,, E,) for each n € w.
At the same time, we will arrange that x,.; is less than the strength and the
length of F,, for each n € w, which will ensure that each M, is well-founded by

the result of Martin and Steel [61, Theorem 3.7].

Also note that all the extenders we will use belong to Vj. Since ¢ is a limit of
inaccessible cardinals, § will not move under any embedding we will consider.

Let o = 0. Then (1) is true. Since § is Xy-Woodin in V', we can pick g < §
such that kg is <0-Ys-strong in V/, hence (2), is also true.

Suppose we have constructed (k; | i < 2n),(E; | i < 2n),(5; | ¢ < n) with the
properties (1), and (2),. We will find k9,11, Eon, Bni1, f2ns2 and Ea,yq with the
properties (3),, (4)n, (1)p11 and (2),41.

Since 0 = T 2,(0) is Xo-Woodin in My, we can pick Kopy1 > Kopn such that
Kont1 1s <0-Yg-strong in My,. By (2),, ko, is <0-3g-strong in My,. Hence we can
pick Es, € My, such that F,, is an extender with critical point ks, and length
and strength greater than xo, 1 + 3 in My, such that g, (4) | (kopt1 + 3) =
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A | (ons1 +3) in My, where A = Thy,, (M2n|6; e, M2n|6). Then

Thyy, (M2n+1 Ton1.2n41(Bn); € Mony1[Kont1 + 3)
=Ton"1,2n+1 <ThY22 (M2ni1|5n; €, M2n'1|f<32n>> [ Kons1 + 3

=TE,, <Thy22 <M2n|5; €, M2n|/f2n)> [ Kant1 +3

=Thys, (Man|65 €, Man |tz 1 +3).
Now the following is true in Ms, witnessed by 3 = :

(x) There is an ordinal 3 such that B = Thyy, <V|B + 1; €, V]koni1 + 1) and
Kony1 18 <[-Yo-strong and [ is ¥5-Woodin,

where B = Thys, (M2n|5+1; €, My, |Kon i1 —i—l). Note that this statement is ¥ in
M,;,, with parameters B and ko, because the statement “ko,,1 is <[-Xg-strong
and f is ¥o-Woodin” is definable in V|5 if § is a limit of inaccessibles, which is
also Y5 definable.

Since Vj is a Yo-elementary substructure of V', My, |0 = Ma,|mo2,(9) is a 3o-
elementary structure of Ms,,. Hence (x) is also true in My, |d. But by the previous
calculation, (x) is also true in Mopy 1|y, 1 004 1(6n)-

Let 3,41 be a witness for () in Moy 11|79, 904 1(Bn)- Then it follows that

Th}’z2 <M2n+1|5n+1 + 15 €, Mopy1|Kont1 + 1)

- ThYE2 <M2n|5 + 17 ea M2n|l{2n+l + 1)7

that is (3),. Also we have that (3,1 is ¥o-Woodin and kg, 11 is <f,41-Ye-strong
in My, 1, that is (4),. Since f,11 is Yo-Woodin in My, 11 and f,11 > Kopy1, We
can pick kopio < Bh41 large enough and such that koo is <foy11-Xo-strong in
M2n+1-

By (4)n, we can take Fy,.1 € My, such that Es,,; is an extender with
critical point kg, and length and strength greater than kg, 5+ 3 in My, | such

that TEspt1 (AI) r Kon42 +3 = A r Kon42 + 3, where A’ = T‘hyz2 (M2n+1|6n+1; €,
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M2n+1 |6n+1) . Then

Thyy, (M2n+2|5 + 15, € Mapyo|Konto + 1)
=Ton,2n+2 <ThYE2 (M2n|5 + 15 €, Moy |Kop1 + 1)) [ Kopyo + 1

=T gy <Thyg2 (M2n+1|5n+1 + 1€, Mopi1|kons1 + 1)) [ Kany2 + 1

=Thysy, (M2n+1|5n+1 + 15 €, Mopy1|Konta + 1),

and by this calculation, we obtain Thyy, <M2n+2|6; €, M2n+2|/<;2n+2> =

Thy22 (M2n+1|6n+1; €, M2n+1|H2n+2> and Kon+2 is <5—22—strong in M2n+2; which

are (1),41 and (2),,1 respectively, as desired. O

Note that in the above construction, we have arranged that f,41 < 7y, "1 911 (5n)
for each n € w. Hence Mpqq is always ill-founded.

4.2 Questions

We close this chapter with asking one question.

Question 4.2.1. What is the consistency strength of the existence of alternating
chains with length w?



Chapter 5
Wadge reducibility for the real line

In this chapter, we study the Wadge reducibility for the real line and show that
the Wadge’s Lemma fails and that the Wadge order for the real line is ill-founded.
This situation is completely different from the case of the Baire space as given
in §1.15 and it is not possible to get the same kind of game characterization of
continuous functions from the real line to itself as in the case of the Baire space.

Throughout this chapter, we work in ZF+DC. In case we need more assump-
tions, we explicitly mention them. In this chapter, R denotes the real line, not
the Baire space or the Cantor space.

5.1 Wadge reducibility for the real line

It was probably known to the Polish school of mathematicians before the Wadge
reducibility was introduced that Wadge’s Lemma for the Wadge order <{; fails:
Let A be a subset of the real line and assume A and A® are dense. Then A
cannot be a continuous preimage of any nowhere dense subset of the real line. In
particular, there are subsets A and B of the real line such that neither A <f, B
nor B <% A€ holds (e.g., A = Q, B = any nowhere dense, non-IT) set).

We say that a subset A of the real line is non-trivial if it is neither the empty
set () nor the whole space R. We remark that the condition for A° in the above
remark is not necessary:

Proposition 5.1.1. Let A, B be subsets of the real line and assume A is non-
trivial and dense and B is nowhere dense. Then A cannot be a continuous preim-
age of B.

Proof. Toward a contradiction, suppose there is a continuous function f: R — R
such that A = f~'(B). Since A is non-trivial, f is not a constant function. Hence
the range of f contains an interval. But since A is dense and f is continuous, the
range of f is included in the closure of B, which contradicts the fact that B is
nowhere dense. O

113
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Note that the failure of Wadge’s Lemma for the real line occurs for subsets of
the real line which are the difference of the two open sets (see Corollary 5.1.7).

Next, we discuss the failure of the wellfoundedness of the Wadge order <%,
which was proved by Peter Hertling in his Ph.D. thesis [32]. We prove the fol-
lowing stronger result:

Theorem 5.1.2. There is an embedding i from (P(N), Cg,) to (P(R), <%, such
that the range of i consists of subsets of real numbers which are the difference of
open sets, where a Cg, b if a \ b is finite for subsets a,b of N and N = w \ {0}.

Proof. Let us start with an easy observation:

Observation 5.1.3. Let a,b,c,d, e, f,g be real numbers with a < b < ¢ < d
and e < f < g and h be a continuous function from the real line to itself with
B) € [e, ), h([a,8) N le, £) = 0, b([b,0)) 1 [f, 9) = 0, b(fe, d)) N e, f) = 0 and
h([b,c)) 2 (e—e,e) for any € > 0. Then h(b) =, h(c) = f and h([b,c)) = [e, f).

This observation allows us to encode subsets of N into sets formed from a
sequence of half-open intervals by suitably inserting points between them.

Let us discuss this idea in detail. We first construct increasing sequences of
real numbers (aq, by | @ < w*) and (¢, | n € N) with the following properties:
For a < w*, a limit 7, and a natural number n > 1,

o < by < Qai1,
sup{a, | @ < v} < a,, and
sup{a, | @ < w"} < ¢ < agn,

where w“ and w™ are ordinals given by ordinal exponentiation. Hence the point
¢y 1s inserted after the first w™ many intervals. Now define i: P(N) — P(R) as
follows: For a subset x of N,

i(x) = U [aa,ba) U{c, | n € N\ z}.

a<w®

It is easy to see that each i(z) is the difference of two open sets. For simplicity,
let a; = sup{aq | @ < }. The sets are constructed in such a way that i(z) <y,
i(y) for all z C y C N. To see this, we construct a continuous function f: R — R
such that f='(i(y)) = i(x). For each n € N, we pick a real number d,, between
¢ and agn. Note that i(z) D i(y) and i(z) \ i(y) = {ca | n € y \ x}. Now define
f(t) =tunlesst € [agn,aun] and n € y\z. If t € [agn, ayn] and n € y\ z, then we
map the interval [a_., c,] to [agn, a,n] by preserving the order, mapping the end
points to the end points. We further map [¢,, d,] to [dp, aun] with f(c,) = ayn
and f(d,) = d, by switching the order around and then map [d,, a,»] to itself
by the identity function. This completes our construction of f and it is easy to
check that f is as desired.

By modifying the above argument, we get the following:
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Claim 5.1.4. If v Cg, y (i.e.,  \ y is finite), then i(z) <% i(y).

Proof of Claim 5.1.4. Let n = max(x \ y) + 2. Define g: R — R as follows: g is
equal to f above on [a,.,00) and since the order type of the set {a, | w"™' <
a < w"} is w", we can define g on (—o00,a,n] to (d, 1,a,.] in the same way as
we did before so that ¢~ 1(i(y)) = i(z) (the point is that there is no point ¢, in
i(y) inserted between a,n-1 and a_,). This g is the witness for i(z) <% i(y). O

Claim 5.1.5. If i(z) <% i(y), then = Cg, y.

Proof of Claim 5.1.5. Suppose i(z) <% i(y) via h: R — R. If h(a,) = ¢, for
some « and n, then h(b,) = ¢, by continuity, which is absurd. Hence for each
a < w” there is some f < w* such that h(a,) € [ag,bs). Let o and ng be such
that h(ag) € [Gay,bay) and ay < wW™.

We prove that h(aa) = Gagtar A(ba) = bag+a and h([aa, ba)) = [Gagtas bagta)
for every a < w® by induction on .

The case a = 0 is done by Observation 5.1.3 for a = ag—1,b = ag,c = by, d =
a1,€ = gy, [ = boy and g = agy11.

If v is a successor ordinal, let & =  + 1. By induction hypothesis, h(bs) =
bay+s- By Observation 5.1.3 for a = ag,b =bg,c = ag41,d = bgi1,€ = bagts, [ =
Gagtp1 A § = bag 11, h(ag11) = Gagyprr and h([bg, ap11)) = [Dag1p) Gagtsin)-
Again by Observation 5.1.3 for a = bg,b = agi1,¢c = bgp1,d = agre,e =
Gagtp+15 | = bagrpr1 and ¢ = dagipr2, Mbgi1) = bagip41 and h([aﬂ+1abﬂ+1)) =

[Gagtp+1, bag+pt1)-

If o is a limit ordinal, then by the continuity of h, we have h(ay) = aq,a-
If v is not of the form w™ for some n, by the same argument as when « is
a successor ordinal, we can conclude that h(ay) = dagia, P(ba) = bagra, and
h([@asba)) = [dag+as bagta). If a is of the form w™ for some n, then there are two
cases: When n € x, there is no inserted point in i(z) between a_ and a,. Hence
there is no inserted point in i(y) between a,, ., and asyta, otherwise h would not
reduce i(x) to i(y). By the same argument as before, h(a,) = tagras h(ba) = bagta
and h([aa, b)) = [Gagtas bagra). When n & z, there is an inserted point ¢, in i(z).
But no matter whether there is an inserted point in i(y) between ay, ,, and aay+a,
h will map [a, , aa] t0 [ag, a0, Gag+a) and h(Gs) = Gag+a Dy the similar argument
as before. Hence h(aa) = @agras h(ba) = bagta, and h([aa,ba)) = [Gagtas bagta)-

Therefore, h(as) = Gagras P(ba) = bagra and h maps [aq, by) 10 [Gagtas Dag+a)
for each a. The above argument (for the limit case) also shows that if there is
no inserted point in i(z) between a_. and a,n, then there is no inserted point in

i(y) between a, .. and aq, 14, which implies that = \ y C ng by the definition of

ap+to
t. Hence z Cg, y as desired. O
The above two claims complete our proof. O

It is easy to construct a descending sequence of subsets of N with length w
with respect to Cg,. Hence,
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Corollary 5.1.6 (Hertling). The Wadge order <% is ill-founded.

Corollary 5.1.7. There are two sets A and B which are the difference of two
open sets such that neither A <%, B nor B <% A° holds.

Proof. Let Even and Odd be the set of even natural positive numbers and the
set of odd natural numbers respectively and set A = i(Even) and B = i(Odd)
where 7 is from the proof of Theorem 5.1.2. By Theorem 5.1.2, A f{% B. Hence
it suffices to show that B €3, A°.

Suppose B <% A°. Then there is a continuous function f from R to itself
such that f~'(A¢) = B. We show that this is impossible. Note that

A° = (=00,a0) U | [bas @as1) U ( U a7, a,) \ {ca | n ¢ Even}> .

a<lw? ylimit

Since ag is in B, f(ap) = by for some a < w*” or f(ag) = a; for some limit
7. In the former case, by the continuity of f, f(a,) = a,,, while a, ¢ B and
Aoy € AS, a contradiction. In the latter case, if v # w™ for any odd n, then
by the same argument as the former case, f(a;) = a,,, and we can derive a
contradiction. If v = w" for some odd n, then we cannot reduce [ag, by) to a half
interval inside A® with a_ being the left endpoint because ¢, is not in A° in this

case. ]

We now investigate the lower levels of the Wadge order on the real line and
compare it with the ones of the Wadge order on the Baire space. The first obvious
observation is as follows: The empty set () and the whole space R are the only
minimal elements with respect to <%, i.e., for any subset A of the real line, either
A=0,A=R or ),R <%, A. This statement holds for any topological space.
Recall that a subset A of the real line is non-trivial if A is neither the empty set
nor the whole space. Non-trivial subsets are non-trivial in the sense of the Wadge
order on the real line.

The next observation is that closed sets and open sets on the real line behave
in the same way as those in the Baire space with respect to Wadge reducibility:

Proposition 5.1.8 (Folklore). Any two non-trivial open sets are Wadge equiva-
lent. The same holds for non-trivial closed sets.

Proof. Tt is enough to see that (0,1) =% U for any non-trivial open set U.

The fact (0,1) <w U is easy to see: U consists of disjoint open intervals and
we let (a,b) be one of them, then we can easily map (0, 1) into a subset of (a, b)
and the complement of (0,1) to the point a continuously (when a = —oo, we
map (0, 1) to a subset of (a,b) and the complement of (0, 1) to the point b). This
continuous function witnesses (0,1) <% U.

For U <w (0,1), if {(an, b,) | n € w} is a set of pairwise-disjoint open intervals
with U = [, c,,(@n, bn), then we can continuously map (an,b,) into a subset of
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(0,1) for each n and the complement of U into the point 0 in the same way as
above. This continuous function witnesses U <% (0,1).

The assertion for closed sets follows from the observation that if A <, B,
then A° <B Be. 0

As we have seen in Theorem 5.1.2, once we go up to the sets obtained by the
difference of two open sets, then there are a lot of subsets of the real line which
are not Wadge comparable each other while sets of reals in the Baire space are
almost Wadge comparable in the sense of Theorem 1.15.1. Hence the agreement
of the real line and the Baire space with respect to Wadge reducibility is limited
to closed sets and open sets.

Since R is connected, there is no clopen subset of the real line except () and
the whole space R. Hence non-trivial open sets cannot be reduced to non-trivial
closed sets and vice versa, i.e., non-trivial closed sets are not comparable to non-
trivial open sets with respect to <%. Also they are minimal in the sense that
there is no subset of the real line between the empty set (or the whole space)
and closed sets (or open sets) with respect to the Wadge order. We say that
a subset A of a topological space X is <%~-minimal if § < A and there is no
B with § <, B <, A. Non-trivial open sets and non-trivial closed sets are
<& -minimal and in the case of the Baire space, the <¥-minimal sets are exactly
the non-trivial clopen sets by Wadge’s Lemma, in particular every set of reals is
Wadge comparable to a clopen set in the Baire space. But as we have seen in the
paragraph after Proposition 5.1.1: The rationals Q are not comparable to any
non-trivial closed set and to any non-trivial open set. We now consider which
subsets of the real line are not comparable to non-trivial open sets or non-trivial
closed sets.

Definition 5.1.9. For A C R, we consider the following two conditions for A:

e (I;): Every point in A is an accumulation point in A from both sides, i.e.,
for any point z in A any open set U with x € U, there are points y, z in A
such that y < z < 2.

e (Iy): If A contains a bounded interval (a,b), then a,b belong to A.
We say A satisfies (I) if A satisfies the conditions (I;) and (I).
Any countable dense subset and its complement satisfy the condition (T).

Proposition 5.1.10. For any non-trivial subset A of R, the following are equiv-
alent:

1. The set A satisfies the condition (I;),

2. The complement of A satisfies the condition (I), and

3. Any non-trivial closed set is not Wadge reducible to A.

Hence A is not comparable to any non-trivial open set and any non-trivial
closed set if and only if A satisfies the condition (I). In particular, if A satisfies
(I), so do the complement of A and any continuous preimage of A.
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Proof. We show the implication 1 to 2 by contraposition. Suppose that the
complement of A does not satisfy the condition (Iy). Then there is an interval
(a, b) which is included in A® but either a or b does not belong to A°, i.e., belongs
to A. We may assume a is in A. Then the point a is a counter-example of the
condition (I;) for A.

We show the implication 2 to 3 by contraposition. Suppose F' <%, A for some
non-trivial closed set F' via a continuous function f. By Proposition 5.1.8, we
may assume F¢ = (0,1). Then f[(0,1)] is a subset of A°. Since f is continuous
and 0,1 do not belong to A°, f[(0,1)] is an interval contained in A® such that at
least one of the end-points of it does not belong to A°. This shows the negation
of 2.

We show the implication 3 to 1 by contraposition. Suppose there is a point
x in A such that x is not an accumulation point of A from the right side, i.e.,
there is a b in A° such that (z,b) is contained in A°. By the same argument as in
Proposition 5.1.8, we can reduce (0,1) to A°. Hence the complement of (0,1) is
Wadge reducible to A as desired. O

The subsets of the real line which are not Wadge comparable to any non-trivial
open set and to any non-trivial closed set cannot be very simple:

Proposition 5.1.11. Let A be a non-trivial subset of R satisfying (I). Then A
is not AY.

Proof. Let A be as above and F be the boundary of A, i.e., AN A¢. We use the
following fact:

Fact 5.1.12. If A is A, then either AN F or A°N F is not dense in F.
Proof. See [53, pp. 98, 99, 258, 417]. O

Hence it suffices to show that AN F and A°N F are dense in F. By Propo-
sition 5.1.10, it suffices to see that A N F' is dense in F'. We show that for any
open interval U with UNF £ (0, UNF N A # 0.

Take any such U. Since U N F # (), there is a point x which is in U and F. If
xisin A, then x € UN F N A and we are done.

So suppose z is not in A. Since x € F C A, there is a point y in A such that
y € U. Consider the connected component C, containing y in A. It will remain
connected in R. Hence C, is a singleton or an interval. If C,, is a singleton namely
{y}, then we are done because y € U N F N A.

So suppose C), is an interval with endpoints a and b (a or b might be —oo or
o). Since z is not in A and z is in U, C, 2 U. Therefore either a or b belongs
to U. Assume a is in U. Then since (a,b) C A, by the condition (I) for A, a
belongs to A and also to A°. Hence aisin UNFNAand UNF N A # (). O
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Since Q and the complement of it satisfy the condition (I), the above propo-
sition is optimal with respect to the complexity.

We now investigate the Wadge structure below the rationals Q. The first
observation is a trivial application of a back-and-forth argument:

Proposition 5.1.13 (Folklore). Any countable dense subset of the real line is
Wadge equivalent to the rationals.

Proof. Let A be any countable dense subset of the real line. By a standard back-
and-forth argument, there is an order isomorphism i between (A4, <) and (Q, <).
Let 7 be the canonical order isomorphism from R to itself extending i, i.e., for a
real number 7,

i(r) = sup{i(a) | a € A and a < r}.

This is well-defined and 7 is homeomorphism because the topology of the real line
is the order topology with its natural order. It is easy to check that 77'(Q) = A
and 7(A) = Q. Hence A =w Q. O

It is natural to ask whether Q is <%,-minimal. The answer is “No”:
Proposition 5.1.14. The rationals QQ is not <yw-minimal.

Proof. We will show that there is a continuous function f: R — R such that
fYQ) is nowhere dense. By Proposition 5.1.1, Q is not Wadge-reducible to
Q). Hence f~'(Q) <w Q. Therefore, it suffices to construct such a continu-
ous function f.

Let g: [0,1] — [0, 1] be the Cantor function, i.e.,

2
9 (Z 372:11) - Z 2:11
necw

new

on the Cantor set and ¢ is constant on each open interval disjoint from the Cantor
set, in such a way that ¢ is continuous. Let A: R — R be the continuous extension
of g obtained by translation, i.e.,

h(z) =g(x —n)+n if n <z <n+1 for some integer n.

Let f = h+ /2. Then f is continuous and surjective. Since the preimage of
the irrationals of ¢ is a subset of the Cantor set, it is nowhere dense. Hence the
preimage of the irrationals of i is nowhere dense, which implies that the preimage
of the rationals of f (i.e., f~1(Q)) is nowhere dense. O

In the above proof, the set f~'(Q) is countable and satisfies the condition (T).
Hence there are two countable sets with the condition (I) such that they are not
Wadge equivalent.
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We do not know whether there is a <%,-minimal set below Q with respect to
the Wadge order.

We now discuss long ascending and descending sequences of subsets of the real
line with respect to the Wadge order. In the case of the Baire space, by Borel
determinacy proved by Martin, all the Borel sets are almost prewellordered and
the supremum of the rank of them is an ordinal between w; and w, by the work of
Wadge. Assuming AD, all the sets of reals in the Baire space are prewellordered
and the supremum of the rank of them is equal to ©, where © is the supremum
of the ordinals which are the surjective images from the reals. Under AD we can
prove that © is quite huge, e.g., it is a limit of measurable cardinals. Hence one
can construct a very long ascending sequence of sets of reals in the Baire space
with respect to the Wadge order while there is no infinite descending sequence
by Theorem 1.15.2.

By Theorem 5.1.2, it is natural (and easier) to consider long ascending and
descending sequences of sets of natural numbers with respect to Cg, when we
discuss long ascending and descending sequences of subsets of the real line with
respect to the Wadge order. Since (P(N), Cg,) and (P(N), Dgy,) are isomorphic,
it suffices to consider only ascending sequences.

Proposition 5.1.15. For any countable ordinal «, there is an ascending sequence
of sets of natural numbers with length o with respect to Cgp,.

Proof. Let o be any countable ordinal. Fix a bijection m between o x N and N
and for each £ < o, let ag = {n(§,n) | n € N}. Then {a¢ | £ < a} is a pairwise
disjoint family of infinite subsets of N. For § < a, set b = Un<g ay. Then the
sequence (be | € < ) is the desired sequence. O

Corollary 5.1.16. For any countable ordinal o, there are ascending and descend-
ing sequences of subsets of the real line with length a with respect to the Wadge
order.

Note that by Theorem 5.1.2, the above sequences consist of sets that are the
difference of two open sets. Given a countable ordinal £ > 1, by replacing half-
open intervals with proper 22 sets which are dense and co-dense in a half open
interval in the construction of i in Theorem 5.1.2, one could embed (P(N), Cgy,)
into proper 22 sets of the real line with respect to the Wadge order, where
proper X sets are 3¢ sets which are not IT sets and sets are co-dense if their
complements are dense. Hence

Corollary 5.1.17. For any countable ordinals £ > 2 and «, there are ascending
and descending sequences of proper Eg subsets of the real line with length o with
respect to the Wadge order.

We do not know whether one could construct an ascending (or descending)
sequence of subsets of the real line with length w; with respect to the Wadge order
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without using the Axiom of Choice. In the presence of the Axiom of Choice, it is
possible by the following well-known result:

Proposition 5.1.18 (AC, folklore). There is an ascending sequence of sets of
natural numbers with length w; with respect to Cg,. Moreover, if Martin’s Axiom
(MA) holds, then there is an ascending sequence of sets of natural numbers with
length continuum.

Proof. We first show the former statement. Given a Cg,-increasing sequence
{(an | n € w) of infinite and co-infinite sets of natural numbers, it is easy to find
an infinite and co-infinite set of natural numbers ¢ such that a, Cgq, a for each
n. Using this, we can recursively construct a Cgp-increasing sequence of natural
numbers with length wy.

For the second statement, by [65, Theorem 4.23], MA implies that there is a
Chu-increasing sequence of sets of natural numbers with length continuum. [

Corollary 5.1.19 (AC). Let £ be any countable ordinal with £ > 1. Then there
are ascending and decreasing sequences of proper Eg subsets of the real line with
length w; with respect to the Wadge order. Moreover if MA holds, then there
are ascending and decreasing sequences of proper 22 subsets of the real line with
length continuum with respect to the Wadge order.

Before closing this section, we come to the question whether there is a maximal
set, in 22 sets for a countable ordinal £ > 1 with respect the Wadge order. In
the case of the Baire space, any proper 22 set is maximal in 22 sets by Wadge’s
Lemma. In the case of the real line, this fails dramatically:

Proposition 5.1.20 (AC). There is a family {A, | @ < w;} of sets, each being
the difference of two open sets in the real line such that there is no subset B of
the real line such that A, <% B for every a < w;.

Proof. For each countable ordinal «, let A, be the union of a sequence of half-
open intervals with order type « (we need AC to pick up such an wi-sequence of
sequences of half-open intervals). The following is the key point:

Claim 5.1.21. If A, <% B via f, then f(A,) is the disjoint union of a-many half
open intervals inside B. Hence there is a sequence of disjoint half open intervals
inside B with length at least «.

Proof of Claim 5.1.21. We show the statement by induction on o < w;. The
case = 0 is trivial. If « is a successor ordinal and a =  + 1 for some [, then
by induction hypothesis, f(A, \ I3) is the disjoint union of S-many half open
intervals inside B, where I is the last half-open interval in A,. By arguments
like in Observation 5.1.3, f(I3) is a half open interval disjoint from f(A, \ I3).
Hence f(A,) is the disjoint union of a-many half open intervals as desired. The
« is a limit ordinal is also trivial. O
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Hence if A, g%, B for every o < wyq, then B must contain a-many half open
intervals for every a < w;. But any subset of the real line cannot contain w;-many
half open intervals. Hence there is no B such that A, gﬂ&, B for every a < wy. [0

5.2 Conclusion and Questions

Although we often identify the real line with the Baire space in set theory, contin-
uous functions are sensitive objects and give us two completely different aspects
of Wadge reducibility (i.e., continuous reduction) in the Baire space and the real
line. Tt is known that Wadge’s Lemma for the real line dramatically fails while
it holds for the Baire space. We showed that the Wadge order for the real line
is ill-founded while it is known that the Wadge order for the Baire space is well-
founded. We also investigated several properties of the Wadge order for the real
line and compare it with the one for the Baire space.
Let us finish this chapter by raising questions:

The Wadge order below the rationals Q. As we have seen, the rationals
Q is Wadge incomparable to non-trivial closed sets and open sets and Q is not
<{-minimal by Proposition 5.1.14. But we do not know how the structure of the
Wadge order below Q looks like.

Question 5.2.1. Ts there a <§,-minimal set below Q?

Long ascending and descending sequences of the Wadge order without
AC. As mentioned, we can produce ascending and descending sequences of the
Wadge order with an uncountable length assuming the Axiom of Choice. How
about without AC?

Question 5.2.2. Can we prove the existence of ascending and descending se-
quences of the Wadge order for the real line with length w; without using AC?

The Wadge order for Polish spaces. We have investigated the Wadge order
for the real line. For this analysis, the connectedness of the space was essential.
The question is how far can we generalize the above results for connected Polish
spaces. Some work by Philipp Schlicht [74] deals with related issues.



Chapter 6

Fixed-Point Logic and Product Closure

Standard first-order logic has some simple but important closure properties. First,
it is closed under relativization: Given a formula ¢ with one free variable, for
every formula ¢, there is a formula (¢)¥ which says that ¢ holds in the sub-
model consisting of all objects satisfying ). Also useful is closure under predicate
substitutions: Given unary predicate letter P and a formula @ with one free
variable, for every formula ¢, there is a formula [1)/P]¢ which says that ¢ holds
in the model that interprets P as the set of all objects satisfying ¢/ in the original
model and the rest of the interpretation is the same as the original one. Moreover,
it is closed under some kind of product construction which allows us to interpret
the rationals Q by the integers Z as a definable subset of the Cartesian product
(Z X 7).

The three mentioned properties also hold in many languages extending first-
order logic, for example LFP(FO), first-order logic with added fixed-point oper-
ators. In this chapter, we define a precise sense of ‘product closure’ in terms of
modal languages which originally comes as an extension of public announcement
in epistemic logic where we formulate logic of knowledge and information flow.
Then we investigate the product closure of modal fixed-point logics including
PDL and the modal p-calculus.

There are certain infinite games, called parity games, which serve as the game
semantics for modal fixed-point logics, and the history-free determinacy of parity
games is important for the semantics of modal fixed-point logics. The proofs of
this chapter could be reformulated in terms of parity games, but this would not
be to the benefit of the clarity of the argument, so we decided not to do it.

123
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6.1 Basic notions and background

Basic setting

We assume that readers are familiar with basics of modal logic (e.g., given in [14]).
We first fix our setting throughout this chapter. In the modal logics we are going
to work with, we have Boolean connectives (negation, disjunction, conjunction,
and implication) and modal operators ([i] and (7)) for i € I where [ is a fixed
finite set throughout this chapter (we do not use first-order quantifiers in our
modal languages). Hence Kripke models are of the form (M, {R;}icr,V) where
M is the universe of the structure, R; is an accessibility relation (i.e., a binary
relation on M) for each ¢ € I, and V is the valuation for the structure (i.e.,
V': Prop — P(M) and Prop is a fixed countable infinite set of all propositional
letters). The semantics of the propositional letters, Boolean connectives, and
modal operators for Kripke models are standard. Let us review it only for modal
operators: For i € I, a formula ¢, a Kripke model M = (M, {R;};c;,V) and a
world s € M,

M, s E [i|p <= for all ¢, if sR;t,then M, t E ¢,
M, s E (i)¢p <= for some t,sR;t and M, t F ¢.

Relativization and public announcement

Next, we introduce the relativization of a given Kripke model via a formula. For
a Kripke model M = (M, {R;}icr,V) and a formula P, consider the following
Kripke model M|P: The universe is the set of all worlds s in M with M, s £ P
(denoted by M|P), and all the relations and the valuation are the restriction of
the original ones to the new universe, i.e., for each i € I, R, = R;N(M|P x M|P)
and V'(p) = V(p) N M|P. For each formula P, we add the new modal operator
[!P] with the following semantics: Given a Kripke model M with a world s and
a formula ¢,

M, s E[|Pl¢p <= if M,s F P,then M|P, s F ¢.

The dual modal operator (!P) can be introduced in the standard way.

For a modal logic £, let £™ be the least modal logic containing £ and the
operators [! P] for each formula P in £™ (i.e., closed under the operation mapping
pairs (P, ¢) to formulas [!P]¢). A modal logic L is closed under relativization if
any formula in £ is semantically equivalent to some formula in L.

Philosophically speaking, we regard I as the set of agents and modalities [i]
as what agent ¢ knows or what is true to the best of i’s information via the
accessibility relation R;, i.e., given a formula ¢, the formula [i]¢ means “The
agent i knows ¢”. From this point of view, the formula [!P]¢ means “After the
‘event’ P happens, ¢ holds” because the new accessibility relation R; is restricted
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to the worlds in M|P where the formula P is true. Hence each agent i in I is
‘announced’ the ‘event’ P in the new model M|P. In this way, we express the
public announcement of the event P to each agent and this is why we call the
basic modal logic with operators [!P] public announcement logic.

Many modal logics are not only closed under relativization but also have sim-
ple recursive translations from formulas in the expanded languages to semantically
equivalent formulas in the original languages. For example, let the basic modal
logic be the smallest modal logic in the setting we have fixed at the beginning (i.e.,
it has Boolean connectives, modal operators [i], (i) for i € I, and propositional
letters in Prop). Then the following equivalences (so-called reduction azioms)
give us the translation witnessing its closure under relativization:

[\Plp <+ P —p for propositional letter p,
[LP]=¢ P — [Pl

YRS
PloAy) <« [IPloA[IP]Y,
[\Pllilp <« P —[i](P — ['P]®).

Is this always the case? No. For example, let us add the following modal
operators Cg for G C I to the basic modal logic expressing common knowledge
(e.g., everyone knows that everyone knows that, and so on...). Formally, for any
formula ¢ and Kripke model M = (M, {R;}icr, V') with world s,

M, s FE Cg¢p <= for all worlds ¢ reachable from s by some finite

sequence of U R; steps, M, t E ¢.
ie@

This amounts to adding an operator of reflerive-transitive closure over the union
of all individual accessibility relations. This infinitary operation takes us from
the basic modal language into a fragment of so-called propositional dynamic logic
(PDL) that we will define later. It can be shown that this fragment does not have
the relativization property: Indeed, the formula [!p]Cq is not definable without
modalities [!p]. Van Benthem, van Eijck and Kooi [11] proved this undefinabil-
ity and go on to propose richer epistemic languages, using richer fragments of
PDL which do have relativization closure, using so-called ‘conditional common
knowledge’ C (¢, 1) which says that ¢ is true in every world reachable with steps
staying inside the ¢)-worlds.

Event models and product update

In public announcement [!P], all the agents obtain the same amount of informa-
tion, namely P. In real-life scenarios, different agents often have different powers
of observation. Product update was introduced to model these situations. We
work with event models
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E= (EJ {R’i}’iGIJ PRE))

where F is a finite set of “events”, R; is an accessibility relation on F for the
agent ¢ (hence R; C E'x E), and PRE is a precondition function that maps events
e € E to precondition formulas PRE, (i.e., formulas in a given modal logic) which
must hold in order for the event to occur. For a formula P, the basic event model
Ep is as follows: It has only one event ey and R; = {(eg,€9)} and PRE,, = P.
This event model will play the same role as the operator [!P] does.

Given an event model E = (F,{R;};cr, PRE), “product update” turns a
Kripke model M into another Kripke model M x E as follows: The universe
of M x E (we write |[M x E|) is the set of all pairs (s,e) in M x E such
that (M, s) F PRE,, the new accessibility relation satisfies (s, e)R;(¢t, f) if both
sR;t and eR;f for each ©+ € I, and the new valuation is the same as M, i.e.,
V(p) =A{(s,e) € M x E||s € V(p)} for each p in PROP. Note that if E is Ep
for some formula P, then M x Ep is naturally isomorphic to M|P.

The product model M x E with a world (s, e) records the information of differ-
ent agents after some event e has taken place in the epistemic setting represented
by E. The uncertainty among new worlds (s,e), (¢, f) can only come from old
uncertainty among s, t via indistinguishable events a, b.

Given an event model E with an event e, we introduce the modal operator
[E, e] as follows: For a formula ¢ and Kripke model M with world s,

M, s E [E,e]¢p < if M, sk PRE,, then M x E, (s,¢) E ¢.

The dual modal operator (E, ¢) can be introduced in the standard way. It is easy
to see that if E is Ep for some formula P, then the modal operator [Ep,eg| is
really the same as [!P].

We now introduce the product update closure of modal logics. For a modal
logic L, let LP be the least modal logic containing £ and the operators [E, e] for
each event model E with an event e whose precondition function maps events to
formulas in £P. A modal logic L is closed under product update if any formula in
LP is semantically equivalent to a formula in L.

As is expected, the basic modal logic is closed under product update by the
following equivalences:

[E,e]p < PRE.—p for propositional letter p,
[E,e]~¢ <+ PRE, — —[E,¢€|o,
[E,el(ond) < [EclpN[E, ]y,
[E.ellil¢ <« PRE.— /N [I[E fl¢.
eR;f IN B

This is due to Baltag, Moss and Solecki [8].
But again, the situation gets more complicated when we add common knowl-
edge operators C¢ for G C I. In this case, no reduction to the language without
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[E, e] modalities is possible. This problem can be solved by moving to proposi-
tional dynamic logic (PDL) which allows more modalities [7] than just the basic
modalities [i] for © € I. The set of such 7s (called programs in the context of
PDL) is the smallest set satisfying the following: It contains i for all i € I and
the tests 7¢ for each formula ¢ in the language, and is closed under the opera-
tions “unions” m; U my, “compositions” m;me and “Kleene iterations” 7*. More
precisely, in the language of PDL, the set of formulas ¢ and the set of programs
7 are simultaneously and recursively defined in the following way:

¢ ==p (p € PROP) [ =¢[oN¢[oVe|[r]¢]|(me,
=i (Gel)|?¢|rUn | mn | 7"

Semantics of formulas in PDL are given by assigning the relations R, on the
universe of a given Kripke model to each program 7 given the relations R; for each
i € I and interpreting [7]¢ and (7)¢ in exactly the same way as for formulas [7]¢
and (i)¢ with using R, instead of R;. Given a Kripke model M = (M, {R;}icr, V),
the relations R, are recursively defined as follows:

R7¢ = {(Sa S) | (Ma S) = ¢}a

R7T1U7T2 = R7r1 U Rﬂ'z)

Reymy, = {(5,t) | Gu € M) (s,u) € Ry, and (u,t) € R, },
Rﬂ'* = R:—a

where R is the reflexive and transitive closure of R;.

Theorem 6.1.1 (Van Benthem and Kooi [13]). The modal logic PDL is closed
under product update.

The product update closure of PDL was first proved by van Benthem and
Kooi [13] using finite automata to serve as “controllers” restricting state sequences
in product models M xXE. The second proof of this fact was given by van Benthem,
van Eijck and Kooi [11] where they use Kleene’s Theorem for regular languages
connecting the theory of finite automata with PDL. The third proof, which we
present here, is given by van Benthem and the author [12] where they regard PDL
as a weak fragment of the modal p-calculus (which we define in the next section).
In this chapter, we strengthen the last point of view: We give a uniform proof
of the product update closure for three fixed-point logics: The modal p-calculus,
PDL and the continuous fragment of the modal p-calculus (CF). We first give the
proof for the modal p-calculus as a proto-type and then apply the same argument
for the other two logics using Venema’s characterization of PDL as a fragment of
the modal p-calculus.
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6.2 The case for the modal p-calculus

In this section, we introduce the modal p-calculus and prove its product update
closure. In the syntax of the modal p-calculus, we add two fixed-point operators
i and v to the basic modal logic which denote the “least fixed-point” and the
“largest fixed-point” respectively. More precisely, the set of formulas in the modal
p-calculus is recursively defined as follows:

¢u=p (p€PROP) | ¢ | dA¢|(i)¢| pr.d(x),

where any occurrence of the variable z (which is formally an element of PROP) is
positive in ¢(x), if the number of negation symbols binding the occurrence is even.
(We say it is negative if the number is odd.) As is usual, one can define ¢ V ¢ to
be =(=¢ A —1)), [i]¢ to be =(i)—¢, and vz.¢(x) to be mpux.~p(—x) respectively.

Formulas ¢(x) with only positive occurrences of the proposition letter x define
a monotonic set transformation from P(M) to itself in any Kripke model M:

FYN(X)={se M| (M[z := X],s) F ¢},

where the model M[z := X] is obtained by replacing V' (z) with X and giving the
same structure for the rest as M, i.e., the universe of M[z := X]is M, R?/H‘T::X} =
RM, VM==X](p) = X if p = x, and otherwise VM==X](p) = VM(p). Note that
the map F}* is monotone in the sense that X C Y implies that F}*(X) C F}*(Y).

The formula pz.¢(x) defines the smallest fixed-point of this transformation
and vr.¢(z) defines the greatest fixed-point of FM, i.e., the subsets X, Y of M
such that F}*(X) = X, F}'(Y) =Y and X is the smallest set with this property
and Y is the largest set with this property respectively. Both exist for monotone
maps by the Tarski-Knaster theorem (for the proof, see, e.g., the Handbook article
by Bradfield and Stirling [18]). This means that the semantics of ux.¢(x) is given
as follows: (M, s) & px.¢(x) if s is in the least fixed-point of the operator F}".
The semantics of vz.¢(x) is defined in the same way with the greatest fixed-
point of the operator 117(},\/I For convenience, we assume that each occurrence of a
fixed-point operator binds a unique proposition letter.

Now we are ready to prove the product update closure for the modal u-
calculus.

Theorem 6.2.1. The modal p-calculus is closed under product update.

Proof. We prove the statement by induction on the complexity of formulas. We
only consider the least fixed-point case pz.¢(x) because the greatest fixed-point
case can be reduced to the ones for the negation and for the least fixed-point and
other cases have been dealt for the basic modal logic in the last section.

Our main task is to analyze fixed-point computations in product models M x
E in terms of similar computations in the original model M. The following
idea turns out to work here. Let X be a subset of M x E. Modulo the event
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preconditions possibly ruling out some pairs, we can describe X, without loss of
information, in terms of the sequence of its projections to the events in E, viewed
as a finite set of indices. Thus, we can describe the computation in M x E by
means of a finite set of computations in M. The following set of definitions and
observations makes this precise.

Take any Kripke model M and any event model E. Let n be the number of
elements of E and let E = {e;}i<j<,. There are canonical mappings 7: P(M)" —
P(IM x E|) and ¢: P(IM x E|) — P(M)™ with 7o = id:

m(X)= |J (X;x {e;}) n(IM x E|),

1<j<n

uY) = {Y; hi<j<n,

where V; = {z € M | (z,e;) € Y}.

Given a positive formula ¢(z) in the modal p-calculus, let F)™®: P(|M x E|)
— P(]MxE|) be the monotone function induced by ¢(z). Define F*(*): P(M)" —
P(M)" as follows:

Fo@) — LOF;)VIXEOW.

We claim that Fdl)VIXE is monotone if and only if F¢*) is monotone. Sup-
pose F;V[XE is monotone. Since 7, are monotone and compositions of monotone

functions are monotone, F?®) is also monotone. To prove the converse, suppose
F?@ is monotone. Pick any X,Y € P(]M x E|) with X C Y. First note that
Fy™B(X) € F™®(Y) holds if and only if t o F)®(X) C 1o F)™®(Y) holds.
Hence all we have to check is 1 o FyXE(X) CLo FyXE(Y). But

LOFQI?/IXE(X) = LOF;)VIXE(WOL(X)) = LOFQID/IXEOW(L(X))
= F?9D (X)) C FPD((Y)) =10 F;V[XE om(u(Y))
=10 F;)\AXE(W ou(Y)) =10 F;)\AXE(Y),

where the above inclusion follows from the monotonicity of F?®) and ..
Moreover, there is a further canonical correspondence: if X is an F9@)_fixed-
point, then 71'()?) is an Fé\/IXE—ﬁxed—point, and if Y is an F;}AXE—ﬁxed—point, then
(Y) is an F?®)_fixed-point. Since m and ¢ preserve inclusions, the least F¢(®)-
fixed-point corresponds to the least Fé\&XE—ﬁxed—point in the following way: If X
is the least F?(®)_fixed-point, then ﬂ()?) is the least Fé\dXE—ﬁxed—point. Also if Y

is the least Fdl)VIXE—ﬁxed—point, then L(?) is the least Fdl)VIXE—ﬁxed—point.
Remark 6.2.2 (Relating fixed-point computations in different models). The ar-

gument above may be seen as a special case of the following “Transfer Lemma”:
Given two complete lattices E and F', a function f: £ — F and an ordinal 3, f is
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called [3-sup-continuous (resp., B-inf-continuous) if for any nondecreasing (resp.,
nonincreasing) sequence (x, | a < ) of elements of E,

V f{zala<pl)=f (\/{fva |a < 5}>

(resp., Ap f({za | @ <B}) = F (Ap{za | a < B}).

Lemma 6.2.3 (Transfer Lemma). Let F and F be two complete lattices. Let
f: F — F be a mapping that is f-inf-continuous and S-sup-continuous for any
ordinal § and such that f(Lg) = Lr and f(Tg) = Tp.

Let g: E — FE and h: F — F be two monotonic mappings such that fog =
ho f. Let a and b be the least and the greatest fixed points of ¢ and let o' and
b' be the least and the greatest fixed points of h. Then o' = f(a) and b' = f(b).

Proof. See [3, Lemma 1.2.15]. O

This lemma only uses our ¢ function, while we added the function 7 for clarity,
to restrict an input to the inverse image of « — which is why the equation 7o, = id
holds. For further background on this kind of argument, cf. [17].

So far, we have seen that the least FyXE—ﬁxed—point can be correlated with

the least F®)_fixed-point via 7 and 1. Our next task is to show that [E, ] uz.¢(z)
is actually definable in the modal p-calculus. For that purpose, first note that
[E, e;] px.¢(z) defines the jth coordinate of the least Fé\/IXE—ﬁxed—point. By the
definition of ¢, it is also the jth coordinate of the least F®®)-fixed-point. It is
easy to see that the modal p-calculus is closed under simultaneous fixed-point
operators by using the following lemma repeatedly:

Lemma 6.2.4 (Gauss elimination principle). Let E, F' be complete lattices and
f1, fo be monotone operators from E x F' to itself. Let p denote the least fixed
point, v denote the greatest fixed point and 6 be pu or v. Let ¢;: FF — F be
such that ¢(y) = 0z.fi(z,y) and let (a,b) = 6(z,y).(fi(z,y), fo(z,y)). Then
b=0y.f>(g1(y),y) and a = g1(b).

Proof. See [3, Proposition 1.4.7]. O

Hence if we can express F?®) by a formula of the modal p-calculus with
positive variables, then [E, ;] pz.¢(z) is definable in the modal p-calculus and
we are done.

To prove this, we generalize the syntactic analysis to formulas with many
variables ¥ = z1,...,z,. For any formula ¢(¥) in the modal p-calculus, define
F;)\(/%E P(IM x E[)™ — P(]M x EJ) as follows:

F)R(Y) = {(s,0) | (M x E)[ay := Yi], (s, 0)) F $(2)},

where Y € (M x E|)™.
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Claim 6.2.5. For any formula ¢(Z) in the modal u-calculus, there are formulas
G (7) such that F¥@ = FM and

x) For an <k <m,ifa e occurrences of xj in ¢ are positive (resp.,

For any 1 < k < m, if all th £y i iti
negative), then for each 1 < j, 5/ < n, all the occurrences of yj ; in (¢4); are
positive (resp., negative),

where F9@: P(M)™™ — P(M)™ is defined as follows:

FOD () = L(F;;(/%(E((W(Xl,la X))y T (X ,Xm,n)))-

Proof of Claim 6.2.5. In the following definitions, we only display the essential
argument variables needed to understand the function values. We prove the
statement by induction on the complexity of ¢. We identify formulas with their
truth sets. Also, if 1; is a sequence of formulas, 9; is the jth coordinate of J

e Case 1: ¢ =p (p is not in ¢).

F?® = (p APRE,,,...,p APRE,,).

Hence (14(z)); = p A PRE,,. It is easy to check ().
e Case 2: ¢ = xy (wy, is the kth coordinate of 7).

FP@(X) = { Xy, APRE,, }1<jcn-

Hence (Yg); = yr; A PRE.;, where y; ; is the jth variable in the kth block
corresponding to z. It is also easy to check (x).
e Case 3: ¢ = ¢1 A ¢o.

o) — %1 /\wdn-

Hence Jd)(f) = J¢1 A J@. It is easy to check (x).
e Case 4: ¢p = —¢'.

Hence (Ygz); = —(¢); A PREg;. It is easy to check (x) by our inductive
hypothesis, and the simultaneous definition for positive and negative occurrences.
e Case 5: ¢ = (i)¢'.
Forany 1 <j <nand s e M,

s€ (FP9(X)),
(1<3'<n) (FteM) (sRit/\ ejRiey At € (F¥@ (X)) )

jl



132 Chapter 6. Fized-Point Logic and Product Closure

—

To see that this is true, observe that the condition ¢ € (F?¢@ (X))j, implies

(t,e;7) € [M x E| because t must be the j'th coordinate of an image of + by the
definition of F¢ @, Therefore, we can put

(Wo@); = V 0 Wo@) ;-

e; Riej/

e Case 6: ¢ = px'.¢, where all the occurrences of x’ are positive in ¢'.

pa' ¢/ (')

F‘i’(f)()Z') :{(FMXE ((W(Xu, - ,X1,n), - ,W(Xm,h ce aXm,n)))

j}1<j<n

{<(xl — ng/{:']?f) (T(Xiy o X)X, ’Xm’n))> ) }
) i) 1<j<n

J

=(X' Fé\:, (X7, X))

%

where (F'(-)). is the least F-fixed-point. In the above equations, the first equality
is by the definition of F*@ | the second is by the definition of Fx,_xf(x,’f), and the
third follows from the induction hypothesis and the fact that the simultaneous
fixed points are invariant under the order of applications of single fixed points.

By the induction hypothesis, all the occurrences of y; are positive in (¢ Q;,)j, for

any 1 < j,j" < n, where gj’ corresponds to x’. Since the modal p-calculus is closed
under simultaneous fixed-point operators, we can put '(;¢(f) = ,uf’ .zﬁd)/ (&), which
is also in the modal p-calculus. Since p-operators do not change the positivity
(negativity) of variables not bounded by them, (x) also holds in this case. O

0

The proof of the last case explains why we needed to ‘blow-up’ in the number
of variables in Claim 6.2.5. Also, we proved the claim for arbitrary formulas (not
only for positive ones) because otherwise we cannot use the induction hypothesis
in Case 4 (if a variable is positive in ¢, then it must be negative in ¢').

As in the case for the basic modal logic, we also have a recursive translation
for [E, ejluz.¢(z) by taking the jth coordinate of the simultaneous fixed-point

—

expression [i3/.¢g(. Since our proof is effective, we can effectively compute the
shape of the translation (or the reduction axiom).

6.3 The case for PDL

In this section, we prove that PDL is also closed under product update using
Venema’s characterization of PDL as a fragment of the modal p-calculus. Let us
first see this characterization.
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Given a finite subset P of PROP, we define the completely additive fragment
with respect to P (denoted by PDL/(P)) as follows:

pu=pPEP)|VIVAG| OV S| (i) | pz.¢'(x),

where 1) belongs to the P-free fragment of the modal p-calculus (i.e., none of the
variables in P has a free occurrence in v), and ¢’ € PDL/(X U {z}) and z is not
in P. (Hence, to be rigorous, the logics PDL/(P) (P € PROP and P is finite)
are simultaneously recursively defined with the above rules).

We define PDL’ to be the fragment of the modal p-calculus where the use of
the least fixed-point operator is restricted to the completely additive fragment.
Formally,

¢ :=p (p € PROP) [ ¢ | oV @[ (i) | pw.ip(z),
where ¢y € PDL' N PDL/({x}).

Theorem 6.3.1 (Venema [85]). The modal logic PDL is effectively equivalent to
the fragment PDL/, i.e., there is an effective translation from formulas in PDL to
ones in PDL’ such that it preserves the truth values of the formulas in any Kripke
model and vice versa.

With the help of this theorem, we can apply the same argument for the product
update closure of PDL. As mentioned in the last paragraph of § 6.1, Theorem 6.1.1
is due to van Benthem and Kooi [13] and is not new. We will give a new proof of
this known result.

Proof of Theorem 6.1.1. We will show that the fragment PDL' is closed under
product update instead of PDL itself. The proof is basically the same as the case
for the modal p-calculus. We show the statement by induction on the complexity
of formulas. As before, we only consider the fixed-point case. From now on, we
fix the event model E.

In the proof for the case of the modal p-calculus, one of the points was the
closure under simultaneous fixed-point operators. Here is the corresponding fact
in the case for the fragment PDL’, which is easy to check:

Remark 6.3.2. Let X, {y1,...,y,} be disjoint finite subsets of PROP. Then if
G1(Y1y - Yn)y oy Ou(YL, - -+, Yn) are in PDL'NPDL (X U{yy, ...,y }), then each
coordinate of the following formula is in PDL' N PDL/(X):

n d)l(yla"'ayn)

Y2 d)Q(yQa .. 7yn)
pl e -

Yn ¢n(y177yn)



134 Chapter 6. Fized-Point Logic and Product Closure

By the same argument as in the case for the modal p-calculus, if we can
express F%@ by formulas in PDL' N PDL/(zy,...,,) for some fresh variables
Ti,..., T, for any formula ¢(q) in PDL'NPDL/({q}), we are done. The following
claim with the above remark is enough for that:

Claim 6.3.3. Let ¢(¢) be a formula in PDL' N PDL/(¢) where ¢'is a sequence of
variables (possibly not in ¢) with length m and every variable in ¢ does not occur
in any precondition formula in E. Take fresh variables z; ; (1 <k <m,1 < j <n)
which do not appear in any precondition formula in E or in ¢ or in ¢. Then
there is a sequence w;@ of formulas in PDL' N PDL/(#) with length n such that
Fod) = F%(d) for any Kripke model M and
q
(xx) for a natural number k£ with 1 < k < m, if there is a j such that z; ; is free
in the jth coordinate of @@, then ¢ is also free in ¢(q).

Proof of Claim 6.3.3. In the following definitions, we only display the essential
argument variables needed to understand the function values. We prove the
statement by induction on the complexity of ¢, following the rules in PDL'. We
identify formulas with their truth sets. Also, if 1; is a sequence of formulas, 1); is
the jth coordinate of 1/7

e Case 1: ¢ =p (p is not in §).

F*D = (p APRE,,,...,p APRE,,).

Hence (Yy(7)); = pPAPRE,;. Then this is in PDL'. Since each z;; does not appear
in any precondition formula in E, (1(z)); is also in PDL/(Z). Since each zy, ; does
not appear in the formula p A PRE,,, the condition (xx) is immediate.

e Case 2: ¢ = qi (qx is the kth coordinate of §).

Hence (vg(g); = 7k,j A PREc;, where x; is the jth variable in the kth block
corresponding to g,. By the same reasoning as in Case 1, PRE,; is in PDL' N
PDL/(#) and hence x;; A PRE,, is also in PDL' N PDL/(Z). It is easy to check

e Case 3: ¢ = —¢'.

Hence (vYy(s)); = —(¥¢); A PRE,, and this is in PDL". Note that in this case,
any free variable in ¢’ is not in ¢ (otherwise ¢ would not belong to PDL/(¢)). By
the induction hypothesis, the condition (xx) is true for 1/7¢:. Hence there is no
free variable in (14 ); which is of the form =z ; and the formula = (¢4 ); is also in
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PDL/(#) and so —(¢y); A PRE,, is in PDL' N PDL/(Z) as desired. It is easy to
check the condition (xx).
e Case 4: ¢ = @1 V ¢o.

F¢(¢7)(X") = 77/7¢1 vV J(ﬁz'

Hence 1yg = g, V Py, and this is in PDL/ N PDL/() and (+#) is immediately
true for this formula.

e Case 5: ¢ = (i)¢'.

Forany 1 <j <nandse M,

se (FPO(X)), «=
(1< 3 <n) (3@t eM) (sRit AejRiey At € (FO@(X)) )

J

To see that this is true, observe that the condition t € (F%(@ ()?))J, implies
(t,e;r) € IM x E|. Therefore, we can put

Wo@); = V @ Wo@)

ejRiej/

which is in PDL' N PDL/(Z) and it is easy to check (xx).

e Case 6: ¢ = uq'.¢'.

We may assume that ¢’ is not in any formulas we are concerned except ¢ and
@' and ¢ is free in ¢'. Since ¢ is in PDL'NPDL/(q), ¢’ is in PDL'NPDL'(¢U{¢'}).

F¢(®(X) :{ (Fli\$?<¢];ﬂ_’(ql,q)((7r(X1,la e 7X1,n)7 e aﬂ-(Xm,la e aXm,n))>

j}lﬁjﬁn

:{ <(ql — F;\’/qu’fi) (W(Xl,la o 7X1,n)7 o 77T(Xm,17 o JXm,n))>*> }
i) 1<j<n

where (F(+)), is the least F-fixed-point.
By Remark 6.3.2, we can put ¢y = p§.¢s (), which is in PDL' N PDL'(),

where ¢/ are variables corresponding to Y in the above equations, . It is easy to
check (xx). O

O

6.4 The case for CF

One of the special properties of formulas in PDL (or PDL') is that when it gives
the least-fixed point of a monotone operator (i.e., ux.¢(x) € PDL’ for some ¢(x)),
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we can compute the least fixed-point of the operator by applying it w many times
from () (or L). This is based on the fact that the only fixed-point operator in PDL
is the star operation i.e., 7 — 7* and this corresponds to the complete additivity
of the formulas to which we can apply fixed-point operators in PDL' as we have
seen in the last section. If we look at the property of the star operation in PDL,
we will reach the notion of continuity of the monotone operators: A function
F:P(X) — P(X) is continuous if the value F'(A) is covered by F(C')s for C' C A
which is finite for any A € P(X), i.e.,

F(A)=|J{F(C)| C C Aand Ais finite}.

This is equivalent to saying that F'is Scott continuous, i.e., F' is continuous if we
endow (P(X), C) with the Scott topology where open sets are subsets U of P(X)
which are upward closed (i.e., if A € U, A C B, then B € U) and intersect with
every directed subset D of P(X) with |JD € U (a subset D of P(X) is directed if
for any two elements A, B of D there is an element C' of D such that A, B C ().
Note that if F'is continuous, then F'is monotone.

Given a propositional letter z, a formula ¢(z) in modal logic is continuous
in x if the operator F}*: P(M) — P(M) induced by ¢(z) is continuous for any
Kripke model M. It is routine to check that every formula ¢(x) in PDL/({z}) is
continuous in x. Also every monotone operator induced by a continuous formula
gives us the least fixed-point within w steps.

Fontaine [26] syntactically characterized continuous formulas in the modal p-
calculus with the continuous fragment of the modal p-calculus with respect to a
finite subset P of PROP (denoted by CF(P)). The formulas in CF(P) are defined
as follows:

pu=pPEP)|V|dVI|dNG]|(i)p | pa.p(x),

where 1 is any formula in the modal p-calculus without any free variable in P
and p(x) is a formula in CF(P U {z}) and z is not in P. Fontaine proved that a
formula in the modal p-calculus is continuous in p if and only if it is equivalent
to a formula in CF({p}).

We will define the continuous fragment CF of the modal p-calculus in the
same way as PDL’ and will prove its product update closure. Formulas in CF are
defined as follows:

¢==p (pe€PROP) | ¢ |dVo|(i)o|pxi(x),

where ¢ € CE N CF({z}).

It is easy to see that PDL (or PDL') is a fragment of CF and this inclusion
is strict: The formula ¢ = px.({(i)(p A z) A (i)(q A z)) is in CF but not in PDL.
This is due to van Benthem [10].

Theorem 6.4.1. The modal logic CF is closed under product update.
Proof. The argument is exactly the same as the case for PDL (or PDL'). O



D. Ikegami, Games in Set Theory and Logic 137

6.5 Conclusion and questions

We introduced the product construction of Kripke models with event models
generalizing the idea of public announcement in epistemic logic and proved that
three modal logics are closed under product update using the fixed-point theory.
There could be several ways to extend this work which we will list below:

Connections with automata theory. In many fixed-point logics, there is
a one-to-one effective translation from formulas to ‘equivalent’ some kinds of
automata (cf. [84]). By using this translation, it is possible to prove the product
update closure of the modal p-calculus in terms of automata. But so far the
argument is nothing but the combination of the translation and our argument
which is more complicated than the proof in this chapter. We wonder if there is a
natural (and elegant) argument for the product update closure starting from an
automaton and translating it to another automaton expressing the formula after
the update. This would give us more intuitive idea about what is going on when
we update a current Kripke model with an event model.

The product update closure for a general fixed-point logic. Modal fixed-
point logics fit with coalgebras and our work can be coalgebraically expressed with
a functor which is essentially the same as the power set functor on the category of
sets. There is a general framework of developing modal fixed-point logic via coal-
gebras so-called “coalgebraic logic” (cf. [84]). It would be interesting if we could
prove the product update closure for a general fixed-point logic which is coalge-
braically defined. The first step would be to formulate the product construction
we gave in terms of coalgebras.

General closure properties of a general fixed-point logic. If one could
formulate the product construction in terms of coalgebras, it would probably be
some functor from the category of F-coalgebras to itself where F' is the functor
for the given coalgebraic logic. If this is the case, one could extract the properties
of the functor and of F' that we need to prove the product closure. This would
give us the possibility of exploring the closure of general operations in a general
coalgebraic logic.
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Samenvatting

In dit proefschrift bekijken we verschillende soorten oneindige spelen en aanver-
wante onderwerpen in de verzamelingenleer en de wiskundige logica. Hoofdstuk
1 is gewijd aan de algemene inleiding en technische achtergrondinformatie. Het
vervolg is als volgt opgezet:

Hoofdstuk 2: Het is bekend dat de Baire-eigenschap een zogeheten requ-
lariteitsergenschap is van verzamelingen reéle getallen, en dat deze eigenschap
gekarakteriseerd kan worden door middel van Banach-Mazur-spelen. Wij karak-
teriseren vrijwel alle bekende regulariteitseigenschappen van verzamelingen reéle
getallen via de Baire-eigenschap van bepaalde topologische ruimtes en we ge-
bruiken Banach-Mazur-spelen om de algemene equivalentiestellingen aangaande
requlariteitseigenschappen, absoluutheid van forcing en transcendentie-eigenschappen
over bepaalde canonieke binnenmodellen te bewijzen. Met behulp van deze equiv-
alentieresultaten beantwoorden we een aantal open vragen uit de verzamelingen-
leer van reéle getallen.

Hoofdstuk 3: We bespreken het verband tussen Gale-Stewart-spelen en
Blackwell-spelen. De eerste zijn oneindige spelen met volledige informatie en
komen uit de verzamelingenleer, de tweede zijn oneindige spelen met onvolledigde
informatie en komen uit de speltheorie. Het al dan niet gedetermineerd zijn van
Gale-Stewart-spelen is een belangrijk onderwerp in de verzamelingenleer en we
kunnen ons evengoed over het gedetermineerd zijn van Blackwell-spelen buigen.
We vergelijken het Gedetermineerdheidsaxioma voor reéle getallen (ADg) met het
Blackwell-Gedetermineerdheidsaxioma voor reéle getallen (Bl-ADg). We laten
zien dat de consistentiekracht van Bl-ADg strikt groter is dan die van het Gede-
termineerdheidsaxioma (AD) in §3.1. In §3.2, laten we zien dat BI-ADg vrijwel
alle bekende regulariteitseigenschappen van impliceert voor alle verzamelingen
reéle getallen . In §3.3, bespreken we de mogelijkheid dat ADg en BI-ADg
equivalent zijn onder Zermelo-Fraenkel verzamelingenleer verrijkt met het Ax-
ioma van Afhankelijke Keuze (ZF+DC). In §3.4, bespreken we de mogelijkheid
van equiconsistentie van ADr en BI-ADg.
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Hoofdstuk 4: We bestuderen het verband tussen het gedetermineerd zijn
van Gale-Stewart-spelen en grote kardinaalgetallen. Iteratiebomen zijn belang-
rijke objecten bij het bewijzen het gedetermineerd zijn van Gale-Stewart-spelen
uitgaande van grote kardinaalgetallen, en alternerende ketens van lengte w zijn de
belangrijkste iteratiebomen die te maken hebben met het gedetermineerd zijn van
Gale-Stewart-spelen. We onderzoeken de bovengrenzen van de consistentiekracht
van het bestaan van alternerende ketens met lengte w.

Hoofdstuk 5: Wadge-reduceerbaarheid is een manier om de complexiteit
van deelverzamelingen van een topologische ruimte te meten via de continue re-
ductie van een deelverzameling van een topologische ruimte naar een andere in
de beschrijvende verzamelingenleer. Wadge-reduceerbaarheid correspondeert met
many-one-reduceerbaarheid in recursietheorie. Met behulp van de karakterisering
van Wadge-reduceerbaarheid voor de Baire-ruimte door middel van Wadge-spelen
kan de elegante theorie van de Wadge-reduceerbaarheid voor de Baire-ruimte ont-
wikkeld worden (denk aan bijna-lineariteit, welgefundeerdheid), als we het gede-
termineerdheidsaxioma (AD) aannemen. We bestuderen Wadge-reduceerbaarheid
voor de reéle rechte, welke niet op een soortgelijke manier gekarakteriseerd kan
worden door middel van oneindige spelen. We laten zien dat het Wadge Lemma
niet opgaat voor de reéle rechte en dat de Wadge-ordening voor de reéle rechte
niet welgefundeerd is, en we onderzoeken andere eigenschappen van de Wadge-
ordening voor de reéle rechte.

Hoofdstuk 6: Modale dekpuntslogica’s zijn modale logica’s met dekpunts-
operatoren, welke meerdere wenselijke eigenschappen gemeen hebben met eerste
orde-logica. We definiéren een productconstructie van een gebeurtenismodel en
een Kripke-model, en we bespreken het gesloten zijn onder het nemen an pro-
ducten van modale dekpuntslogica’s. We laten zien dat PDL, de modale pu-
calculus en een fragment van de modale pu-calculus gesloten zijn onder het nemen
an producten.



Abstract

In this dissertation, we discuss several types of infinite games and related top-
ics in set theory and mathematical logic. Chapter 1 is devoted to the general
introduction and preliminaries. The rest is organized as follows:

Chapter 2: It is known that the Baire property is one of the nice properties
for sets of reals called reqularity properties and that it can be characterized by
Banach-Mazur games. We characterize almost all the known reqularity proper-
ties for sets of reals via the Baire property for some topological spaces and use
Banach-Mazur games to prove the general equivalence theorems between regular-
ity properties, forcing absoluteness, and the transcendence properties over some
canonical inner models. With the help of these equivalence results, we answer
some open questions from set theory of the reals.

Chapter 3: We discuss the connection between Gale-Stewart games and
Blackwell games where the former are infinite games with perfect information
coming from set theory and the latter are infinite games with imperfect informa-
tion coming from game theory. The determinacy of Gale-Stewart games has been
one of the main topics in set theory and one could also consider the determinacy
of Blackwell games. We compare the Axiom of Real Determinacy (ADg) and the
Axiom of Real Blackwell Determinacy (Bl-ADg). We show that the consistency
strength of Bl-ADg is strictly greater than that of the Axiom of Determinacy
(AD) in § 3.1 and that BI-ADg implies almost all the known regularity properties
for every set of reals in §3.2. In §3.3, we discuss the possibility of the equiva-
lence between ADg and Bl-ADg under the Zermelo-Fraenkel set theory with the
Axiom of Dependent Choice (ZF+DC). In §3.4, we discuss the possibility of the
equiconsistency between ADgr and Bl-ADg.

Chapter 4: We work on the connection between the determinacy of Gale-
Stewart games and large cardinals. Iteration trees are important objects to
prove the determinacy of Gale-Stewart games from large cardinals and alternating
chains with length w are the most fundamental iteration trees connected to the
determinacy of Gale-Stewart games. We investigate the the upper bound of the
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consistency strength of the existence of alternating chains with length w.

Chapter 5: Wadge reducibility measures the complexity of subsets of topo-
logical spaces via the continuous reduction of a subset of a topological space to
another one in descriptive set theory corresponding to many-one reducibility in
recursion theory. With the help of the characterization of the Wadge reducibil-
ity for the Baire space in terms of Wadge games, one can develop the beautiful
theory of the Wadge reducibility for the Baire space (e.g., almost linearity, well-
foundedness) assuming the Axiom of Determinacy (AD). We study the Wadge
reducibility for the real line which cannot be characterized by infinite games in a
similar way. We show that the Wadge Lemma for the real line fails and that the
Wadge order for the real line is illfounded and investigate more properties of the
Wadge order for the real line.

Chapter 6: Modal fized point logics are modal logics with fixed point oper-
ators and they enjoy several nice properties as first-order logic has. We define a
product construction of an event model and a Kripke model and discuss the prod-
uct closure of modal fixed point logics. We show that PDL, the modal p-calculus,
and a fragment of the modal p-calculus are product closed.
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