
Games in Set Theory and Logi


Daisuke Ikegami





Games in Set Theory and Logi




ILLC Dissertation Series DS-2010-04

For further information about ILLC-publi
ations, please 
onta
tInstitute for Logi
, Language and ComputationUniversiteit van AmsterdamS
ien
e Park 9041098 XH Amsterdamphone: +31-20-525 6051fax: +31-20-525 5206e-mail: ill
�uva.nlhomepage: http://www.ill
.uva.nl/



Games in Set Theory and Logi


A
ademis
h Proefs
hriftter verkrijging van de graad van do
toraan de Universiteit van Amsterdamop gezag van de Re
tor Magni�
usprof. dr. D.C. van den Boomten overstaan van een door het 
ollege voor promotiesingestelde 
ommissie,in het openbaar te verdedigen in de Aula der Universiteitop dinsdag 1 juni 2010, te 11.00 uurdoorDaisuke Ikegamigeboren te Tokio, Japan.



Promotie
ommissie:Promotores:Prof. dr. B. L�oweProf. dr. J. V�a�an�anenCo-promotor:Prof. dr. R.-D. S
hindlerOverige leden:Prof. dr. J. BagariaProf. dr. J.F.A.K. van BenthemProf. dr. J. BrendleDr. Y. VenemaFa
ulteit der Natuurwetens
happen, Wiskunde en Informati
a

The investigations were supported by a GLoRiClass fellowship funded by theEuropean Commission (Early Stage Resear
h Training Mono-Host FellowshipMEST-CT-2005-020841).
Copyright 

 2010 by Daisuke IkegamiBa
k 
over design on two mi
e with sumo �ghting, 

 by Masako Nishimura�A
ornVillage.Used by permission.Printed and bound by Ipskamp Drukkers.ISBN: 90{5776{208{6



To My Father and My Mother,who have been proud of me and ashamed of me sin
e my birth.

v





Contents
A
knowledgments ix1 Introdu
tion 11.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Choi
e prin
iples . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4 General topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5 Borel sets, proje
tive sets, and de�nability in the se
ond-orderarithmeti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.6 Gale-Stewart games . . . . . . . . . . . . . . . . . . . . . . . . . . 81.7 Point
lasses, parametrization, and Re
ursion Theorem . . . . . . 101.8 The Baire property and Bana
h-Mazur games . . . . . . . . . . . 121.9 For
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.10 Large 
ardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.11 Inner models and inner model theory . . . . . . . . . . . . . . . . 201.12 Absoluteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.13 Borel 
odes and 1-Borel 
odes . . . . . . . . . . . . . . . . . . . 241.14 Bla
kwell games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261.15 Wadge redu
ibility and Wadge games . . . . . . . . . . . . . . . . 292 Games and Regularity Properties 332.1 P-Baireness and P-measurability . . . . . . . . . . . . . . . . . . . 332.2 For
ing absoluteness . . . . . . . . . . . . . . . . . . . . . . . . . 442.3 The trans
enden
e properties over inner models . . . . . . . . . . 462.4 The equivalen
e results . . . . . . . . . . . . . . . . . . . . . . . . 512.5 Appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642.6 Con
lusion and Questions . . . . . . . . . . . . . . . . . . . . . . 67vii



3 Games themselves 713.1 Real Bla
kwell Determina
y and R# . . . . . . . . . . . . . . . . 713.2 Real Bla
kwell Determina
y and regularity properties . . . . . . . 753.3 Toward ADR from Bl-ADR . . . . . . . . . . . . . . . . . . . . . . 873.4 Toward the equi
onsisten
y between ADR and Bl-ADR . . . . . . 1033.5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044 Games and Large Cardinals 1074.1 The 
onsisten
y strength of the existen
e of alternating 
hains . . 1074.2 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125 Wadge redu
ibility for the real line 1135.1 Wadge redu
ibility for the real line . . . . . . . . . . . . . . . . . 1135.2 Con
lusion and Questions . . . . . . . . . . . . . . . . . . . . . . 1226 Fixed-Point Logi
 and Produ
t Closure 1236.1 Basi
 notions and ba
kground . . . . . . . . . . . . . . . . . . . . 1246.2 The 
ase for the modal �-
al
ulus . . . . . . . . . . . . . . . . . . 1286.3 The 
ase for PDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326.4 The 
ase for CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356.5 Con
lusion and questions . . . . . . . . . . . . . . . . . . . . . . . 137Bibliography 139Samenvatting 147Abstra
t 149

viii



A
knowledgments
When I re
eive a thesis from a 
olleague of mine, I always start with a
knowl-edgments and usually end with them :) This is not only be
ause their work isnot interesting to me but also be
ause a
knowledgments are the best part in theirtheses to see their personalities. Keeping this in mind, I de
ided to write not onlyabout the list of people I am grateful but also about myself so that the readers 
anget more information about me. So this is longer than usual a
knowledgments inPh.D. theses and rather informal and �lled with personal thoughts. I hope you
an enjoy reading it.To those who are also interested in mathemati
al parts of this thesis: The restis formal and does not 
ontain any personal thing. So please do not worry aboutbeing fed up with reading about my personality and enjoy the rest!I �rst thank my father who introdu
ed mathemati
s to me. When I was akid, I was good at 
al
ulations (not anymore) and was eager to en
ounter diÆ
ultproblems. When I entered some spe
ial private s
hool for the exams of privatejunior high s
hools, they gave me lots of math problems I 
ould not solve and Iwould often ask my father how to solve them (even when he was sleeping, I oftenwoke him up and asked). Although he was not the best tea
her in my life, heis the �rst person who taught me how to think in mathemati
s and sin
e then,mathemati
s is not just a 
al
ulation to me and that led me to de
ide to be
omea mathemati
ian when I was 10.Se
ondly, I am grateful to Kurt G�odel for proving In
ompleteness Theorems(the �rst and the se
ond) whi
h ex
ited me a lot when I was a high s
hool student.Although there was no person around me (in
luding me) who knew about thepre
ise statements of the theorems, they got me into foundations of mathemati
sand made me to study mathemati
al logi
 in my ba
helor. Of 
ourse his work ismu
h more than In
ompleteness Theorems and it has been a�e
ting my a
ademi
life even now, but this is the part of his work whi
h 
hanged my life the most.ix



I would like to thank Paul Cohen for inventing for
ing and proving the inde-penden
e of the Continuum Hypothesis from ZFC. After learning G�odel's In
om-pleteness Theorems, I got into axiomati
 set theory thanks to the ni
e le
tures ofa professor in mathemati
al department and started to read a book in axiomati
set theory. In the last part of the book, it mentions the independen
e of CHfrom ZFC and I still remember how mu
h I was sho
ked at it. While the G�odelsenten
e is a rather arti�
ial statement to be independent from a suitable axiomsystem, CH seemed very natural to me and I wondered how on earth one 
ouldprove su
h statement to be independent, whi
h led me to be
ome a set theorist.I am grateful to W. Hugh Woodin for developing su
h a beautiful 
onne
tionbetween determina
y and large 
ardinals. When I was a senior undergraduatestudent, I was reading a book in set theory and found his theorem that theexisten
e of a super
ompa
t 
ardinal implies ADL(R), whi
h was stunning to meand made me wonder how 
ome su
h large obje
ts 
ould have strong e�e
t on theworld of real numbers. This had been a big mystery to me until I got into innermodel theory and learned further results on determina
y and large 
ardinals andthis is why I de
ided to major in des
riptive set theory.So after �nishing my ba
helor, I went to Nagoya, a 
ity in Japan betweenTokyo and Kyoto, to study set theory. I am indebted to Yo Matsubara, YasuoYoshinobu, and Saka�e Fu
hino for their 
onstant and patient support during mystay in Nagoya. Without their en
ouragement, I would not be able to imagine go-ing abroad for my study. Besides them, I am also grateful to Tadatoshi Miyamoto,Hiroshi Sakai, and Toshimi
hi Usuba for arranging a warm atmosphere and forbeing always eager to tea
h me set theory and listen to me. Espe
ially I havelearned a lot from Sakai and Usuba by an enormous amount of dis
ussions withthem. I often re
all the days when we talked about set theory until midnight(sometimes with al
ohol), whi
h is a pre
ious memory to me.I would like to thank Joan Bagaria for giving a mini 
ourse on for
ing absolute-ness in Kobe in 2005. Through his le
ture, I got interested in for
ing absolutenessand wrote a master's thesis on this topi
. (The work in Chapter 2 is also the 
on-tinuation of the work in my master's thesis.) He has been always qui
k to respondto my e-mails and always helpful to me, whi
h also made me 
onsider studyingin Bar
elona.During the �nal stage of my master, I was more or less determined to studyabroad and the �rst pla
e I had in mind was California, whi
h is the best pla
efor studying the 
onne
tion between determina
y and large 
ardinals. But sin
eI had never been abroad at that time, my English was pretty poor and I wouldnot be able to be a tea
hing assistant, whi
h is a usual job to earn on theirliving for graduate students in the States. So I de
ided to try to �nd a positionin Europe and I met Benedikt L�owe, who is my supervisor, the person whom Iam most indebted to during my Ph.D. When I found an advertisement of Ph.D.positions in GLoRiClass proje
t, I 
onta
ted him and after a few e-mails, hestrongly en
ouraged me to apply for the position. Sin
e then, he has been alwaysx



helpful for me not only mathemati
ally but also non-mathemati
ally. Without hisen
ouragement, I would not be able to study in Amsterdam and over
ome manyproblems whi
h happened to me during my Ph.D. He has been always patient tome no matter how lazy I am about my work and sometimes he gave me 
ertainamount of pressure on my mathemati
al & non-mathemati
al work, whi
h wasvery 
alm and not irritating at all. He always let me do whatever I wanted to doand wat
hed me from a 
ertain distant position, whi
h I truly appre
iate be
auseit is one of the most diÆ
ult things to do for supervisors worrying about theirstudents. Without his en
ouragement and patien
e, I would not be able to �nishthis thesis. Also, whenever I need help from him, he is always qui
k to respondand does his best for me, whi
h is a surprising amount of work for him. I amvery happy to have su
h a great a
ademi
 father.At the beginning of my Ph.D., I sometimes 
onsidered leaving Amsterdam as aPh.D. student be
ause it seemed hard to study inner model theory in Amsterdam,whi
h was one of the main reasons why I de
ided to study abroad. That ledBenedikt to introdu
e Ralf S
hindler to me, who is my se
ond supervisor, and Iam really happy to have met him. His point of view so-
alled \Everything must
ome from mi
e" has 
hanged my set theory lifestyle a lot as you see the 
overof this thesis. When he talked to me about inner model theory, I often felt thatmi
e are really living their lives in set theory sin
e he treats them as if theywere `
reatures', whi
h was a ni
e experien
e and I have learned a lot from himespe
ially about intuitions and pi
tures he has in mind on inner model theory. Iam also grateful for his warmful hospitality in M�unster for one and a half yearsand for taking 
are about me for su
h a long time. I thank him and people inM�unster for introdu
ing Hefeweizen and Skat to me, both of whi
h I enjoy a loteven after my stay in M�unster.I am grateful to Jouko V�a�an�anen for treating me as a good set theorist, forinforming me a lot of events in mathemati
al logi
, and for en
ouraging me toorganize several events in set theory in Amsterdam. Without his en
ouragement,I would not have applied for the fall semester program in Mittag-Le�er and wouldnot be able to enjoy su
h a wonderful semester with world-wide resear
hers inset theory and model theory. Also, without his suggestion, I would not haveorganized a series of seminars on �21 for
ing absoluteness and would not havegiven talks, whi
h led me to understand the 
onne
tion between saturations ofideals on !1 and for
ing absoluteness and the strong impa
t of Martin's Maximumon modern set theory.I would like to thank Johan van Benthem and Yde Venema for sharing theirknowledge with me and being open to me to dis
uss mathemati
al logi
. Both ofthem are very energeti
 about their work, whi
h attra
ted me to work on someproblems in �xed point logi
s that you 
an see in Chapter 6 of this thesis. Thanksto them, I have not felt so isolated as a set theorist at ILLC.J�org Brendle was always helpful to me when I asked questions in set theory andhe was very patient and 
areful to respond to my e-mails. Some of his responsesxi



are in
luded in the work of Chapter 2 of this thesis.I thank W. Hugh Woodin on
e again for dis
ussing Bla
kwell determina
y,determina
y, and large 
ardinals. His great insights on the above topi
s werevery inspiring and I often gained more motivation and ideas from him.When I 
ame to Amsterdam, I needed to adjust myself to an European 
ultureand it took me some time and energy to manage it. During the beginning of my lifein Amsterdam, many people have helped me for surviving and enjoying life here.Among them, Ioanna Dimitriou, Stefan Bold, Jakub Szymanik, Andreas Witzel,Karol Oslowski, I
hiro Hasuo, Clemens Kupke, Fenrong Liu, Ni
k Bezhanishvili,Olivier Roy, Merlijn Sevenster, Aline Honingh, Leigh Smith, Ulle Endriss, Ingridvan Loon, Tanja Kassenaar, Jessi
a Pogorzelski, Marjan Veldhuisen, and ReneGoedman have been very helpful and I am grateful to all of them. Espe
iallyJakub and Andi have been ni
e to me while we had diÆ
ult time during the �rstyear of GLoRiClass proje
t and I am glad that I had both of them as the samefellows.After getting used to life in Amsterdam before going to M�unster, I have fur-ther met many ni
e people at ILLC su
h as Yurii Khomskii, Herman Stel, BrianSemmes, Jo
ob Vosmaer, Am�elie Gheerbrant, Ga�elle Fontaine, Olivia Ladnig,Nina Gierasim
zuk, Tikitu de Jager, Jonathan Zvesper, Lena Kurzen, Raul LealRodriguez, Joel U
kelmann, Sara U
kelmann, Maria Alina, Joost Joosten, FanYang, Thomas I
ard, Christian Kissig, Balder Ten Cate, Yanjing Wang, Mi
haelFranke, Eri
 Pa
uit, Levan Uridia, and Petter Remen. Among them, I espe
iallythank Joost for being a ni
e 
olleague and tea
hing me a lot about tea
hing assis-tants and also for helping me some formal issues in the Netherlands while I wasstaying in M�unster.After one year in Amsterdam, I went to M�unster for half a year to studyinner model theory. Benjamin Claverie, Philipp Doebler, Gunter Fu
hs, PhilippS
hli
ht, Daniel Bus
he, Thilo Volker Weinert, Christoph Du
hhardt, and GiuliaU
kelmann have been very ni
e friends and I had a ni
e time with them. Ihave been espe
ially 
lose to Ben, Philipp Doebler, and Philipp S
hli
ht and Iam grateful to them. I also thank people in the boat house (Andi, Olivia, andTikitu) for hosting me from time to time when I visited Amsterdam.After 
oming ba
k to Amsterdam, I met many new people at ILLC su
has Jarmo Kontinen, Lauri Keskinen, Juha Kontinen, Mar
 Stauda
her, C�edri
D�egremont, Yun Qi Xue, In�es Crespo, Ivano Ciardelli, Hideto Kamei, ThomasQuella, Fernando Velazquez-Quesada, Stefan Mini
a, Karin Gigenga
k, and Petervan Ormondt. I espe
ially remember hanging out with Jakub, Nina, Jarmo,Lauri, Jonathan, Maria, and other people playing poker or drinking and dis
ussingsomething, whi
h is a ni
e memory to me. I also thank Di
k de Jongh for workingtogether on problem sessions in the 
ourse of basi
 logi
. It was ni
e for me tolook at him and see how he deals with students.After one year in Amsterdam, I went ba
k to M�unster and stayed there for11 months. This time I stayed at a house with German speaking people for thexii



whole year, whi
h was a unique experien
e to me. Tomasz Samek, the houseowner, is a very frank & 
heerful person. He travels a lot and always brings ni
eal
ohol as a souvenir. Jan Peltzer and Emre Burma have been always helpfuland we often had fun with drinking al
ohol or doing barbe
ue together. It wasni
e to talk with T
helet Ram about Jewish 
ultures and art. Besides living in aGerman 
ulture, it was a pleasure to 
hat with Ben about Japanese 
ultures andFren
h 
ultures. It was also ni
e to meet new people at Universit�at M�unster su
has Philipp L�u
ke, Dominik Adolf, Lars S
heele, and Antongiulio Fornasiero.After the se
ond stay in M�unster, I stayed at Institut Mittag-Le�er for 3.5months to attend the semester program in model theory and set theory, wheremany famous resear
hers gathered and worked together. It was really an expe-rien
e and ni
e to talk with su
h great people and work together. Besides thea
ademi
 bene�t, sin
e we lived in the same institute, we had many opportuni-ties to have parties and enjoy sightseeing. I really had a ni
e time with JanaFla�skov�a, Vadim Kulikov, Philipp S
hli
ht, Mar
in Sabok, Teppo Kankaanp�a�a,Agatha C. Wal
zak-Typke, Benno van den Berg, Andr�es Villave
es, Natasha Do-brinen, Meeri Kes�al�a, and Kaisa Kangas. I would like to thank Jouko and JulietteKennedy for organizing su
h a great semester and great meetings with SaharonShelah, W. Hugh Woodin, Stevo Todr
evi
, and Mena
hem Magidor.Finally I 
ame ba
k to Amsterdam and was going to �nish my Ph.D. whileI again met lots of interesting people su
h as Bruno Lo�, Umberto Grandi, Vin-
enzo Cian
ia, Pietro Galliani, Tejaswini Deoskar, Maxim Khalilov, Sophia Ka-trenko, and Carmelita K�ubler. It was ni
e to see all of them.I have also been traveling other pla
es and have met many ni
e people (mainlyset theorists) su
h as Hisao Tanaka, David Aspero, Miguel Augel Mota Gaytan,Bernhard Irrgang, Neus Castells, Christoph Weiss, Farmer S
hlutzenberg, GrigorSargsyan, Tetsuya Ishiu, Adrian Mathias, Andr�es Cai
edo, Piotr Borodulin-Nadzieja,Rapha�el Carroy, Assaf Rinot, Matteo Viale, Wolfgang Wohofsky, Andrew Brooke-Taylor, Dana Bartosova, David S
hrittesser, Katie Thompson, Radek Honzik,Remi Strullu, Sean Cox, Tristan Bi
e, Vera Fis
her, Mirna Dzamonja, Paul Lar-son, Vi
toria Gitman, Ali Enayat, Joel Hamkins, Samuel Coskey, Stefan Ges
hke,Karen R�as
h, Jonas De Vuyst, Namit Chaturvedi, Alexandru Baltag, SonjaSmeets, Allen Mann, Tomohiro Hoshi, Katsuhiko Sano, Lilit Martirosyan, HaoCheng, Julia Erhard, Li Yanfang, Zhu Yi Zheng, Huiling Zhu, Teoh Zu Yao, andLiu Zhen Wu. Thank you very mu
h for interesting 
hats at some 
onferen
es,workshops, or summer s
hools.I am so absent-minded and lazy that it has be
ome one of the main ways to get
lose to people that I bring some troubles, they try to help me, and we get 
loseea
h other. Certainly, at least some se
retaries in a
ademia should be mentionedhere: Ingrid, Karin, Peter, Tanja, Mar
o Vervoort, Th�es Smeets, Marie-LouiseKoskull, Martina Pfeifer, and Alexander Koponen. The more they feel 
lose to(or annoyed with) me, the more I owe them my gratitude.Spe
ial thanks go to Yurii and Philipp S
hli
ht for being my paranimfs, Her-xiii



man for 
onstantly supporting some formal issues living in Amsterdam, Sarafor proofreading this thesis and some papers of mine, Jo
ob and Rogier Ja
obszfor translating the abstra
t of this thesis into samenvatting, Pietro for helpingme to make the 
over design of this thesis, and Masako Nishimura for giving apermission to use her painting at the ba
k 
over of this thesis.Finally and mostly I thank my family for having been taking 
are of the mostsel�sh person in the world for over 25 years.Amsterdam, April 2010,Daisuke Ikegami

xiv



Chapter 1 Introdu
tion
Games have been used in many areas of mathemati
s, espe
ially mathemati
allogi
 as well as theoreti
al 
omputer s
ien
e. It was the Polish s
hool of math-emati
ians who 
onne
ted in�nite games with analysis (e.g., Lebesgue measura-bility) and topology (e.g., the Baire property) and obtained many results. In thisthesis, we give several results on games in set theory and logi
 or obtained byappli
ation of games.1.1 OutlineIn this thesis, we dis
uss the following topi
s. All the de�nitions and the notionsgiven in this outline 
an be found in the later se
tions of this 
hapter.In Chapter 2, entitled `Games and Regularity Properties', we 
hara
terizealmost all the known regularity properties for sets of reals via the Baire propertyfor some topologi
al spa
es and use Bana
h-Mazur games to prove the generalequivalen
e theorems between regularity properties, for
ing absoluteness, and thetrans
enden
e properties over some 
anoni
al inner models. With the help ofthese equivalen
e results, we answer some open questions from set theory of thereals. Almost all the results in this 
hapter are 
ontained in my paper [35℄.In Chapter 3, entitled `Games themselves', we 
ompare the Axiom of RealDetermina
y (ADR) and the Axiom of Real Bla
kwell Determina
y (Bl-ADR).We show that the 
onsisten
y strength of Bl-ADR is stri
tly greater than that ofthe Axiom of Determina
y (AD) in x 3.1 and that Bl-ADR implies almost all theknown regularity properties for every set of reals in x 3.2. In x 3.3, we dis
uss thepossibility of the equivalen
e between ADR and Bl-ADR under ZF+DC. In x 3.4,we dis
uss the possibility of the equi
onsisten
y between ADR and Bl-ADR. Theresults in x 3.1 are joint work with David de Kloet and Benedikt L�owe [36℄. Theresults in x 3.2, x 3.3, and x 3.4 are joint work with Hugh Woodin.In Chapter 4, entitled `Games and Large Cardinals', we work on the 
onne
-tion between the determina
y of Gale-Stewart games and large 
ardinals. We1



2 Chapter 1. Introdu
tioninvestigate the upper bound of the 
onsisten
y strength of the existen
e of al-ternating 
hains with length !, whi
h are essential obje
ts to prove proje
tivedetermina
y from Woodin 
ardinals. This is joint work with Ralf S
hindler.In Chapter 5, entitled `Wadge redu
ibility for the real line', we study theWadge redu
ibility for the real line. Unlike the Wadge order for the Baire spa
e,the Wadge order for the real line 
annot be 
hara
terized by in�nite games. Weshow that the Wadge Lemma for the real line fails and the Wadge order for thereal line is ill-founded and we investigate more properties of the Wadge order forthe real line. All the results in this 
hapter are joint work with Philipp S
hli
htand Hisao Tanaka.In Chapter 6, entitled `Fixed-Point Logi
 and Produ
t Closure', we de�nea produ
t 
onstru
tion of an event model and a Kripke model and dis
uss theprodu
t 
losure of modal �xed point logi
s. We show that PDL, the modal �-
al
ulus, and the 
ontinuous fragment of the modal �-
al
ulus are produ
t 
losed.Most of the results are joint work with Johan van Benthem [12℄.In the remaining se
tions of this 
hapter, we give the mathemati
al ba
k-ground and results used in this thesis.1.2 Choi
e prin
iplesWe use the following two types of 
hoi
e prin
iples in this thesis.The �rst one is the family of the Choi
e Prin
iples ACX(Y ). Let X; Y benonempty sets. The Choi
e Prin
iple ACX(Y ) states that for any family fAx jx 2 Xg of nonempty subsets of Y , there is a fun
tion f : X ! Y su
h thatf(x) 2 Ax for every x 2 X. The Axiom of Choi
e AC states that ACX(Y ) holdsfor all nonempty sets X and Y . The following is easy to see:Remark 1.2.1. Let X; Y1; Y2 be nonempty sets and suppose there is a surje
tionfrom Y2 to Y1. Then ACX(Y2) implies ACX(Y1).Furthermore, we 
onsider the Dependent Choi
e Prin
iples DCX . Let X be anonempty set. The Dependent Choi
e Prin
iple DCX states that for any relationR on X (i.e., R � X � X), if (8x 2 X) (9y 2 X) (x; y) 2 R, then there is afun
tion f : ! ! X su
h that �f(n); f(n+ 1)� 2 R for every n 2 !. The Axiomof Dependent Choi
e DC states that DCX holds for every nonempty set X.Throughout this thesis, we work in ZF + AC!(R), where ZF is the axiomsystem of Zermelo-Fraenkel set theory. When we need more 
hoi
e prin
iples, weexpli
itly mention them (espe
ially at the beginning of ea
h 
hapter).1.3 TreesTrees are basi
 obje
ts in mathemati
al logi
, espe
ially des
riptive set theory andre
ursion theory. We �x some notation and introdu
e de�nitions about trees.
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 3If f is a fun
tion from X to Y and A is a subset of X, then f�A denotesthe restri
tion of f to A, i.e., f�A = f(a; f(a)) j a 2 Ag. For a relation Rbetween X and Y (i.e., R � X � Y ), dom(R) = fx 2 X j (9y) (x; y) 2 Rg andran(R) = fy 2 Y j (9x) (x; y) 2 Rg.Given a nonempty set X, <!X denotes the set of all �nite sequen
es of ele-ments in X and a nonempty subset T of <!X is a tree on X if it is 
losed underinitial segments, i.e., if s is in T and t is a subsequen
e of s (i.e., t = s�n forsome n), then t is in T . For a �nite sequen
e t of elements in X, lh(t) denotesthe length of t.By nodes, we mean elements of trees. For a tree T on X, two nodes s; t ofT are in
ompatible (denoted by s?t) if there is an n in dom(s) \ dom(t) su
hthat s(n) 6= t(n). Note that s; t are in
ompatible if and only if there is no u in Tsu
h that s; t � u. For a node t of T and an element x of X, t_hxi denotes theone-step extension of t with x, i.e., t_hxi = t [ f(lh(t); x)g.A tree T on X is 
alled perfe
t if for any node s in T , there are two nodest1; t2 of T su
h that s � ti for i = 1; 2 and t1?t2. For a tree T on X, [T ℄ denotesthe set of all in�nite paths through [T ℄, i.e., [T ℄ = fx 2 !X j (8n 2 !) x�n 2 Tg.For a tree T on X and a node t in T , t is 
alled splitting in T if there are x and yin X su
h that x 6= y and both t_hxi and t_hyi are in T . For a tree T , the stemof T (denoted by stem(T )) is the minimal splitting node in T if it exists.If T is a tree on X and X is of the form Y �Z, then we often identify a node sof T with the pair (t1; t2) where ti = (s(0)i; : : : s(n� 1)i) for i = 1; 2, n = dom(s),and s(j) = (s(j)1; s(j)2) for j < n. The same identi�
ation will be applied in
ase X is of the form Y1 � : : :� Ym for a �nite natural number m � 1.1.4 General topologyTopologi
al spa
es are fundamental obje
ts in mathemati
s. Throughout thisthesis, we assume the basi
 theory of topologi
al spa
es whi
h 
an be found in,e.g., [49℄. We mainly use the following three types of topologi
al spa
es:The spa
es !X. Let X be a nonempty set. The set !X is the set of all !-sequen
es of elements in X and we topologize it via the produ
t topology whereX is always regarded as the dis
rete spa
e. Hen
e for ea
h �nite sequen
e s ofelements in X, the set [s℄ = fx 2 !X j x � sg (i.e., the set of all !-sequen
es ofelements in X extending s) is a basi
 open set in this topology and any open setis a union of basi
 open sets of this form.Our main interest is when X = 2 (i.e., f0; 1g) or !. The spa
e !2 is 
alledthe Cantor spa
e and the spa
e !! is 
alled the Baire spa
e.One of the spe
ial properties of this type of topologi
al spa
es is that 
losedsets have a tree representation: A subset A of !X is 
losed if and only if thereis a tree T on X su
h that A = [T ℄. Also, there is a one-to-one 
orresponden
e
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tionbetween perfe
t subsets of !X and perfe
t trees on X, where a subset A of !X isperfe
t if it is 
losed and it has no isolated points: A subset A of !X is perfe
t ifand only if there is a perfe
t tree T on X su
h that A = [T ℄.A subset A of the Baire spa
e or the Cantor spa
e has the perfe
t set propertyif either it is 
ountable or it 
ontains a perfe
t set. It is easy to see that for anyperfe
t set C, there is a bije
tion between C and the Cantor spa
e. Hen
e sets Awith the perfe
t set property satisfy Cantor's Continuum Hypothesis (CH), i.e.,either A is 
ountable or there is a bije
tion between A and the Cantor spa
e. Forthis reason, it is interesting to see what kind of sets have the perfe
t set property.We dis
uss this in x 1.11.The spa
es St(P). Stone spa
es are fundamental topologi
al spa
es not onlyin mathemati
al logi
 but also in general mathemati
s. We give basi
 de�nitionsand the basi
 properties of Stone spa
es of partial orders in our 
ontext.Let P and Q be partial orders. A map i : P ! Q is 
alled a dense embeddingif it satis�es the following:� i preserves the order, i.e., if p1 � p2 in P, then i(p1) � i(p2) in Q ,� i preserves the in
ompatibility, i.e., given two elements p1; p2 of P, if thereis no p in P with p � p1 and p � p2, then there is no q in Q with q � i(p1)and q � i(p2), and� the image of i is dense, i.e., for any q in Q there is a p in P su
h thati(p) � q.Dense embeddings are important in for
ings in the sense that if there is a denseembedding from P to Q , then for
ing with P and for
ing with Q are essentiallythe same. (See x 1.9 about for
ing.)It is well known that if P is a partial order, then there is a 
omplete Booleanalgebra B and a dense embedding i from P to B . Moreover, the pair (B ; i) isunique up to isomorphism in the sense that if there are two su
h pairs (B 1 ; i1)and (B 2 ; i2), then there is an isomorphism i between B 1 and B 2 as 
ompleteBoolean algebras su
h that i Æ i1 = i2. We 
all su
h a pair (B ; i) a 
ompletion ofP and write (BP; iP) for (B ; i).Let P be a partial order. A nonempty subset u of P is a �lter on P if it isupward 
losed (i.e., if p 2 u and p � q, then q is also in u) and any two elementsof u have an extension in u (i.e., if p and q are in u, then there is an r in u su
hthat r � p and r � q). A �lter u on P is an ultra�lter if u 6= P and u is maximalwith respe
t to in
lusions (i.e., if v is a �lter 
ontaining u, then v = u or v = P).We now de�ne Stone spa
es of partial orders. Given a partial order P, the setSt(P) is the 
olle
tion of all ultra�lters on BP. For ea
h b 2 BP, we de�ne the setOb = fu 2 St(P) j u 3 bg and the Stone spa
e of P (also denoted by St(P)) is thetopology on the set St(P) generated by the set fOb j b 2 BPg.
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 5For example, if P is the pair (<!!;�), i.e., the set of all �nite sequen
esof natural numbers ordered by reverse in
lusion, then the Stone spa
e of P ishomeomorphi
 to the Cantor spa
e !2.There are two advantages for taking ultra�lters on BP rather than on P itselfas a de�nition of the Stone spa
e of P: The �rst one is that it has several ni
eproperties as topologi
al spa
es (e.g., it is a 
ompa
t Hausdor� zero-dimensionalspa
e). The se
ond is that it does not depend on the representation of P, i.e., ifthere is a dense embedding from P to Q , then St(P) and St(Q) are homeomorphi
.The real line R. We use R to denote the set of all real numbers ex
ept inChapter 2, where we use it for Mathias for
ing (we use R for Mathias for
ingbe
ause it is 
losely related to the Ramsey property). As usual, the topology ofthe real line is generated by open intervals (a; b) = fx 2 R j a < x < bg fora; b 2 R.1.5 Borel sets, proje
tive sets, and de�nabilityin the se
ond-order arithmeti
sLet X be a topologi
al spa
e. Starting from open sets (or 
losed sets), we formthe two hierar
hies of sets of subsets of X. One is 
alled the Borel hierar
hy andthe other is 
alled the proje
tive hierar
hy:De�nition 1.5.1. Let X be a topologi
al spa
e. The Borel hierar
hy of X��0�;�0�;�0� j 1 � � < !1� is de�ned as follows:Case 1: � = 1.By �01, we mean the set of all open subsets of X and �01 denotes the set ofall 
losed subsets of X. The set of all 
lopen subsets of X is denoted by �01.Case 2: � > 1.By �0� , we mean the set of all 
ountable unions of sets in S�<��0�, and �0�denotes the set of all 
ountable interse
tions of sets in S�<��0�. The interse
tionof �0� and �0� is denoted by �0� .Elements of �0�;�0� and �0� are 
alled �0� sets, �0� sets and �0� sets respe
-tively. We set B = S�<!1 �0� and elements of B are 
alled Borel sets.It is immediate that �0� = �0� \�0� for ea
h 1 � � < !1. By indu
tion on �,it is easy to show that �0� = fX n A j A 2 �0�g for ea
h 1 � � < !1. With thehelp of AC!(R), it is easy to show that !1 is a regular 
ardinal and hen
e thatthe set of all the Borel sets B is 
losed under 
omplements and 
ountable unionsand it 
ontains the empty set. Su
h a family of subsets of X is 
alled a �-algebraon X. Note that the set of all the Borel subsets of X is the smallest �-algebraon X 
ontaining all the open sets.



6 Chapter 1. Introdu
tionTheorem 1.5.2 (Lebesgue). Let X be the Cantor spa
e, the Baire spa
e, or thereal line. Then the following stri
t in
lusions hold for ea
h 1 � � < !1:�0� (( �0��0� (( �0�+1Proof. See, e.g., [45, Theorem 22.4℄.De�nition 1.5.3. Let X be a topologi
al spa
e. The proje
tive hierar
hy of X��1n;�1n;�1n j 1 � n < !� is de�ned as follows:Case 1: n = 1.By �11, we mean the set of all subsets A of X su
h that there is a 
losed subsetC of X � !! su
h that A is the �rst proje
tion of C, i.e., A = dom(C), whereX � !! is topologized as the produ
t spa
e of X and !!. The set of all subsetsA of X whose 
omplements are in �11 is denoted �11. The interse
tion between�11 and �11 is denoted �11.Case 2: n > 1.By �1n, we mean the set of all subsets A of X su
h that there is a subset C ofX � !! in �1n�1 su
h that A is the �rst proje
tion of C. The set of all subsets Aof X whose 
omplements are in �1n is denoted �1n. The interse
tion between �1nand �1n is denoted �1n.Elements of �1n;�1n, and �1n are 
alled �1n sets, �1n sets and �1n sets respe
-tively. Sets in �1n for some n are 
alled proje
tive sets.Elements of �11 are also 
alled analyti
 sets, and 
o-analyti
 sets are the sameas �11 sets. It is immediate that �1n = �1n\�1n for ea
h n and that �1n = fX nA jA 2 �1ng for ea
h n.Theorem 1.5.4 (Suslin). Let X be the Cantor spa
e, the Baire spa
e, or thereal line. Then B = �11.Proof. See, e.g., [45, Theorem 14.11℄.Theorem 1.5.5 (Lusin). Let X be the Cantor spa
e, the Baire spa
e, or the realline. Then the following stri
t in
lusions hold for ea
h 1 � n < !:�1n (( �1n�1n (( �1n+1
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 7In parti
ular, every Borel set is a �11 set and there is a �11 set whi
h is not aBorel set.1Proof. See, e.g., [45, Theorem 37.7℄.De�nable sets in the se
ond-order arithmeti
 are related to �0n sets, �0n sets,�1n sets, and �1n sets in the Baire spa
e. By the se
ond-order stru
ture, wemean the two-sorted stru
ture A2 = (!; !!; app;+; �;=; 0; 1), where app is thefun
tion from !!�! to ! su
h that app(x; n) = x(n) and +; �;= are summation,multipli
ation, and equality on the natural numbers. By �0n-formulas, we meanthe formulas in the language of the se
ond-order stru
ture of the form(90x1) (80x2) : : : (Qnxn) �;where 90; 80 are the existential quanti�er and the universal quanti�er for naturalnumbers respe
tively, Qn is 80 if n is even and 90 if n is odd, xi (1 � i � n) arevariables for natural numbers, and � is a quanti�er-free formula. By �0n-formulas,we mean the formulas in the language of the se
ond-order stru
ture of the form(80x1) (90x2) : : : (Qnxn) �;where Qn is 90 if n is even and 80 if n is odd, xi (1 � i � n) are variables fornatural numbers, and � is a quanti�er-free formula. By arithmeti
al formulas, wemean �0n-formulas or �0n-formulas for some natural number n. By �1n-formulas,we mean the formulas in the language of the se
ond-order stru
ture of the form(91x1) (81x2) : : : (Qnxn) �;where 91; 81 are the universal quanti�er and the existential quanti�er for elementsin the Baire spa
e respe
tively, Qn is 81 if n is even and 91 if n is odd, xi (1 �i � n) are variables for elements in the Baire spa
e, and � is an arithmeti
alformula. By �1n-formulas, we mean the formulas in the language of the se
ond-order stru
ture of the form(81x1) (91x2) : : : (Qnxn) �;where Qn is 91 if n is even and 81 if n is odd, xi (1 � i � n) are variables forelements in the Baire spa
e, and � is an arithmeti
al formula. Let n be a naturalnumber with n � 1, A be a subset of the Baire spa
e and a be an element ofthe Baire spa
e. We say A is a �0n(a) set if there is a �0n-formula � su
h thatA = fx j A2 � �(x; a)g. One 
an de�ne �0n(a) sets, �1n(a) sets, and �1n(a) sets inthe same way. We also use �0n(a);�0n(a);�1n(a), and �1n(a) to denote the set ofall �0n(a) sets, �0n(a) sets, �1n(a) sets, and �1n(a) sets respe
tively.1The last statement is due to Suslin [82℄.
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tionTheorem 1.5.6. Let n be a natural number with n � 1. Then�0n = [a2!! �0n(a); �0n = [a2!!�0n(a);�1n = [a2!! �1n(a); �1n = [a2!!�1n(a):Proof. See, e.g., [66, 8B.5 & 8B.15℄.1.6 Gale-Stewart gamesIn this se
tion, we introdu
e Gale-Stewart games, whi
h are in�nite games withperfe
t information.In 1913, Ernst Zermelo [93℄ investigated �nite games with perfe
t informationas a formalization of the game of 
hess and proved the determina
y of these games.In 1953, Gale and Stewart [27℄ developed the general theory of in�nite games,so-
alled Gale-Stewart games, whi
h are two-player zero-sum in�nite games withperfe
t information. The theory of Gale-Stewart games has been investigatedby many logi
ians and now it is one of the main topi
s in set theory and it has
onne
tions with other topi
s in set theory as well as model theory and 
omputers
ien
e.Let us start with the de�nition of Gale-Stewart games.De�nition 1.6.1 (Gale-Stewart games). Let X be a nonempty set and A be asubset of !X. The Gale-Stewart game GX(A) is played by two players, player Iand player II. They play elements of X !-many times in turn, i.e., player I startswith 
hoosing an element x0 of X, then player II responds with x1 2 X, thenplayer I moves with x2 2 X and player II 
hooses x3 and so on. After ! moves,they have produ
ed an !-sequen
e x = hxn j n 2 !i 2 !X. Player I wins if x isin A and player II wins if x is not in A.This game is an in�nite zero-sum game with perfe
t information be
ause oneof the players always wins and when one player wins, the other loses, and be
auseboth players know what they have previously played and they 
an de
ide the nextmove 
onsidering their previous moves.We are interested in whether one of the players has a winning strategy inthe game GX(A), i.e., whether one of the players has a way to play this gamesu
h that no matter her opponent moves, she will always win this game. Let usformulate the notion of winning strategies.De�nition 1.6.2. A strategy for player I is a fun
tion � : XEven ! X, whereXEven is the set of �nite sequen
es of elements in X with even length. A strategyfor player II is a fun
tion � : XOdd ! X, where XOdd is the set of �nite sequen
esof elements in X with odd length. Given a strategy � for player I and a strategy
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 9� for player II, one 
an produ
e the run � � � of the game GX(A) a

ording to� and � by letting player I follow � and player II follow � , more pre
isely, therun � � � of the game GX(A) is a unique !-sequen
e of elements in X with thefollowing property: For any natural number n,(� � �)(n) = ��;��(� � �)�n�;where for a �nite sequen
e s of elements in X, ��;� (s) = �(s) if the length of sis even and ��;� (s) = �(s) if the length of s is odd. A strategy � for player I iswinning in the game GX(A) if for any strategy � for player II, � � � is in A. Astrategy � for player II is winning in the game GX(A) if for any strategy � forplayer I, � � � is not in A. A subset A of !X is determined if one of the playershas a winning strategy in the game GX(A).Hen
e we are interested in what kind of sets A are determined. Let us listsome results 
on
erning this question. Re
all from x 1.4 that the topology of !Xis given by the produ
t topology where ea
h 
oordinate (i.e., X) is seen as thedis
rete spa
e.Theorem 1.6.3 (Gale and Stewart). (AC) Let X be a nonempty set.1. Any 
losed subset of !X and any open subset of !X are determined. If Xis well-ordered, one does not need AC.2. There is a subset of !! whi
h is not determined.Proof. See, e.g., [37, Lemma 33.1, Lemma 33.17℄.Theorem 1.6.4 (Martin). (AC) Let X be a nonempty set. Then every Borelsubset of !X is determined.Proof. See, e.g., [45, Theorem 20.5℄.Theorem 1.6.5 (Davis; G�odel and Addison). ZFC 
annot prove that every �11subset of the Baire spa
e is determined.Proof. The statement follows from the 
ombination of the following two results:The �rst is that if every �11 subset of the Baire spa
e is determined, then every�11 subset of the Baire spa
e has the perfe
t set property and the se
ond one isthat ZFC 
annot prove that every �11 subset of the Baire spa
e has the perfe
t setproperty. The �rst result is due to Davis [23℄ and the se
ond result was announ
edby G�odel [28℄ and the details of the proof given by Addison [1℄. For the proofs,see, e.g., [66, p. 224 & 225℄ and [37, Corollary 25.37℄.Gale-Stewart games are general enough that they 
an be used to simulateseveral kinds of in�nite games in mathemati
s (e.g., Bana
h-Mazur games; forthe de�nition of Bana
h-Mazur games, see x 1.8). In parti
ular, the determina
y
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tionof Gale-Stewart games implies that of several other kinds of games. From this,one 
an prove several properties of sets of reals assuming the determina
y ofGale-Stewart games su
h as Lebesgue measurability, the Baire property (for thede�nition, see x 1.8), and the perfe
t set property (for the de�nition, see x 1.4).My
ielski and Steinhaus [68℄ introdu
ed the Axiom of Determina
y (AD),whi
h states that every subset of the Baire spa
e is determined, and investigatedthe 
onsequen
es of this axiom. They proved that AD implies that every set ofreals is Lebesgue measurable and that every subset of the Baire spa
e has theBaire property and the perfe
t set property where ea
h of these statements 
on-tradi
ts the Axiom of Choi
e. Beside su
h properties for sets of reals, AD suppliesa beautiful stru
tural theory. Moreover, models of AD have been investigated fora long time and they are essential for the resear
h on inner models with large
ardinals (for inner models, see x 1.11). In this way, the study of AD has beenone of the 
entral topi
s in set theory despite the fa
t that AD 
ontradi
ts AC.One 
an de�ne ADX for a nonempty set X as follows: Every subset of !X isdetermined. Let us list some known observations on ADX :Proposition 1.6.6.1. Let X; Y be nonempty sets and assume that there is an inje
tion from Xto Y . Then ADY implies ADX . In parti
ular, ADR implies AD! = AD.2. The axioms AD!1 and ADP(R) are in
onsistent.Proof. The �rst statement is a folklore and it is easy. For the se
ond statement,the in
onsisten
y of AD!1 is due to My
ielski [67℄ and that of ADP(R) followsfrom the in
onsisten
y of AD!1, the fa
t that there is an inje
tion from !1 intoP(R), and the �rst item of this proposition. (One 
an send a 
ountable ordinal� to the set of all reals x su
h that (!; x) is isomorphi
 to (�;2) and this is aninje
tion from !1 into P(R).)We investigate AD and ADR further in Chapter 3.1.7 Point
lasses, parametrization, and Re
ur-sion TheoremAs with Borel sets, one often looks at the properties of a 
lass of sets of reals ratherthose of a set of reals. Su
h 
lasses are 
alled point
lasses. In this se
tion, weintrodu
e basi
 properties for point
lasses. When we are talking about \reals",we mean elements of the Cantor spa
e !2 and we use R to denote the Cantorspa
e.A point
lass is the union of sets of subsets of !m � Rn for natural numbersm � 0; n � 1. If � is a point
lass, � is 
alled a boldfa
e point
lass if it is 
losed
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 11under 
ontinuous preimages, i.e., for natural numbers m1; m2 � 0 and n1; n2 � 1,a 
ontinuous fun
tion f : !m1�Rn1 ! !m2�Rn2 , and a subset A 2 � of !m2�Rn2 ,f�1(A) is also in �. Closure under re
ursive preimages is similarly de�ned withre
ursive fun
tions.A point
lass � is !-parametrized if for all natural numbers m � 0 and n � 1there is a subset Gm;n of !m+1�Rn in � su
h that for any subset A of !m�Rn in�, there is a natural number e su
h that A = Gm;ne = f(x; y) j (e; x; y) 2 Gm;ng.The following lemma is useful: Let � be a point
lass and x be a real. Then thepoint
lass �(x) is the set of all sets A su
h that there is a set C 2 � su
h thatA = Cx where Cx = fy 2 R j (y; x) 2 Cg. Set � = Sx2R �(x).Lemma 1.7.1. Suppose � is an !-parametrized point
lass whi
h is 
losed underre
ursive preimages. Then for ea
h natural number n � 1, there is a set Gn �R � Rn in � su
h that the following hold:1. For ea
h n � 1, Gn is universal for subsets of Rn in �, i.e., for any subsetA 2 �, there is a real x su
h that A = Gnx,2. For A � Rn in �, there is a re
ursive real x su
h that A = Gnx, and3. For all natural numbers n;m � 1, there is a re
ursive fun
tion Sn;m : R �Rn ! R su
h that for any real a, x 2 Rn , and y 2 Rm , Gm+n(a; x; y) ()Gm(Sn;m(a; x); y).Proof. See [66, 3H.1℄.We �x some notions for proje
tions. For natural numbers m � 0 and n � 1and a subset A of !�!m�Rn , let 9!A = f(x; y) 2 !m�Rn j (9e 2 !) (e; x; y) 2Ag and 8!A = f(x; y) 2 !m � Rn j (8e 2 !) (e; x; y) 2 Ag. The sets 9RA and8RA are de�ned in the similar way. A point
lass � is 
losed under 9! if for anyA in �, 9!A is in �. Closure under 8!; 9R, and 8R is de�ned in the similar way.De�nition 1.7.2. A point
lass � is a Spe
tor point
lass if it satis�es the following:1. It 
ontains all the �01 sets and it is 
losed under re
ursive substitutions,�nite interse
tions and unions, 9!, and 8!,2. It is !-parametrized,3. It has the substitution property, and4. It has the prewellordering property.For the de�nition the substitution property and the basi
 theory of �-re
ursivefun
tions, see [66, 3D & 3G℄. For the de�nition of prewellordering property, see[66, 4B℄. Typi
al examples of Spe
tor point
lasses are �11 and �12. Assuming thedetermina
y of all the proje
tive sets, one 
an prove that �12n+1 and �12n+2 arealso Spe
tor point
lasses for ea
h natural number n.We use the following general form of Kleene's Re
ursion Theorem for Spe
torpoint
lasses in Chapter 3:
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tionTheorem 1.7.3 (Re
ursion Theorem). (Kleene) Let � be a Spe
tor point
lassand suppose f : R�R ! R is �-re
ursive on its domain. Then there exists a �xedreal a� su
h that for all reals x, if f(a�; x) is de�ned, then f(a�; x) = fa�g(x),where fa�g is the �-re
ursive fun
tion on its domain 
oded by a�.Proof. See [66, 7A.2℄.1.8 The Baire property and Bana
h-Mazur gamesIn this se
tion, we introdu
e the Baire property and Bana
h-Mazur games anddis
uss the 
onne
tion between them. In the S
ottish Caf�e \Kawiarnia Szzko
ka"in Lw�ow, Polish mathemati
ians in the Lw�ow S
hool of Mathemati
s would oftenmeet and spend their afternoons dis
ussing mathemati
al problems in 1920s and1930s. Their dis
ussions produ
ed the famous book so-
alled \the S
ottish bookof problems". In this book (see [63℄), Mazur des
ribed in�nite games nowadays
alled Bana
h-Mazur games and 
onje
tured their 
onne
tion to the Baire prop-erty. The 
onje
ture was 
on�rmed by Bana
h in 1935 and the statement wasgeneralized to arbitrary topologi
al spa
e by Oxtoby [69℄ in 1957.We start with the de�nition of the Baire property:De�nition 1.8.1. Let X be a topologi
al spa
e and A be a subset of X.1. We say A is nowhere dense if the interior of the 
losure of A is empty.2. We say A is meager if it is a 
ountable union of nowhere dense sets.3. We say A is 
omeager if the 
omplement of A is meager.4. We say A has the Baire property if there is an open subset U of X su
hthat the symmetri
 di�eren
e between A and U (i.e., �(AnU)[ (U nA)�, denotedby A4U) is meager.Nowhere dense sets and meager sets are small in the sense of topology, e.g.,on the Baire spa
e, the Cantor spa
e and the real line, any singleton is nowheredense and any 
ountable set is meager. Sets with the Baire property 
an beapproximated by open sets modulo su
h small sets. But if some nonempty openset was meager, this property would not make sense. To avoid that problem, weintrodu
e a property for topologi
al spa
es: A topologi
al spa
e X is 
alled aBaire spa
e if any nonempty open subset of X is not meager.2 All the topologi
alspa
es that appear in this thesis will be Baire spa
es.If X is a topologi
al spa
e, many subsets of X have the Baire property inX: Trivially every open set has the Baire property, also every 
losed set has theBaire property (if we take U to be the interior of the given 
losed set A, thensymmetri
 di�eren
e between A and U is A n U and it is nowhere dense by the2Note that being a Baire spa
e is di�erent from being the Baire spa
e !!. Being a Bairespa
e is a property for topologi
al spa
es while the Baire spa
e is one parti
ular topologi
alspa
e.
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e meager). From this, we 
an 
on
lude that the set ofsubsets of X with the Baire property is 
losed under 
omplements. Moreover,sin
e the set of meager sets is 
losed under 
ountable unions, the set of subsetswith Baire property is also 
losed under 
ountable unions and hen
e every Borelsubset of X has the Baire property.It is natural to ask whether the 
onverse is true for the Baire spa
e, i.e., if asubset of the Baire spa
e has the Baire property, then is it Borel? The answer is`No'. In 1923, Lusin and Sierpinski [57℄ proved that every �11 set of reals has theBaire property and there is a �11 set of reals whi
h is not Borel by Theorem 1.5.5.So one 
ould ask, \How far 
an we go?" A
tually, in the 
onstru
tible universeL, there is a �12 set of reals without the Baire property.3 On the other hand,starting with a model of ZFC, one 
an 
onstru
t a model of ZFC extending thegiven model su
h that every �12 set has the Baire property. Hen
e the statementthat every �12 set of reals has the Baire property is independent from ZFC. Thenone 
ould naturally ask the following: When is it true and when is it not? Wedis
uss this question in Chapter 2. Next, we introdu
e Bana
h-Mazur games,whi
h 
hara
terize meagerness of topologi
al spa
es:De�nition 1.8.2 (Bana
h-Mazur games). Let X be a topologi
al spa
e and A bea subset of X. The Bana
h-Mazur game of A, denoted by G��(A) (or G��(A;X)),is de�ned as follows: Players I and II 
hoose alternatively nonempty open sets Vn(n 2 !) with V0 � V1 � V2 � V3 � : : : in ! moves,I V0 V2 : : :II V1 V3 : : :Player II wins this run of the game if Tn2! Vn \ A = ;.The notions of strategies and winning strategies are de�ned in the same wayas for Gale-Stewart games in x 1.6.Theorem 1.8.3 (Bana
h and Mazur, Oxtoby). Let X be a topologi
al spa
eand A be a subset of X. Then A is meager if and only if player II has a winningstrategy in the game G��(A).Proof. See, e.g., [45, Theorem 8.33℄.One 
an 
hara
terize when a subset A of X has the Baire property in X interms of Bana
h-Mazur games: Let UA be the union of all open sets U in X su
hthat U n A is meager in X. Then A has the Baire property if and only if the3Although G�odel [28℄ announ
ed the similar result for Lebesgue measurability in 1938 andseemed to know about this result at that time, it seems to have been �rst made expli
it in [67,p. 216℄ (
f. [44, p. 169℄).
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tionset A n UA is meager, hen
e if and only if player II has a winning strategy in theBana
h-Mazur game G��(A n UA).It is natural to ask whether one 
ould 
hara
terize when player I has a winningstrategy in Bana
h-Mazur games in terms of topology. The answer is: If X is a
ompletely metrizable topologi
al spa
e, then player I has a winning strategy inG��(A) if and only if there is a nonempty open subset U of X su
h that U nA ismeager in U , where U is equipped with the relative topology of X in this 
ase.(But this 
hara
terization is not true if X is a general topologi
al spa
e. Forthe proof, see, e.g., [45, Theorem 8.33℄.) It follows from this result that player I
annot have a winning strategy in the Bana
h-Mazur game G��(A n UA). Hen
ewe 
an 
on
lude that a subset A of X has the Baire property if and only if theBana
h-Mazur game G��(A n UA) is determined, i.e., either player I or II has awinning strategy in this game. Now we have redu
ed the problem of the Baireproperty of a given set to the problem of determina
y of Bana
h-Mazur games.This is how the Polish s
hool of mathemati
s found out the following: Assumeevery Bana
h-Mazur game in the Baire spa
e is determined, then every set ofreals has the Baire property.We also use a variant of Bana
h-Mazur games so-
alled the unfolded Bana
h-Mazur games:De�nition 1.8.4 (The unfolded Bana
h-Mazur games). Let X be a topologi
alspa
e and F be a subset of X � !!. De�ne the unfolded Bana
h-Mazur gameG��u (F ) (or G��u (F;X)) as follows:I V0; y0 V2; y1 : : :II V1 V3 : : :Players I and II 
hoose V0; V1; : : : as in the Bana
h-Mazur game, but additionallyI plays a natural number yn in her nth move. Let y = hyn j n 2 !i. Player IIwins if �Tn2! Vn � fyg� \ F = ;.We have the same kind of 
hara
terization theorem as Bana
h-Mazur games:Theorem 1.8.5 (Folklore). Let X be a topologi
al spa
e and F be a subset ofX � !!. Let A = 9RF .1. If A is meager in X, then player II has a winning strategy in the gameG��u (F ).2. Suppose that F is of the form (f � id)�1(C), where f : X ! !! is a
ontinuous fun
tion, f � id: X � !! ! !! � !! is de�ned by (f � id) (x; y) =(f(x); y), and C is a subset of !! � !!. Then if player II has a winning strategyin the game G��u (F ), then A is meager in X.
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 15Proof. We show the �rst item. By Theorem 1.8.3, if A is meager, then playerII has a winning strategy � in the game G��(A;X). But � 
an be viewed as awinning strategy for player II in the game G��u (F ) by ignoring I's moves of yns.Next we show the se
ond item. The point is that given a winning strategy �for player II in the game G��u (F ), she 
an modify � so that in her nth move, she
an de
ide the nth digit of f(x) by the 
ontinuity of f . The rest of the argumentis the same as in [45, Theorem 21.5℄.Using Theorem 1.8.5, one 
an 
hara
terize when player I has a winning strat-egy in the game G��u (F ) as well: Player I has a winning strategy in the gameG��u (F ) if and only if there is a nonempty open set U in X su
h that U n A ismeager in U . As before, it follows from this fa
t that a subset A of X has theBaire property if and only if the game G��u (F 0) is determined, where F 0 is a subsetof X � !! with 9RF 0 = A n UA and UA is the same as in the paragraphs afterTheorem 1.8.3.The advantage of the unfolded Bana
h-Mazur games over Bana
h-Mazur gamesis that one 
an redu
e the 
omplexity of the payo� sets (from A to F in the abovede�nition). If A is a �11 set in the Baire spa
e, then AnUA is also �11, hen
e thereis a 
losed subset F of !! � !! su
h that 9RF = A n UA. Sin
e there is no dif-feren
e between playing basi
 open sets and playing open sets for Bana
h-Mazurgames and the unfolded ones and basi
 open sets in the Baire spa
e are easily
oded by natural numbers, one 
an simulate the unfolded Bana
h-Mazur gamesby Gale-Stewart games in a simple way. By the �rst item of Theorem 1.6.3, allthe 
losed Bana
h-Mazur games and the unfolded ones are determined. Hen
ewe 
an 
on
lude that every �11 set of reals has the Baire property.41.9 For
ingWhile Zermelo-Fraenkel set theory with the axiom of 
hoi
e (ZFC), whi
h is aset-theoreti
 axiomatization for the foundation of mathemati
s, is a very goodbasis for most of mathemati
al pra
ti
e, some mathemati
al questions remainundetermined by ZFC and one su
h typi
al question is whether the ContinuumHypothesis (CH) is true or not. In 1963, Cohen introdu
ed for
ing to provethat CH does not follow from ZFC and sin
e then, for
ing has been one of themost important basi
 tools in set theory. Starting from a model of ZFC (
alledthe \ground model"), Cohen produ
ed an extension of the given model (
alleda \generi
 extension") whi
h is a model of ZFC and the negation of CH. Thiste
hnique is so general that one 
an de�ne a generi
 extension for ea
h partialorder in the given ground model, and one 
an 
hange the truth-value of manymathemati
al statements between ground models and their generi
 extensionswhi
h yield the 
onsisten
y and the independen
e of those statements from ZFC.4This is not the original proof of Lusin. It is due to Solovay (
f. [44, Exer
ise 27.14℄).



16 Chapter 1. Introdu
tionIn Chapter 2 and Chapter 3, we assume the basi
 theory of for
ing whi
h 
anbe found in, e.g., [52, x 7, 8℄. Let us �x the notation 
on
erning for
ing and listthe partial orders we will use in this thesis.The Universe is the 
lass of all sets and it is denoted by V . Let M be a modelof ZF, P be a partial order belonging to M , and G be a P-generi
 �lter over M .By M [G℄, we mean the generi
 extension of M via G. For a P-name � in M , �Gdenotes the interpretation of � via G. For a set x, �x denotes the standard P-namefor x, i.e., �xG = x for any �lter G.The following is the list of partial orders we will use:Cohen for
ing. The partial order is (<!!;�) denoted by C where � is reversein
lusion on �nite sequen
es of natural numbers. Given a model M of ZF anda C -generi
 �lter G over M , set xG = Sfp 2 C j p 2 Gg. By the generi
ity ofG, xG is a fun
tion from ! to itself (i.e., an element of the Baire spa
e). Su
hobje
ts are 
alled Cohen reals over M . Also one 
an re
onstru
t G from xG andC as follows: G = fp 2 C j p � xGg. Hen
e there is a 
anoni
al one-to-one
orresponden
e between C -generi
 �lters over M and Cohen reals over M . Weoften identify these two obje
ts.Random for
ing Elements of the partial order are Borel sets in the Bairespa
e (or in the real line) with positive Lebesgue measure ordered by in
lusionand it is denoted by B . Given a model M of ZF+AC!(R) and a B -generi
 �lterG over M , the set TfBM [G℄ j B 2 Gg is a singleton fxGg, where BM [G℄ is theinterpretation of B in M [G℄ via Borel 
odes for B in M .5 Su
h reals xG are 
alledrandom reals over M . As with Cohen reals, one 
an re
over G from xG and Mas follows: G = fB 2 B j xG 2 BM [G℄g. Hen
e there is a 
anoni
al one-to-one
orresponden
e between B -generi
 �lters over M and random reals over M . Weoften identify these two obje
ts.He
hler for
ing. Elements of the partial order are pairs (n; f) where n is anatural number and f is a fun
tion from ! to itself and it is denoted by D . Given(n; f) and (m; g) in D , (n; f) � (m; g) if n � m, f�m = g�m and f(k) � g(k)for any k � m. Given a model M of ZF and a D -generi
 �lter G over M ,xG = Sff�n j (n; f) 2 Gg is a fun
tion from ! to itself by the generi
ity of G.Su
h reals xG are 
alled He
hler reals over M . One 
an re
over G from xG andM as follows: G = f(n; f) 2 D j xG � f�n and (8k � n) f(k) � xG(k)g. Hen
ethere is a 
anoni
al one-to-one 
orresponden
e between D -generi
 �lters over Mand He
hler reals over M . We often identify these two obje
ts.5For the de�nition and the basi
 properties of Borel 
odes, see x 1.13.
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ing. Elements of the partial order are pairs (s; A) where s is a�nite set of natural numbers and A is an in�nite set of natural numbers su
h thatmax(s) < min(A) and the for
ing is denoted R.6 Given (s; A) and (t; B) in R,(s; A) � (t; B) if s \ (n + 1) = t, A � B and s n t � B, where n = max t. Givena model M of ZF and a R-generi
 �lter over M , xG = Sfs j (9A) (s; A) 2 Ggis an in�nite set of natural numbers by the generi
ity of G. Su
h reals are 
alledMathias reals over M . One 
an re
onstru
t G from xG and M as follows: G =f(s; A) 2 R j s � xG and xG � s [ Ag. Hen
e there is a 
anoni
al one-to-one
orresponden
e between R-generi
 �lters over M and Mathias reals over M . Weoften identify these two obje
ts.Sa
ks for
ing. Elements of the partial order are perfe
t trees on 2 ordered byin
lusion and it is denoted by S. Given a model M of ZF and an S-generi
 �lterG over M , xG = Sfstem(T ) j S 2 Gg is a fun
tion from ! to 2 by the generi
ityof G. Su
h reals are 
alled Sa
ks reals over M . One 
an re
over G from xG andM as follows: G = fS 2 S j xG 2 [S℄g. Hen
e there is a 
anoni
al one-to-one
onne
tion between S-generi
 �lters over M and Sa
ks reals over M . We oftenidentify these two obje
ts.Silver for
ing. Elements of the partial order are uniform perfe
t trees on 2ordered by in
lusion and it is denoted by V, where a perfe
t tree T on 2 isuniform if for any s and t in T with the same length and i = 0; 1, s_hii 2 T ifand only if t_hii 2 T . Given a model M of ZF and a V-generi
 �lter G over M ,one 
an de�ne xG in the same way as Sa
ks reals and su
h reals are 
alled Silverreals over M . There is a 
anoni
al one-to-one 
orresponden
e between V-generi
�lters over M and Silver reals over M as in Sa
ks for
ing. We often identify thesetwo obje
ts.Miller for
ing. Elements of the partial order are superperfe
t trees on ! or-dered by in
lusion and it is denoted by M , where a tree T on ! is superperfe
t if forany node t of T , there is an extension u of t in T su
h that fn 2 ! j u_hni 2 Tg isin�nite. Given a model M of ZF and a M -generi
 �lter G over M , one 
an de�nexG in the same way as Sa
ks reals and su
h reals are 
alled Miller reals over M .There is a 
anoni
al one-to-one 
orresponden
e between M -generi
 �lters over Mand Miller reals over M as in Sa
ks for
ing. We often identify these two obje
ts.Laver for
ing. Elements of the partial order are trees T on ! su
h that forea
h node t � stem(T ) of T , the set fn 2 ! j t_hni 2 Tg is in�nite and theyare ordered by in
lusion. The partial order is denoted by L. Given a model Mof ZF and a L-generi
 �lter G over M , one 
an de�ne xG in the same way as6We use this notation only in Chapter 2 where we do not use R either for the real line, theBaire spa
e or the Cantor spa
e. Hen
e there will be no 
onfusion for this notation.
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tionSa
ks reals and su
h reals are 
alled Laver reals over M . There is a 
anoni
alone-to-one 
orresponden
e between L-generi
 �lters over M and Laver reals overM as in Sa
ks for
ing. We often identify these two obje
ts.Eventually di�erent for
ing. Elements of the partial order are pairs (s; F )where s is a �nite sequen
e of natural numbers and F is a �nite set of fun
tionsfrom ! to itself and it is denoted by E . Given (s; F ) and (t; F 0) in E , (s; F ) �(t; F 0) if s � t, F 0 � F and (8f 2 F 0) �8n 2 dom(s n t)� s(n) 6= f(n). Given amodel M of ZF and a E -generi
 �lter G over M , xG = Sfs j (9F ) (s; F ) 2 Ggis a fun
tion from ! to itself by the generi
ity of G. Su
h reals are 
alled E -generi
 reals over M and one 
an re
onstru
t G from xG and M as follows:G = f(s; F ) 2 E j s � xG and (8f 2 F ) �8n � dom(s)� xG(n) 6= f(n)g. Hen
ethere is a 
anoni
al one-to-one 
orresponden
e between E -generi
 �lters over Mand E -generi
 reals over M . We often identify these two obje
ts.Next, we introdu
e useful 
lasses of for
ings that we use in Chapter 2. LetP be a partial order. For p and q in P, p and q are 
ompatible (denoted by pjjq)if there is an r in P su
h that r � p and r � q. They are 
alled in
ompatible(denoted by p?q) if they are not 
ompatible. A subset A of P is an anti
hain ifany two di�erent elements of A are in
ompatible. A subset D of P is dense if forany p in P there is a d in D su
h that d � p. Let D be a subset of P and p be anelement of P. The set D is predense below p if for any q � p in P there is a d inD su
h that q and d are 
ompatible.For a regular 
ardinal �, H� denotes the set of all sets a su
h that jTC(a)j < �,where TC(a) denotes the transitive 
losure of a, i.e., the smallest set b 
ontaininga and whi
h is transitive, i.e., (8x 2 b) x � b.The 
ountable 
hain 
ondition (


). A partial order P has the 
ountable
hain 
ondition (or P is 


) if every anti
hain of P is 
ountable. Sin
e theinvention of for
ing, 


 for
ings have been fundamental partial orders and theyenjoy many ni
e properties, e.g., they preserve 
ardinalities, i.e., given a 


partial order P and a P-generi
 �lter G over V , for any ordinal �, � is a 
ardinalin V if and only if it is a 
ardinal in V [G℄. In parti
ular, !V1 = !V [G℄1 . Typi
alexamples of 


 for
ings are Cohen for
ing, random for
ing, He
hler for
ing, andeventually di�erent for
ing. Mathias for
ing, Sa
ks for
ing, Silver for
ing, Millerfor
ing, and Laver for
ing are not 


.Proper for
ings. A partial order P is proper if for any suÆ
iently large regular
ardinal � (e.g., � � 2jPj) and any 
ountable elementary substru
ture X of H�with P 2 X, and any p in P\X, there is a q � p in P su
h that q is (X;P)-generi
,i.e., for any dense set D of P in X, D \X is predense below q. Proper for
ingswere introdu
ed by Shelah and they are also fundamental in modern set theory.They are a generalization of 


 for
ings (i.e., every 


 for
ing is proper) and
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 for
ings satisfy, e.g., for a proper for
ing P, aP-generi
 �lter G over V , and any 
ountable set of ordinals A in V [G℄, there isa 
ountable set of ordinals B in V su
h that A � B. In parti
ular, !V1 = !V [G℄1 .All the examples of for
ings listed above are proper.1.10 Large 
ardinalsLarge 
ardinals are 
ardinals with 
ertain trans
enden
e properties over 
ardinalssmaller than them. Many su
h properties are the analogies of the ones ! has over�nite numbers. For the basi
s and ba
kground for large 
ardinals, we refer thereader to [44℄. Let us list the large 
ardinals (or the large 
ardinal properties) wewill use in this thesis:Ina

essible 
ardinals. Ina

essible 
ardinals are the least and the oldest large
ardinals. An un
ountable 
ardinal � is ina

essible if it is regular, i.e., for anyordinal � < � and any fun
tion f : � ! �, f is bounded, i.e., there is a � < �su
h that ran(f) � �, and it is strong limit, i.e., for any � < �, 2� < �. If � isina

essible, then V� is a model of ZFC. Hen
e the existen
e of an ina

essible
ardinal implies the 
onsisten
y of ZFC and by G�odel's In
ompleteness Theorem,the 
onsisten
y of ZFC+\There is an ina

essible 
ardinal" is stri
tly strongerthan that of ZFC.Sharps. Let X be a set. By X#, we mean the 
omplete theory of L(X) in thelanguage (2; f
ngn2!; fdaga2TC(X)) with some spe
ial properties, where 
n is the
onstant for the n-th indis
ernible for L(X) and da is the 
onstant for a 2 TC(X).For the details, see, e.g., [22℄. The existen
e of X# is equivalent to the existen
e ofa 
losed unbounded proper 
lass of indis
ernibles for L(X) with some properties.Also it is equivalent to the existen
e of an elementary embedding j from L(X) toitself whose 
riti
al point is above the rank of X. (Here the 
riti
al point of j isthe least ordinal � su
h that j(�) > �.) We say every real has a sharp if for anyreal x, x# exists. We say every set has a sharp if for any set X, X# exists.Measurable 
ardinals. Measurable 
ardinals are one of the most fundamentallarge 
ardinals. An un
ountable 
ardinal � is a measurable 
ardinal if there is anelementary embedding from V to a transitive proper 
lass whose 
riti
al point is�. There is a �rst-order 
hara
terization of measurable 
ardinals: An un
ountable
ardinal � is measurable if and only if there is a non-trivial �-
omplete ultra�lteron �; here a �lter is non-trivial if it is not prin
ipal and it is �-
omplete if itis 
losed under interse
tions with <� many sets. It is easy to see that if � is ameasurable 
ardinal, then for any set X 2 V�, X# exists.
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tionStrong 
ardinals. Most large 
ardinals stronger than measurable 
ardinalsassert the existen
e of elementary embeddings from V to a transitive 
lass Mwith 
ertain properties. The more M is 
lose to V , the stronger the large 
ardinalproperty is. Strong 
ardinals are one of the natural strengthening of measurable
ardinals in this sense. Let � be an ordinal. An un
ountable 
ardinal � is �-strongif there is an elementary embedding j from V to M su
h that M is transitive,the 
riti
al point of j is �, and V� � M . An un
ountable 
ardinal � is strongif it is �-strong for any ordinal �. It is immediate that any �-strong 
ardinal ismeasurable. If � is (�+ 2)-strong, then there are unboundedly many measurable
ardinals below �.Woodin 
ardinals. Woodin 
ardinals were introdu
ed when Shelah and Woodintried to de
ide the optimal upper bound for the 
onsisten
y strength of the sat-uration of the nonstationary ideal on !1 and they are tightly 
onne
ted to thedetermina
y of proje
tive sets in Gale-Stewart games. Let � < Æ be ordinals andA be a subset of VÆ. An un
ountable 
ardinal � < Æ is �-A-strong if there isan elementary embedding j from V to a transitive 
lass M su
h that � is the
riti
al point of j, V� � M , and A \ V� = j(A) \ V�. An un
ountable 
ardinal� is <Æ-A-strong if it is �-A-strong for every � < Æ. An ina

essible 
ardinal Æis Woodin if it is a limit of <Æ-A-strong 
ardinals for any subset A of VÆ. If Æ isWoodin, then VÆ satis�es \There is a proper 
lass of strong 
ardinals".1.11 Inner models and inner model theoryInner models are transitive proper 
lass models of ZF. The study of inner modeltheory is about 
anoni
al inner models with large 
ardinals. The G�odel's Con-stru
tible Universe L is the most basi
 
anoni
al inner model. It always existsin ZF and it is the least inner model of ZFC. G�odel introdu
ed L to prove the
onsisten
y of AC, CH, and moreover the Generalized Continuum Hypothesis(GCH) with ZF. Beside this fa
t, L has many interesting properties, e.g., in L,there is a �12 set of reals without the Baire property and whi
h is not Lebesguemeasurable, and there is a �11 set of reals without the perfe
t set property. Asat the end of x 1.8, every �11 set of reals has the Baire property. Also every �11set of reals is Lebesgue measurable and has the perfe
t set property. Hen
e theabove fa
ts about L show that �11 sets of reals are the limit for proving the aboveregularity properties in ZFC.One 
an relativize the 
onstru
tion of L to any set in the following two ways:For a set A, L[A℄ denotes the least inner model su
h that A \ L[A℄ 2 L[A℄ andL(A) denotes the least inner model 
ontaining A as an element. The model L[A℄ isalways a model of ZFC and A might not belong to L[A℄ in general (e.g., L[R℄ = Land R does not belong to L in general) while L(A) might not be a model of AC(e.g., if there are !-many Woodin 
ardinals and a measurable 
ardinal above all
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 21of them, then AC fails in L(R)). For a set of ordinals A, L[A℄ = L(A).Let us list the basi
 properties of L we use later:Lemma 1.11.1 (G�odel).1. The relation f(x; a) 2 !! � !! j x 2 L[a℄g is a �12 set of reals.2. For any real a, L[a℄ � \There is a �12(a) wellordering of the reals".Proof. See, e.g., [66, Theorem 8F.7, 8F.23, 8F.24℄.Core models are 
anoni
al inner models with the following spe
ial properties:�rst they are �ne stru
tural (
onstru
ted with Jensen's J� Hierar
hy), se
ond,they are for
ing invariant (they are absolute between ground models and theirfor
ing extensions), and lastly they are 
lose to V , e.g., they have 
overing prop-erties or weak 
overing. If 0# does not exist, L is the basi
 
ore model. Unlikemany 
anoni
al inner models, one needs to assume some anti-large 
ardinal hy-pothesis to prove the existen
e of 
ore models. The following is a general resultfor the existen
e of the 
ore model:Theorem 1.11.2 (Dodd and Jensen [24℄; Koepke [50℄; Jensen [38℄; Mit
hell [64℄;Jensen [39℄; Steel [79℄; Jensen and Steel [41, 40℄). Suppose every real has a sharp.If there is no inner model of ZFC with a Woodin 
ardinal, then the 
ore model Kexists. More generally, if �12-determina
y fails, then there is a real a0 su
h thatfor any a �T a0, the a-relativized version of the 
ore model Ka exists, where �Tis the Turing order.7 Moreover, the 
ore models have the following properties:1. the relation f(x; a) 2 !! � !! j x 2 Kag is a �13 set of reals, and2. for any real a, Ka � \There is a �13(a) wellordering of the reals".Proof. When there is a real a su
h that ay does not exist, see [24℄. In the other
ase, see [79℄. Note that in [79℄, Steel assumed the existen
e of a measurable
ardinal to 
onstru
t K. But Jensen and Steel [41, 40℄ omitted this assumption.To build 
ore models, one needs to study fragments of 
ore models or moregeneral obje
ts, whi
h are 
alled mi
e. Standard examples of mi
e are L and the
ore model K. For a set a, there are a-relativized version of mi
e 
alled a-mi
e.Basi
 examples are L[a℄ and Ka. The following two theorems are essential tostudy mi
e:Theorem 1.11.3 (Comparison Lemma). LetM;N be mi
e and � = maxfjM j+; jN j+g.After <� steps of 
oiterations, one of them is an initial segment of the other.7Note that �12-determina
y (lightfa
e) is equivalent to the existen
e of an inner model ofZFC with a Woodin 
ardinal. This is why we said \More generally,".
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tionProof. See, e.g., [92, Lemma 9.1.8℄.Theorem 1.11.4 (Dodd-Jensen Lemma). Let M be a mouse and i : M ! M 0be an iteration map a

ording to the unique iteration strategy of M . Supposethere is a �� preserving map � : M !M 0. Then1. there is no drop in the iteration tree for i, and2. for any ordinal � in M , i(�) � �(�).In parti
ular, any two iteration maps without drops from a mouse to a mouse arethe same.Proof. See, e.g., [92, Lemma 9.2.10℄.1.12 AbsolutenessWe speak of absoluteness if a senten
e or a 
lass of senten
es does not 
hangetruth values of mathemati
al statements between models of set theory and it isone of the basi
 and 
entral notions in set theory. Given models of set theoryM and N with M � N and a formula �, � is absolute between M and N iffor any �nite sequen
e of elements ~x in M , M � �(~x) if and only if N � �(~x).For example, the formula \x is !" is absolute between any two transitive modelsof ZF. The �rst nontrivial and important absolute notion is wellfoundedness. Arelation R on a set A is wellfounded if for any nonempty subset B of A, there isan R-minimal element of B, i.e., there is a b 2 B su
h that for any element a ofB, (a; b) =2 R.Lemma 1.12.1. The formula \R is a wellfounded relation on A" is absolutebetween any two transitive models of ZF.Proof. See, e.g., [37, Lemma 13.11℄ and the two paragraphs pre
eding it.Given a �11 formula �, one 
an re
ursively 
ompute a tree T on !�! su
h thatfx j A2 � �(x)g = fx j [Tx℄ = ;g, where Tx = ft 2 <!! j �x�dom(t); t� 2 Tg inZF+AC!(R). But [Tx℄ = ; if and only if (Tx;�) is wellfounded. Hen
e A2 � �(x)if and only if (Tx;�) is wellfounded. Hen
e the problem of membership for a �11set is redu
ed to the one for the wellfoundedness of 
ertain trees. Combining withLemma 1.12.1,Theorem 1.12.2 (Mostowski). Every �11 formula is absolute between transi-tive models of ZF+AC!(R). Hen
e every �11 formula is also absolute betweentransitive models of ZF+AC!(R).Proof. See, e.g., [37, Theorem 25.4℄.
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 23In general, a �12 formula is not absolute between transitive models of ZF.Shoen�eld proved that any �12 formula is absolute between inner models of ZF+AC!(R):Theorem 1.12.3 (Shoen�eld). For any �12 formula � and real a, there is a tree Ton !�!1 in L[a℄ su
h that for any real x, A2 � �(x; a) if and only Tx is wellfounded.This tree is 
alled a Shoen�eld tree and one 
an 
onstru
t a Shoen�eld tree inany inner model of ZF+AC!(R) and the 
onstru
tion depends only on �, a, anda �xed un
ountable ordinal (in this 
ase, !V1 ).Hen
e Shoen�eld trees are absolute and thus every �12 formula (and �12 for-mula) is absolute between between inner models of ZF+AC!(R), espe
ially be-tween L and V .Proof. See, e.g., [66, 8F.8, 8F.9, 8F.10℄.In general, a �13 formula is not absolute between L and V , e.g., the statement\Every real is in L" is equivalent to a �13 formula and one 
an add non
onstru
tiblereal (e.g., a Cohen real over L) via for
ing starting from L. Using sharps for reals,Martin and Solovay 
onstru
ted a tree 
alled Martin-Solovay tree for a �13 formulawhi
h is like a Shoen�eld tree for a �12 formula. We will give a suÆ
ient 
onditionfor the absoluteness of Martin-Solovay trees. Assume every real has a sharp. Fora real a, let Ia be the 
losed unbounded 
lass of indis
ernibles derived from a#and set I = Ta2!! Ia. The 
lass I is 
alled the 
lass of uniform indis
ernibles andu2 denotes the se
ond element of I and is 
alled the se
ond uniform indis
ernible.Theorem 1.12.4 (Martin and Solovay). LetM , N be inner models of ZFC+\Everyreal has a sharp". If uM2 = uN2 with M � N , then Martin-Solovay trees are abso-lute between M and N and hen
e every �13 formula (and �13 formula) is absolutebetween M and N .Proof. See, e.g., [33, Theorem 2.1℄.Every �13 formula is absolute between the 
ore model K and V when K exists:Theorem 1.12.5 (Dodd and Jensen; Steel). Assume every real has a sharp. If�12-determina
y fails, then there is a real a0 su
h that for any a �T a0, the a-relativized version of the 
ore model Ka exists and every �13 formula is absolutebetween Ka and V .Proof. In 
ase there is a real a su
h that ay does not exist, this is due to Dodd andJensen [24℄. If every real has a dagger, then this is due to Steel [79, Theorem 7.9℄.88In [79, Theorem 7.9℄, he assumed two measurable 
ardinals. But one 
an repla
e thisassumption with daggers for reals. See [71, Theorem 0.1℄.
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tionBefore 
losing this se
tion, we dis
uss the absoluteness of being a winningstrategy for Gale-Stewart games with 
losed payo� sets:Theorem 1.12.6 (Folklore). Let X be a nonempty set and M be a transitivemodel of ZF with X 2 M . For any 
losed subset A of !X, given a strategy � forplayer I in M , M � \� is winning in A" if and only if V � \� is winning in A".The same holds for player II.Proof. As des
ribed in [45, 20.B℄, if there is a winning strategy for player I in thegame GX(A) for a 
losed set A, then there is a 
anoni
al winning quasistrategy�A for player I and a strategy � for I is winning for the game GX(A) if and onlyif � � �A. Sin
e the 
onstru
tion of �A is absolute between transitive models ofZF, the statement \� is winning in A" is absolute between transitive models ofZF, as desired.1.13 Borel 
odes and 1-Borel 
odesIf X is the Baire spa
e, the Cantor spa
e, or the real line, it is easy to showthat there is a surje
tion from the Cantor spa
e to the set of all Borel subsets ofX. (By indu
tion on 1 � � < !1, one 
an 
onstru
t surje
tions from the Cantorspa
e to �0� subsets of X and one 
an amalgamate them into one surje
tion.)Borel 
odes are e�e
tive realizations of su
h surje
tions introdu
ed by Solovay.To introdu
e them, we �rst �x some notions and notations. Let Y be a set. Atree T on Y is wellfounded if (T;�) is wellfounded. A node s of T is terminal ifthere is no node t in T extending s. Let Term(T ) denote the set of all terminalnodes of T . Let s; t be nodes of T . The node t is a su

essor of s in T if t extendss and lh(t) = lh(s) + 1. For a node s of T , Su

T (s) denotes the set of su

essorsof s in T .We introdu
e Borel 
odes for Borel subsets of the Cantor spa
e. One 
anintrodu
e Borel 
odes for the Baire spa
e and the real line in the same way. Borel
odes are pairs (T; f) where T is a wellfounded tree on ! and f is a fun
tion fromTerm(T ) to <!2. One 
an simply regard Borel 
odes as elements of the Cantorspa
e by identifying trees on ! with a map from <!! to f0; 1g and �xing a simplebije
tion between <!! and !. With this identi�
ation, we regard Borel 
odes aselements of the Cantor spa
e. Given a Borel 
ode 
 = (T; f), the de
ode B
 isde�ned as follows: For ea
h node t of T ,Bt = 8><>:[f(t)℄ if t 2 Term(T )!2 nBs if (9s 2 T ) fsg = Su

T (t)Ss2Su

T (t)Bs otherwise.We set B
 = B;. This is well-de�ned be
ause T is wellfounded. One 
an easily
he
k any Borel set is of the form B
 for some Borel 
ode 
. The following arebasi
 observations on Borel 
odes:
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 25Lemma 1.13.1 (Solovay). The set of Borel 
odes and the relations x 2 B
,x =2 B
 are �11 sets and hen
e they are absolute between transitive models ofZF+AC!(R).Proof. See, e.g., [37, Lemma 25.44 & Lemma 25.55℄.In�nitary Borel 
odes (1-Borel 
odes) are a trans�nite generalization of Borel
odes: Let L1;0(fangn2!) be the language allowing arbitrary many 
onjun
tionsand disjun
tions and no quanti�ers with atomi
 senten
es an for ea
h n 2 !. The1-Borel 
odes are the senten
es in L1;0(fangn2!) belonging to any � su
h that� the atomi
 senten
e an is in � for ea
h n 2 !,� if � is in �, then so is :�, and� if � is an ordinal and h�� j � < �i is a sequen
e of senten
es ea
h of whi
his in �, then W�<� �� is also in �.To ea
h 1-Borel 
ode �, we assign a set of reals B� in the same way as de
odingBorel 
odes:� if � = an, then B� = fx 2 !2 j x(n) = 1g,� if � = : , then B� = !2 nB , and� if � = W�<�  �, then B� = S�<�B � .A set of reals A is 
alled 1-Borel if there is an 1-Borel 
ode � su
h that A = B�.As Borel 
odes, one 
an regard1-Borel 
odes as wellfounded trees with atomi
senten
es an on terminal nodes and de
ode them by assigning sets of reals on ea
hnode re
ursively from terminal nodes. (If a node has only one su

essor, then itmeans \negation" and if a node has more than one su

essors, then it means\disjun
tion".) The only di�eren
e between Borel 
odes and 1-Borel 
odes isthat trees are on ! for Borel 
odes while trees are on ordinals for 1-Borel 
odes.From this visualization, it is easy to see that the statement \� is an 1-Borel
ode" is absolute between any transitive models of ZF by Lemma 1.12.1.Given an 1-Borel 
ode � and a real x, the problem whether x is in B�
an be easily translated into the following kind of satisfa
tion game using theabove visualization of 1-Borel 
odes via wellfounded trees: Let us regard � as awellfounded tree T� on ordinals with terminal nodes labeled by atomi
 senten
es.In the game G
(T�), there are two players, Spoiler and Dupli
ator, and a 
ounterdesignating whi
h player should move next. We start with the top node (theempty sequen
e) with the 
ounter designating Dupli
ator. If the node has onlyone su

essor, no player is supposed to de
ide anything and they move to theunique su

essor and ex
hange the name in the 
ounter. (This is for the negation.)If the node has more than one su

essors, then the player designated by the
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ounter 
hooses one of the su

essors and keeps the name of the 
ounter. (Thisis for the disjun
tion.) If the node is a terminal node, then look at the atomi
senten
e labeled at the node, say an. If the real x satis�es that x(n) = 1, thenthe player designated by the 
ounter wins, otherwise the other player wins. It isfairly easy to see that a real x is in B� if and only if Dupli
ator has a winningstrategy in the game G
(T�). By the fa
t that the payo� set of this game is a
lopen subset of !
 for some ordinal 
, being a winning strategy in this game isabsolute in any transitive model of ZF by Theorem 1.12.6. Hen
e the statement\a real x is in B�" is absolute between transitive models of ZF.The following 
hara
terization of 1-Borel sets is very useful:Fa
t 1.13.2 (Folklore). Let A be a set of reals. Then the following are equivalent:1. A is 1-Borel, and2. There is a formula � in the language of set theory and a set S of ordinalssu
h that for ea
h real x,x 2 A () L[S; x℄ � �(x):Proof. See [80℄.Standard examples of 1-Borel sets are Suslin sets. A set of reals A is Suslinif there are an ordinal 
 and a tree T on 2� 
 su
h that A = p[T ℄, where p[T ℄ isthe proje
tion of [T ℄ to the �rst 
oordinate, i.e.,p[T ℄ = fx 2 !2 j (9f 2 !
) (x; f) 2 [T ℄g:By the above fa
t, every Suslin set is 1-Borel. Assuming the Axiom of Choi
e,it is easy to see that every set of reals is Suslin, in parti
ular 1-Borel. Hen
ethe property 1-Borelness is trivial in the ZFC 
ontext while it is nontrivial andpowerful in a determina
y world, as we will see in Chapter 3.1.14 Bla
kwell gamesIn this se
tion, we introdu
e Bla
kwell games, whi
h are in�nite games withimperfe
t information and 
ompare them with Gale-Stewart games.In 1928, John von Neumann proved his famous minimax theorem whi
h isabout �nite games with imperfe
t information. In�nite versions of von Neumann'sgames were introdu
ed by David Bla
kwell [15℄ where he proved the analogue ofvon Neumann's theorem for GÆ sets of reals (i.e., �02 sets of reals). The games heintrodu
ed are 
alled Bla
kwell games and they were 
alled by him \games withslightly imperfe
t information" in his paper [16℄.
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kwell games.9 Let X be a nonempty setand assume AC!(!R). Re
all from x 1.4 that the topology of !X is given by theprodu
t topology where ea
h 
oordinate (i.e., X) is seen as the dis
rete spa
e.In Bla
kwell games, players 
hoose probabilities on X instead of elements of Xand with those probabilities, one 
an dedu
e a Borel probability on !X, i.e., ameasure assigning probability to ea
h Borel subset of !X. Player I wins if theprobability of a given payo� set is 1 and player II wins if the probability of thepayo� set is 0. Let us formulate this in detail.De�nition 1.14.1. A mixed strategy for player I is a fun
tion � : XEven !Prob!(X), where Prob!(X) is the set of fun
tions � : X ! [0; 1℄ withPx2X �(x) =1.10 A mixed strategy for player II is a fun
tion � : XOdd ! Prob!(X).Given mixed strategies �, � for player I and II respe
tively, let �(�; �) : <!X !Prob!(X) be as follows: For ea
h �nite sequen
e s of elements of X,�(�; �)(s) = (�(s) if s 2 XEven,�(s) if s 2 XOdd.For ea
h �nite sequen
e s of elements of X, de�ne��;� ([s℄) = lh(s)�1Yi=0 �(�; �)(s�i) �s(i)�:Re
all that [s℄ denotes the set of x 2 !X su
h that x � s and these sets are basi
open sets in the spa
e !X. With the help of AC!(!X), we 
an uniquely extend��;� to a Borel probability on !X, i.e., the probability whose domain is the setof all Borel sets in the spa
e !X. Let us also use ��;� for denoting this Borelprobability.Let A be a subset of !X. A mixed strategy � for player I is optimal in Aif for any mixed strategy � for player II, A is ��;� -measurable and ��;� (A) = 1.A mixed strategy � for player II is optimal in A if for any mixed strategy � forplayer I, A is ��;� -measurable and ��;� (A) = 0. A set A is Bla
kwell-determinedif one of the players has an optimal strategy in A. The axiom Bl-ADX states thatevery subset of !X is Bla
kwell-determined. We write Bl-AD for Bl-AD!.Note that sin
e there is a bije
tion between R and !R, by Remark 1.2.1,AC!(R) implies AC!(!R) and hen
e one 
an formulate Bla
kwell games in !R andBl-ADR within ZF+AC!(R). The following is an analogy with Proposition 1.6.6:9Our de�nitions of Bla
kwell games and Bla
kwell determina
y are di�erent from the originalones given by Bla
kwell [16℄ where Bla
kwell determina
y is formulated as an extension of vonNeumann's minimax theorem, but our formulation is equivalent to the original one when it isabout the Cantor spa
e (i.e., when X = 2). For the original formulation of Bla
kwell gamesand Bla
kwell determina
y, see, e.g., [56, x 3 & x 5℄.10We use Prob!(X) to denote su
h fun
tions be
ause they are the same as Borel probabilities� on X with 
ountable support, i.e., there is a 
ountable subset A of X with �(A) = 1.
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tionProposition 1.14.2.1. Let X; Y be nonempty sets and suppose that there is an inje
tion from Xto Y and assume AC!(!Y ). Then Bl-ADY implies Bl-ADX . In parti
ular,Bl-ADR implies Bl-AD.2. The axioms Bl-AD and Bl-AD2 are equivalent.Proof. The �rst item is easy to see. For the se
ond item, see [55, Corollary 4.4℄.As for Gale-Stewart games, one 
ould ask what kind of subsets of !X areBla
kwell-determined for a nonempty set X. After proving that every GÆ subsetof the Cantor spa
e is Bla
kwell-determined, Bla
kwell asked whether every Borelsubset of the Cantor spa
e is determined. It was Donald Martin who found ageneral 
onne
tion between the determina
y of Gale-Stewart games and Bla
kwelldetermina
y.11Theorem 1.14.3 (Martin). Let X be a set and assume AC!(!X). If there isa winning strategy for player I (resp., II) in a subset A of !X, then there isan optimal strategy for player I (resp., II) in A. In parti
ular, AD implies thatBl-AD and ADR implies that Bl-ADR.Proof. Given a strategy � for player I (resp., II), one 
an naturally translate �into a mixed strategy �̂ for player I (resp., II) by setting �̂(s) to be the Dira
measure 
on
entrating on �(s). It is easy to see that if � is winning in A, then �̂is optimal in A.By Theorem 1.6.4, every Borel subset of the Cantor spa
e is Bla
kwell-determinedin ZFC and this answers the question of Bla
kwell. After proving Theorem 1.14.3,Martin 
onje
tured the following:Conje
ture 1.14.4 (Martin). Bl-AD implies AD.This 
onje
ture is still not known to be true. The best known result towardAD from Bl-AD is as follows: Re
all the notion of Suslinness from x 1.13. A setof reals is 
o-Suslin if its 
omplement is Suslin.Theorem 1.14.5 (Martin, Neeman, and Vervoort). Assume Bl-AD. Then everySuslin and 
o-Suslin set of reals is determined.Proof. See [59, Lemma 4.1℄.1211In [58℄, Martin proved the Bla
kwell determina
y in the original formulation as mentionedin Footnote 9, not in our formulation.12In [59, Lemma 4.1℄, they assume the Bla
kwell determina
y for sets of reals in a weaklys
aled point
lass. But the argument shows the statement in Theorem 1.14.5.
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 29Together with the following result, one 
an establish the equi
onsisten
y be-tween AD and Bl-AD:Theorem 1.14.6 (Ke
hris and Woodin). Assume that every Suslin and 
o-Suslinset of reals is determined. Then ADL(R) holds.Proof. See [46℄.Corollary 1.14.7 (Martin, Neeman, and Vervoort). In L(R), AD and Bl-AD areequivalent. In parti
ular, AD and Bl-AD are equi
onsistent.Also, Bl-AD has some 
onsequen
e on regularity properties:Theorem 1.14.8 (Vervoort). Assume Bl-AD. Then every set of reals is Lebesguemeasurable.Proof. See [86℄.We dis
uss the 
onne
tion between Bla
kwell determina
y and other regularityproperties su
h as the Baire property in x 3.2.It is not diÆ
ult to see that if �nite games are Bla
kwell determined, thenthey are determined. As a 
orollary, one 
an obtain the following:Theorem 1.14.9 (L�owe). Assume Bl-ADR. Then every relation on the reals 
anbe uniformized by a fun
tion.Proof. See [56, Theorem 9.3℄.Sin
e there is a relation on the reals whi
h 
annot be uniformized by a fun
tionin L(R), Bl-ADR does not hold in L(R). Sin
e Bl-ADR implies Bl-AD by the �rstitem of Remark 1.14.2 and Bl-AD implies ADL(R) by Corollary 1.14.7, AD doesnot imply Bl-ADR.In Chapter 3, we dis
uss the 
onne
tion between ADR and Bl-ADR.1.15 Wadge redu
ibility and Wadge gamesWhen we study des
riptive set theory, we often would like to 
ompare given twosets of reals via some measure of 
omplexity, i.e., we would like to ask the question\Whi
h set of reals is more 
omplex than the other?". In 1972, Wadge [88℄introdu
ed Wadge redu
ibility for sets of reals in the Baire spa
e, whi
h is ananalogue of many-one redu
ibility in re
ursion theory: A set of reals A is Wadgeredu
ible to a set of reals B if there is a 
ontinuous fun
tion f from the Bairespa
e to itself su
h that A = f�1(B). After its introdu
tion, set theorists inCalifornia developed a beautiful theory of Wadge redu
ibility under the Axiomof Determina
y (AD) plus the prin
iple of Dependent Choi
e (DC). Nowadaysthis theory is one of the basi
 tools in the resear
h of determina
y and is essential
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tionto the study of des
riptive set theory. The key tool of the analysis of Wadgeredu
ibility is a type of in�nite games 
alled Wadge games, whi
h 
hara
terize
ontinuous fun
tions from the Baire spa
e to itself.For a subset A of a topologi
al spa
e X, A
 denotes the 
omplement of A andA denotes the 
losure of A in X.We start with the de�nition of Wadge redu
ibility for a general topologi
alspa
e. Let X be a topologi
al spa
e and A;B be subsets of X. The set A is Wadgeredu
ible to B (write A �XW B) if there is a 
ontinuous fun
tion f : X ! X su
hthat A = f�1(B). Hen
e the problem of the membership of A 
an be redu
edto that of the membership of B via a 
ontinuous fun
tion, and in this sense Bis more 
ompli
ated than (or as 
ompli
ated as) A. This notion reminds us ofthe many-one redu
ibility for subsets of ! in re
ursion theory given by repla
ing
ontinuous fun
tions with re
ursive fun
tions. We de�ne three other notions ofWadge redu
ibility. A subset A of X is Wadge equivalent to a subset B of X(A �XW B) if A �XW B and B �XW A. A subset A of X is stri
tly Wadge redu
ibleto a subset B of X (A <XW B) if A �XW B and B �XW A. A subset A of X isWadge 
omparable to a subset B of X if A �XW B or B �XW A holds. It is easyto see that the Wadge order �XW is a preorder (i.e., re
exive and transitive) andthat the Wadge equivalen
e �XW is an equivalen
e relation on subsets of X. Anequivalen
e 
lass of this equivalen
e relation is 
alled a Wadge degree.When X is the Baire spa
e, the study of Wadge degrees is interesting todes
riptive set theorists in the way that Turing degrees are interesting to re
ursiontheorists. Sin
e ea
h boldfa
e point
lass is 
losed under 
ontinuous preimages, it
onsists of an initial segment of all the subsets of reals via Wadge redu
ibility andhen
e the study of Wadge degrees gives us a �ner analysis of boldfa
e point
lassessu
h as Borel 
lasses �0� and proje
tive 
lasses �1n. Wadge introdu
ed Wadgegames to analyze Wadge redu
ibility for the Baire spa
e. Given two set of realsA;B in the Baire spa
e, the Wadge game GW(A;B) is played by two playersI and II in the following way: I plays a natural number x0, then II plays anatural number y0 or she 
an pass, then I plays again a natural number x1 andII plays a natural number or she 
an pass. After ! rounds of this pro
ess, theywill produ
e sequen
es x = hxn j n 2 !i and y = hyn j n < ii where i � !.Player II wins if i = ! (i.e., player II plays natural numbers in�nitely often) andx 2 A () y 2 B. Otherwise player I wins. It is easy to see that A �!!W B ifand only if player II has a winning strategy in the Wadge game GW(A;B). Sin
eWadge games 
an be easily simulated by Gale-Stewart games, under AD, we 
an
on
lude the following:Theorem 1.15.1 (Wadge's Lemma). Assume AD and let A;B be two sets ofreals in the Baire spa
e. Then either A �!!W B or B �!!W A
 holds.Proof. Suppose A �!!W B. Then by the above observation, player I has a winningstrategy in the game GW(A;B). But using this strategy, player II 
an win thegame GW(B;A
) be
ause the negation of x 2 A () y 2 B is the same as
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. Hen
e player II has a winning strategy in the gameGW(B;A
) and B �!!W A
.By the above theorem, we 
an dedu
e that the Wadge order �!!W is almostlinear in the following sense: Let X be a topologi
al spa
e and A be a subset ofX. We say A is selfdual if A �XW A
 (equivalently A
 �XW A) and non-selfdual ifA �XW A
 (equivalently A
 �XW A). Let A be a selfdual set of reals and B be a setof reals in the Baire spa
e. Then either i) B <!!W A, ii) B �!!W A, or iii) A <!!W Bholds. Let A be a non-selfdual set of reals and B be a set of reals in the Bairespa
e. Then either i) B <!!W A and B <!!W A
, ii) B �!!W A, iii) B �!!W A
, or iv)A <!!W B and A
 <!!W B holds.Donald Martin and Leonard Monk proved that the Wadge order �!!W is well-founded. Hen
e we 
an measure the 
omplexity of sets of reals via ordinals bytaking their rank in the Wadge order.Theorem 1.15.2 (Martin and Monk). Assume AD+DCR. Then the Wadgeorder �!!W is wellfounded.Proof. See, e.g., [83, Theorem 2.2℄.The above two theorems are essential parts of the basi
 theory of the Wadgeorder for the Baire spa
e. In Chapter 5, we show that both theorems fail for theWadge order for the real line.





Chapter 2Games and Regularity Properties
In this 
hapter, we fo
us on the 
onne
tion between in�nite games and regularityproperties for sets of reals. Roughly speaking, a set of reals with a regularityproperty 
an be approximated by some simple sets (e.g., open sets or Borel sets)modulo some small sets.We 
hara
terize almost all the known regularity properties for sets of reals viathe Baire property for some topologi
al spa
es and use Bana
h-Mazur games toprove the general equivalen
e theorems between the regularity properties, for
ingabsoluteness, and the trans
enden
e properties over some 
anoni
al inner models.With the help of these equivalen
e results, we answer some open questions fromset theory of the reals.In this 
hapter, we work in ZFC. We assume that readers are familiar with theelementary theories of for
ing and des
riptive set theory. (For basi
 de�nitionsnot given in this paper, see [37, 66℄.) When we are talking about \reals", wemean elements of the Baire spa
e !! or of the Cantor spa
e !2. In this 
hapter,we use R for Mathias for
ing and we will not use it for the real line or the set ofall reals.2.1 P-Baireness and P-measurabilityIn this se
tion, we introdu
e two kinds of regularity properties for sets of realsfor a wide 
lass of for
ing notions P and 
ompare them. The �rst one is 
alledP-Baireness, whi
h was impli
itly mentioned in the paper by Feng, Magidor,and Woodin [25℄. The idea of P-Baireness is to redu
e properties for sets ofreals to the Baire property in the Stone spa
e of P by taking the 
ontinuouspreimages of sets of reals in the Stone spa
e of P. Sets of reals with the P-Baireness behave ni
ely in for
ing extensions by P be
ause 
ontinuous fun
tionsfrom the Stone spa
e of P to the reals 
orrespond to P-names for reals. These
ond one is 
alled P-measurability, whi
h is a generalization of almost all theknown regularity properties for sets of reals. Sin
e almost all the known regularity33



34 Chapter 2. Games and Regularity Propertiesproperties 
ome from tree-type for
ings, we �rst introdu
e a wide 
lass of tree-type for
ings 
alled strongly arboreal for
ings. As is mentioned in the introdu
tionof this 
hapter, a set of reals with a regularity property 
an be approximated bysome simple sets modulo small sets. To ea
h strongly arboreal for
ing P, we willasso
iate a �-ideal IP whi
h will be the set of small sets in this 
ontext and give thede�nition of P-measurability. After introdu
ing these two regularity properties,we will investigate the 
onne
tion between them.From now on, we work with only separative partial orders: A partial order Pis separative if for any two elements p; q of P, if p � q, then there is an r � pwith r?q. Every Boolean algebra is separative. The advantage of working withseparative partial orders is that one 
an identify P and its image via iP inBP where(BP; iP) is a 
ompletion of P, namely the embedding i is isomorphi
 between P andits image. From now on, we always identify P and its image inside a 
ompletionof P.We start with P-Baireness. We re
all the de�nition of Stone spa
es from x 1.4.For a partial order P, the Stone spa
e of P (denoted by St(P)) is the set of allultra�lters on BP equipped with the topology generated by fOb j b 2 BPg, whereBP is a 
ompletion of P and Ob = fu 2 St(P) j u 3 bg. For example, if P isCohen for
ing C , then St(C ) is homeomorphi
 to the Cantor spa
e !2. Densesets in P are the same as open dense subsets in St(P): If D is a dense subset ofP, then the set SfOp j p 2 Dg is open dense in St(P), where i is a unique denseembedding from P to BP. Conversely, if U is an open dense subset of St(P), thenfp 2 P j Op � Ug is a dense open subset of P.Next, we dis
uss meagerness and the Baire property in St(P). We should �rstobserve that this spa
e meets our requirement:Lemma 2.1.1. Let P be a separative partial order. Then St(P) is a Baire spa
e,i.e., any nonempty open set in St(P) is not meager.Proof. We show that Ob is not meager for ea
h b in BP. Sin
e P is dense in BP, itsuÆ
es to show that Op is not meager for ea
h p in P. Sin
e any nowhere denseset is a subset of a 
losed nowhere dense set (the 
losure of a nowhere dense setis again nowhere dense by de�nition) and the 
omplement of a 
losed nowheredense set is an open dense set, it suÆ
es to show that Op interse
ts with the
ountable interse
tion of any open dense sets in St(P) for ea
h p 2 P.Take any p 2 P and let fUn j n 2 !g be a 
ountable set of open densesubsets of St(P). We would like to prove that the interse
tion Op with Tn2! Unis nonempty. We 
onstru
t a des
ending sequen
e hpn 2 P j n 2 !i su
h thatp0 � p and Opn � Un for ea
h n 2 !. This is possible be
ause ea
h Un is opendense in St(P). Then 
onsider any ultra�lter u extending fpn j n 2 !g (we useZorn's Lemma here). Then u belongs to Op and Un for ea
h n 2 !. Hen
e theinterse
tion Op with Tn2! Un is nonempty.Before de�ning P-Baireness, let us see the 
onne
tion between Baire mea-surable fun
tions from St(P) to the reals and P-names for reals. Let X; Y be
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al spa
es. Then a fun
tion f : X ! Y is Baire measurable if for anyopen set U in Y , f�1(U) has the Baire property in X. Baire measurable fun
-tions are the same as 
ontinuous fun
tions modulo meager sets: Let X; Y betopologi
al spa
es and assume Y is se
ond 
ountable, i.e., there is a 
ountablebase for the topology of Y . Then it is fairly easy to see that a fun
tion f : X ! Yis Baire measurable if and only if there is a 
omeager set D in X su
h that f�Dis 
ontinuous.There is a natural 
orresponden
e between Baire measurable fun
tions fromSt(P) to the reals and P-names for reals:Lemma 2.1.2 (Feng, Magidor, and Woodin). Let P be a separative partial order.1. If f : St(P) ! !! is a Baire measurable fun
tion, then�f = �(m;n)�; p) j Op n fu 2 St(P) j f(u)(m) = ng is meager	is a P-name for a real.2. Let � be a P-name for a real. De�ne f� as follows: For u 2 St(P) andm;n 2 !, f� (u)(m) = n () (9p 2 u) p 
 �( �m) = �n:Then the domain of f� is 
omeager in St(P) and f� is 
ontinuous on the domain.Hen
e it 
an be uniquely extended to a Baire measurable fun
tion from St(P) tothe reals modulo meager sets.3. If f : St(P) ! !! is a Baire measurable fun
tion, then f�f and f agree ona 
omeager set in St(P). Also, if � is a P-name for a real, then 
 �f� = � .Proof. The result is due to Feng, Magidor, and Woodin [25, Theorem 3.2℄. Forthe sake of 
ompleteness, we will give a proof.Let us �rst �x some notation. When f is a fun
tion from St(P) to !! andm;n are natural numbers, we write Afm;n = fu 2 St(P) j f(u)(m) = ng.Let us start with proving the �rst item. We show that �f is a P-name for areal assuming f : St(P) ! !! is Baire measurable. Take any P-generi
 �lter Gover V . We prove that �Gf is a fun
tion from ! to !. By the de�nition of �f , it iseasy to show that �Gf is a subset of ! � !.We �rst 
laim that it is a fun
tion. Suppose (m;n1); (m;n2) 2 �Gf for naturalnumbers m;n1, and n2. We show that n1 = n2. By the assumption, there arepi 2 G (i = 1; 2) su
h that ((m;ni)�; pi) 2 �f for i = 1; 2 . By the de�nition of �f ,Opi nAfm;ni is meager in St(P) for i = 1; 2. Sin
e p1; p2 2 G and G is a �lter, thereis a p su
h that p � p1; p2. Hen
e Op n Afm;ni is meager in St(P) for i = 1; 2. ByLemma 2.1.1, Op is not meager in St(P). Hen
e Op \Afm;n1 \Afm;n2 is not meagerand espe
ially non-empty. Take any element u from Op \ Afm;n1 \ Afm;n2 . By thede�nition of Afm;ni for i = 1; 2, n1 = f(u)(m) = n2, as desired.We prove that m 2 dom(�Gf ) for every natural number m. Fix an m. Sin
e fis Baire measurable, the set D = fp 2 P j (9n 2 !) OpnAfm;n is meagerg is dense.
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ity of G, there is a p both in G and D. Then Op n Afm;n is meagerfor some n and hen
e ((m;n)�; p) 2 �f whi
h means that �Gf (m) = n, as desired.We show the se
ond item. Let � be a P-name for a real. We �rst show that thedomain of f� is 
omeager in St(P). If we set Dm = fp 2 P j (9n) p 
 �( �m) = �ngand Um = SfOp j p 2 Dmg for ea
h m 2 !, dom(f� ) = Tm2! Um. Sin
e � is aP-name for a real, Dm is dense and hen
e Um is open dense in St(P) for ea
h m.So dom(f� ) is 
omeager in St(P).We next show that f� is a fun
tion. Let u 2 dom(f� ) and assume f� (u)(m) =n1 and f� (u)(m) = n2 for natural numbers m;n1, and n2. We show that n1 = n2.By the de�nition of f� , there are pi 2 u su
h that pi 
 �( �m) = �ni for i = 1; 2.Sin
e u is a �lter, there is a p su
h that p � pi for ea
h i = 1; 2, whi
h yieldsp 
 �n1 = �( �m) = �n2. Hen
e n1 = n2.We �nally show that f� is Baire measurable. We prove that Af�m;n has theBaire property in St(P) for all natural numbers m and n. Let U = SfOp jp 
 �( �m) = �ng. We show that U \ dom(f� ) = Af�m;n \ dom(f� ). If u is inU \ dom(f� ), then there is a p 2 u su
h that p 
 �( �m) = �n. By the de�nitionof f� , f� (u)(m) = n and hen
e u 2 Af�m;n \ dom(f� ). Conversely, if u is inAf�m;n \dom(f� ), then f� (u)(m) = n and there is a p 2 u su
h that p 
 �( �m) = �n.Hen
e u 2 U \ dom(f� ).We prove the third item. We �rst show that f�f and f agree on a 
omeager setif f is Baire measurable. First note that ifOpnAfm;n is meager, then f�f and f agreeon Op\Afm;n. For let u be in Op\Afm;n. Sin
e OpnAfm;n is meager, ((m;n)�; p) 2 �f ,in parti
ular, p 
 �f( �m) = �n. By the de�nition of f�f , f�f (u)(m) = n, as desired.Sin
e f is Baire measurable, the set D = fp 2 P j (9n 2 !) Op nAfm;n is meagergis dense and hen
e the set A = SSn2!fOp \ Afm;n j Op n Afm;n is meagerg is
omeager. But f�f and f agree on A, as desired.We next show that �Gf� = �G for ea
h P-name � for a real and a P-generi
 �lterG over V . Suppose �Gf� (m) = n. We show that �G(m) = n. Sin
e �Gf� (m) = n,there is a p 2 G su
h that ((m;n)�; p) 2 �f� . By the de�nition �f� , Op n Af�m;n ismeager. Then by the de�nition of f� , the set fu 2 St(P) j (9p0 2 u) p0 
 �( �m) =�ng is 
omeager in Op, whi
h means that the set fp0 � p j p0 
 �( �m) = �ng isdense below p. Sin
e p 2 G, by the generi
ity of G, there is a p0 2 G su
h thatp0 
 �( �m) = �n. Hen
e �G(m) = n, as desired.Now we de�ne the property P-Baireness. Let P be a separative partial orderand A be a set of reals. Then A is P-Baire if for any Baire measurable fun
tionf : St(P) ! !!, f�1(A) has the Baire property in St(P). It is easy to see thatevery Borel set of reals is P-Baire for any P by the same argument as for the Baireproperty we gave in the paragraphs after De�nition 1.8.1.Next we introdu
e P-measurability. We start with de�ning a 
lass of tree-type for
ings we will work on from now on. A partial order P is arboreal if its
onditions are perfe
t trees on ! (or on 2) ordered by in
lusion. But this 
lass offor
ings 
ontains some trivial for
ings su
h as P = f<!!g. We need the following
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 37stronger notion:De�nition 2.1.3. A partial order P is strongly arboreal if it is arboreal and thefollowing holds: (8T 2 P) (8t 2 T ) Tt 2 P;where Tt = fs 2 T j either s � t or s � tg.Note that every strongly arboreal for
ing is separative (if S � T , then thereis an s 2 S n T and hen
e Ss � S and Ss?T ).With strongly arboreal for
ings, we 
an 
ode generi
 obje
ts by reals in thestandard way: Let P be strongly arboreal and G be P-generi
 over V . Let xG =Sfstem(T ) j T 2 Gg. Then xG is a real and G = fT 2 P j xG 2 [T ℄g, where [T ℄is the set of all in�nite paths through T . Hen
e V [xG℄ = V [G℄. We 
all su
h realxG a P-generi
 real over V .Almost all typi
al for
ings related to regularity properties are strongly arbo-real:Example 2.1.4.1. Cohen for
ing C : Let T0 be <!!. Consider the partial order �f(T0)s j s 2<!!g;��. Then this is strongly arboreal and equivalent to Cohen for
ing.2. Random for
ing B : Consider the set of all perfe
t trees T on 2 su
h thatfor any t 2 T , [Tt℄ has a positive Lebesgue measure, ordered by in
lusion. Thenthis for
ing is strongly arboreal and equivalent to random for
ing.3. He
hler for
ing D : For (n; f) 2 D , letT(n;f) = nt 2 <!! j either t � f�n or�t � f�n and �8m 2 dom(t)� t(m) � f(m)�o:Then the partial order (fT(n;f) j (n; f) 2 D g;�) is strongly arboreal and equiva-lent to He
hler for
ing.4. Mathias for
ing R: For a 
ondition (s; A) in R, letT(s;A) = ft 2 <!! j t is stri
tly in
reasing and s � ran(t) � s [ Ag:Then fT(s;A) j (s; A) 2 Rg is a strongly arboreal for
ing equivalent to Mathiasfor
ing.5. Eventually di�erent for
ing E : For a 
ondition (s; F ) in E , letT(s;F ) = ft 2 <!! j either t � s or�t � s and (8f 2 F ) �8n 2 dom(t n s)� t(n) 6= f(n)�g:Then fT(s;F ) j (s; F ) 2 Eg is a strongly arboreal for
ing equivalent to eventuallydi�erent for
ing.6. Sa
ks for
ing S, Silver for
ing V, Miller for
ing M , Laver for
ing L: Thesefor
ings 
an be naturally seen as strongly arboreal for
ings.



38 Chapter 2. Games and Regularity PropertiesWe now introdu
e a �-ideal IP on the reals expressing \smallness" for ea
hstrongly arboreal for
ing P.De�nition 2.1.5. Let P be a strongly arboreal for
ing. A set of reals A is P-nullif for any T in P there is a T 0 � T su
h that [T 0℄ \A = ;. Let NP denote the setof all P-null sets and IP denote the �-ideal generated by P-null sets, i.e., the setof all 
ountable unions of P-null sets.Example 2.1.6.1. Cohen for
ing C : C -null sets are the same as nowhere dense sets in theBaire spa
e !! and IC is the ideal of meager sets in the Baire spa
e.2. Random for
ing B : B -null sets are the same as Lebesgue null sets in theBaire spa
e and IB is the Lebesgue null ideal.3. He
hler for
ing D : D -null sets are the same as nowhere dense sets in thedominating topology, i.e., the topology generated by f[s; f ℄ j (s; f) 2 D g where[s; f ℄ = fx 2 !! j s � x and (8n � dom(s)) x(n) � f(n)g:Hen
e ID is the meager ideal in the dominating topology.4. Eventually di�erent for
ing E : E -null sets are the same as nowhere densesets in the eventually di�erent topology E , i.e., the topology generated by f[s; F ℄ j(s; F ) 2 Eg where[s; F ℄ = fx 2 !! j s � x and (8f 2 F ) (8n � dom(s)) x(n) 6= f(n)g:Hen
e IE is the meager ideal in the topology E .5. Mathias for
ing R: A set of reals A is R-null if and only if fran(x) j x 2A \A0g is Ramsey null or meager in the Ellentu
k topology, where A0 is the setof stri
tly in
reasing in�nite sequen
es of natural numbers. Hen
e IR = NR.6. Sa
ks for
ing S: In this 
ase, IS = NS by a standard fusion argument. Theideal IS is 
alled the Mar
zewski ideal and often denoted by s0.As with Sa
ks for
ing, all the typi
al non-


 tree-type for
ings admitting afusion argument satisfy the equation IP = NP. In the 
ase of 


 for
ings, IP isoften di�erent from NP (e.g., Cohen for
ing and He
hler for
ing).We now introdu
e P-measurability:De�nition 2.1.7. Let P be strongly arboreal. A set of reals A is P-measurableif for any T in P there is a T 0 � T su
h that either [T 0℄ \ A 2 IP or [T 0℄ nA 2 IP.As is expe
ted, P-measurability 
oin
ides with a known regularity propertyfor P when P is 


:Proposition 2.1.8. Let P be a strongly arboreal, 


 for
ing and let A be a setof reals. Then A is P-measurable if and only if there is a Borel set B su
h thatA4B 2 IP, where A4B is the symmetri
 di�eren
e between A and B.
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tion from right to left follows from the fa
t that every Borel setof reals is P-measurable whi
h will be proved in Lemma 2.1.15.For the other dire
tion, suppose A is P-measurable and we will �nd a Borelset approximating A modulo IP. Sin
e A is P-measurable, the set D = fT 2 P jeither [T ℄ \ A 2 IP or [T ℄ nA 2 IPg is dense. We take a maximal anti
hain A inD and de�ne B = Sf[T ℄ j T 2 A and [T ℄ n A 2 IPg. Then sin
e A is 
ountableby the 


-ness of P, B is Borel and A4B 2 IP be
ause D is dense.This argument does not work for non-


 for
ings su
h as Sa
ks for
ing. Forexample, assuming every �11 set has the perfe
t set property (i.e., either the setis 
ountable or 
ontains a perfe
t subset), there is no �11 Bernstein set (i.e., a setwhere neither it nor its 
omplement 
ontains a perfe
t subset) but for a �11 setof reals A, A is approximated by a Borel set modulo IS if and only if A is Borel.This is be
ause IS restri
ted to analyti
 sets (or 
o-analyti
 sets) is the set of all
ountable sets of reals by the assumption that every �11 set has the perfe
t setproperty.But P-measurability is almost the same as the regularity properties for non-


 for
ings P, e.g., for Mathias for
ing, a set of reals A is R-measurable if andonly if fran(x) j x 2 A \ A0g is 
ompletely Ramsey (or has the Baire propertyin the Ellentu
k topology), where A0 is the set of all stri
tly in
reasing in�nitesequen
es of natural numbers. Also, for Sa
ks for
ing, the following holds:Proposition 2.1.9 (Brendle, L�owe). Let � be a topologi
ally reasonable point-
lass on the Cantor spa
e !2, i.e., it is a set of subsets of the Cantor spa
e 
losedunder 
ontinuous preimages on the Cantor spa
e and any interse
tion between aset in � and a 
losed set in the Cantor spa
e. Then every set in � is S-measurableif and only if there is no Bernstein set in �.1Proof. See [20, Lemma 2.1℄.We now introdu
e a (possibly �ner) ideal IP� whi
h will be 
entral to ourtheorems:De�nition 2.1.10. Let P be a strongly arboreal for
ing. A set of reals A is inIP� if for any T in P there is a T 0 � T su
h that [T 0℄ \ A is in IP.Question 2.1.11. Let P be a strongly arboreal, proper for
ing. Can we proveIP = IP�?We give some easy observations 
on
erning Question 2.1.11:1In general, the property not being a Bernstein set does not imply S-measurability whilethe 
onverse is true. By using the axiom of 
hoi
e, we 
an 
onstru
t a set of reals whi
h is notS-measurable but is not a Bernstein set.



40 Chapter 2. Games and Regularity PropertiesLemma 2.1.12. Let P be a strongly arboreal for
ing.1. The ideal IP is a subset of IP�.2. A set of reals A is P-measurable if and only if for any T in P there is aT 0 � T su
h that either [T 0℄ \ A 2 IP� or [T 0℄ n A 2 IP� holds. Hen
e we getthe same notion of measurability even if we repla
e IP by IP� in the de�nition ofP-measurability.3. If P is 


, then IP = IP�.4. If IP = NP, then IP = IP�. Hen
e IP = IP� for any typi
al non-


 tree-typefor
ing admitting a fusion argument.5. (Brendle) Suppose P satis�es the following 
ondition: For any maximalanti
hain A in P, there is a maximal anti
hain A0 su
h that for any two distin
telements T; T 0 of A0, [T ℄ and [T 0℄ are disjoint and A0 re�nes A, i.e., for any T 0 inA0 there is a T in A with T 0 � T . Then IP = IP�.Sa
ks for
ing is a typi
al example of the 
ondition in 5. But we do not knowof any strongly arboreal P satisfying the 
ondition but whi
h are neither 


 norsatisfying IP = NP.Proof. We will prove only 5. The rest are straightforward. Suppose P satis�esthe above 
ondition and let A be in IP�. We prove A is in IP. Sin
e A is in IP�,the set of all T in P su
h that [T ℄ \ A 2 IP is dense in P. Hen
e we 
an takea maximal anti
hain A 
ontained in this set. By the 
ondition, we may assumefor any two distin
t elements T1, T2 of A, [T1℄ and [T2℄ are pairwise disjoint. Forea
h T in A, [T ℄ \ A 2 IP. So we 
an pi
k fNn;T j n 2 !g su
h that ea
h Nn;Tis P-null and Sn2!Nn;T = [T ℄ \ A. Let Nn = ST2ANn;T for ea
h n 2 !. Sin
eA nSn2!Nn is P-null, the proof is 
omplete if we prove the following:Claim 2.1.13. For ea
h n 2 !, Nn is P-null.Proof of Claim 2.1.13. Take any T 0 in P. Sin
e A is a maximal anti
hain, we 
antake a T 2 A su
h that T and T 0 are 
ompatible. Take a 
ommon extension T 00of T and T 0. Then [T 00℄\Nn = [T 00℄\Nn;T be
ause of the property of A. But weknow that Nn;T is P-null. Hen
e we 
an take a further extension of T 00 disjointfrom Nn. � (Claim 2.1.13)Before investigating the relation between P-Baireness and P-measurability,we �rst look at the P-name for a generi
 real we de�ned in the paragraph afterDe�nition 2.1.3 and its 
orresponding Baire measurable fun
tion from St(P) tothe reals given in Lemma 2.1.2. Re
all that xG is a generi
 real 
onstru
ted froma generi
 obje
t G for any strongly arboreal for
ing P. Let _xG be a 
anoni
alP-name for xG.Example 2.1.14. Let P be strongly arboreal. Then f _xG(u)(m) = n if and onlyif there is a T in u su
h that stem(T )(m) = n, where f _xG is the 
orresponding
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tion from St(P) to the reals given in Lemma 2.1.2. Hen
ef _xG(u) = Sfstem(T ) j T 2 ug for u 2 dom(f _xG), as is expe
ted.From now on, we use � for denoting f _xG throughout this 
hapter.We give the relation between P-Baireness and P-measurability. Re
all thatIP� is a te
hni
al ideal introdu
ed in De�nition 2.1.10 whi
h is the same as IP formost 
ases.Lemma 2.1.15 (P-Baireness vs. P-measurability). Let P be a strongly arboreal,proper for
ing and A be a set of reals. Then1. A is in IP� if and only if ��1(A) is meager in St(P), and2. A is P-measurable if and only if ��1(A) has the Baire property in St(P).In parti
ular, if A is P-Baire, then A is P-measurable. Hen
e every Borel set isP-measurable by the paragraph after Lemma 2.1.2.Note that P-measurability does not imply P-Baireness in general.2Proof of Lemma 2.1.15. Note that the domain of � is 
omeager in St(P) and � is
ontinuous on it by Lemma 2.1.2.The following are useful for the proof:Claim 2.1.16. (a) For T in P and u 2 dom(�), if T 2 u, then �(u) 2 [T ℄.(b) For T in P, the 
onverse of (a) holds for 
omeager many u, i.e., for 
omeagermany u in St(P), u is in the domain of � and if �(u) 2 [T ℄, then T 2 u.Proof of Claim 2.1.16. For (a), suppose T 2 u. We prove �(u)�n 2 T for ea
hn 2 !. Fix a natural number n. Then by Example 2.1.14, there is a T 0 in usu
h that stem(T 0) � �(u)�n. Sin
e both T and T 0 are in u, they are 
ompatible,espe
ially stem(T 0) 2 T (otherwise [T ℄ \ [T 0℄ = ;). Hen
e �(u)�n 2 T .For (b), take any T in P. Then the set DT = fT 0 2 P j T 0 � T or [T 0℄\[T ℄ = ;gis dense in P. (Take any T 0. If T 0 * T , then there is a t0 2 T 0 n T . By strongarborealness of P, T 0t0 2 P and [T 0t0 ℄ \ [T ℄ = ;.) Sin
e DT is dense, the setfu j u \DT 6= ;g is open dense in St(P). Hen
e it suÆ
es to show that if u is indom(�), u \ DT 6= ; and �(u) 2 [T ℄, then T 2 u. Suppose T =2 u. Then sin
eu \DT 6= ;, there is a T 0 2 u su
h that [T 0℄ \ [T ℄ = ;. By (a), �(u) 2 [T 0℄, hen
e�(u) =2 [T ℄, a 
ontradi
tion. � (Claim 2.1.16)We prove the �rst item of Lemma 2.1.15. We start with the dire
tion fromleft to right.We �rst show that ��1(A) is meager if A is in NP. If A is in NP, then theset D = fT j [T ℄ \ A = ;g is dense in P. Hen
e the set of all u 2 dom(�) with2For example, if A is a �12 (lightfa
e) set of reals universal for �12 (boldfa
e) sets of reals andif every �12 (lightfa
e) set of reals has the Baire property but there is a �12 (boldfa
e) set of realswithout the Baire property, then A is C -measurable by Proposition 2.1.8, but A is not C -Bairebe
ause every�12 subset of the Cantor spa
e is a 
ontinuous preimage of A and every 
ontinuouspreimage of A has to have the Baire property in the Cantor spa
e for the C -Baireness of A.
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omeager. But if u is in the 
omeager set, then there is a T 2 u\Dand by Claim 2.1.16 (a), �(u) 2 [T ℄ and [T ℄ \ A = ;, in parti
ular �(u) =2 A.Therefore ��1(A) is meager.We have seen that ��1(A) is meager assuming A is in NP. Sin
e IP is the�-ideal generated by sets in NP, ��1(A) is meager for all A in IP.We show that ��1(A) is meager if A is in IP�. Sin
e A is in IP�, the setD0 = fT j [T ℄ \ A 2 IPg is dense in P. We use the following well-known fa
t:Fa
t 2.1.17. Let X be a topologi
al spa
e and A be a subset of X. Then�SfU j U is open and U \ A is meager g� \ A is meager.Proof of Fa
t 2.1.17. See, e.g., [45, Theorem 8.29℄.Sin
e D0 is dense, SfOT j T 2 D0g is open dense. By the above fa
t, it suÆ
esto prove that OT \ ��1(A) is meager for any T in D0.Take any T in D0. By the de�nition of D0, we know that [T ℄\A is in IP. Hen
e��1([T ℄\A) is meager in St(P). But by Claim 2.1.16 (a), OT \��1(A)\dom(�) ���1([T ℄\A). Sin
e dom(�) is 
omeager in St(P), OT \��1(A) is almost in
ludedin the meager set ��1([T ℄ \ A). Therefore, OT \ ��1(A) is meager as desired.Next, we see the dire
tion from right to left for the equivalen
e of the �rstitem of Lemma 2.1.15. Suppose ��1(A) is meager. Take any T in P and we will�nd an extension T 0 of T su
h that [T 0℄ \ A is in IP. Sin
e ��1(A) is meager,then there is a sequen
e hUn j n 2 !i of open dense sets in St(P) su
h thatTn2! Un \ ��1(A) = ;. For ea
h n 2 !, let Dn = fS 2 P j OS � Ung. Sin
e Un isopen dense in St(P), Dn is dense open in P. We 
hoose a sequen
e hAn j n 2 !iof maximal anti
hains su
h that An � Dn, for ea
h element S of An, the lengthof stem(S) is greater than n, and An+1 re�nes An, i.e., every element of An+1 isbelow some element in An.Now we use the properness of P to treat ea
h An as \
ountable". Let � be asuÆ
iently large regular 
ardinal and X be a 
ountable elementary substru
tureof H� su
h that P; T; hAn j n 2 !i are in X. By properness, there is an (X;P)-generi
 
ondition T 0 below T . We show that [T 0℄\A is in IP, whi
h will 
ompletethe proof of the �rst item of Lemma 2.1.15.Consider the setB = \n2![f[S℄ j S 2 An \Xg n [n2!f[S℄ \ [S 0℄ j S; S 0 2 An \X and S 6= S 0g:So B is the set of all xs uniquely de
iding whi
h 
ondition from An 
ontains itfor ea
h n. By the property of hAn j n 2 !i, it will generate a �lter 
oming fromelements in Ans. The point is that any ultra�lter u extending that �lter satis�es�(u) = x, the given element, and that u is in Un for ea
h n. This will play a rolefor the argument.Now we 
laim [T 0℄nB 2 IP and B \A = ;. We will be done if we prove them.The fa
t that [T 0℄nB 2 IP follows from the fa
t that fS j S 2 An\Xg is predense
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h n be
ause T 0 is (X;P)-generi
 and from that [S℄ \ [S 0℄ 2 IPfor ea
h S; S 0 2 An \X with S 6= S 0 be
ause An is an anti
hain, and from thatAn \X is 
ountable for ea
h n.To prove B \A = ;, take any element x from B. As we mentioned above, forea
h n 2 !, there is a unique element Sn in An \ X with x 2 [Sn℄. Sin
e An+1re�nes An, Sn+1 � Sn for ea
h n. Hen
e the set fSn j n 2 !g generates a �lterFx. Take any ultra�lter u extending Fx. We 
laim that �(u) = x and u 2 Un forea
h n. By the property of hAn j n 2 !i, the length of stem(Sn) is greater thann. Hen
e, by Example 2.1.14, �(u) is already de
ided to be x by Sn (n 2 !). Thefa
t that u 2 Un for ea
h n follows from the fa
t that Sn 2 An � Dn and thede�nition of Dn. Sin
e we have assumed that Tn2! Un \ ��1(A) = ;, x does notbelong to A. Hen
e we have seen B \ A = ; as desired.We have shown the �rst item of Lemma 2.1.15. Next, we show the equiv-alen
e in the se
ond item of Lemma 2.1.15. For left to right, we assume A isP-measurable. Then the setD = fT 2 P j either [T ℄ \ A 2 IP or [T ℄ n A 2 IPgis dense and the set U = SfOT j T 2 Dg is open dense in St(P). Let U1 =SfOT j [T ℄ n A 2 IPg and U2 = SfOT j [T ℄ \ A 2 IPg. Then U = U1 [ U2.We 
laim that U1 \ U2 = ;. First we note that [T ℄ =2 IP (even [T ℄ =2 IP�) forany T 2 P. If [T ℄ is in IP for some T , then ��1([T ℄) is meager in St(P) by the�rst item of Lemma 2.1.15. Sin
e OT � ��1([T ℄) by Claim 2.1.16 (a), OT wouldbe also meager in St(P), whi
h would 
ontradi
t Lemma 2.1.1. Hen
e [T ℄ =2 IPfor any T 2 P. We show that U1 \U2 = ;. Suppose there is a u in U1 \U2. Thenthere are T1; T2 2 u with [T1℄ nA 2 IP and [T2℄ \A 2 IP. Sin
e u is a �lter, thereis a T3 in u with T3 � T1; T2. But then [T3℄ nA and [T3℄\A are both in IP, whi
hmeans [T3℄ itself is in IP. Contradi
tion!Hen
e, it suÆ
es to show that U1 n ��1(A), U2 \ ��1(A) are meager be
ausethat will imply U14��1(A) is meager. We will only see that U2 \ ��1(A) ismeager. The 
ase for U1 n ��1(A) being meager is similar. By Fa
t 2.1.17, itsuÆ
es to see that OT \��1(A) is meager when [T ℄\A 2 IP. But if [T ℄\A 2 IP,then OT \��1(A) � ��1([T ℄\A) and ��1([T ℄\A) is meager by Claim 2.1.16 (a)and the �rst item of Lemma 2.1.15. Hen
e we are done.Now we see the dire
tion from right to left. Assume ��1(A) has the Baireproperty in St(P). Then there are open sets U1, U2 su
h that U14��1(A),U24��1(!! n A) are meager. By Lemma 2.1.1, U1 \ U2 = ; and U1 [ U2 isopen dense in St(P). Let Di = fT 2 P j OT � Uig for i = 1; 2. Then D1 [D2 isdense in P. Hen
e by Lemma 2.1.12 (2), it suÆ
es to prove that [T ℄ nA 2 IP� forea
h T in D1 and that [T ℄ \ A 2 IP� for ea
h T in D2.We only prove [T ℄nA 2 IP� for ea
h T inD1. By the �rst item of Lemma 2.1.15,it is enough to see that ��1([T ℄ n A) is meager in St(P). But by Claim 2.1.16,��1([T ℄nA) is almost the same as OT n��1(A). Sin
e T is in D1, by the de�nition
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ompletes the proof of the se
ond item ofLemma 2.1.15.Note that if P satis�es the 
ondition in Lemma 2.1.12 (5), then we do notneed the properness of P for the proofs of Lemma 2.1.15.Before 
losing this se
tion, let us mention the 
onne
tion between our frame-work and Zapletal's setting. In [91℄, Zapletal starts from a �-ideal I on a Polishspa
e X (a separable, 
ompletely metrizable spa
e) and 
onsiders the quotient ofthe set of all Borel sets in X modulo I and develops the general theory of this for
-ing so-
alled \idealized for
ing" as a Boolean algebra. The following propositionshows that our for
ings are all idealized for
ings:Proposition 2.1.18. Suppose P is a strongly arboreal, proper for
ing. Then themap i : P ! �B=IP�� n f0g de�ned byi(T ) = the equivalen
e 
lass represented by [T ℄;is a dense embedding, where B denotes the set of all Borel sets of the reals andB=IP� is the quotient Boolean algebra via IP�.Hen
e, our situation is a spe
ial 
ase of Zapletal's.3Proof of Proposition 2.1.18. First we see that the map i is well-de�ned, i.e., [T ℄is not in IP� for ea
h T in P. But this is just the same argument as the proof of[T ℄ =2 IP for ea
h T in P in Lemma 2.1.15.It is 
lear that if T1 � T2, then i(T1) � i(T2). To show the 
onverse, assumeT1 � T2 and we prove that i(T1) � i(T2). Sin
e T1 � T2, there is a t 2 T1 whi
his not in T2. By strong arborealness of P, (T1)t 2 P and [(T1)t℄ \ [T2℄ = ;. Hen
ei((T1)t) � i(T2). Sin
e (T1)t � T1, i((T1)t) � i(T1). Therefore, i(T1) � i(T2).So it suÆ
es to show that the range of i is dense in �B=IP�� n f0g. Let B bea Borel set whi
h is not in IP�. We will �nd a T in P with [T ℄ n B 2 IP�. ByLemma 2.1.15, B is P-measurable. Sin
e B is not in IP�, there is a T su
h that[T ℄ nB 2 IP, hen
e [T ℄ nB 2 IP� by Lemma 2.1.12, as desired.2.2 For
ing absolutenessRe
all from x 1.12 that absoluteness is one of the 
entral notions in set theory,and it is the un
hangingness of the truth-values of statements between modelsof set theory. For
ing absoluteness is the absoluteness between ground modelsand their generi
 extensions, whi
h plays an important role in many areas in set3In [91, Corollary 2.1.5℄, Zapletal proved a more general result. In the 
orollary, the ideal Ihe 
onstru
ted is essentially the same as our IP�in the following sense: If we use bn = j _xgen(�n) =1j (n 2 !) instead of bt (t 2 <!2) for the generators of C, then Zapletal's I is exa
tly the sameas our IP� on Borel sets.
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tion, we fo
us on the for
ing absoluteness of statements inse
ond-order arithmeti
. We start with its de�nition:De�nition 2.2.1 (�1n-P-absoluteness). Let P be a for
ing notion and n be anatural number with n � 1. Then �1n-P-absoluteness is the following statement:For any �1n formula ', real r in V , and P-generi
 �lter G over V ,V � '(r) if and only if V [G℄ � '(r).By de�nition, it is immediate that �1n-P-absoluteness is equivalent to �1n-P-absoluteness for ea
h P and ea
h n � 1, where �1n-P-absoluteness is de�nedsimilarly. By Theorem 1.12.3, �12-P-absoluteness holds for any P. How about�13-P-absoluteness? In L, �13-P-absoluteness fails if P adds a new real, i.e., thereis a new real in a generi
 extension by P. This is be
ause the statement \Thereis a non-
onstru
tible real" is �13 and it is true in a generi
 extension of L byP while it is false in L. On the other hand, typi
al for
ing axioms imply �13-P-absoluteness for many P, e.g., MA�1 implies �13-P-absoluteness for any 


 for
ingP.4 Sin
e one 
an for
e MA�1 starting from a model of ZFC, the statement that�13-P-absoluteness holds for a 


 for
ing P is independent from ZFC. It is naturalto ask: When is the statement true and when is it not? We dis
uss this questionin x 2.4.From now on, we will restri
t our attention to de�nable for
ings. Let n bea natural number with n � 1. A partial order P is provably �1n if there are �1nformula � and �1n formula  su
h that the statement \� and  de�ne the samepartial order (P;�P) with the in
ompatibility relation ?P" is provable in ZFC.All the typi
al strongly arboreal for
ings are provably �12. We will need thisde�nability 
ondition for for
ings when we 
ompute the 
omplexity of IP�.In some of our results in x 2.4, we shall need a strengthening of the standardnotion of properness for de�nable for
ings. Let P be a provably �1n for
ing forsome n � 1. We say P is strongly proper if for any 
ountable transitive modelM ofa �nite fragment of ZFC, if P;�P;?P are absolute between M and V respe
tively,(i.e., PM ;�MP ;?MP are the same as P \M;�P \(M �M);?P\ (M �M) respe
-tively), then for any 
ondition p in PM (or P \M), there is an (M;P)-generi

ondition q below p, i.e., if M � \A is a maximal anti
hain in P", then A \M ispredense below q.5 Let us 
ompare strong properness with properness. (For thede�nition of properness, see x 1.9.) Here (M;P)-generi
 
onditions are the sameas (X;P)-generi
 
onditions for a 
ountable elementary substru
ture X of H�: IfP is provably �1n for some n � 1, X is a 
ountable elementary substru
ture of4For the proof, see [5, Theorem 13℄. For basi
 de�nitions and properties of for
ing axioms,see [37℄.5Although we will not expli
itly mention the �nite fragment of ZFC we will use for thede�nition of strong properness, it will be large enough that we 
an pro
eed all the arguments inthis 
hapter within the fragment as usual. From now on, we say \
ountable transitive modelsof ZFC" instead of \
ountable transitive models of a �nite fragment of ZFC" for simpli
ity.



46 Chapter 2. Games and Regularity PropertiesH� for some large enough regular � and M is the transitive 
ollapse of X, then a
ondition p is (M;P)-generi
 if and only if it is (X;P)-generi
 in the usual sense.In parti
ular, if P is provably �1n for some n � 1 and strongly proper, then Pis proper. All the typi
al examples of proper, provably �12 for
ings are stronglyproper. But there is a 


, provably �13 for
ing whi
h is not strongly proper.6We use strong properness instead of properness as it allows us to leave outthe quanti�
ation \2 H�" whi
h would in
rease the 
omplexity of our statementsin the relevant results (Proposition 2.3.3, Theorem 2.4.8, Theorem 2.4.9) beyondproje
tive.2.3 The trans
enden
e properties over inner mod-elsBy \trans
enden
e over an inner model M", we refer to properties that expressthat the universe is di�erent from M in some 
on
rete sense. E.g., the property!M1 < !V1 is su
h a trans
enden
e property; another trans
enden
e propertywould be \there are P-generi
s over M" for some nontrivial for
ing P. (Here,by inner models, we mean proper 
lass transitive models of ZFC.) In x 2.1, wehave seen that the generi
 �lters of any strongly arboreal for
ing 
an been seen asgeneri
 reals of the for
ing. All su
h generi
 reals 
annot exist in a given groundmodel: A partial order P is 
alled non-trivial if for any 
ondition p in P there aretwo extensions q; r of p su
h that they are in
ompatible (q?r). It is easy to seethat if P is non-trivial and G is a P-generi
 �lter over V , then G does not belongto V . Sin
e G 
an be 
oded by a generi
 real over V for ea
h strongly arborealfor
ing, su
h a generi
 real does not belong to V either. Hen
e the existen
e ofgeneri
 reals over an inner model M 
an be seen as a trans
enden
e property overM . Although this trans
enden
e property measures the di�eren
e of two modelsof set theory very well and often plays an important role in set theory of thereals, it is sometimes too strong when we 
onsider some spe
i�
 problems. Wenow introdu
e a weaker notion 
alled quasi-generi
 reals, whi
h are obvious gen-eralization of Cohen reals and random reals. This notion will give us the righttrans
enden
e property to 
hara
terize the regularity properties for sets of reals.De�nition 2.3.1 (Brendle, Halbeisen, and L�owe [19℄). Let P be strongly arborealand M be a transitive model of ZFC. A real x is quasi-P-generi
 over M if for6Assuming !1 is not �1-Mahlo in L, Bagaria and Bos
h 
onstru
ted a 


, provably �13 for
-ing whi
h adds a real x su
h that L[x℄ 
orre
tly 
omputes !1 (see the proof of [7, Theorem 6.1℄).This partial order is not strongly proper be
ause every �13 strongly proper for
ing preservesthe statement \L(R) is a Solovay model over L" by [6, Theorem 1℄ and this statement implies!1 > !L[a℄1 for every real a.
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ode 
 in M with B
 2 IP�, x is not in B
, where B
 is the de
odedBorel set from 
.Example 2.3.2.1. Cohen for
ing C : Quasi-C -generi
 reals are the same as Cohen reals byde�nition. Hen
e quasi-C -generi
ity 
oin
ides with C -generi
ity.2. Random for
ing B : Quasi-B -generi
 reals are the same as random reals byde�nition. Hen
e quasi-B -generi
ity 
oin
ides with B -generi
ity.3. He
hler for
ing D : Quasi-D -generi
 reals are the same as He
hler reals.Hen
e quasi-D -generi
ity 
oin
ides with D -generi
ity.4. Sa
ks for
ing S: If M is an inner model of ZFC, quasi-S-generi
 reals overM are the reals whi
h are not in M be
ause any Borel set in IS� = NS is 
ountableand this is also true in M if the 
ode is in M by Shoen�eld absoluteness (theabsoluteness we mentioned in the paragraph after De�nition 2.2.1). Therefore,quasi-S-generi
ity does not 
oin
ide with S-generi
ity.The last example explains the di�eren
e between generi
ity and quasi-generi
ityfor non-


 strongly arboreal for
ings: There is a model of set theory where thereis a quasi-Sa
ks-generi
 real over L but there is no Sa
ks real over L, e.g., add oneCohen real over L. As is expe
ted, generi
ity implies quasi-generi
ity for all thetypi
al strongly arboreal for
ings and the 
onverse is true for most 


 for
ings:Proposition 2.3.3. Let P be a strongly arboreal, strongly proper, provably �12for
ing. Then1. The set f
 j B
 2 IP�g is �12. Hen
e the statement \
 
odes a Borel set inIP�" is absolute between inner models of ZFC.2. Suppose P is also �11 and provably 


, i.e., there is a formula � de�ning Pand the statement \� is 


" is provable in ZFC. Then the set f
 j B
 2 IP�g isalso �12 and hen
e �12.3. If M is a transitive model of ZFC and a real x is P-generi
 over M , then xis quasi-P-generi
 over M .4. Suppose P is provably 


. Then if M is an inner model of ZFC and a realx is quasi-P-generi
 over M , then x is P-generi
 over M .Proof. We show the �rst statement. By Lemma 2.1.15, a set of reals A is inIP� if and only if ��1(A) is meager in St(P). Hen
e, it suÆ
es to show thatf
 j ��1(B
) is meagerg 2 �12.We prove the following:��1(B
) is meager () (8M 3 
) �M : a 
.t.m. of ZFC (?)=) M � \��1(B
) is meager"�:First note that the right hand side makes sense: The statement \P is a stronglyarboreal for
ing" is �12 by the assumption that P is provably �12, so by downward



48 Chapter 2. Games and Regularity Propertiesabsoluteness, this is also true in M and then we 
an de�ne a P-name for a P-generi
 real and the fun
tion � in M . Sin
e the right hand side is �12, it suÆ
esto show the above equivalen
e.The following 
laim is the key point where we use the unfolded Bana
h-Mazurgames essentially:Claim 2.3.4. Let M be a 
ountable transitive model of ZFC with 
 2 M . IfM � \��1(B
) is meager", then for any T 2 P \M , there is a T 0 � T su
h thatOT 0 \ ��1(B
) is meager in V .Proof of Claim 2.3.4. Take any T in P\M . Sin
e P is provably �12, P;�P;?P areabsolute between M and V . Hen
e M satis�es the assumption in the de�nitionof strong properness and we 
an take a T 0 � T su
h that T 0 is (M;P)-generi
 bystrong properness of P.We show that T 0 satis�es the desired property, i.e., OT 0 \��1(B
) is meager inV . For that, we will use the unfolded Bana
h-Mazur games introdu
ed in x 1.8.Let U be a tree on !�!, re
ursive in 
 su
h that B
 = p[U ℄ holds in any transitivemodel N of ZFC with 
 2 N , where p[U ℄ is the proje
tion of [U ℄ to the �rst
oordinate.7 Sin
e � is 
ontinuous in dom(�) and ��1(B
) = 9R(��id)�1([U ℄), we
an apply Theorem 1.8.5 for A = ��1(B
), F = (�� id)�1([U ℄) and X = dom(�)(or X = dom(�) \ OT 0).Sin
e dom(�) is 
omeager in St(P), it suÆ
es to show that player II has a win-ning strategy in the game G��u �(�� id)�1([U ℄); dom(�)\OT 0� (
all it G0), namelyplayer I �rst 
hooses (S00; y0), where S00 � T 0. Sin
e M � \��1(B
) is meager",by applying Theorem 1.8.5 in M , we 
an �nd a winning strategy � for playerII in the game G��u �(� � id)�1([U ℄); dom(�)� in M (
all it GM). The idea is totransfer � to a winning strategy for player II in G0 in V . Instead of writing downa winning strategy for player II in G0, we des
ribe how to win the game G0 forplayer II as follows: I �S00 (� T 0); y0� (S20; y1) : : :G0 II S10 S30 : : :I (S0; y0) (S2; y1) : : :GM II S1 S3 : : :We 
onstru
t sequen
es hSn j n 2 !i, hSn0 j n 2 !i, hyn j n 2 !i with thefollowing properties:� �hSn0 j n 2 !i; hyn j n 2 !i� is a run in the game G0 in V ,� �hSn j n 2 !i; hyn j n 2 !i� is a run in the game GM in V ,7For the existen
e of su
h U , see, e.g., [66, Theorem 7B.5℄.
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hosen by player I for ea
h n,� player II follows � in GM , and� S2n+10 � S2n+1 for ea
h n.Assuming we have 
onstru
ted the above sequen
es, we prove that player IIwins in the game G0. First note that GM is a 
losed game for player II, hen
e thestrategy � remains winning in V . Therefore, (�(u); y) =2 [U ℄ for any u 2 Tn2! OSnin V . But sin
e S2n+10 � S2n+1 for ea
h n, (�(u); y) =2 [U ℄ for any u 2 Tn2! OSn0 ,hen
e player II wins the game G0.We des
ribe how to 
onstru
t the above sequen
es. Suppose we have h(Si0; Si; yi) ji < 2ni for some n. We de
ide S2n0, S2n+10, S2n, S2n+1 and yn. By the aboveproperties, S2n0 and yn are arbitrarily 
hosen by player I and S2n+1 will be de
idedby the rest and �. So let's de
ide S2n and S2n+10.Let D be the set of all possible 
andidates for S2n+1 by � and the previousplay hSi j i < 2ni; hyi j i < ni. Then in M , D is dense below S2n�1 (if n > 0).Sin
e S2n0 � S2n�10 � S2n�1 and T 0 is (M;P)-generi
, D \M = D is predensebelow S2n0. Take an element from D whi
h is 
ompatible with S2n0 and 
hooseS2n so that the element we have taken be
omes S2n+1 by � and let S2n+10 be a
ommon extension (in V ) of S2n0 and S2n+1. This �nishes the 
onstru
tion of thesequen
es. � (Claim 2.3.4)Now let us prove the equivalen
e (?):Suppose ��1(B
) is meager and assume there is a 
ountable transitive modelM of ZFC with 
 2 M su
h that M � \��1(B
) is not meager". We will derivea 
ontradi
tion. Sin
e every Borel set is P-Baire, ��1(B
) has the Baire propertyin M . Hen
e if ��1(B
) is not meager in M , then there is a T 2 PM su
h that��1(B
) is 
omeager in OT (i.e., ��1(B
) \ OT is 
omeager in OT ) in M . ByClaim 2.1.16 (b), ��1([T ℄nB
) is almost in
luded in the meager set OT n��1(B
),hen
e, in M , ��1([T ℄ n B
) is meager in St(P). Now apply the above 
laim forthe Borel set [T ℄ n B
. Then we get a T 0 � T su
h that OT 0 \ ��1([T ℄ n B
)is meager in V . But this means that OT 0 is almost in
luded in ��1(B
). Sin
eOT 0 is not meager by Lemma 2.1.1, ��1(B
) is not meager, whi
h 
ontradi
ts theassumption that ��1(B
) is meager.For the other dire
tion, suppose the right hand side holds for ��1(B
) and weshow that it is a
tually meager in V . By Fa
t 2.1.17, it suÆ
es to show that forany T in P, there is a T 0 � T su
h that OT 0 \ ��1(B
) is meager. So �x any Tand pi
k a 
ountable transitive model M with 
; T 2 M . Then by Claim 2.3.4,there is a T 0 � T su
h that OT 0 \ ��1(B
) is meager, as desired.We next show the se
ond statement of this proposition. For that, it suÆ
es



50 Chapter 2. Games and Regularity Propertiesto see the following by Lemma 2.1.15:��1(B
) is meager () (9M 3 
) �M : a 
ountable transitive modelof ZFC and M � \��1(B
) is meager"�() (8M 3 
) �M : a 
ountable transitive modelof ZFC =) M � \��1(B
) is meager"�;where � = f _xG as before.We only show the �rst equivalen
e. For left to right, if we take a 
ountableelementary substru
ture X of H� for enough large � su
h that X has all theessential elements, then the transitive 
ollapse of X will do the job for M in theright hand side.For right to left, take an M with the property in the right hand side. Theidea is the same as the proof of Claim 2.3.4 in the �rst item of Lemma 2.3.3. Thistime, we use the unfolded Bana
h-Mazur game G��u �(�� id)�1([U ℄)dom(�)� bothin M and V and translate a winning strategy in GM to the one in G0.By the assumption, in M , player II has a winning strategy �0 in GM . The
onstru
tion of a winning strategy for II in G0 in V from �0 is exa
tly the sameas Claim 2.3.4. But instead of using the (M;P)-generi
ity for a 
ondition T 0, weuse the following:Claim 2.3.5. Let D be a dense subset of P in M . Then D is predense in P in V .Proof of Claim 2.3.5. LetD be a dense subset of P inM . Then sin
e P is provably


, in M , there is a 
ountable maximal anti
hain A � D. But sin
e P is �11, thestatement \a real 
odes a maximal anti
hain" is �11^�11 and therefore A remainsa maximal anti
hain in V . Hen
e D is predense in P in V . �(Claim 2:3:5)The rest is exa
tly the same as Claim 2.3.4.We show the third statement of this proposition. Let x be P-generi
 over M .Then the set Gx = fT 2 PM j x 2 [T ℄g is a PM -generi
 �lter over M . We showthat x =2 B
 when 
 is a Borel 
ode in M with B
 2 IP�.First, we make a small observation about x and Borel sets with their 
odesin M . Let iM be the dense embedding from PM to ��B=IP�� n f0g�M de�ned inProposition 2.1.18 applied in M and iM� (Gx) be the �B=IP��-generi
 �lter over Mindu
ed by iM and Gx. Using the fa
t that IP� is a �-ideal, it is routine to 
he
kthat B 2 iM� (Gx) if and only if x 2 B for any Borel set B with a 
ode in M .Now let 
 be a Borel 
ode in M with B
 2 IP� in V . By the �rst item of in thisproposition and the downward absoluteness for �12 formulas, M � \B
 2 IP�".Suppose that x does belong to B
. Then by the above observation, B
 2 iM� (Gx).But this implies that M � \B
 =2 IP�", hen
e by upward absoluteness for �12formulas, B
 =2 IP�. Contradi
tion!
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real over M and put Gx = fT 2 PM j x 2 [T ℄g. We show that Gx is a PM -generi
�lter over M .We �rst show that Gx meets every maximal anti
hain of PM in M . Take anymaximal anti
hain A of PM in M . Sin
e P is provably 


, A is 
ountable in M .Now 
onsider B = Sf[T ℄ j T 2 Ag. Then B is a Borel set with a 
ode in M andM � \!! nB 2 IP�". By the �rst item of this proposition, this is also true in V .Sin
e x is quasi-P-generi
 over M , x =2 !! nB, i.e., x is in B. Hen
e Gx meets A.Now we show that Gx is a �lter. Take any two elements T1; T2 in Gx. We will�nd a 
ommon extension of T1, T2 in Gx. Consider D = fS 2 P j ([S℄ \ [T1℄ =; and [S℄ \ [T2℄ = ;) or (S � T1 and [S℄ \ [T2℄ = ;) or (S � T2 and [S℄ \ [T2℄ =;) or (S � T1; T2)g in M . Then by strong arborealness of P, D is dense in M .Hen
e Gx meets D. Take a 
ondition S from Gx \D. Then only the last 
ase inD happens be
ause S 2 Gx () x 2 [S℄. Hen
e S � T1; T2. Therefore, Gx is aPM -generi
 �lter over M .2.4 The equivalen
e resultsIn x 1.8 and x 2.2, we have asked when every �12 set of reals has the Baire propertyand when �13-P-absoluteness holds for a strongly arboreal for
ing P. In fa
t,the answer to the �rst question is exa
tly the same as the one for the se
ondquestion, for Cohen for
ing: Bagaria [4℄ and Woodin [89℄ showed that every �12set of reals has the Baire property if and only if �13-C -absoluteness holds whereC is Cohen for
ing. They also proved the same equivalen
e holds for Lebesguemeasurability and random for
ing and the same holds for the Baire propertyfor dominating topology (D -measurability) and He
hler for
ing (see [42, 20℄).These are the typi
al 
ases for 


, strongly arboreal for
ings. How about non-


for
ings? Halbeisen and Judah [30℄ showed the same equivalen
e for 
ompletelyRamseyness (R-measurability) and Mathias for
ing and the author [34℄ proved itfor the property not being a Bernstein set (S-measurability) and Sa
ks for
ing.Therefore, the regularity properties for �12 sets and �13 for
ing absoluteness are
losely related. We 
an further 
onne
t the trans
enden
e property over L withthese two properties: E.g., Judah and Shelah [43℄ proved that every �12 set ofreals has the Baire property if and only if for any real x, there is a Cohen realover L[x℄. They also proved the same equivalen
e for Lebesgue measurabilityand random reals. Similarly Brendle and L�owe [20℄ showed that there is no �12Bernstein set if and only if for any real x there is a real not in L[x℄. As we haveseen in x 2.3, these latter statements 
an be seen as the existen
e of quasi-generi
reals over L[x℄ for reals x while the existen
e of generi
 reals might not work, e.g.,for the last statement, there is a model of set theory where for any real x thereis a real not in L[x℄ but there is no Sa
ks real over L.88For example, start with L and add !1 many Cohen reals.



52 Chapter 2. Games and Regularity PropertiesIn this se
tion, we prove the above equivalen
e results for a wide 
lass ofstrongly arboreal for
ings in a uniform way and explore the equivalen
e betweenregularity properties for �13 sets (or �13 sets), �14 for
ing absoluteness, and thetrans
enden
e properties over the 
ore model K.Now we are ready to state our main theorems in this 
hapter:Theorem 2.4.1. Let P be a strongly arboreal, proper for
ing. Then the followingare equivalent:1. Every �12 set of reals is P-measurable, and2. �13-P-absoluteness holds.Theorem 2.4.2. Let P be a strongly arboreal, strongly proper, �12 for
ing. As-sume the following:f
 j 
 is a Borel 
ode and B
 2 IP�g 2 �12: (�)Then the following are equivalent:1. Every �12 set of reals is P-measurable,2. �13-P-absoluteness holds, and3. For any real a and T 2 P, there is a quasi-P-generi
 real x 2 [T ℄ over L[a℄.Before going to the proofs of these theorems, let us see the general equivalen
etheorem between P-Baireness and the for
ing absoluteness via P:Theorem 2.4.3 (Castells). Let P be a partial order. Then the following areequivalent:1. Every �12 set of reals is P-Baire, and2. �13-P-absoluteness holds.Proof. The idea for this argument goes ba
k to [25, Theorem 3.1℄.9We �rst show the dire
tion from P-Baireness to for
ing absoluteness. Weassume every �12-set of reals is P-Baire and we show that �13-P-absoluteness. Toderive a 
ontradi
tion, suppose it fails. Then there are a �13 formula �, a reala, and a P-generi
 �lter G over V su
h that V [G℄ � �(a) but V 2 �(a). Thisis be
ause any �13 formula is upward absolute from V to V [G℄ by Shoen�eldabsoluteness.Let  be the �11 formula su
h that � = (9x) (8y)  . Then there are p 2 Gand a P-name � for a real su
h that p 
 (8y)  (�; y; �a). By the assumption, inV , (8x) (9y) : (x; y; a). Sin
e  is a �11 formula, by the Kondô-Addison theo-rem [51℄, there is a�12 fun
tion g : !! ! !! su
h that V � \(8x) : (x; g(x); a)".109We would like to thank Neus Castells for providing her notes with a proof of Theorem 2.4.3.Our statement of Theorem 2.4.3 and presentation of the proof di�er slightly from Castells's note.10A
tually, g 
an be taken as a �11 fun
tion in this 
ase. But for the analogous argument forTheorem 2.4.7, we write �12.
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laim gÆf� is Baire measurable, where f� is de�ned in Lemma 2.1.2. ItsuÆ
es to 
he
k that (gÆf� )�1([s℄) has the Baire property for ea
h �nite sequen
eof natural numbers s, where [s℄ = fx 2 !! j x � sg, the basi
 open set from s inthe Baire spa
e. Take any su
h s. Sin
e g is �12, the set g�1([s℄) is �12. By the�rst assumption, it is P-Baire, in parti
ular, f�1� g�1([s℄) = (g Æ f� )�1([s℄) has theBaire property in St(P).The idea is to approximate �; �gÆf� and a witness for  by a tree and using theabsoluteness of the wellfoundedness of the tree between V and V [G℄, we will derivea 
ontradi
tion. Let T be a tree on ! � ! � ! su
h that (8x; y) � (x; y; a) ()(9z) (x; y; z) 2 [T ℄�.Sin
e f�gÆf� (u) = g Æ f� (u) for 
omeager many u, there is a sequen
e hDn j n 2!i of dense open sets in P su
h that f�gÆf� (u) = gÆf�(u) for ea
h u 2 Tn2!SfOp jp 2 Dng. Consider the following tree U on P � ! � ! � ! in V :(~p; s; t; v) 2 U () ~p is a de
reasing sequen
e in P;if ~p = hpi j i < ni; then lh(s) = lh(t) = lh(v) = n;(s; t; v) 2 T; p0 = p; (8i < n) pi 2\j<iDj; and(8i < n) pi 
 \s�i � �; t�i � �gÆf� "We 
laim that U is wellfounded in V but ill-founded in V [G℄. Suppose thereis an in�nite path through U in V and 
all it (~p; x; y; z). Take any u 2 St(P)
ontaining ea
h element in ~p (i.e., any ultra�lter on P extending the set ~p). Thenu 2 Tn2!SfOp j p 2 Dng and hen
e f�gÆf� (u) = g Æ f� (u). Furthermore, by thede�nition of f� and f�gÆf� , f� (u) = x, f�gÆf� (u) = g Æ f� (u) = y and (x; y; z) 2 [T ℄.But this implies  (x; g(x); a), 
ontradi
ting (8x) : (x; g(x); a) in V . Hen
e U iswellfounded in V . On the other hand, U is 
ertainly ill-founded in V [G℄ be
auseG; �G = f� (G); �GgÆf� = g Æ f� (G) and a witness for  (�G; �GgÆf� ; a) easily give anin�nite path through U . Contradi
tion!Next we show the dire
tion from for
ing absoluteness to P-Baireness. Takeany �12 set A and a Baire measurable fun
tion f from St(P) to the reals. Weshow that f�1(A) has the Baire property in St(P).Sin
e A is �12, there are �12 formulas � and  de�ning A with a real parametera, in parti
ular, (8x) �(x; a) ()  (x; a): (y)Note that this statement is �13(a). Hen
e by �13-absoluteness for P, the statement(y) remains true in V P. This is the only part we use the se
ond assumption.Now we use Shoen�eld trees to get the absolute tree representation for Aand !! n A between V and V P. Let � be suÆ
iently large so that � remainsun
ountable in V P. Let U1, U2 be Shoen�eld trees on !� � for � and  . Sin
e �remains un
ountable in V P, the Shoen�eld trees for � and  up to � 
onstru
ted



54 Chapter 2. Games and Regularity Propertiesin V P are the same as U1, U2 respe
tively. Moreover, sin
e (y) remains true inV P, we have the following:A = p[U1℄; !! n A = p[U2℄;
P \p[U1℄ [ p[U2℄ = !!; p[U1℄ \ p[U2℄ = ;":Let Di = fp j p 
 \�f 2 p[Ui℄"g and Oi = SfOp j p 2 Dig for i = 1; 2, where�f is from Lemma 2.1.2. Then D1 [ D2 is dense in P and any two elements piof Di are in
ompatible for i = 1; 2. Hen
e O1 [ O2 is dense open in St(P) andO1 \ O2 = ;. So it suÆ
es to show that Oi n f�1(p[Ui℄) is meager in St(P) fori = 1; 2.We only show that O1 n f�1(p[U1℄) is meager in St(P). By Fa
t 2.1.17, itsuÆ
es to show that Op n f�1(p[U1℄) is meager for ea
h p in D1. The following
laim is the key point, where we use Bana
h-Mazur games essentially. Let � besuÆ
iently large regular 
ardinal.Claim 2.4.4. Let a be any set in H�. Then the set A of all G 2 St(P) su
hthat there is a 
ountable elementary substru
ture X of H� with a 2 X su
h thatG \X is P-generi
 over X is 
omeager in St(P).Proof of Claim 2.4.4. Fix a set a in H�. We prove the 
laim by using the Bana
h-Mazur game G���A; St(P)�. By Theorem 1.8.3, it suÆ
es to show that player IIhas a winning strategy in this game. Sin
e fOp j p 2 Pg forms a basis in St(P),we may assume that two players will pi
k elements of P instead of nonempty opensets in St(P).Instead of spe
ifying a winning strategy for player II, we des
ribe how to winthe game for player II. We will also 
onstru
t a�-de
reasing sequen
e hpn j n 2 !iand an �-in
reasing sequen
e hXn j n 2 !i of 
ountable elementary substru
turesof H� su
h that� a;P 2 X0, p2n�1; p2n 2 Xn,� p2n is arbitrarily 
hosen by player I, and� any dense set of P in Xn 
ontains pm for some m.We 
an easily arrange this 
onstru
tion by a standard book-keeping argument.Now we are done: Let X be the union of all Xn. Then for any G 
ontaining ea
hpn, G \X is P-generi
 over X be
ause G \X � fpn j n 2 !g and any dense setof P in X must 
ontain pm for some m. � (Claim 2.4.4)We now prove that Op n f�1(p[U1℄) is meager if p 2 D1. By the 
laim, it isenough to see that f(G) 2 p[U1℄ for G satisfying the property in the 
laim forsome suitable a and p 2 G. Also we may assume f(G) = f�f (G) be
ause it istrue for 
omeager many G by Lemma 2.1.2.
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ountable elementary substru
ture X of H� for G as in the 
laim fora = (P; U1; p; f; �f). Then G\X is P-generi
 over X. Sin
e p 2 D1, p 
 �f 2 p[U1℄and hen
e X � \p 
 �f 2 p[U1℄". Sin
e G\X � X, we 
an apply for
ing theoremto X and G \ X and get X[G \ X℄ � �G\Xf 2 p[U1℄. By upward absoluteness,�G\Xf 2 p[U1℄ in V . Note that �G\Xf = f�f (G) be
ause for any natural numbersm and n, �G\Xf (m) = n () (9p 2 G \X) p 
 �f ( �m) = �n() (9p 2 G) p 
 �f ( �m) = �n() f�f (G)(m) = n:Hen
e f(G) = f�f (G) 2 p[U1℄ as desired.Now we prove Theorem 2.4.1 and Theorem 2.4.2:Proof of Theorem 2.4.1. By Theorem 2.4.3, it suÆ
es to show that every �12set of reals is P-measurable if and only if every �12 set of reals is P-Baire. ByLemma 2.1.15, it is enough to see that every �12 set of reals is P-Baire assumingevery �12 set of reals is P-measurable.The following 
laim is the key point:Claim 2.4.5. Let P be a strongly arboreal, proper for
ing and � be a P-name fora real. Then for any T in P, there is a T 0 � T and a Borel fun
tion g : [T 0℄ ! !!su
h that T 0 
 � = g( _xG).Proof of Claim 2.4.5. This is a 
ombination of Proposition 2.1.18 in this thesisand [90, Proposition 2.3.1℄.Now take any �12-set A and a Baire measurable fun
tion f from St(P) tothe reals. We show that f�1(A) has the Baire property. It suÆ
es to show thatfT j OT \ f�1(A) is meager or OT n f�1(A) is meagerg is dense in P.So take any T in P and we will �nd an extension S of T with the aboveproperty. By the above 
laim, there is a T 0 � T and a Borel fun
tion g : [T 0℄ !!! su
h that T 0 
 �f = g( _xG), where �f is the P-name for a real de�ned inLemma 2.1.2. Hen
e, by Lemma 2.1.2, f = g Æ f _xG almost everywhere in OT 0.Sin
e g�1(A) is �12, it is P-measurable by the assumption. By Lemma 2.1.15,f�1_xG (g�1(A)) = (gÆf _xG)�1(A) has the Baire property. Hen
e f�1(A) has the Baireproperty in OT 0. In parti
ular, there is an S � T 0 su
h that either OS \ f�1(A)is meager or OS n f�1(A) is meager, as desired.Proof of Theorem 2.4.2. We have seen the equivalen
e between the regularityproperty and for
ing absoluteness. We will show the dire
tion from for
ing abso-luteness to the trans
enden
e property and the dire
tion from the trans
enden
eproperty to the regularity property.



56 Chapter 2. Games and Regularity PropertiesWe �rst show the dire
tion from for
ing absoluteness to the trans
enden
eproperty. Take a real a and T in P. We will �nd a quasi-P-generi
 real x overL[a℄ with x 2 [T ℄. But by the assumption (�), the statement \There is a quasi-P-generi
 real x over L[a℄ with x 2 [T ℄" is �13 and this is true in a generi
 extensionV [G℄ with T 2 G by the same argument as in Proposition 2.3.3. (Although Pmight not be provably �12 as we assumed in Proposition 2.3.3, we used it onlyto see M � B
 2 IP� when B
 2 IP� in V and this is ensured by the assumption(�) and Shoen�eld absoluteness without using P being provably �12.) Hen
e by�13-for
ing absoluteness, the statement is also true in V .We show the dire
tion from the trans
enden
e property to the regularity prop-erty. Take any �12 set A and we will show that A is P-measurable. Take any Tin P.Case 1: !L[a℄1 < !V1 for every real a.In this 
ase, we 
an a
tually show that every �12 set of reals is P-measurableas follows (now we assume A is �12 instead of �12): Pi
k a real a su
h thatT 2 L[a℄ and A is �12(a) and L[a℄ 
ontains a parameter of the �12 de�nitionof P. Take a Shoen�eld tree U for A in L[a℄, i.e., A = p[U ℄ Then there isan extension T 0 � T in PL[a℄ su
h that either L[a℄ � \T 0 
 _xG 2 p[U ℄" orL[a℄ � \T 0 
 _xG =2 p[U ℄", where _xG is a 
anoni
al P-name for a generi
 real. Wemay assume that L[a℄ � \T 0 
 _xG 2 p[U ℄". (The other 
ase is similar.)By the assumption, the set of all dense sets of PL[a℄ in L[a℄ is 
ountable. Hen
ethere is a 
ountable transitive model M � L[a℄ of ZFC su
h that M 
ontainsall the reals and all the dense subsets of PL[a℄ in L[a℄. (E.g., take a 
ountableelementary submodel of L�[a℄ 
ontaining all the reals and the dense subsets inL[a℄ and 
ollapse it.) Sin
e P is �12, L[a℄ 
omputes P 
orre
tly, M also 
omputesP 
orre
tly. Now we apply the strong properness of P and get an extensionT 00 � T su
h that T 00 is (M;P)-generi
 
ondition and hen
e also (L[a℄;P)-generi
.Therefore maximal anti
hains in PL[a℄ stay maximal in V below T 00. Togetherwith the 
ondition that the set of all dense sets in L[a℄ is 
ountable, we 
an
on
lude that almost all the reals are P-generi
 over L[a℄ below T 00. Sin
e wehave L[a℄ � \T 0 
 _xG 2 p[U ℄", almost all the reals below T 00 belong to p[U ℄ = A,as desired.Case 2: !L[a℄1 = !V1 for some real a.The idea for this argument goes ba
k to [19, Proposition 2.1℄. Pi
k a real awith T 2 L[a℄ su
h that !L[a℄1 = !V1 and A is �12(a). The idea is to de
ompose[T ℄ \ A and [T ℄ n A into Borel sets in an absolute way between L[a℄ and V ,then a Borel set 
ontaining a quasi-P-generi
 real over L[a℄ must be IP�-positiveand below that Borel set we will �nd an extension of T as a witness for theP-measurability of A.Sin
e [T ℄\A and [T ℄ nA are �12(a) sets, there are Shoen�eld trees U1 and U2in L[a℄ for [T ℄ \ A and [T ℄ n A respe
tively. From these trees, we 
an naturallyde
ompose [T ℄ \ A and [T ℄ n A into !1 many Borel sets as in [66, 2F.1{2F.3℄,
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es h
� j � < !1i, hd� j � < !1i of Borel 
odes in L[a℄su
h that [T ℄ \ A = S�<!1 B
� and [T ℄ n A = S�<!1 Bd� . The point is that theabove equations are absolute between L[a℄ and V be
ause those two sequen
esonly depend on U1; U2, and !1, and we have !L[a℄1 = !V1 as we assumed.By assumption, there is a quasi-P-generi
 real x over L[a℄ with x 2 [T ℄. Hen
ethere is an � < !1 su
h that either x 2 B
� or x 2 Bd�. Without loss of generality,we may assume x 2 B
�. Sin
e 
� is in L[a℄, by the de�nition of quasi-P-generi
ity,B
� is not in IP�. Sin
e every Borel set is P-measurable, there is a 
ondition T 0su
h that [T 0℄ nB
� 2 IP. Sin
e B
� � [T ℄ \A, we have T 0 � T and [T 0℄ nA 2 IP,as desired.We do not know whether we 
ould eliminate the 
ondition (�) in Theorem 2.4.2under some reasonable assumptions for P. For further dis
ussions about this issue,see x 2.6.So far we have investigated the 
onne
tion between P-measurability for �12sets, �13-P-absoluteness, and the trans
enden
e property over L. How aboutP-measurability for �12 sets? Is there any su
h equivalen
e? Solovay provedthat every �12 set has the Baire property if and only if for any real a, the setof all Cohen reals over L[a℄ is 
omeager. He also proved the same equivalen
efor Lebesgue measurability and random reals. Similar equivalen
es have beenobtained for other for
ings (see, e.g., [20, Proposition 5.12℄). We now give ageneral equivalen
e result for this phenomenon:Theorem 2.4.6. Let P be a strongly arboreal, strongly proper, �12 for
ing. As-sume f
 j 
 is a Borel 
ode and B
 2 IP�g 2 �12; (�)and IP is Borel-generated or IP = NP; (��)where IP is Borel-generated if any element of IP is a subset of an element of IPwhi
h is Borel.Then the following are equivalent:1. Every �12 set of reals is P-measurable, and2. For any real a, !! n fx j x is quasi-P-generi
 over L[a℄g 2 IP�.The ideal IP is Borel-generated if P is 


 and IP = NP for all the typi
alnon-


 for
ings admitting a fusion argument as we dis
ussed in Lemma 2.1.12.Hen
e the 
ondition (��) is always true for typi
al strongly arboreal for
ings.Proof. We show the dire
tion from the regularity property to the trans
enden
eproperty. Take any real a and we show that the set A = fx j x is quasi-P-generi
over L[a℄g is of measure one with respe
t to IP�. Suppose not. Then !! nA =2 IP�.



58 Chapter 2. Games and Regularity PropertiesBy the assumption (�), !! nA is �12. So by the assumption 1, it is P-measurable.Hen
e there is a T in P su
h that [T ℄ n (!! n A) = [T ℄ \ A 2 IP. We show thatthis 
annot happen.Case 1: IP is Borel-generated.Sin
e [T ℄ \ A 2 IP, there is a Borel set B � [T ℄ in IP su
h that [T ℄ \ A � B.Let 
 be a Borel 
ode for B. By Theorem 2.4.2, there is a quasi-P-generi
 real xover L[a; 
℄ with x 2 [T ℄. Sin
e B 2 IP, x =2 B. But this is impossible be
ause xis also quasi-P-generi
 over L[a℄ and hen
e x 2 [T ℄ \ A � B.Case 2: IP = NP.In this 
ase, [T ℄ \A is P-null, hen
e there is a T 0 � T su
h that [T 0℄ \A = ;.By Theorem 2.4.2, there is a quasi-P-generi
 real x over L[a℄ with x 2 [T 0℄. Hen
ex 2 [T 0℄ \ A, a 
ontradi
tion.We now show the dire
tion from the trans
enden
e property to the regularityproperty. Take any �12 set A. We show that A is P-measurable. Let T be inP. We will �nd an extension T 0 of T approximating A as in the de�nition ofP-measurability. If [T ℄ \ A 2 IP�, we are done. So we assume [T ℄ \ A =2 IP�.Case 1: !L[a℄1 < !V1 for every real a.The same as Case 1 in Theorem 2.4.2.Case 2: !L[a℄1 = !V1 for some real a.Let a be a real su
h that [T ℄ \ A is �12(a) and !L[a℄1 = !V1 . Then we have aShoen�eld tree in L[a℄ for [T ℄\A and we get an !1 many Borel de
omposition of[T ℄\A into Borel sets fB
� j � < !1g with 
� 2 L[a℄ for ea
h � as in the proof ofTheorem 2.4.2. Sin
e [T ℄\A =2 IP� and the set of quasi-P-generi
 reals over L[a℄ isof measure one with respe
t to IP� by the assumption 2, there is a quasi-P-generi
real x over L[a℄ with x 2 [T ℄ \ A, so there is an � su
h that x 2 B
�.The rest is the same as in the proof from the trans
enden
e property to theregularity property in Theorem 2.4.2. Sin
e 
� 2 L[a℄ and x is quasi-P-generi
over L[a℄, B
� =2 IP�. Sin
e any Borel set is P-measurable, there is a T 0 in P su
hthat [T 0℄ n B
� 2 IP. But B
� � [T ℄ \ A. Hen
e T 0 � T and [T 0℄ n A 2 IP, asdesired.We do not know if there is a for
ing absoluteness statement 
orrespondingto P-measurability for �12 sets in general. For some for
ings, it is true, e.g.,Judah [42℄ proved that �13-D -absoluteness is equivalent to the Baire property (inthe usual topology in the Baire spa
e) for all �12 sets. (The same equivalen
eholds for amoeba for
ing and Lebesgue measurability.) But we do not know howto uniformly �nd a for
ing 
orresponding to P-measurability for �12 sets given P.We have linked P-measurability for �12 sets and �12 sets with for
ing abso-luteness and the trans
enden
e properties over L. How about P-measurability for�13 sets and �13 sets? Unfortunately we 
annot prove the equivalen
e betweenP-measurability for �13 sets and �14-P-absoluteness in ZFC in general, e.g., start



D. Ikegami, Games in Set Theory and Logi
 59from L and add !1 many Cohen reals, then in this model, �14-for
ing absolutenessfor Cohen for
ing holds but there is a �12 set of reals without the Baire property.With an additional assumption (sharps for sets), we will establish the analoguesof the equivalen
e results we have obtained for P-measurability for �13 sets and �13sets, �14-P-absoluteness, and the trans
enden
e property over the 
ore model K:Theorem 2.4.7. Let P be a strongly arboreal, proper for
ing.1. Assume that every real has a sharp and that �12-determina
y fails. Thenif every �13 set of reals is P-measurable, then �14-P-absoluteness holds.2. Suppose that every set has a sharp. Then if �14-P-absoluteness holds, thenevery �13 set of reals is P-measurable.In parti
ular, if every set has a sharp, then either �12-determina
y holds orevery �13 set of reals is P-measurable if and only if �14-P-absoluteness holds.Theorem 2.4.8. Let P be a strongly arboreal, strongly proper, provably �12for
ing. Suppose every real has a sharp. Then either �12-determina
y holds orthe following are equivalent:1. Every �13 set of reals is P-measurable,2. �14-P-absoluteness holds, and3. For any real a and any T 2 P, there is a quasi-P-generi
 real x 2 [T ℄ overKa, where Ka is the 
ore model 
onstru
ted from a-mi
e.Theorem 2.4.9. Let P be a strongly arboreal, strongly proper, provably �12for
ing. Suppose every real has a sharp. AssumeIP is Borel-generated or IP = NP: (��)Then either �12-determina
y holds or the following are equivalent:1. Every �13 set of reals is P-measurable, and2. For any real a, !! n fx j x is quasi-P-generi
 over Kag 2 IP�, where Ka isthe 
ore model 
onstru
ted from a-mi
e.Note that the additional assumption \Every set has a sharp" is equivalentto every �12 set of reals being P-Baire for any P (or universally Baire). So oursetting is that, assuming that �12 sets of reals behave ni
ely for any for
ing P, we
onsider the equivalen
e mentioned above.Also note that we do not need the analogue of the assumption (�) in Theo-rem 2.4.2 in the above theorems be
ause the set of all Borel 
odes whose de
odesare in IP� is �12 as we proved in Proposition 2.3.3.Proof of Theorem 2.4.7. We start with proving the �rst item of this theorem,i.e., we show the dire
tion from the regularity property to for
ing absolutenessassuming that every real has a sharp and that �12-determina
y fails. First notethat we may assume that every �13 set is P-Baire by the same argument forthe same dire
tion in Theorem 2.4.1. The argument is basi
ally the same as in



60 Chapter 2. Games and Regularity PropertiesTheorem 2.4.3. What we need is to uniformize a �12 relation by a �13 fun
tionas we uniformized a �11 relation by a �12 fun
tion in Theorem 2.4.3. The restis exa
tly the same. But su
h uniformization is possible assuming the failure of�12-determina
y.Theorem 2.4.10 (Folklore11). Suppose every real has a sharp. Then either �12-determina
y holds or �13 has the uniformization property, i.e., any �13 relation
an be uniformized by a �13 fun
tion.12Proof of Theorem 2.4.10. It suÆ
es to show that every �12 relation 
an be uni-formized by a �13 fun
tion. Suppose �12-determina
y fails. By Theorem 1.12.5,there is a real a0 su
h that for any a �T a0, the a-relativized version of the 
oremodel Ka exists and every �13 formula is absolute between Ka and V . (Re
all that�T is the Turing order on the reals.) For ea
h a �T a0, let <a be the 
anoni
algood �13(a) well-ordering on the reals in Ka ensured by Theorem 1.11.2. Given areal b and a �12(b) relation R, de�ne the uniformization fun
tion f as follows:f(x) = y () y is the <hx;a0;bi-least element with (x; y) 2 R,where hx; a0; bi is the real 
oding x; a0 and b. For ea
h x 2 dom(R), su
h a yalways exists be
ause every �13 formula is absolute between Khx;a0;bi and V . So funiformizes R and 
onsidering the fa
t that <a is a good �13(a) well-ordering inKa for ea
h a �T a0 in a uniform way, it is easy to see that f is �13.Now we show the se
ond item of Theorem 2.4.7, i.e., the dire
tion from for
ingabsoluteness to the regularity property assuming sharps for sets. The argument isthe same as for the impli
ation in Theorem 2.4.3. By Theorem 1.12.4, it suÆ
esto 
he
k that every real has a sharp in V [G℄ and uV2 = uV [G℄2 for any P-generi
�lter G over V .We �rst show that every real has a sharp in V [G℄ whenever G is a P-generi
�lter over V assuming sharps for sets in V . Take any P-generi
 �lter G over V anda real x in V [G℄. Let � be a P-name with �G = x. Sin
e we have a sharp for (�;P)in V , we have an elementary embedding j from L(�;P) to itself with 
riti
al pointabove the ranks of � and P in V . Sin
e the 
riti
al point of j is above the ranksof � and P, j preserves � and P and we 
an lift j to �| : L(�;P)[G℄ ! L(�;P)[G℄ inV [G℄ in the following standard way:�|(�G) = j(�)G;for any P-name � in L(�;P). Sin
e x = �G 2 L(�;P)[G℄, �|�L[x℄ gives us a non-trivial elementary embedding from L[x℄ to itself, hen
e x# exists as desired.11The author would like to thank Hugh Woodin for pointing out this fa
t to him.12Sin
e �12-determina
y implies that �13 has the uniformization property, this fa
t states thedi
hotomy of the uniformization property for �13 and �13.
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 �lter G over V whi
h will 
om-plete the proof. First note that u2 is the length of a provably �13 prewellorderinggiven in S
hli
ht [75, Example 3.2.7℄ assuming sharps for reals. But by a resultof S
hli
ht [75, Theorem 2.1.9℄, the length of the prewellordering is the same be-tween in V and V [G℄, assuming sharps for sets and P being proper. Therefore,uV2 = uV [G℄2 .Proof of Theorem 2.4.8. In Theorem 2.4.7, we have seen the equivalen
e betweenthe regularity property and for
ing absoluteness. We show the dire
tion fromfor
ing absoluteness to the trans
enden
e property and the one from the tran-s
enden
e property to the regularity property. (Note that the assumption, theexisten
e of sharps for reals, is weaker than the existen
e of sharps for sets. Butwe used sharps for sets only for (2) in Theorem 2.4.7, i.e., for the dire
tion fromfor
ing absoluteness to the regularity property, whi
h we will not use here. Wewill prove the equivalen
e of the three statements just from sharps for reals.)We show the dire
tion from for
ing absoluteness to the trans
enden
e prop-erty. All we need is that the statement \there is a quasi-P-generi
 real x overKa with x 2 [T ℄" is �14 for ea
h real a and ea
h T 2 P. But this is true byProposition 2.3.3 and the fa
t that the set of reals in Ka is �13(a) in V .We now show the dire
tion from the trans
enden
e property to the regular-ity property. The argument is basi
ally the same as the one in Theorem 2.4.2.Assume the failure of �12-determina
y. By Theorem 1.12.5, there is a real a0su
h that Ka exists and every �13 formula is absolute between Ka and V for anya �T a0.Case 1. !Ka1 < !V1 for every real a �T a0.As in Theorem 2.4.2, we 
an 
on
lude that every �13 set of reals (even �13set of reals) is P-measurable by using the fa
t that every �13 formula is absolutebetween Ka for a �T a0.Case 2. !Ka1 = !V1 for some real a.We need the absolute de
omposition of �13 sets into Borel sets between Kaand V for some real a �T a0. The following result is essential; its proof was
ommuni
ated to us by Ralf S
hindler:Theorem 2.4.11 (S
hindler). If uKa2 < uV2 for every real a �T a0, then !Ka1 < !V1for every real a �T a0.Proof. Here we use the ma
hinery of inner model theory.For simpli
ity, we assume Ka0 = K and only prove !K1 < !V1 assuming uKa2 <uV2 for ea
h real a. The general 
ase will be proved in the same way.Toward a 
ontradi
tion, we assume !K1 = !V1 . The following is the �rst point:Claim 2.4.12. Let a be a real. The mouse Kaj!1 is universal for 
ountable a-mi
e, i.e., M �� Kaj!1 for any 
ountable a-mouse M , where �� is the mouseorder.



62 Chapter 2. Games and Regularity PropertiesProof of Claim 2.4.12. Suppose there is a 
ountable a-mouse M with M >�Kaj!1. Coiterate M and Kaj!1 and let T ;U be the resulting trees for M andKaj!1 respe
tively.Case 1: lh(T ) is 
ountable.Sin
e M >� Kaj!1, U does not have a drop. But then the last model ofU 
annot be an initial segment of the last model of T sin
e the length of T is
ountable, a 
ontradi
tion.Case 2: lh(T ) is un
ountable.Sin
e M >� Kaj!1, U does not have a drop. If U was non-trivial, then the�nal model of U would be non-sound and 
ould not be a proper initial segmentof the �nal model of T . Hen
e U is trivial and Kaj!1 is an initial segment of the�nal model of T . But this means !1 is a limit of 
riti
al points of embeddings viaT , hen
e !1 is ina

essible in Ka, 
ontradi
ting the assumption !Ka1 = !K1 = !V1 .� (Claim 2.4.12)Case 1: There is a real a su
h that a{ does not exist.This 
ase was taken 
are of by Steel and Wel
h. In [81, Lemma 3.6℄, theyassumed u2 = !2, whi
h is stronger than uKa2 < uV2 for ea
h real a, and provedthere is a 
ountable mouse stronger than Kj!1 with respe
t to mouse order. Butassuming !K1 = !V1 and the non-existen
e of 0{, we 
an run the same argumentonly assuming uK2 < uV2 and get the same 
on
lusion. Furthermore, we 
an easilyrelativize this argument to Ka. Hen
e assuming !K1 = !V1 (even !Ka1 = !V1 ) andthe non-existen
e of a{, if uKa2 < uV2 , then there is an a-mouse stronger thanKaj!1 with respe
t to mouse order, whi
h 
ontradi
ts the a-relativized version ofClaim 2.4.12.Case 2: For every real a, a{ exists.This 
ase is new. Sin
e uK2 < uV2 , there is a real a su
h that uK2 < (!+1 )L[a℄.The idea is to use ay (whi
h exists sin
e a{ exists) and linearly iterate it with thelower measure in ay with length !1. Then the height of the last model is biggerthan uK2 sin
e uK2 < (!+1 )L[a℄. Now we restri
t this linear iteration map to K inay 
onstru
ted up to the point with the top measure. The point is this is aniteration map on it and the �nal model of this iteration has height bigger thanuK2 . Sin
e it is a 
ountable mouse, by Claim 2.4.12, we get a 
ountable mouse in Kwith the same property, whi
h yields a 
ontradi
tion by a standard boundednessargument.We dis
uss this idea in detail. Let i be the linear iteration map of ay derivedfrom the iterated ultrapower starting from the lower measure in it with length!1. Then the target N of i has height bigger than uK2 sin
e uK2 < (!+1 )L[a℄, the
riti
al point of i goes to !1, and N has a 
ardinal bigger than !1 and a 2 N .Let Kayj
 be the K in ayj
, where 
 is the 
riti
al point of the top measure in
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 is a mouse and we 
all it M .We 
laim that if we restri
t i to M , then it is an iteration map on M . Sin
ei is from a linear iteration of ultrapowers via measures, by applying the resultof S
hindler [72, Corollary 3.1℄ in ea
h ultrapower in the iteration, we 
an provethat the restri
tion of i to M is an iteration with length !1 (whi
h itself might bevery 
ompli
ated). Moreover, the �nal model of this iteration has height greaterthan uK2 be
ause i maps 
 greater than or equal to (!+1 )L[a℄. Let us 
all the treeof this iteration T and let M� be the �th iterate via T and iT�;� : M� ! M� bethe indu
ed maps for � � � � !1.Sin
e M is a 
ountable mouse, by Claim 2.4.12, there is an �0 < !1 su
hthat M �� Kj�0. We will show that Kj�0 has the same property, i.e., there isan iteration from Kj�0 with length !1 su
h that the height of the �nal model isgreater than uK2 . (Note that there might be a drop.) Coiterate Kj�0 and M andlet � : M ! N be the resulting map. Note that there is no drop from the M -sidebe
ause M �� Kj�0.We will 
onstru
t hN� j � � !1i, h�� : M� ! N� j � � !1i, and hiU�;� : N� !N� j � � � � !1i with the following properties:(1) The diagrams below all 
ommute,(2) M� �� N� �� M�+1 for ea
h �, i.e., they are equal with respe
t to mouseorder,(3) N� is the dire
t limit of N� (� < �) for limit �, and(4) iU�;�+1 and ��+1 are the maps resulting from the 
omparison between N�and M�+1 for ea
h �.Kj�0 ///o/o/o N = N0 iU0;1 // N1 iU1;2 // : : : // N� iU�;�+1 // : : : // N!1M = M0�=�0OO iT0;1 // M1�1OO iT1;2 // : : : // M���OO iT�;�+1 // : : : // M!1�!1OO
The above properties uniquely spe
ify hN� j � � !1i, h�� : M� ! N� j � �!1i, and hiU�;� : N� ! N� j � � � � !1i. Hen
e it suÆ
es to 
he
k (1) and (2)above for this 
onstru
tion.For (1), it suÆ
es to show that iU�;�+1 Æ �� = ��+1 Æ iT�;�+1 for ea
h �. By theDodd-Jensen Lemma (Theorem 1.11.4), any two iteration maps without dropsfrom a mouse to a mouse are the same. By (2) for �, ��, ��+1, iT�;�+1, and iU�;�+1are all iteration maps without drops. Hen
e we get the desired 
ommutativity.(2) follows from the fa
t that all the maps 
onstru
ted before are simple iterationmaps.Sin
e the height of N!1 is greater than or equal to that of M!1 , there is aniteration from Kj�0 with length !1 whose �nal model has height greater than uK2 ,13Note that ayj
 is a transitive model of ZFC and obviously there is no inner model with aWoodin 
ardinal in that model. Hen
e by Theorem 1.11.2, one 
an 
onstru
t K in ayj
.
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e Kj�0 is in K and �0 is 
ountable in K, there is a real x in K 
odingKj�0. We show that the height of N!1 is less than (!+1 )L[x℄. In L[x℄, we 
ollapse!V1 with the for
ing Coll(!; !V1 ). Let g : ! ! !V1 be a generi
 surje
tion over L[x℄.Sin
e Kj�0 is 
oded by x and the length of iteration is !V1 whi
h is 
ountable inL[x℄[g℄ witnessed by g, by the boundedness lemma in L[x℄[g℄, the height of N!1is less than !L[x℄[g℄1 = (!+1 )L[x℄, as desired. Sin
e x is in K, (!+1 )L[x℄ < uK2 andhen
e the height of N!1 is less than uK2 . But the height was greater than uK2 .Contradi
tion!Now by the assumption in Case 2 and Theorem 2.4.11, there is a real a su
hthat !Ka1 = !V1 and uKa2 = uV2 . By Theorem 1.12.4, the Martin-Solovay trees for�13 sets are absolute between Ka and V . Hen
e we get the absolute de
ompositionof �13 sets into Borel sets between Ka and V , as desired. The rest is exa
tly thesame as in Theorem 2.4.2.Proof of Theorem 2.4.9. The argument is exa
tly the same as Theorem 2.4.6 byrepla
ing L[a℄ with Ka and using the analogous fa
ts about Ka stated in Theo-rem 1.11.2 and Theorem 1.12.5.2.5 Appli
ationsWe now use our theorems to answer some open questions in set theory of thereals.The �rst one is about Silver for
ing V, whose 
onditions are uniform perfe
ttrees on 2 ordered by in
lusion, where a tree T on 2 is uniform if for any two nodess and t of T with the same length, sahii 2 T () tahii 2 T for i = 0; 1. In [19℄,Brendle, Halbeisen, and L�owe proved that every �12 set of reals is V-measurableassuming that for any real a there is a quasi-V-generi
 real over L[a℄. Then theyasked whether the 
onverse is true. We answer this question positively:Proposition 2.5.1. Assume every �12 set of reals is V-measurable. Then for anyreal a, there is a quasi-V-generi
 real over L[a℄.Proof. Sin
e Silver for
ing is strongly arboreal and proper, by Theorem 2.4.2, itsuÆ
es to show that the set of Borel 
odes with B
 2 IV� is �12. We use thefollowing fa
t:Fa
t 2.5.2 (Zapletal). Let G be the graph on !2 
onne
ting two binary sequen
esif they di�er in exa
tly one pla
e. Let I be the �-ideal generated by Borel G-independent sets (i.e., Borel sets in !2 su
h that any two distin
t elements ofthem are not 
onne
ted by G). Then every analyti
 set is either in I or 
ontains[T ℄ for some T 2 V.Proof. See [90, Lemma 2.3.37℄.
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t 2.5.2 to prove Proposition 2.5.1. We �rst show thatI � IV. It suÆ
es to see that every Borel G-independent set is in NV. Take su
hBorel set B. Sin
e every Borel set is V-measurable and IV = NV, for ea
h T 2 V,there is a T 0 � T su
h that either [T 0℄ � B or [T 0℄ \ B = ;. But the former
ase 
annot happen be
ause [T 0℄ 
ontains many G-dependent elements. Hen
e[T 0℄ \ B = ;. Therefore B is V-null.With the above fa
t, this means every Borel set is either in IV� or 
ontains [T ℄for some T 2 V. Sin
e sets in IV� 
annot 
ontain [T ℄ for some T in V, B
 2 IV� ifand only if B
 is in I, i.e., it is the union of a 
ountable set of G-invariant Borelsets. This is easily seen to be �12, as desired.Regarding IV = NV, the following is a dire
t 
onsequen
e of Theorem 2.4.6and Proposition 2.5.1 (or an easy 
onsequen
e of [19, Lemma 3.1℄):14Corollary 2.5.3. The following are equivalent:1. Every �12 set of reals is V-measurable, and2. For any real a, the set of quasi-V-generi
 reals over L[a℄ is of measure onewith respe
t to NV.Another appli
ation is for eventually di�erent for
ing E by Brendle and L�owe [21℄.They used Theorem 2.4.6 to prove that the Baire property in eventually di�erenttopology for every �12 set of reals is equivalent to the statement \!1 is ina

essibleby reals", i.e., for every real a, !V1 is ina

essible in L[a℄, whi
h is the strongestregularity property for �12 sets (He
hler for
ing also has this feature).We state their results and their proofs here. Re
all the de�nition of eventuallydi�erent for
ing from x 1.9 and the de�nition of the eventually di�erent topologyE from Example 2.1.6. Also, the meager ideal in the topology E is the same as IEby Example 2.1.6. As mentioned in 1.9, eventually di�erent for
ing is 


. Hen
eby Lemma 1.9 3., IE � = IE . By Proposition 2.1.8, the Baire property in thetopology E 
oin
ides with E -measurability. Sin
e E is provably 


 and simplyde�nable, by Proposition 2.3.3 (3), quasi-E -generi
ity is the same as E -generi
ity.Theorem 2.5.4 (Brendle and L�owe [21℄). The following are equivalent:1. Every �12 set of reals has the Baire property in the eventually di�erenttopology E ,2. �13-E -absoluteness holds, and3. For any real a, there is an E -generi
 real x over L[a℄.Proof. By Theorem 2.4.2, it suÆ
es to 
he
k the 
ondition (�) in Theorem 2.4.2.But sin
e E is provably 


 and simply de�nable, the 
ondition (�) follows fromProposition 2.3.3 (2).14This answers [19, Question 3℄ positively.



66 Chapter 2. Games and Regularity PropertiesTheorem 2.5.5 (Brendle and L�owe [21℄). The following are equivalent:1. Every �12 set of reals has the Baire property in the eventually di�erenttopology E ,2. For any real a, the set of E -generi
 reals over L[a℄ is 
omeager in the even-tually di�erent topology E , and3. For any real a, !L[a℄1 < !1.Proof. For the equivalen
e between (1) and (2), by Theorem 2.4.6 it suÆ
es tosee that IE is Borel-generated. But as mentioned in the paragraph after Theo-rem 2.4.6, IP is Borel-generated if P is 


.We show the dire
tion from (3) to (2). Let a be a real. Sin
e E -generi
 realsover L[a℄ are the same as quasi-E -generi
 reals over L[a℄, it suÆ
es to show thatthe set of quasi-E -generi
 reals over L[a℄ is 
omeager in the topology E . Sin
e!L[a℄1 and CH holds in L[a℄, the set of Borel 
odes in L[a℄ is 
ountable in V . Hen
ethe union of Borel meager sets in the topology E with a Borel 
ode in L[a℄ is alsomeager in the topology E . Therefore the set of quasi-E -generi
 reals over L[a℄ is
omeager in the topology E .Next, we show the dire
tion from 2. to 3. Toward a 
ontradi
tion, assumethere is a real a su
h that !L[a℄1 = !1. Then, in L[a℄, there is a sequen
e hf� 2!! j � < !1i of pairwise eventually di�erent fun
tions, i.e., for any � < � < !1,there is a natural number n0 su
h that f�(n) 6= f�(n) for all n � n0. For ea
h� < !1, let E� be the set of reals not eventually di�erent from f�. It is easy tosee that E� is meager in the topology E . The following is the key point:Theorem 2.5.6 (Brendle). If A is meager in the topology E , then the set f� <!1E� � Ag is 
ountable.Proof. See [54, Theorem 4.7℄.Sin
e E� is meager in the topology E with a Borel 
ode in L[a℄, by 3., S�<!1 E�must be meager in the topology E . But this 
ontradi
ts Theorem 2.5.6.Brendle and L�owe have also investigated the relation between the Baire prop-erty in the eventually di�erent topology and other regularity properties. Here arethe relations they listed in their paper [21℄ as in Figure 2.1:In Figure 2.1, the letters B ; C ; D ; E ; L ; M ;R ;S, and V stand for random,Cohen, He
hler, eventually di�erent, Laver, Miller, Mathias, Sa
ks, and Silverfor
ing, respe
tively. �12(P) stands for the statement that every �12 set is P-measurable and the same for �12(P). All the non-existen
e of impli
ations means\one statement does not imply the other in ZFC", e.g., �12(R) does not imply�12(C ) in ZFC, ex
ept for the non-impli
ations from �12(L) to and �12(V) andfrom �12(L) to �12(V) (it is 
urrently not known whether �12(L) does not im-ply �12(V) and whether �12(L) does not imply �12(V)). All the impli
ations and
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 67�12(E ) = �12(D ) #+OOOOOOO OOOOOOOw� wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww �12(B ) �&FFFFF FFFFF��s{ oooooooooooooo�12(R) = �12(R)�� �'GGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGGG �12(C ) = �12(D )��qy kkkkkkkkkkkkkkkkkkkk �12(E )s{ oooooooooooooo �12(B )
jr

�12(L) = �12(L)�� ? ((? -- �12(C )���12(V)��qy kkkkkkkkkkkkkkkkkkkkkk�12(M ) = �12(M )�� �12(V)qy kkkkkkkkkkkkkkkkkkkkkk�12(S) = �12(S)Figure 2.1: Regularity properties for �12 sets and �12 setsthe non-impli
ations not involving E have been known before their work and theyhave established the impli
ations and the non-impli
ations involving E using The-orem 2.4.2 and Theorem 2.4.6 in this 
hapter. Here 
hara
terizing the regularityproperties in terms of the trans
enden
e properties over L (rather for
ing abso-luteness) is essential, whi
h was not known for eventually di�erent for
ing beforeour work.Using Theorem 2.4.8 and Theorem 2.4.9, we 
an establish the same impli
a-tions and non-impli
ations for �13 sets and �13 sets assuming sharps for reals asin Figure 2.2:Again, we do not know whether �13(L) does not imply �13(V) and whether�13(L) does not imply �13(V) assuming sharps for reals. The proofs of the impli-
ations and non-impli
ations are exa
tly the same as for �12 sets and �12 sets byrepla
ing L with K. We suspe
t many of the impli
ations and the non-impli
ationsfor �13 sets and �13 sets we have shown above are also well-known to experts inthis area.2.6 Con
lusion and QuestionsWe introdu
ed two general regularity properties, P-Baireness and P-measurability,and redu
ed the problems of P-measurability to ones of P-Baireness with the
avor of Baire 
ategory and used Bana
h-Mazur games and their variants. Thenwe proved general equivalen
e theorems between the regularity properties, for
ing



68 Chapter 2. Games and Regularity Properties�13(E ) = �13(D ) #+OOOOOOO OOOOOOOw� wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww �13(B ) �&FFFFF FFFFF��s{ oooooooooooooo�13(R) = �13(R)�� �'GGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGGG �13(C ) = �13(D )��qy kkkkkkkkkkkkkkkkkkkk �13(E )s{ oooooooooooooo �13(B )
jr

�13(L) = �13(L)�� ? ((? -- �13(C )���13(V)��qy kkkkkkkkkkkkkkkkkkkkkk�13(M ) = �13(M )�� �13(V)qy kkkkkkkkkkkkkkkkkkkkkk�13(S) = �13(S)Figure 2.2: Regularity properties for �13 sets and �13 setsabsoluteness, and trans
enden
e properties over some 
anoni
al inner models ina uniform way and applied the theorems to answer some open questions in settheory of the reals. This is one of the instan
es where redu
ing problems to theones of in�nite games gives us 
lear intuition and solutions.We 
lose this 
hapter by raising several questions and dis
ussing them.On IP and IP�. Although IP� is the same as IP for most 
ases as we have seenin Lemma 2.1.12, as in Question 2.1.11, we still do not know whether this is truein general. What we 
ould hope is that this is true at least for Borel sets:Question 2.6.1. Let P be a strongly arboreal, proper for
ing. Then 
an we proveB 2 IP if and only if B 2 IP� for any Borel set B?If this is true, we do not have to mention IP� in our theorems.On the 
ondition (�) in Theorem 2.4.2. It is interesting to give suÆ
ient
onditions for P satisfying (�) in Theorem 2.4.2, i.e., the set of all Borel 
odeswith B
 2 IP� is �12. These 
onditions 
ould be de�nability 
onditions on IP� ordire
tly on P. For the �rst 
ase, we have a useful suÆ
ient 
ondition: We saythat a �-ideal I on the reals is �12 on �11 if for any analyti
 set A � !2� !!, theset f
 j A
 2 Ig is �12. It is easy to 
he
k that if IP� is �12 on �11, then (�) holds.Sin
e IP is �12 on �11 and IP = IP� for most 
ases, (�) is true for most P. For these
ond 
ase, we ask the following:
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 69Question 2.6.2. Let P be a strongly arboreal, strongly proper, provably �12-for
ing. Then 
an we prove (�)?Although the 
ondition (�) is true for most typi
al for
ings, we have oneexample, namely Mathias for
ing, that we do not about the answer of the abovequestion. Solving this parti
ular question might give us another intuition of thisproblem.�12-determina
y and �14-for
ing absoluteness. In Theorem 2.4.7, we usethe failure of �12-determina
y to prove the equivalen
e between the regularityproperty and for
ing absoluteness. But it 
ould be that both are 
onsequen
es of�12-determina
y. Sin
e we have not used the failure of �12-determina
y for thedire
tion from for
ing absoluteness to the regularity property, it is enough to askwhether �12-determina
y implies �14-for
ing absoluteness:Question 2.6.3. Suppose �12-determina
y holds. Then 
an we prove �14-P-absoluteness for ea
h strongly arboreal, proper, provably �12-for
ing P?Sharps for sets vs. sharps for reals. In Theorem 2.4.7, we have assumedthe existen
e of sharps for sets. Sin
e the result is about reals, it is natural toask whether we 
an redu
e this assumption to sharps for reals. The obsta
le iswhether proper for
ings preserve the statement \every real has a sharp" and u2:Question 2.6.4. Suppose every real has a sharp. Let P be a strongly arboreal,proper, provably �12-for
ing. Then 
an we prove that every real has a sharp inV P and uV2 = uV P2 ?Finally, we show that in the 
ase of provably 


, �11-for
ings, things workperfe
tly:Proposition 2.6.5. Let P be a strongly arboreal, provably 


, �11-for
ing. Then:1. IP = IP�.2. IP is Borel-generated.3. The 
ondition (�) holds. Moreover, f
 j B
 2 IP�g 2 �12.4. Let M be a transitive model of ZFC. Then a real x is P-generi
 over M ifand only if x is quasi-P-generi
 over M .5. If �12-determina
y holds, then so does �14-P-absoluteness.6. If every real has a sharp, then every real has a sharp also in V P and uV2 =uV P2 .Proof. (1) is already mentioned in Lemma 2.1.12, (2) is already mentioned in theparagraph after Theorem 2.4.6, and (3) is already shown in Proposition 2.3.3.The argument for (4) is exa
tly the same as for Lemma 2.3.3. For (5), see [75,Lemma 2.2.4℄. For (6), see [75, Lemma 2.2.2, Theorem 2.2.7, Example 3.2.7℄.Note that the assumption of Proposition 2.6.5 is true for all the typi
al 


,strongly arboreal for
ings.





Chapter 3 Games themselves
In this 
hapter, we 
ompare the stronger versions of determina
y of Gale-Stewartgames and Bla
kwell games, i.e., the Axiom of Real Determina
y ADR and theAxiom of Real Bla
kwell Determina
y Bl-ADR. In x 3.1, we show that Bl-ADRimplies that R# exists and that the 
onsisten
y of Bl-ADR is stri
tly stronger thanthat of AD. In x 3.2, we show that Bl-ADR implies that every set of reals is 1-Borel. From this, we 
an derive almost all the regularity properties for every setof reals. In x 3.3, we dis
uss the possibility of the equivalen
e between ADR andBl-ADR under ZF+DC. In x 3.4, we dis
uss the possibility of the equi
onsisten
ybetween ADR and Bl-ADR.Throughout this 
hapter, we use standard notations from set theory and as-sume familiarity with des
riptive set theory. By reals, we mean elements of theCantor spa
e and we use R to denote the Cantor spa
e.3.1 Real Bla
kwell Determina
y and R#In this se
tion, we prove that Bl-ADR implies that R# exists and that the 
on-sisten
y of Bl-ADR is stri
tly stronger than that of AD.Solovay [77℄ proved that ADR implies that R# exists. Our plan is to mimi
Solovay's proof using Bla
kwell games. In order to do so, we analyze his proofwhi
h has two main 
omponents:Theorem 3.1.1 (Solovay). The axiom ADR implies that there is a �ne normalmeasure on P!1(R), where P!1(R) is the set of all 
ountable subsets of R.Proof. See [77, Lemma 3.1℄.Theorem 3.1.2 (Solovay). Suppose there is a �ne normal measure on P!1(R)and every real has a sharp. Then R# exists.Proof. See [77, Lemma 4.1 & Theorem 4.4℄.71
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e it suÆ
es to show that there is a �ne normal measure on P!1(R) fromBl-ADR be
ause Bl-ADR implies AD in L(R), whi
h implies that every real hasa sharp by the result of Harrington [31℄.Theorem 3.1.3. Assume Bl-ADR. Then there is a �ne normal measure onP!1(R).Let us �rst see what is a �ne normal measure. Let X be a set and � be anun
ountable 
ardinal. As usual, we denote by P�(X) the set of all subsets of Xwith 
ardinality less than �, i.e., subsets A of X su
h that there are an � < �and a surje
tion from � to A. Let U be a set of subsets of P�(X). We say that Uis �-
omplete if U is 
losed under interse
tions with <�-many elements; we say itis �ne if for any x 2 X, fa 2 P�(X) j x 2 ag 2 U ; we say that U is normal if forany family fAx 2 U j x 2 Xg, the diagonal interse
tion 4x2XAx is in U (where4x2XAx = fa 2 P�(X) j (8x 2 a) a 2 Axg). We say that U is a �ne measure ifit is a �ne �-
omplete ultra�lter, and we say that it is a �ne normal measure if itis a �ne normal �-
omplete ultra�lter.Proof of Theorem 3.1.3. The following is the key point: A subset A of !R isrange-invariant if for any ~x and ~y in !R with ran(~x) = ran(~y), ~x 2 A if and onlyif ~y 2 A.Lemma 3.1.4. Assume Bl-ADR. Then every range-invariant subset of !R isdetermined.Proof of Lemma 3.1.4. Let A be a range-invariant subset of !R. We show thatif there is an optimal strategy for player I in A, then so is a winning strategy forplayer I in A. The 
ase for player II is similar and we will skip it.Let us �rst introdu
e some notations. Given a fun
tion f : <!R ! R, a
ountable set of reals a is 
losed under f if for any �nite sequen
e s of elementsin a, f(s) is in a. For a strategy � : REven ! R for player I, where REven is the setof all �nite sequen
es of reals with even length, a 
ountable set of reals a is 
losedunder � if for any �nite sequen
e s of elements in a with even length, �(s) is ina. For a fun
tion F : <!R ! P!1(R), a 
ountable set of reals a is 
losed under Fif for any �nite sequen
e s of elements in a, F (s) is a subset of a.The following two 
laims are basi
:Claim 3.1.5. There is a winning strategy for player I in A if and only if there isa fun
tion f : <!R ! R su
h that if a is a 
ountable set of reals and 
losed underf , then any enumeration of a belongs to A.Proof of Claim 3.1.5. We �rst show the dire
tion from left to right. Given awinning strategy � for player I in A, let f be su
h that if a is 
losed under f ,then a is 
losed under �. (Sin
e � is a fun
tion from REven to R, any fun
tionfrom <!R to R extending � will do.) We see this f works for our purpose. Leta be a 
ountable set of reals 
losed under f . Then sin
e a is 
losed under � and
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ountable, there is a run x of the game following � su
h that its range is equalto a. Sin
e � is winning for player I, x is in A and by the range-invarian
e of A,any enumeration of a is also in A.We now show the dire
tion from right to left. Given su
h an f , we 
an arrangea strategy � for player I su
h that if x is a run of the game following �, thenthe range of x is 
losed under f : Given a �nite sequen
e of reals (a0; � � � ; a2n�1),
onsider the set of all �nite sequen
es s from elements of fa0; � � �a2n�1g and all thevalues f(s) from this set. What we should arrange is to 
hoose �(a0; � � � ; a2n�1)in su
h a way that the range of any run of the game via � will 
over all su
hvalues f(s) when (a0; � � � ; a2n�1) is a �nite initial segment of the run for any nin ! moves. But this is possible by a standard book-keeping argument. By theproperty of f , this implies that x is in A and hen
e � is winning for player I.� (Claim 3.1.5)Claim 3.1.6. There is a fun
tion f : <!R ! R su
h that if a is a 
ountable setof reals and 
losed under f , then any enumeration of a belongs to A if and onlyif there is a fun
tion F : <!R ! P!1(R) su
h that if a is a 
ountable set of realsand 
losed under F , then any enumeration of a belongs to A.Proof of Claim 3.1.6. We �rst show the dire
tion from left to right: Given su
han f , let F (s) = ff(s)g. Then it is easy to 
he
k that this F works.We show the dire
tion from right to left: Given su
h an F , it suÆ
es to showthat there is an f su
h that if a is 
losed under f then a is also 
losed underF . We may assume that F (s) 6= for ea
h s. Fix a bije
tion � : R ! !R. Letg : <!R ! R be su
h that ran��(g(s))�= F (s) for ea
h s (this is possible be
auseevery relation on the reals 
an be uniformized by a fun
tion by Theorem 1.14.9).Let h : <!R ! R be su
h that h(s) = ��s(0)�(lh(s)�1), where lh(s) is the lengthof s when s 6= ;, if s = ; let h(s) be an arbitrary real.It is easy to see that if a is 
losed under g and h, then so is under F : Fixa �nite sequen
e s of reals in a. We have to show that ea
h x in F (s) is in a.Consider g(s). By the 
losure under g, g(s) is in a. By 
hoi
e of g, we knowthat ran(�(g(s))) = F (s), so it is enough to show that x is in a for any x inran(�(g(s)). Suppose x is the nth bit of �(g(s)). Consider the �nite sequen
e t =�g(s); :::; g(s)� of length n + 1. Then h(t) = �(t(0))(lh(t)� 1) = �(g(s))(n) = x.But g(s) is in a and a was 
losed under h, so x is in a.Now it is easy to 
onstru
t an f su
h that if a is 
losed under f , then so isunder g and h. � (Claim 3.1.6)By the above two 
laims, it suÆ
es to show that there is a fun
tion F : <!R !P!1(R) su
h that if a is a 
ountable set of reals and 
losed under F , then anyenumeration of a belongs to A.



74 Chapter 3. Games themselvesLet � be an optimal strategy for player I in A. Let F be as follows:F (s) = (; if lh(s) is odd,fy 2 R j �(s)(y) 6= 0g otherwise.Then F is as desired: If a is 
losed under F , then enumerate a to be han j n 2!i and let player I follow � and let player II play the Dira
 measure for an at hernth move. Then the probability of the set fx 2 !R j ran(x) = ag is 1 and sin
e� is optimal for player I in A, there is an x su
h that the range of x is a and xis in A. But by the range-invarian
e of A, any enumeration of a belongs to A.� (Lemma 3.1.4)We shall be 
losely following Solovay's original idea. We de�ne a family U �P(P!1(R)) as follows: Fix A � P!1(R) and 
onsider the following game ~GA:Players alternately play reals; say that they produ
e an in�nite sequen
e ~x =(xi j i 2 !). Then player II wins the game ~GA if ran(~x) 2 A, otherwise player Iwins. Sin
e the payo� set of this game is range-invariant as a Gale-Stewart game,by Lemma 3.1.4, it is determined.We say that A 2 U if and only if player II has a winning strategy in ~GA. Weshall show that it is a �ne normal measure under the assumption of Bl-ADR, thus�nishing the proof of Theorem 3.1.3.A few properties of U are obvious: For instan
e, we see readily that ; =2 Uand that P!1(R) 2 U , as well as the fa
t that U is 
losed under taking supersets.In order to see that U is a �ne family, �x a real x, and let player II play x in her�rst move: This is a winning strategy for player II in ~Gfajx2ag.We next show that for any set A � P!1(R), either A or the 
omplement of A isin U . Given any su
h set A, suppose A is not in U . We show that the 
omplementof A is in U . Sin
e the game ~GA is determined, by the assumption, there is awinning strategy � for I in ~GA. Setting �(s) = ��s�(lh(s) � 1)� for s 2 ROdd , itis easy to see that � is a winning strategy for player II in the game ~GA
.We show that U is 
losed under �nite interse
tions. Let A1 and A2 be inU . Sin
e the payo� sets in the games ~GA1 and ~GA2 are range-invariant, by theanalogue of Claim 3.1.5, there are fun
tions f1 : <!R ! R and f2 : <!R ! R su
hthat if a is 
losed under fi, then a is in Ai for i = 1; 2. Then it is easy to �ndan f : <!R ! R su
h that if a is 
losed under f , then a is 
losed under both f1and f2. By the analogue of Claim 3.1.5 again, this f witnesses the existen
e of awinning strategy for player II in the game ~GA1\A2 .We have shown that U is an ultra�lter on subsets of P!1(R). We show the!1-
ompleteness of U as follows: By Theorem 1.14.8, every set of reals is Lebesguemeasurable assuming Bl-AD. If there is a non-prin
ipal ultra�lter on !, then thereis a set of reals whi
h is not Lebesgue measurable. Hen
e there is no non-prin
ipalultra�lter on !, whi
h implies that any ultra�lter is !1-
omplete. In parti
ular,U is !1-
omplete.
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 75The last to show is that U is normal. Let fAx j x 2 Rg be a family of setsin U . We show that 4x2RAx is in U . Consider the following game ~G: PlayerI moves x, then player II passes. After that, they play the game ~GAx. This isBla
kwell determined and player II has an optimal strategy � sin
e ea
h Ax is inU . Let F : <!R ! P!1(R) be as follows:F (s) = (; if lh(s) is even,fy 2 R j �(s)(y) 6= 0g otherwise.We 
laim that if a is 
losed under F , then a is in 4x2RAx. Then, by the analoguesof Claim 3.1.5 and Claim 3.1.6, F will witness the existen
e of a winning strategyfor player II in the game ~G4x2RAx and we will have proved that 4x2RAx 2 U .Suppose a is 
losed under F . We show that a 2 Ax for ea
h x 2 a. Fix an xin a and enumerate a to be (xn j n 2 !). In the game ~G, let player I �rst movex and then they play the game ~GAx. Let player II follow � and player I play theDira
 measure 
on
entrating on xn at the nth move. Then the probability of theset f~x 2 !R j x0 = x and ran(~x) = ag is 1 and sin
e � is optimal for player II inthe game ~G, there is an ~x su
h that the range of ~x is a and ~x is a winning runfor player II in ~G, hen
e a is in Ax. � (Theorem 3.1.3)Corollary 3.1.7. The 
onsisten
y of Bl-ADR is stri
tly stronger than that ofAD.Proof. Sin
e Bl-ADR implies Bl-AD by the �rst item of Proposition 1.14.2 andBl-AD implies ADL(R) by Corollary 1.14.7, Bl-ADR implies ADL(R). By Theo-rem 3.1.3, Bl-ADR also implies the existen
e of R# . By the property of R# ,one 
an 
onstru
t a set-size elementary substru
ture of L(R). Hen
e ADL(R) andthe existen
e of R# imply the 
onsisten
y of AD. Therefore, Bl-ADR implies the
onsisten
y of AD and by G�odel's In
ompleteness Theorem, the 
onsisten
y ofBl-ADR is stri
tly stronger than that of AD.3.2 Real Bla
kwell Determina
y and regularitypropertiesIn this se
tion, we show that Bl-ADR implies almost all the regularity propertiesfor every set of reals. Note that DCR follows from the uniformization for everyrelation on the reals. Hen
e by Theorem 1.14.9, Bl-ADR implies DCR. For therest of the se
tions in this 
hapter, we freely use DCR when we assume Bl-ADRand we �x a �ne normal measure U on P!1(R), whi
h exists by Theorem 3.1.3.We start with proving the perfe
t set property for every set of reals. Re
allthat a set of reals A has the perfe
t set property if either A is 
ountable or A
ontains a perfe
t subset, where a perfe
t set of reals is a 
losed set withoutisolated points.



76 Chapter 3. Games themselvesTheorem 3.2.1. Assume Bl-ADR. Then every set of reals has the perfe
t setproperty.Proof. The theorem follows from the following two lemmas:Lemma 3.2.2. Assume Bl-ADR. Then every relation on the reals 
an be uni-formized by a Borel fun
tion modulo a Lebesgue null set, i.e., for any relationR on the reals, there is a Borel fun
tion f su
h that the set fx j (x; f(x)) 2R or there is no real y with (x; y) 2 Rg is of Lebesgue measure one.Proof of Lemma 3.2.2. The 
on
lusion follows by a folklore argument from Lebesguemeasurability and uniformization for any relation on the reals both of whi
h are
onsequen
es of Bl-ADR by Theorem 1.14.8 and Theorem 1.14.9).Let R be an arbitrary relation on the reals. We may assume the domain of Ris the whole spa
e, i.e., for any real x, there is a real y su
h that (x; y) 2 R. Wewill �nd a Borel fun
tion uniformizing R almost everywhere.By the uniformization prin
iple, there is a fun
tion g uniformizing R. Forea
h �nite binary sequen
e s, the set g�1([s℄) is Lebesgue measurable by Theo-rem 1.14.8. Hen
e for ea
h s there is a Borel set Bs su
h that g�1([s℄)4Bs isLebesgue null. Now de�ne f so that the following holds: For ea
h �nite binarysequen
e s, f(x) 2 [s℄ () x 2 Bs:Then by the property of Bs, f is de�ned almost everywhere, Borel, and is equal tog almost everywhere. Hen
e any Borel extension of f will be the one we desired.� (Lemma 3.2.2)Lemma 3.2.3 (Raisonnier and Stern). Suppose every relation on the reals 
anbe uniformized by a Borel fun
tion modulo a Lebesgue null set. Then every setof reals has the perfe
t set property.Proof of Lemma 3.2.3. See [70, Theorem 5℄. � (Theorem 3.2.1)Next, we show that Bl-ADR implies that every set of reals has the Baire prop-erty. We �rst introdu
e the Bla
kwell meager ideal as an analogue of the meagerideal. A set A of reals is Bla
kwell meager if player II has an optimal strategy inthe Bana
h-Mazur game G��(A). Let IBM denote the set of all Bla
kwell meagersets of reals.Lemma 3.2.4. Assume Bl-AD. Then any meager set is in IBM, [s℄ =2 IBM forea
h �nite binary sequen
e s, and IBM is a �-ideal. Moreover, every set of realsis measurable with respe
t to IBM, i.e., for any set A of reals and �nite binarysequen
e s, there is a �nite binary sequen
e t extending s su
h that either [t℄\Aor [t℄ n A is in IBM.
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 77Proof. By Theorem 1.8.3, if a set A of reals is meager, then player II has awinning strategy in the Bana
h-Mazur game G��(A) and in parti
ular player IIhas an optimal strategy in G��(A) by Theorem 1.14.3. Hen
e A is Bla
kwellmeager.It is easy to see that [s℄ =2 IBM for ea
h �nite binary sequen
e s by lettingplayer I �rst play the Dira
 measure 
on
entrating on s in the game G��([s℄).We show that IBM is a �-ideal. The 
losure of IBM under subsets is immediate.We prove that it is 
losed under 
ountable unions.In order to prove this, we need to develop the appropriate transfer te
hnique(as dis
ussed and applied in [55℄) for the present 
ontext. Let � � ! be anin�nite and 
o-in�nite set. We think of � as the set of rounds in whi
h playerI moves. We identify � with the in
reasing enumeration of its members, i.e.,� = f�i j i 2 !g. Similarly, we write �� for the in
reasing enumeration of !n�,i.e., !n� = f��i j i 2 !g. For notational ease, we 
all � a I-
oding if no two
onse
utive numbers are in � and 0 2 � (i.e., the �rst move is played by I). We
all � a II-
oding if no two 
onse
utive numbers are in !n� and 0 2 �.Fix A � !! and de�ne two variants of G��A with alternative orders of play asdetermined by �. If � is a I-
oding, the game G���;IA is played as follows:I s�0 = s0 s�1 : : :II s�0+1; : : : ; s�0�1 s�1+1; : : : ; s�2�1 : : :If � is a II-
oding, then the game G���;IIA is played as follows:I s0; : : : ; s��0�1 s��0+1; : : : ; s��1�1 : : :II s��0 s��1 : : :In both 
ases, player II wins the game if s_0 s_1 : : :_ s_n : : : =2 A. Obviously, wehave G��A = G��Even;IIAwhere Even is the set of even numbers.Lemma 3.2.5. Let A be a subset of the Baire spa
e and � be a I-
oding. Thenthere is a translation � 7! �� of mixed strategies for player I su
h that if � is anoptimal strategy for player I in G��A , then �� is an optimal strategy for player Iin G���;IA .Similarly, if � is a II-
oding, there is a translation � 7! �� of mixed strategiesfor player II su
h that if � is an optimal strategy for player II in G��A , then �� isan optimal strategy for player II in G���;IIA .Proof of Lemma 3.2.5. We prove only the lemma for the games G���;IA , the otherproof being similar. If ~s = hsi j i 2 !i is an in�nite sequen
e of �nite binarysequen
es, we de�ne b~si = s_�i+1 : : :_ s�i+1�1:



78 Chapter 3. Games themselvesNote that in order to 
ompute b~si , we only need the �rst �i+1 bits of ~s. The ideais that now the G��A -run I s�0 s�1 s�2 : : :II b~s0 b~s1 b~s2 : : : (�)yields the same output in terms of the 
on
atenation of all played �nite sets asthe run ~s in the game G���;IA . We 
an de�ne a map �� on in�nite sequen
es of�nite binary sequen
es by(��(~s))i = � s�k if i = 2k,b~sk if i = 2k + 1,and see that s_0 s_1 : : : = (��(~s))_0 (��(~s))_1 : : :.Now, given a mixed strategy � for player I in G��A and a run ~s of the gameG���;IA , we de�ne �� via �� as follows:��(s0; : : : ; s�m�1) = �(s�0; b~s0; : : : ; s�i; b~si ; : : : ; s�m�1; b~sm�1):Assume that � is an optimal strategy for player I in G��A and �x an arbitrarymixed strategy � in the game G���;IA . We show that the payo� set for A in G���;IAis ���;� -measurable and ��� ;�(A) = 1. In order to do so, we 
onstru
t a mixedstrategy ���1 for player II in G��A so that the game played by �� and � is essentiallythe same as the game played by � and ���1 .Given a sequen
e ~b of moves in G��A , we need to unravel it into a sequen
e ofmoves in G���;IA in an inverse of the maps ~s 7! b~si a

ording to (�), i.e., b2i+1 = b~si .Thus, we de�ne A~b2i+1 = f~s j b~si = b2i+1g,A~b�2i+1 = \j�iA~b2j+1:Note that only a �nite fragment of ~s is needed to 
he
k whether b~si = b2i+1,and thus we think of A~b�2i+1 as a set of (�i+1 � (i + 1))-tuples of �nite binarysequen
es. In the following, when we quantify over all \~s 2 A~b�i", we think ofthis as a 
olle
tion of �nite strings of �nite binary sequen
es. In order to pad themoves made in G���;IA , we de�ne the following notation: For in�nite sequen
es ~sand ~b, we write x~s;~bi = (b2i; s�i+1; :::; s�i+1�1):Compare (�) to see that if ~s 
orresponds to moves in G���;IA and ~b to the moves inG��A , then these are exa
tly the �nite sequen
es that player II will have to respondto in G���;IA . Moreover, for a given sequen
e ~z of �nite binary sequen
es, we letP� (z0; :::; zn) = Yi�n;i=2� �(z0; :::; zi�1)(zi):
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e ~b of �nite binary sequen
es with even length and de�ne ���1as follows: ���1(b0; : : : ; b2m)(b2m+1) = P~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )Qmi=1 ���1(b0; : : : ; b2i�2)(b2i�1) :Using the two operations � 7! �� and � 7! ���1 , sin
e the payo� set for G��A isinvariant under ��, it now suÆ
es to prove for all basi
 open sets [t℄ indu
ed by a�nite sequen
e t = (b0; :::; blh(t)�1) that ��;���1 ([t℄) = ���;� ((��)�1([t℄)). We provethis by indu
tion on the length of t, and have to 
onsider three di�erent 
ases:Case 1. lh(t) = 0. This is immediate.Case 2. lh(t) = 2m + 1 with m � 0. By indu
tion hypothesis, we have thatX = ��;���1 ([b0; : : : ; b2m�1℄) = ��� ;�((��)�1([b0; : : : ; b2m�1℄)). Thus,��;���1 ([b0; : : : ; b2m℄) = X � �(b0; : : : ; b2m�1)(b2m)= ��� ;� ((��)�1([b0; : : : ; b2m℄)):Case 3. lh(t) = 2m+ 2 with m � 0.��;���1 (t) = mYi=0 �(b0; : : : ; b2i�1)(b2i) � X~s2A~b�2m+1 P� (x~s;~b0 a : : :a x~s;~bm )= ���;��(��)�1([b0; : : : ; b2m+1℄)�:This 
al
ulation �nishes the proof of this lemma. � (Lemma 3.2.5)We now show that IBM is 
losed under 
ountable unions. Let fAn j n 2 !gbe a family of sets in IBM. Take an optimal strategy �n in the game G��(An) forea
h n. We prove that Sn2! An is also in IBM.Fix a bookkeeping bije
tion � from !�! to ! su
h that �(n;m) < �(n;m+1)and �(n; 0) � n. We are playing in�nitely many games in a diagram where the �rst
oordinate is for the index of the game we are playing, and the se
ond 
oordinateis for the number of moves. Hen
e the pair (n;m) stands for \mth move in thenth game". De�ne a II-
oding �n = !nf2�(n; i) + 1 j i 2 !g 
orresponding to thefollowing game diagram:I s0; : : : ; s2�(n;0) s2�(n;0)+2; : : : ; s2�(n;1) : : :II s2�(n;0)+1 s2�(n;1)+1 : : :By Lemma 3.2.5, we know that for ea
h n 2 !, we get an optimal strategy (�n)�nfor the game G���n;IIAn . Let � be the following mixed strategy�(s0; : : : ; s2�(n;m)) = (�n)�n(s0; : : : ; s2�(n;m)):



80 Chapter 3. Games themselvesThe properties of � make sure that this strategy is well-de�ned. We shall nowprove that � is an optimal strategy for player II in G��Sn2! An .Pi
k any mixed strategy � for player I in G��Sn2! An and de�ne strategies �n forG���n;IIAn . Let m = �(k; `), then�n(s0; : : : ; s2m�1) = �(s0; : : : ; s2m�1), and�n(s0; : : : ; s2m) = (�k)�k(s0; : : : ; s2m) (if k 6= n).Note that for ea
h n 2 !, ��;� = ��n;(�n)�n .The payo� set (for player II) in G��Sn2! An is A = f~s j s_0 s_1 : : : =2 Sn2! Ang.We show that ��;� (A) = 1. Sin
e A = Tn2! f~s j s_0 s_1 : : : =2 Ang, it suÆ
esto 
he
k that the sets Bn = f~s j s_0 s_1 : : : =2 Ang has ��;� -measure 1. But��;� (Bn) = ��n;(�n)�n (Bn) = 1. Thus we have shown that IBM is a �-ideal.We �nally show that every set A of reals is measurable with respe
t to IBM,i.e., for any �nite binary sequen
e s, there is a �nite binary sequen
e t extendings su
h that either [t℄ \ A or [t℄ n A is in IBM. Fix su
h A and s. If [s℄ \ A isin IBM, we are done. So suppose not. Then player II does not have an optimalstrategy in the game G��([s℄ \ A). By Bl-AD, there is an optimal strategy � forplayer I in the game G��([s℄ \ A). Let t be any s0 with �(;)(s0) 6= 0. Then sin
e� is optimal, t extends s and the strategy � easily gives us an optimal strategyfor player II in the game G��([t℄nA). Hen
e [t℄nA is in IBM. � (Lemma 3.2.4)Re
all the notions of Stone spa
e St(P) and P-Baireness for a partial order Pfrom 
hapter 2. The based set of St(P) was the set of all ultra�lters on BP whereBP is a 
ompletion of P. Without the Axiom of Choi
e, it might be empty if P isbig. But in this 
hapter, we only 
onsider partial orders P whi
h are elements ofH!1 in V , i.e., the transitive 
losure of P is 
ountable in V . If P is an element ofH!1 , then St(P) is essentially the same as St(C ) where C is Cohen for
ing, hen
ethe Cantor spa
e !!Sin
e every meager set is Bla
kwell meager as we have seen in Lemma 3.2.4,if P is in H!1 , then one 
an 
onsider Bla
kwell meagerness for subsets of St(P)by identifying St(P) with the Cantor spa
e.We are now ready to prove the Baire property for every set of reals from Bl-ADR.Theorem 3.2.6. Assume Bl-ADR. Then every set of reals has the Baire property.Proof. Take any set A of reals. We show that A has the Baire property. LetA2A be the se
ond-order arithmeti
 stru
ture with A as a unary predi
ate. Sin
eany relation on the reals 
an be uniformized by a fun
tion by Theorem 1.14.9,we 
an 
onstru
t a Skolem fun
tion F for A2A and by a simple 
oding of �nitesequen
es of reals and formulas via reals, we regard it as a fun
tion from thereals to themselves. Let �F = f(x; s) 2 R � <!2 j F (x) � sg. The followingare the key obje
ts for the proof (they are 
alled term relations): Re
all from
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 81Lemma 2.1.2 that for a P-name � for a real, f� is the Baire measurable fun
tion(whi
h is 
ontinuous on a 
omeager set) 
orresponding to � .�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;�A
 = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 A
g;��F = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Fg;��F 
 = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �F 
g;where �81G 2 St(P)� means \for all G modulo a Bla
kwell meager set inSt(P). . . ". Let M = HODL[�A;�A
 ;��F ;��F 
 ℄�A;�A
 ;��F ;��F 
 and for G 2 St(P), let AG = ff�(G) j(9p 2 G) (P; p; �) 2 �A\Mg. Note that for any 
ountable ordinal �, P(�)\M is
ountable: Sin
e M is a transitive model of ZFC, if P(�) \M was un
ountable,then there would be an un
ountable sequen
e of distin
t reals whi
h would 
on-tradi
t Lebesgue measurability for every set of reals. Hen
e for any P 2 H!1 \M ,the set of P-generi
 �lters over M is 
omeager, in parti
ular Bla
kwell 
omeager(i.e., its 
omplement is Bla
kwell meager). Therefore, when we dis
uss statementsstarting from �81G 2 St(P)�, we may assume that G is P-generi
 over M .Claim 3.2.7.1. Let P be a partial order inM . Then �81G 2 St(P)� AG = A\M [G℄ 2M [G℄and M [G℄ is 
losed under F .2. Let P = Coll(!; 2!)M , where Coll(!; 2!) is the for
ing 
ollapsing the 
ar-dinal 2! into 
ountable with �nite 
onditions. Then �81G 2 St(P)� AG has theBaire property in M [G℄.Proof. We �rst show that AG = A\M [G℄ for Bla
kwell 
omeager many G. Sin
eIBM is a �-ideal, for Bla
kwell 
omeager many G, G is P-generi
 over M and if(P; p; �) 2 �A \M (resp., �A
 \M) and p 2 G, then f�(G) = �G 2 A (resp., A
).We show that AG = A \M [G℄ for any su
h G.Fix su
h a G. We �rst prove that AG � A \ M [G℄. Take any real x inAG. Then there is a p 2 G and a � su
h that (P; p; �) 2 �A \M and �G = x.Then by the property of G, x = �G = f�(G) 2 A, as desired. We show thatA \M [G℄ � AG. Let x be a real in M [G℄ whi
h is not in AG. We prove thatx is also not in A. Sin
e x is in M [G℄, there is a P-name � for a real in Msu
h that �G = x. Sin
e A is measurable with respe
t to IBM by Lemma 3.2.4,the set fp 2 P j either (P; p; �) 2 �A \M or (P; p; �) 2 �A
 \Mg is dense andit is in M . Sin
e G is P-generi
 over M , there is a p 2 G su
h that either(P; p; �) 2 �A or (P; p; �) 2 �A
 . But (P; p; �) 2 �A 
annot hold be
ause it would



82 Chapter 3. Games themselvesimply x = �G 2 AG. Hen
e (P; p; �) 2 �A
 and x = �G = f�(G) 2 A
 by theproperty of G, as desired.Let �A = f(�; p) j (P; p; �) 2 �A \Mg. Sin
e the 
omprehension axioms with�A as a unary predi
ate hold in M , �A is a P-name for a set of reals in M and�GA = AG 2 M [G℄. Hen
e AG = A \M [G℄ 2 M [G℄ for Bla
kwell 
omeager manyG, as desired.Next, we show that M [G℄ is 
losed under F for Bla
kwell 
omeager many G.We prove this for any G whi
h is P-generi
 over M su
h that if (P; p; �; s) 2 ��F(resp., ��F
 ) and p is in G, then F (�G) � s (resp., F (�G) + s). Fix su
h a G andlet x be a real in M [G℄. We show that F (x) is also in M [G℄. Sin
e x is in M [G℄,there is a P-name � for a real in M su
h that �G = x. Sin
e every subset of St(P)is measurable with respe
t to IBM, the fun
tion G0 7! F �f�(G0)� is 
ontinuousmodulo a Bla
kwell meager set in St(P). Hen
e for any �nite binary sequen
e s,the set of all p 2 P su
h that either �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � sor �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� + s is dense and is in M . By thegeneri
ity and the property of G, for any s, there is a p 2 G su
h that F (�G) � s ifand only if �81G0 2 St(P)� p 2 G0 =) F �f�(G0)� � s if and only if (P; p; �; s) 2��F \M . Hen
e F (x) = F (�G) = Sfs j (9p 2 G) (P; p; �; s) 2 ��f \Mg, whi
his in M [G℄, as desired.Finally, we show that AG has the Baire property in M [G℄ for Bla
kwell 
omea-ger many G when P = Coll(!; 2!)M . A
tually, we show that AG has the Baireproperty in M [G℄ for any P-generi
 G over M . Let s be a �nite binary sequen
e.We show that there is a t extending s su
h that either [t℄ \ AG or [t℄ n AG ismeager in M [G℄. Let _
 be a 
anoni
al name for a Cohen real. Sin
e one 
anembed Cohen for
ing into Coll(!; 2!)M in a natural way in M , we may regard _
as a P-name for a Cohen real. Sin
e 2! in M is 
ountable in M [G℄, the set ofCohen reals over M is 
omeager in M [G℄. Take any Cohen real 
 over M withs � 
 in M [G℄. We may assume 
 is in AG (the 
ase 
 =2 AG 
an be dealt within the same way). Re
all that �G = AG and hen
e by the for
ing theorem, thereis a p 2 G and a � su
h that M � p 
 \ _
 = � � �s" and (P; p; �) 2 �A \M ,whi
h implies (P; p; _
) 2 �A \M , namely ( _
; p) 2 �A. But the value of _
 will bede
ided within Cohen for
ing and by the de�nition of �A, we may assume thatp is a 
ondition of Cohen for
ing extending s. Hen
e for any Cohen real 
0 overM with p � 
 in M [G℄, 
 is in AG. Sin
e the set of all Cohen reals over M is
omeager in M [G℄, this is what we desired. � (Claim 3.2.7)We now �nish the proof of Theorem 3.2.6 by showing that A has the Baireproperty. Let G be su
h that the 
on
lusions of Claim 3.2.7 hold. By the �rst itemof Claim 3.2.7, the stru
ture (!; !!\M [G℄; app;+; �;=; 0; 1; AG) is an elementarysubstru
ture of A2A. Sin
e the Baire property for A 
an be des
ribed in thestru
ture A2A in this language and AG has the Baire property in M [G℄, A alsohas the Baire property, as desired. � (Theorem 3.2.6)Next, we show that every set of reals is 1-Borel assuming Bl-ADR. For that
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 83purpose, we introdu
e the Vop�enka algebra and its variant, whi
h is a main toolfor our argument. The original motivation for the Vop�enka algebra is to makeevery set to be generi
 over HOD, the 
lass of all the hereditarily ordinal de�nablesets, i.e., any element of the transitive 
losure of a given set is ordinal de�nable.HOD is an important inner model of ZFC 
ontaining all the (possible) importantinner models with large 
ardinals and it is 
lose to V in the sense that any set inV 
an be generi
 over HOD via the Vop�enka algebra.We de�ne the Vop�enka algebra and its variant for HODX , where X is anarbitrary set, ODX is the 
lass of all sets ordinal de�nable with a parameter X,and HODX is the 
lass of sets a where any element of the transitive 
losure of ais in ODX .Take any arbitrary set X and �x an ordinal de�nable inje
tion iX : ODX !HODX . Then 
onsider the Vop�enka algebra PV;X in HODX as follows: PV;X =fiX(A) j A 2 ODX and A � P(!)g. For p; q 2 PV;X , p � q if i�1X (p) � i�1X (q).It is easy to see that the de�nition of PV;X does not depend on the 
hoi
e of iX ,i.e., if there are two su
h inje
tions, then the 
orresponding two partial ordersare isomorphi
 in HODX . Vop�enka [87℄ proved that PV;; is a 
omplete Booleanalgebra in HOD (when X = ;) and ea
h real in V 
an be seen as a PV;;-generi
�lter over HOD in the following way: For ea
h real x in V , the set Gx = fp 2PV;; j x 2 i�1; (p)g is a PV;;-generi
 �lter over HOD and HOD[x℄ = HOD[Gx℄.Conversely, if G is a PV;;-generi
 �lter over HOD, then the set Tfi�1; (p) j p 2 Ggis a singleton. We 
all the element of the singleton a Vop�enka real over HOD anddenote it yG. Then yGx = x for ea
h real x in V . The analogue of the aboveresults holds for HODX for arbitrary set X.We now introdu
e a variant of the Vop�enka algebra, namely the Vop�enka alge-bra with 1-Borel 
odes. Given a set X, 
onsider the following partial order P�V;Xin HODX : Conditions of P�V;X are 1-Borel 
odes in HODX where the ordinalsused in their trees are below � in HODX and for �;  in P�V;X , � �  if B� � B .1Then we 
an prove the analogue of Vop�enka's theorem in exa
tly the same way:Theorem 3.2.8 (ZF). (Folklore) Let X be an arbitrary set.1. P�V;X is a 
omplete Boolean algebra in HODX .2. For ea
h real x in V , the set Gx = f� 2 P�V;X j x 2 B�g is P�V;X -generi
over HODX and HODX [x℄ = HODX [Gx℄. Conversely, if G is a P�V;X -generi
 �lterover HODX , then the set TfB� j � 2 Gg is a singleton and we 
all the real inthe singleton a Vop�enka real over HODX and denote it yG. Then HODX [yG℄ =HODX [G℄ and yGx = x for ea
h G and x.Proof. The proof is exa
tly the same as for the Vop�enka algebra whi
h 
an befound, e.g., in Je
h's textbook [37, Theorem 15.46℄.1For any 1-Borel 
ode � in HODX , there is an 1-Borel 
ode  where the ordinals used inthe tree of  is less than � in HODX su
h that � �  and  � �. Hen
e the restri
tion ofordinals for 1-Borel 
odes will not a�e
t the stru
ture of this partial order.



84 Chapter 3. Games themselvesThe di�eren
e between PV;X and P�V;X is that yG might not re
over G fromHODX for PV;X while HODX [yG℄ = HODX [G℄ for P�V;X . This is be
ause theinje
tion iX is not in HODX in general while the de�nition of P�V;X does not referto OD. For our purpose, we will use P�V;X .Theorem 3.2.9. Assume Bl-ADR. Then every set of reals is 1-Borel.Proof. We modify the argument for the following theorem by Woodin:Theorem 3.2.10 (Woodin). Assume AD and that every relation on the reals
an be uniformized. Then every set of reals is 1-Borel.Let A be an arbitrary set of reals. We show that A is 1-Borel.By Theorem 3.2.6, every set of reals has the Baire property. Hen
e everysubset of St(P) has the Baire property for any P 2 H!1 . We freely use this fa
tlater. We �x a simple 
oding of elements of H!1 by reals and if we say \a real x
odes: : :", then we refer to this 
oding.Let �A and RA be as follows:�A = f(P; p; �) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) f�(G) 2 Ag;RA = f(x; y) j if x 
odes a (P; p; �) 2 �A, then y 
odes a (Di j i < !)su
h that (8i) Di is dense in P and�8G 2 St(P)� �p 2 G; (8i) G \Di 6= ; =) f�(G) 2 A�g;where \�81G 2 St(P)� : : : " means \For 
omeager many G in St(P) : : :". Notethat the term relation �A de�ned here is di�erent from the one in Theorem 3.2.6 inthe sense that now we use 
omeagerness for the quanti�er 81 instead of Bla
kwell
omeagerness.Let FA uniformize RA and �A be the graph of FA, i.e., �A = f(x; s) j s 2<!!; FA(x) � sg. De�ne ��A as follows:��A = f(P; p; �; s) 2 H!1 j � is a P-name for a real and�81G 2 St(P)� p 2 G =) �f�(G); s� 2 �Ag;here we also use 
omeagerness for the quanti�er 81.Let A
 be the 
omplement of A and de�ne and 
onstru
t �A
 ; RA
; FA
 ;�A
,and ��A
 as above.The following is the key point:Claim 3.2.11 (Woodin). Let M be a transitive subset of H!1 and (M;2; �A; ��A)is a model of ZFC.2 Let (P; p; �) 2M \ �A. Then for every P-generi
 �lter G overM , if p is in G, then �G 2 A. The same holds for A
.2Here it satis�es Comprehension s
heme and Repla
ement s
heme for formulas in the lan-guage of set theory with predi
ates for �A and ��A .
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 85Proof of Claim 3.2.11. Let Q = Coll�!;TC(P)�, where Coll�!;TC(P)� is thestandard for
ing 
ollapsing TC(P) into a 
ountable set with �nite sets as 
ondi-tions. Sin
e P; p; � are 
ountable in MQ , there is a Q -name �0 for a real in M
oding the triple (P; p; �).Sub
laim 3.2.12. There is a Q -name � for a real in M su
h that in V , for
omeager many H in St(Q), f�(H) = FA(f�0(H)).Proof of Sub
laim 3.2.12. First note that the map f : H 7! FA�f�0(H)� is 
on-tinuous on a 
omeager set in St(Q), i.e., Baire measurable. This is be
ause everysubset of St(Q ) has the Baire property in St(Q ) and we 
an do the same argumentas the one in Proposition 3.2.2 to uniformize a relation almost everywhere (sin
ewe use open sets in St(Q ) to approximate subsets in St(Q) in this 
ase, we get a
ontinuous fun
tion instead of a Borel fun
tion).Let � = �f where the notation �f is from Lemma 2.1.2. Then � is a Q -namefor a real be
ause the map f is Baire measurable as we observed. Moreover, � isin M be
ause((m;n)�; q) 2 � () (9s 2 <!2) �s(m) = n and �Q ; q; (�; s)� 2 ��A�and the right hand side of the equivalen
e is de�nable in (M; �A; ��A), whi
h is amodel of ZFC by assumption. Finally, by Lemma 2.1.2, it is easy to see that for
omeager many H in St(Q), f�(H) = FA(f�0(H)). � (Sub
laim 3.2.12)Now let G be a P-generi
 �lter over M with p 2 G. We show that f�(G) 2 A.Take a Q -generi
 �lter H over M [G℄ with �H = FA(�0H). This is possible bySub
laim 3.2.12 and that M [G℄ � H!1 . Then G is also a P-generi
 �lter overM [H℄ and FA(�0H) = �H 2 M [H℄. But by the de�nition of FA, FA(�0H) 
odes asequen
e (Di j i 2 !) su
h that Di is a dense subset of P in M [H℄ for ea
h i 2 !and for any G0 in St(P), if G0 \ Di 6= for ea
h i, then f�(G0) 2 A. But G is aP-generi
 �lter over M [H℄ and ea
h Di is in M [H℄. Hen
e G \ Di 6= ; for ea
hi 2 ! and f�(G) 2 A, as desired. � (Claim 3.2.11)Let X = (A; �A; ��A; �A
 ; ��A
 ). Re
all that U is the �ne normal measureon P!1 we �xed at the beginning of this se
tion. Let M = L(X;R)[U ℄. Sin
ethe statement \a real is in the de
ode of an 1-Borel 
ode" is absolute betweentransitive models of ZF as in x 1.13 and M 
ontains all the reals, if A is 1-Borelin M , so is in V .From now on, we work in M and prove that A is 1-Borel in M , whi
h
ompletes the proof of this theorem. The bene�t of working in M is that we haveDC in M be
ause DCR implies DC in M while DC might fail in V in general.Note that U \ M is a �ne normal measure on P!1(R) in M and we use U todenote U \M from now on.We �nd a set of ordinals S and a formula � su
h that for any real x,x 2 A () L[S; x℄ � �(x): (3.1)
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t 1.13.2, this implies that A is 1-Borel.For a in P!1(R), let Ma;Q �a , and ba be as follows:Ma = HODL!1 [X℄(a)X ;Q �a =P�V;X in Ma;ba = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �Ag in Ma;where _yG is a 
anoni
al Q �a -name for a Vop�enka real given in Theorem 3.2.8.Note that Ma is a transitive subset ofH!1 and (Ma; �A; ��A) and (Ma; �A
; ��A
 )are models of ZFC be
ause L!1[X℄(a) is a transitive model of ZF (to 
he
k thepower set axiom, we use the 
ondition that there is no un
ountable sequen
e ofdistin
t reals ensured by Lebesgue measurability). Note also that ba is well-de�nedbe
ause Q �a is a 
omplete Boolean algebra in Ma by Theorem 3.2.8.Then we 
laim that for ea
h a 2 P!1(R) and real x whi
h indu
es the �lter Gxthat is P�V;X -generi
 �lter over Ma, x 2 A () ba 2 Gx. Fix a and x. Assumeba 2 Gx. We show that x 2 A. If we apply Claim 3.2.11 to M = Ma; (P; p; �) =(Q �a ; ba; _yG), and G = Gx, then we get x 2 A be
ause yGx = x as in Theorem 3.2.8.For the 
onverse, we assume ba is not in Gx and prove that x is not in A. Let ba0be the one 
orresponding to ba for A
 instead of for A, i.e.,ba0 = sup fq 2 Q �a j (Q �a ; q; _yG) 2 �A
g:Then ba _ ba 0 = 1. This is be
ause f�1_yG (A) has the Baire property in St(Q �a).Sin
e ba =2 Gx and Gx is P�V;X -generi
 over Ma, ba0 is in Gx. Hen
e we 
an applyClaim 3.2.11 to Ma; A
; (Q �a ; ba0; _yG), and Gx and we get x 2 A
, i.e., x is not inA, as desired.Fix an a 2 P!1(R). Note that sin
e P�V;X is the Vop�enka algebra with 1-Borel
odes de�ned in Ma, any real in L!1 [X℄(a) is P�V;X -generi
 over Ma. Hen
e forany real x in L!1[X℄(a), x 2 A () ba 2 Gx.Now we use this lo
al equivalen
e in L!1[X℄(a) to get the global equiva-len
e (3.1) by taking the ultraprodu
t of Ma via U . Let M1;Q1 ; b1 be asfollows: M1 = YU Ma; Q1 = YU Q �a ; b1 = YU ba:Note that  Lo�s's theorem holds for M1 be
ause there is a 
anoni
al fun
tionmapping a to a well-order on Ma.3 By DC (in M), M1 is wellfounded. So wemay assume M1 is transitive. Hen
e, M1 is a transitive model of ZFC, Q1 is apartial order 
onsisting of 1-Borel 
odes, and b1 2 Q1 .We 
laim that for ea
h real x, x 2 A () x 2 Bb1. This will establish theequivalen
e (3.1) be
ause the pair (Q1 ; b1) 
an be seen as a set of ordinals sin
ethey are obje
ts in the transitive model M1 of ZFC.3  Lo�s's theorem fails for QU L!1 [X ℄(a). This is be
ause L!1 [X ℄(a) is not a model of ZFC foralmost all a and we 
annot assign a well-order on L!1 [X ℄(a) to ea
h a as we did for QU Ma.
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 87Let us �x a real x. By the �neness of U , x 2 a for almost all a w.r.t. U . Thenx 2 A () ba 2 Gx for almost all a() x 2 Bba for almost all a() x 2 Bb1 ;where the �rst equivalen
e is by the lo
al equivalen
e we have seen and the thirdequivalen
e follows from  Lo�s's theorem forQUMa[x℄ (note that Ma[x℄ is a generi
extension of Ma given by Gx and we 
an prove  Lo�s's theorem for QUMa[x℄ inthe same way as for QU Ma). This 
ompletes the proof.Together with the non-existen
e of un
ountable sequen
es of distin
t reals,the 1-Borelness for every set of reals gives us almost all the regularity propertieswe introdu
ed in 
hapter 2 for every set of reals. Re
all that P-measurabilityfor a strongly arboreal for
ing P was the regularity property we introdu
ed inDe�nition 2.1.7. Also re
all that strongly proper for
ings are strengthening ofproper for
ings for proje
tive for
ings.Proposition 3.2.13. Assume that there is no un
ountable sequen
e of distin
treals and every set of reals is 1-Borel. Then every set of reals is P-measurablefor any strongly arboreal, strongly proper for
ing P.Proof. The results for Cohen for
ing, random for
ing, and Mathias for
ing arewell-known and the proof is the same as the one in Case 1 in Theorem 2.4.2. Wejust repla
e L[a℄ in Theorem 2.4.2 with L[S℄, where S 
odes a given set of realsand a given partial order P. The fa
t that the set of all dense subsets of P in L[S℄is 
ountable follows from the non-existen
e of un
ountable sequen
es of distin
treals (be
ause L[S℄ is a ZFC model) and the fa
t that L[S℄ 
orre
tly 
omputesP follows from that S 
odes P. The rest is exa
tly the same as in Case 1 inTheorem 2.4.2.Corollary 3.2.14. Assume Bl-ADR. Then every set of reals is P-measurable forany strongly arboreal, strongly proper for
ing P.3.3 Toward ADR from Bl-ADRIn this se
tion, we dis
uss the following 
onje
ture:Conje
ture 3.3.1 (DC). ADR and Bl-ADR are equivalent.Sin
e ADR implies Bl-ADR by Theorem 1.14.3, the question is whether Bl-ADRimplies ADR in ZF+DC. Woodin proved the following:Theorem 3.3.2 (Woodin). Assume AD and DC. Then the following are equiv-alent:



88 Chapter 3. Games themselves1. Every set of reals is Suslin,2. The axiom ADR holds, and3. Every relation on the reals 
an be uniformized.Hen
e, to prove Conje
ture 3.3.1, it suÆ
es to show that every set of realsis Suslin from Bl-ADR: If every set of reals is Suslin, then by Theorem 1.14.5,AD holds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds assumingBl-ADR and DC. Note that Martin's Conje
ture (i.e., Bl-AD implies AD) impliesConje
ture 3.3.1 by Theorem 3.3.2. Hen
e it is interesting to see whether this isConje
ture is true or not.We try to mimi
 the arguments for the impli
ation from uniformization toSuslinness in Theorem 3.3.2 and redu
e Conje
ture 3.3.1 to a small 
onje
ture.Throughout this se
tion, we �x U as a �ne normal measure on P!1(R), whi
hexists by Theorem 3.1.3.First, we show that every set of reals is strong 1-Borel assuming Bl-ADR.Before giving a de�nition of strong 1-Borel 
odes, we start with a small lemma:Lemma 3.3.3. Assume Bl-ADR and DC. Let j : V ! Ult(V; U) be the ultrapowermap via U . Then j(!1) = �.Proof. We �rst show that j(!1) � �. Let � be an ordinal less than � and R bea prewellorder on the reals with length �. De�ne f : P!1(R) ! !1 be as follows:For a 2 P!1(R), f(a) is the length of the prewellorder R\ (a�a) on a. Sin
e a is
ountable, f(a) is also 
ountable. Hen
e f 2U 
!1, where 2U is the membershiprelation for Ult(V; U) and 
!1 is the 
onstant fun
tion on P!1(R) with value !1.We show that the stru
ture ([f ℄U ;2) is isomorphi
 to (�;2) and hen
e [f ℄U =�, whi
h implies � < j(!1) be
ause f 2U 
!1. For any a 2 P!1(R), let �(a) bethe transitive 
ollapse of �a; R \ (a� a)� into �f(a);2�. Then by  Lo�s's Theoremfor simple formulas, [�℄U is an isomorphism between �[id℄U ; j(R)\ ([id℄U � [id℄U)�and ([f ℄U ;2), where id is the identity fun
tion on P!1(R).Claim 3.3.4. The identity fun
tion id represents R, i.e., [id℄U = R.Proof of Claim 3.3.4. By the �neness of U , for any real x, fa j x 2 ag 2 U .Hen
e [
x℄U 2 [id℄U . By the 
ountable 
ompleteness of U , [
x℄U = x and hen
ex 2 [id℄U for any real x. Suppose f is a fun
tion on P!1(R) with f 2U id. Then bythe normality of U , there is a real x su
h that fa j x = f(a)g 2 U , i.e., 
x =U f .Hen
e [f ℄U = x and [f ℄U is a real, whi
h �nishes the proof. � (Claim 3.3.4)By Claim 3.3.4, we have [id℄U = R and j(R) \ ([id℄U � [id℄U)� = R. Sin
e�[id℄U ; j(R)\([id℄U�[id℄U)� and ([f ℄U ;2) are isomorphi
, ([f ℄U ;2) is isomorphi
 to(R; R), whi
h is isomorphi
 to (�;2), as desired. Hen
e � < j(!1) and j(!1) � �.Next, we show that j(!1) � �. Let f be a fun
tion from P!1(R) to !1. Weshow that [f ℄U < �. By uniformization for every set of reals, there is a fun
tion
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 89e from the reals to themselves su
h that if a real x 
odes an a 2 P!1(R), thene(x) 
odes f(a). Let S be an 1-Borel 
ode for the graph �e of e whi
h exists byTheorem 3.2.9.Claim 3.3.5. For all a 2 P!1(R), f(a) < �L[S℄(a).Proof of Claim 3.3.5. Note that P(x) \ L[S℄(a) is 
ountable in V for any x 2H!1 \ L[S℄(a). Hen
e there is a Coll(!; a)-generi
 g over L[S℄(a) in V . Fix su
ha g. Let xg be a real 
oding a from g. Then sin
e S is an 1-Borel 
ode for�e, one 
an 
ompute whether e(xg) � s for ea
h �nite binary sequen
e s or notin L[S℄(a; g), hen
e e(xg) 2 L[S℄(a; g). Therefore f(a) is 
ountable in L[S℄(a; g).But �L[S℄(a) stays an un
ountable 
ardinal in L[S℄(a; g). Hen
e f(a) < �L[S℄(a),as desired.By the normality of U , the following 
hoi
e prin
iple holds: For any fun
tionF : P!1(R) ! V su
h that ; 6= F (a) 2 L[S℄(a) for almost a with respe
t to U ,then there is a fun
tion f : P!1(R) ! V su
h that f(a) 2 F (a) for almost all awith respe
t to U . This implies  Lo�s's Theorem for the ultraprodu
t QU L[S℄(a).Let S� = j(S). Then �QU L[S℄(a);2U� is isomorphi
 to �L[S�℄(R);2� bylooking at the map g 7! j(g)(R). (Note that Ult(V; U) is wellfounded by DC.)Hen
e [f ℄U < [a 7! �L[S℄(a)℄U = �L[S�℄(R) � �V ;as desired.We now introdu
e strong 1-Borel 
odes. An 1-Borel 
ode S is strong if thetree of S is a tree on 
 for some 
 < � and for any f : <!R ! R and surje
tion� : R ! 
, there is an a 2 P!1 su
h that a is 
losed under f , S��[a℄ is an 1-Borel 
ode, and BS��[a℄ � BS. Note that the 
hoi
e of 
 does not depend on thede�nition of strong 1-Borel 
odes. A set of reals A is strong 1-Borel if A = BSfor some strong 1-Borel 
ode S. There is a �ner version of Fa
t 1.13.2 as follows:Fa
t 3.3.6.1. Let S be a strong 1-Borel 
ode and 
 < � be su
h that S is a tree on �for some � < 
 and L
[S; x℄ � \KP + �1-Separation" for any real x. Let �(S; x)be a �1-formula expressing \x 2 BS". Then for any fun
tion f : <!R ! R andsurje
tion � : R ! 
, there is an a 2 P!1(R) su
h that a is 
losed under f andfor any real x, if L�
[ �S; x℄ � �( �S; x), then L
 [S; x℄ � �(S; x), where L�
 [ �S℄ is thetransitive 
ollapse of the Skolem hull of �[a℄ [ fSg in L
[S℄.2. Let 
 be an ordinal with 
 < �, � be a �1-formula, and S be a boundedsubset of 
 su
h that L
[S; x℄ � \KP + �1-Separation" for any real x. Set A =fx 2 R j L
[S; x℄ � �(S; x)g. Assume that for any fun
tion f : <!R ! R andsurje
tion � : R ! 
, there is an a 2 P!1(R) su
h that a is 
losed under f andfor any real x, if L�
[ �S; x℄ � �( �S; x), then L
 [S; x℄ � �(S; x), where L�
 [ �S℄ is the
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ollapse of the Skolem hull of �[a℄ [ fSg in L
[S℄. Then A is strong1-Borel.Proof. This 
an be done by 
losely looking at the argument for Fa
t 1.13.2 in [80℄.Theorem 3.3.7. Assume Bl-ADR and DC. Then every set of reals is strong1-Borel.Proof. Fix a set of reals A. We show that A is strong 1-Borel. Let �(Ma;Q �a ; ba) ja 2 P!1(R)� and (M1;Q �1 ; b1) be as in the proof of Theorem 3.2.9, but we
onstru
t them in V , not in M . Sin
e we have DC now, we 
an prove the followingequivalen
es in exa
tly the same way as in Theorem 3.2.9: For all a 2 P!1(R)and all real x indu
ing the �lter Gx whi
h is Q �a -generi
 over Ma,x 2 A () ba 2 Gx (in Q �a):Also, (8x 2 R) x 2 A () b1 2 Gx (in Q �1):For any a, let Da be the set of all dense subsets of Q �a in Ma and let D1 = QU Da.Let � be a �1-formula su
h that for all a,�(Q �a ; ba; Da; x) () x determines the �lter Gx � Q �a su
h that(8D 2 Da) Gx \D 6= ; and ba 2 Gx,�(Q �1 ; b1; D1; x) () x determines the �lter Gx � Q �1su
h that(8D 2 D1) Gx \D 6= ; and b1 2 Gx:Let Sa and S1 be sets of ordinals 
oding the two triples (Q �a ; ba; Da) and(Q �1 ; b1; D1) respe
tively. For an a 2 P!1(R), let �a be the least ordinal �su
h that Sa is a bounded subset of � and for all x 2 a, L�[Sa; x℄ is a model ofKP+�1-Separation and let �1 be the least ordinal � su
h that S1 is a boundedsubset of � and for all x 2 R, L�[S1; x℄ is a model of KP+�1-Separation. Notethat by  Lo�s's Theorem, (QU L�a[Sa; x℄;2U ) is isomorphi
 to (L�1 [S1; x℄;2) forevery real x. Sin
e ea
h �a is 
ountable, by Lemma 3.3.3, �1 < �. Also, by theabove equivalen
es, for all a 2 P!1(R) and all reals x,x 2 A () L�a[Sa; x℄ � � (Sa; x)x 2 A () L�1[S1; x℄ � � (S1; x):By the se
ond item of Fa
t 3.3.6, it suÆ
es to show the following: For anyfun
tion f : <!R ! R and surje
tion � : R ! �1, there is an a 2 P!1(R) su
hthat a is 
losed under f and for any real x, if L ��1[ �S1; x℄ � �( �S1; x), thenL�1[S1; x℄ � �(S1; x), where L ��1[ �S1℄ is the transitive 
ollapse of the Skolemhull of �[a℄ [ fS1g in L�1 [S1℄.Let us �x f : <!R ! R and � : R ! �1. Sin
e x 2 A () L�b [Sb; x℄ �� (Sb; x) for ea
h real x and b 2 P!1(R), the following 
laim 
ompletes the proof:
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h that a is 
losed under f and(Xa;2) is isomorphi
 to (L�b [Sb℄;2), where Xa is the Skolem hull of �[a℄ [ fS1gin L�1[S1℄.Proof of Claim 3.3.8. Let �f = f(x; s) 2 R � <!2 j f(x) � sg. For ea
h b,
onsider the following game Ĝb in L[Sb; S1;�f ; �℄: In ! rounds,1. Player I and II produ
e a 
ountable elementary substru
ture X of L�b [Sb℄,2. Player II produ
es an a 2 P!1(R) whi
h is 
losed under f , and3. Player II tries to 
onstru
t an isomorphism between (X;2) and (Xa;2),where Xa is the Skolem hull of �[a℄ [ fS1g in L�1[S1℄.Player II wins if she su

eeds to 
onstru
t an isomorphism between (X;2) and(Xa;2). This is an open game on some set of the form Tb � R where Tb iswellorderable. Hen
e by DCR, it is determined.Sub
laim 3.3.9. There is a b 2 P!1(R) su
h that player II has a winning strategyin the game Ĝb.Proof of Sub
laim 3.3.9. To derive a 
ontradi
tion, suppose there is no b su
hthat player II has a winning strategy in the game Ĝb in L[Sb; S1;�f ; �℄. Bythe determina
y of the game Ĝb, player I has a winning strategy in the gameĜb. Let j : V ! Ult(V; U) be the ultrapower map. Then by  Lo�s's Theo-rem, QU�L[Sb; S1;�f ; �℄;2U ;�f ; �� is isomorphi
 to �L[S1; j(S1);�f ; j(�)℄;2;�f ; j(�)�. Then the game Ĝ1 = QU Ĝb is an open game on some set of theform T1 � R where T1 is wellorderable in L[S1; j(S1);�f ; j(�)℄ su
h that in !rounds,1. Players I and II produ
e a 
ountable elementary substru
ture Y of L�1 [S1℄,2. Player II produ
es an a 2 P!1(R) whi
h is 
losed under f , and3. Player II tries to 
onstru
t an isomorphism between (Y;2) and (Ya;2),where Ya is the Skolem hull of j(�)[a℄ [ fj(S1)g in Lj(�1)[j(S1)℄.Player II wins if she su

eeds to 
onstru
t an isomorphism between Y and Ya.By  Lo�s's Theorem, player I has a winning strategy � in L[S1; j(S1);�f ; j(�)℄.By Theorem 1.12.6, � is also winning in V . In V , let player II move in su
ha way that she 
an arrange that a is 
losed under f , j[Y ℄ = Ya, and j�Y isthe 
andidate for the isomorphism. This is possible by a bookkeeping argument.But then player II wins be
ause j�Y is an isomorphism between Y and j[Y ℄ anddefeats the strategy �, 
ontradi
tion! � (Sub
laim 3.3.9)



92 Chapter 3. Games themselvesHen
e there is a b 2 P!1(R) su
h that player II has a winning strategy �in the game Ĝb in L[Sb; S1;�f ; �℄. By Theorem 1.12.6, � is also winning in V .Sin
e L�b[Sb℄ is 
ountable in V , we 
an let player I move in su
h a way thatX = L�b [Sb℄ and let player II follow � . Sin
e � is winning in V , there is ana 2 P!1(R) su
h that a is 
losed under f and L�b [Sb℄ = X is isomorphi
 to Xa,as desired. � (Claim 3.3.8)We are now ready to prove the key statement toward Conje
ture 3.3.1: Re
allthat for a natural number n with n � 1 and a subset A of Rn+1 , 9RA = fx 2Rn j (9y 2 R) (x; y) 2 Ag.Theorem 3.3.10. Assume Bl-ADR and DC. Let A be a subset of R3 and assume9RA is a stri
t well-founded relation on a set of reals. Suppose A has a strong1-Borel 
ode S and let 
 be an ordinal less than � su
h that the tree of S is on
. Then the length of 9RA is less than 
+.Proof. Let A; S, and 
 be as in the assumptions. We show that the length of9RA is less than 
+. Fix a surje
tion � : R ! 
. Let us start with the followinglemma:Lemma 3.3.11. There is a fun
tion f : <!R ! R su
h that if a is 
losed underf , then S��[a℄ is an 1-Borel 
ode and BS��[a℄ � BS.Note that the assertion of the above lemma is the strengthening of the de�ni-tion of strong 1-Borel 
odes.Proof of Lemma 3.3.11. Let us 
onsider the following game: Player I and II
hoose reals one by one and produ
e an !-sequen
e x of reals. Setting a = ran(f),player I wins if S��[a℄ is an 1-Borel 
ode and BS��[a℄ � BS. Sin
e S is a strong1-Borel 
ode, player I 
an defeat any strategy for player II be
ause strategies 
anbe seen as fun
tions from <!R to R by Claim 3.1.5. Sin
e the payo� set of thisgame is range-invariant, by Lemma 3.1.4, this game is determined. Hen
e playerI has a winning strategy and by Claim 3.1.5, there is a fun
tion f as desired.� (Lemma 3.3.11)We �x an f0 satisfying the 
on
lusion of Lemma 3.3.11 for the rest of this proof.Re
all that U is the �ne normal measure on P!1(R) we �xed at the beginning ofthis se
tion. Using �, we 
an transfer this measure to a �ne normal measure onP!1(
) as follows: Let �� : P!1(R) ! P!1(
) be su
h that ��(a) = �[a℄ for ea
ha 2 P!1(R). For A � P!1(
), A 2 U� if ��1� (A) 2 U . It is easy to 
he
k that U�is a �ne normal measure on P!1(
).We now prove the key lemma for this theorem:
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)-generi
 over V . Then in V [G℄, there is anelementary embedding j : L(R; S; f0 ; �) ! L�j(R); j(S); j(f0); j(�)� su
h that allthe reals in V [G℄ are 
ontained in L�j(R); j(S); j(f0); j(�)�.Proof of Lemma 3.3.12. The argument is based on the result of Ke
hris andWoodin [47, Theorem 6.2℄. We �rst introdu
e the notion of weakly meager sets.A subset B of !
 is weakly meager if there is an X 2 U� su
h that (8b 2 X)!b\Bis meager in the spa
e !b. Sin
e b is 
ountable, the spa
e !b is homeomorphi
 tothe Baire spa
e in most 
ases. Note that if B is a meager set in the spa
e !
,then it is weakly meager. A subset B of !
 is weakly 
omeager if its 
omplementis weakly meager. Let I be the set of weakly meager sets.Sublemma 3.3.13.1. The ideal I is a �-ideal on !
.2. For any s 2 <!
, [s℄ is not weakly meager.3. If a subset B of !
 is not weakly meager, then there is an s 2 <!
 su
h that[s℄ nB is weakly meager.4. Let g be a fun
tion from !
 to On. Then for any B whi
h is not weaklymeager, there is a B0 � B whi
h is not weakly meager su
h that for all xand y in B0, if ran(x) = ran(y), then g(x) = g(y).Proof. The �rst statement follows from the �-
ompleteness of U�. The se
ondstatement follows from the �neness of U�.For the third statement, suppose B is not weakly meager. Then sin
e U� isan ultra�lter, there is an X 2 U� su
h that (8b 2 X) !b \B is not meager in !b.We may assume that ea
h b in X is in�nite be
ause the set of �nite subsets of 
is measure zero with respe
t to U� by the �neness of U�. Take any b in X. Sin
ethe spa
e !b is homeomorphi
 to the Baire spa
e, the set !b \ B has the Baireproperty in !b. Hen
e there is an sb 2 <!b su
h that [sb℄ nB is meager in !b. Bynormality of U�, there is a Y 2 U� su
h that Y � X and there is an s 2 <!
 su
hthat sb = s for any b 2 Y . Hen
e [s℄ nB is weakly meager.For the last statement, let g be su
h a fun
tion and B be not weakly meager.Then there is an X 2 U� su
h that 8b 2 X, !b \ B is not meager in !b. Sin
e!b \ B has the Baire property in !b, there is an sb 2 <!b su
h that [sb℄ n B ismeager in !b. By normality of U�, there are a Y � X and s0 2 <!
 su
h thatY 2 U� and sb = s0 for every b 2 Y . We use the following fa
t:Fa
t 3.3.14 (Folklore). Assume every set of reals has the Baire property. Thenthe meager ideal in the Baire spa
e is 
losed under any wellordered union.
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e [s0℄ \ !b is homeomorphi
 to the Baire spa
e, we
an apply Fa
t 3.3.14 to the spa
e [s0℄ \ !b and hen
e there is an �b su
h that[s0℄ \ !b \ g�1(�b) is not meager in [s0℄ \ !b. Sin
e the set [s0℄ \ !b \ g�1(�b)has the Baire property in [s0℄ \ !b, there is an sb 2 <!b su
h that sb � s0 and[sb℄ng�1(�b) is meager in !b. By normality of U�, there are a Z 2 U� with Z � Yand an s1 � s0 su
h that [s1℄ n g�1(�b) is meager in !b for ea
h b 2 Z. ThenB0 = B \ [s1℄ \ fx j g(x) = �ran(x)g is as desired. � (Sublemma 3.3.13)Now we prove Lemma 3.3.12. Let G be Coll(!; 
)-generi
 over V . Considerthe Boolean algebra P(!
)=I. Then it is naturally for
ing equivalent to Coll(!; 
):In fa
t, for s 2 <!
, let i(s) = [s℄=I. Then by the third item of Sublemma 3.3.13,i is a dense embedding from Coll(!; 
) to P(!
)=I n f0g. De�ne U 0 as follows:For a subset B of !
 in V , B is in U 0 if there is a p 2 G su
h that [p℄ n B isweakly meager. By the generi
ity of G and the third item of Sublemma 3.3.13,U 0 is an ultra�lter on (!
)V and U 0 
ontains all the weakly 
omeager sets. Takean ultrapower Ult�L(R; S; f0 ; �); U 0� = �(!
)V L(R; S; f0 ; �) \ V �=U 0 and let j bethe ultrapower map. (Note that we 
onsider L(R; S; f0 ; �)-valued fun
tions in Vwhi
h are not ne
essarily in L(R; S; f0 ; �).)We show that j is the desired map. We �rst 
he
k  Lo�s's Theorem for thisultrapower. It is enough to show that for any B 2 U 0 and a fun
tion F from B toL(R; S; f0 ; �) su
h that all the values of F are nonempty, then there is a fun
tionf on B in V su
h that f(x) 2 F (x) for all x in B0. Sin
e there is a surje
tion fromR � On to L(R; S; f0 ; �), we may assume that the values of F are sets of reals.But then by uniformization for every relation on the reals by Theorem 1.14.9, weget the desired f .Next, we 
he
k the well-foundedness of Ult�L(R; S; f0 ; �); U 0�. By DC, weknow that the ultrapower Ult(V; U�) is wellfounded. Hen
e it suÆ
es to showthe following: For a fun
tion f : P!1(
) ! On, let gf : !
 ! On be as follows:gf(x) = f�ran(x)�.Sublemma 3.3.15. The map [f ℄U� 7! [gf ℄U 0 is an isomorphism from �(P!1 (
)On\V )=U�;2U�� to �(!
On \ V )=U 0;2U 0�.Proof of Sublemma 3.3.15. We �rst show that if f1 2U� f2, then gf1 2U 0 gf2 .Sin
e f1 2U� f2, there is an X 2 U� su
h that for any b in X, f1(b) 2 f2(b). Fixa b in X. Sin
e the set fx 2 !b j ran(x) = bg \ !b is 
omeager in !b, the setfx 2 !b j f1�ran(x)� 2 f2�ran(x)�g is 
omeager in !b. Hen
e for every b 2 X, theset fx 2 !b j gf1(x) 2 gf2(x)�g is 
omeager in !b and the set fx 2 !
 j gf1(x) 2gf2(x)g is weakly 
omeager and hen
e is in U 0. Therefore, gf1 2U 0 gf2. In thesame way, one 
an prove that if f1 =U� f2, then gf1 =U 0 gf2 .Next, we show that the map is surje
tive. Take any fun
tion g : !
 ! On inV . We show that there is an f : P!1(
) ! On in V su
h that gf =U 0 g. By thelast item of Sublemma 3.3.13 and the generi
ity of G, there is an Y in U 0 su
hthat if x and y are in Y with the same range, then g(x) = g(y). Sin
e Y is in U 0,
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h that [p℄nY is weakly meager, hen
e there is an X in U� su
hthat for all b in X, ([p℄nY )\!b is meager in !b. This means that g is 
onstant ona 
omeager set in [p℄ \ !b for ea
h b 2 X. Let �b be the 
onstant value for ea
hb 2 X and f be su
h that f(b) = �b if b is in Y and f(b) = 0 otherwise. Then itis easy to 
he
k that gf =U 0 g, as desired. � (Sublemma 3.3.15)We have shown that j is elementary and we may assume that the targetmodel of j is transitive. Then j is an elementary embedding from L(R; S; f0 ; �)to L�j(R); j(S); j(f0); j(�)�. Let M = L�j(R); j(S); j(f0); j(�)�. We �nally 
he
kthat all the reals in V [G℄ are in M . Let x be a real in V [G℄ and � be a P-namefor a real in V su
h that �G = x. We 
laim that [f� ℄U 0 = x, where f� is theBaire measurable fun
tion from St�Coll(!; 
)� to the reals indu
ed by � fromLemma 2.1.2, whi
h 
ompletes the proof.Take any natural number n and set m = x(n). We show that [f� ℄U 0(n) = m.Sin
e x(n) = m, there is a p 2 G su
h that p 
 �(�n) = �m. By the de�nition off� , for any x 2 [p℄, f� (x)(n) = mg. Sin
e p is in G, by the de�nition of U 0, theset fx j f� (x)(n) = m is in U 0, as desired. � (Lemma 3.3.12)We now �nish the proof of Theorem 3.3.10. Let us keep using M to denoteL�j(R); j(S); j(f0); j(�)�. We �rst 
laim that S and j[S℄ are in M . Sin
e 
 is
ountable in V [G℄, there is a real x 
oding S in V [G℄. But by Lemma 3.3.12,su
h an x is in M . Hen
e S is also in M . Sin
e 
 is 
ountable in V [G℄, there isan a 2 P!1(R) su
h that �[a℄ = S and hen
e j(�)[a℄ = j[S℄ in V [G℄. But sin
ej(�) 2M and a 2M by Lemma 3.3.12, j[S℄ = j(�)[a℄ is also in M , as desired. ByLemma 3.3.11 and elementarity of j, the following is true in M : For any a 
losedunder j(f), j(S)�a is an 1-Borel 
ode and Bj(S)�a � Bj(S). Also, by elementarityof j, 9RBj(S) is a well-founded relation on a set of reals in M . Set a = j[S℄.Sin
e a is 
losed under j(f), in M , j(S)�a is an 1-Borel 
ode, Bj(S)�a � Bj(S),and 9RBj[S℄ is also a wellfounded relation on a set of reals in M . Sin
e j[S℄ is
ountable in M , the relation 9RBj[S℄ is �11 and hen
e by Kunen-Martin Theorem(see [66, 2G.2℄), its rank is less than !1 in M whi
h is the same as 
+ in V .Finally, sin
e S and j[S℄ are equivalent as Borel 
odes, 9RBS has length less than!1 in M and sin
e M has more reals than V , �9RBS�V � �9RBS�M . Therefore,the length of �9RBS�V is less than !M1 = (
+)V , as desired.Be
ker proved the following:Theorem 3.3.16 (Be
ker). Assume AD, DC, and the uniformization for everyrelation on the reals. Suppose that the 
on
lusion of Theorem 3.3.10 holds, i.e.,let A be a subset of R3 and assume 9RA is a well-founded relation on a set ofreals. Suppose A has a strong 1-Borel 
ode S and let 
 be an ordinal less than� su
h that the tree of S is on 
. Then the length of 9RA is less than 
+. Thenevery set of reals is Suslin.
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ker's argument, make a small 
onje
ture, and redu
eConje
ture 3.3.1 to the small 
onje
ture.As preparation, we prove a weak version of Mos
hovakis' Coding Lemma. Letus introdu
e some notions for that. Let A be a set of reals. Let IND(A) be theset of all pos�1n(A)-indu
tive sets of reals for some natural number n � 1. Forthe de�nition of pos�1n(A)-indu
tive sets, see [66, 7C℄. All we need is as follows:Fa
t 3.3.17. For any set of reals A, IND(A) is the smallest Spe
tor point
lass
ontaining A and 
losed under 9R and 8R.Proof. The argument is the same as [66, 7C.3℄.Theorem 3.3.18 (Weak version of Mos
hovakis' Coding Lemma). Assume Bl-AD.Let < be a stri
t wellfounded relation on a set A of reals with rank fun
tion� : A ! 
 onto and let � be a Spe
tor point
lass 
ontaining < and 
losed under9R and 8R. Then for any subset S of 
, there is a set of reals C 2 � su
h that�[C℄ = S.By Fa
t 3.3.17, IND(<) satis�es the 
onditions for �.Proof. The argument is based on Mos
hovakis' original argument [66, 7D.5℄.Let S be a subset of 
. We show that for any � � 
, there is a set of realsC� 2 � with �[C�℄ = S \ � by indu
tion on �.It is trivial when � = 0 and it is also easy when � is a su

essor ordinalbe
ause � is a boldfa
e point
lass. So assume � is a limit ordinal and the above
laim holds for ea
h � < �. We show that there is a C 2 � with �[C℄ = S \ �.Sin
e � is !-parametrized and 
losed under re
ursive substitutions, we havefGn � R � Rn j n � 1g given in Lemma 1.7.1. Let G2a = fx 2 R j (a; x) 2 G2gfor ea
h real a. For a real a, we say G2a 
odes a subset S 0 of S if G2a � A and�[G2a℄ = S 0.Let us 
onsider the following game G�: Player I and II 
hoose 0 or 1 one byone and they produ
e reals a and b separately and respe
tively. Player II wins ifeither (G2a does not 
ode S \ � for any � < �) or (G2a 
odes S \ � for some � < �and G2b 
odes S \ � for some � < � with � > �). By Bl-AD, one of the playershas an optimal strategy in this game.Case 1: Player I has an optimal strategy � in G�.For a real b, let �b be the mixed strategy for player II su
h that player IIprodu
es b with probability 1 no matter how player I plays. Sin
e � is optimalfor player I, for ea
h real b, for ��;�b-measure one many reals a, G2a 
odes S \ �for some � < �. Fix a real b. We use the following fa
t analogous to Fa
t 3.3.14:Fa
t 3.3.19 (Folklore). Let � be a Borel probability measure on the Baire spa
eand assume every set of reals is �-measurable. Then the set of �-null sets is 
losedunder wellordered unions.
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e every set of reals is Lebesgue measurable by Theorem 1.14.8, every setof reals is ��;�b-measurable. By Fa
t 3.3.19, there is a unique �b < � su
h thatfor ��;�b-positive measure many reals a, G2a 
odes S \ �b and the set of reals asu
h that G2a 
odes S \ � for some � < �b is ��;�b-measure zero. Let C be thefollowing: A real x is in C if there is a real b su
h that for ��;�b-positive measuremany reals a, they 
ode the same subset S 0 of 
, and no proper subsets of S 0 
anbe 
oded by ��;�b-positive measure many reals, and x 2 G2a for some real a su
hthat G2a 
odes S 0. Sin
e � is 
losed under 9R and 8R, C is in �(�). By indu
tionhypothesis, for any � < �, there is a real b su
h that G2b 
odes S \ �. Sin
e � isoptimal, C 
odes S \ �, as desired.Case 2: Player II has an optimal strategy � in G�.Let (a; x) 7! fag(x) be the partial fun
tion from R�R to R whi
h is universalfor all the partial fun
tions from R to itself that are �-re
ursive on their domain.For reals a and w, de�ne a set of reals Aa;w as follows: a real x is in Aa;w if thereexists z < w su
h that fag(z) is de�ned and �fag(z); x� 2 G2. It is easy to seethat Aa;w is in �. By Lemma 1.7.1, there is a �-re
ursive fun
tion � : R�R ! Rsu
h that Aa;w = G2�(a;w) for ea
h a and w.For ea
h real a and w, de�ne a set of reals Ca;w as follows: A real x is in Ca;wif for ���(a;w);� -positive measure many b, they 
ode the same subset S 0 of 
, noproper subsets of S 0 
an be 
oded by ��;�b-positive measure many reals, and x isin G2b for some real b su
h that G2b 
odes S 0. It is easy to see that Ca;w is in �.Hen
e by Lemma 1.7.1, there is a �-re
ursive fun
tion �0 : R � R ! R su
h thatCa;w = G2�0(a;w) for ea
h a and w.Sin
e the fun
tion (a; w) 7! �0(a; w) is �-re
ursive in � and total, by Re
ursionTheorem 1.7.3, we 
an �nd a �xed a� su
h that for all w, fa�g(w) = �0(a�; w).Let g(w) = fa�g(w).Claim 3.3.20. For ea
h w 2 A with �(w) < �, there is some �(w) < � with�(w) < �(w) su
h that G2g(w) 
odes S \ �(w).Proof of Claim 3.3.20. We show the 
laim by indu
tion on w. Suppose it is donefor all x < w. Then Aa�;w 
odes S \ � where � = supf�(x) j x < wg � �(w).Sin
e � is optimal for II, Ca�;w 
odes S \ � for some � > �. Sin
e G2g(w) = Ca�;w,setting �(w) = �, �(w) > �(w) and G2g(w) 
odes S \ �(w). � (Claim 3.3.20)Let C = Sw2A;�(w)<�G2g(w). Then by Claim 3.3.20, C 
odes S \ � and C is in�, as desired.We also need a weak version of Wadge's Lemma: Let A be a set of reals. Fora natural number n � 1, a set of reals B is �1n in A if B is de�nable by a �1nformula in the stru
ture A2A that is the se
ond order stru
ture with A as an unarypredi
ate with a parameter x for some real x. A set of reals B is proje
tive in Aif B is �1n(A) for some n � 1.



98 Chapter 3. Games themselvesLemma 3.3.21 (Weak version of Wadge's Lemma). Assume Bl-AD. Then forany two sets of reals A and B, either A is �12 in B or B is �12 in A.Proof. Re
all the Wadge game GW(A;B) from x 1.15. By Bl-AD, one of theplayers has an optimal strategy in GW(A;B). Assume player II has an optimalstrategy � in GW(A;B). Then for any real x,x 2 A () ��x;��f(x0; y) j x0 = x and y 2 Bg� = 1:It is easy to see that the right hand side of the equivalen
e is �12 in B. If playerI has an optimal strategy in GW(A;B), then one 
an prove that B is �12 in A
 inthe same way and hen
e B is �12 in A.For the rest of this se
tion, we assume Bl-ADR and DC. We �x a set of realsA and give a s
enario to prove that A is Suslin. We �x a simple surje
tion � fromthe reals to f0; 1g, e.g., x 7! x(0).Claim 3.3.22. There is a sequen
e �(�n; <n; 
n; ) j n < !� su
h that for all n,1. �n is a Spe
tor point
lass 
losed under 9R and 8R, �n � �n+1, and A 2 �0,2. every relation on the reals whi
h is proje
tive in a set in �n 
an be uni-formized by a fun
tion in �n+1,3. <n is in �n and a stri
t wellfounded relation on the reals with length 
n andevery set of reals whi
h is proje
tive in a set in �n has a strong 1-Borel
ode whose tree is on 
n+1.Proof of Claim 3.3.22. We 
onstru
t them by indu
tion on n. For n = 0, let �0be any Spe
tor point
lass 
losed under 9R and 8R 
ontaining A whi
h exists byFa
t 3.3.17, and <0 be any stri
t wellfounded relation on the reals in �0. Thenthey satisfy all the items above.Suppose we have 
onstru
ted (�n; <n; 
n) with the above properties. We 
on-stru
t �n+1; <n+1, and 
n+1 . First note that there is a set Bn of reals whi
his not proje
tive in any set in �n by uniformization for every relation on thereals. Then by Lemma 3.3.21, every set proje
tive in a set in �n is �12 in Bn.Let Hn and H 0n be universal sets for �12(Bn) sets of reals and �12(Bn) subsets ofR2 , respe
tively. By uniformization, there is a fun
tion fn uniformizing H 0n. ByTheorem 3.3.7, there is a 
 < � su
h that Hn has a strong 1-
ode whose tree ison 
. Let 
n+1 = 
, <n+1 be a stri
t wellfounded relation on the reals with length
n+1, and let �n+1 be a Spe
tor point
lass 
losed under 9R and 8R 
ontaining�n [ fHn; H 0n; fn; <n+1g. We show that they satisfy all the items above for n+ 1.The �rst item is trivial. The se
ond item is easy by noting that if fn uniformizesH 0n then (fn)a uniformizes (H 0n)a for any real a. The third item follows from thatif Hn has a strong 1-
ode whose tree is on 
n+1, then (Hn)a has a strong 1-
odewhose tree is on 
n+1for every real a. � (Claim 3.3.22)
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 99Note that in the proof of Claim 3.3.22, we have essentially used DC.We �x �(�n; <n; 
n) j n < !� as above and let �In = �2n;�IIn = �2n+1; <In beindu
ed by �, <IIn=<2n+1, 
In = ! and 
IIn = 
2n+1, Let �In = � and �IIn be thesurje
tion between the reals onto n
2n+1 indu
ed by <2n+1. Let �IIn be the fun
tiona 7! �IIn [Gna ℄ where Gn is a universal set for �IIn sets of reals (we do not use �In).Then by Theorem 3.3.18, �IIn is a surje
tion from the reals onto n
IIn . Considerthe following game ĜA: Player I plays 0 or 1 and player II plays reals one by onein turn and they produ
e a real z and a sequen
e t 2 !R, respe
tively. SettingTn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn, Tn+1�n = Tm�n, andz 2 A () Sn2! Tn+1�n is illfounded, where Tm�n = fs�n j s 2 Tmg. This isan integer-real game in the sense player I 
hooses integers and player II 
hoosesreals.We introdu
e an integer-integer game ~GA simulating the game ĜA. In thegame ~GA, players 
hoose pairs of 0 or 1 one by one and produ
e a pair of re-als (x0; y0) and (a0; b0) in ! rounds respe
tively. From (x0; y0) and (a0; b0), we\de
ode" a real z and an !-sequen
e of reals t respe
tively as follows: For ea
hpoint
lass � above, we �x a set U� universal for relations in �. Setting F0 = U�I0x0 ,F0 is a fun
tion from the reals to perfe
t sets of reals (or 
odes of them) (other-wise player I loses). Let Px0 = F (x0). Then y0 is an element of Px0 (otherwiseplayer I loses) and is identi�ed with a triple (u0; x1; y1) of reals by looking at a
anoni
al homeomorphism between Px0 and R3 . Then setting F1 = U�I1x1 , F1 is afun
tion from the reals to perfe
t trees on 2 (or 
odes of trees) (otherwise playerI loses). Let Px1 = F (x1). Then y1 is an element of Px1 (otherwise player I loses)and is identi�ed with a triple (u1; x2; y2) of reals by looking at a 
anoni
al homeo-morphism between Px1 and R3 . Continuing this pro
ess, one 
an unwrap (xn; yn)and obtain (un; xn+1; yn+1) for ea
h n and get an !-sequen
e (un j n < !). Letz(n) = �(un). In the same way, one 
an obtain an !-sequen
e (tn j n < !) of realsfrom (a0; b0). Setting Tn = �IIn �t(n)�, player II wins if for all n < m, Tn+1�n � Tn,Tn+1�n = Tm�n, and z 2 A () Sn2! Tn+1�n is illfounded.Be
ker proved the following:Lemma 3.3.23.1. If player I has a winning strategy in the game ~GA, then player I has awinning strategy � in the game ĜA su
h that � is a 
ountable union of setsin �IIn for some n as a set of reals.2. If player II has a winning strategy in the game ~GA, then player II has awinning strategy in the game ĜA.Proof. See [9, Lemma A & B℄.We show and 
onje
ture the following: Let B � !R. A mixed strategy � forplayer I is weakly optimal in B if for any s 2 REven , the set fx j �(s)(x) 6= 0g is



100 Chapter 3. Games themselves�nite and for any !-sequen
e y of reals, ��;�y(B) > 1=2. One 
an introdu
e theweak optimality for mixed strategies for player II in the same way. Note that ifplayer I has an optimal strategy in some payo� set, then player I has a weaklyoptimal strategy in the same payo� set. The same holds for player II.Lemma 3.3.24. If player I has an optimal strategy in the game ~GA, then playerI has a weakly optimal strategy � in the game ĜA su
h that � is a 
ountableunion of sets in �IIn for some n as a set of reals.Conje
ture 3.3.25. If player II has an optimal strategy in the game ~GA, thenplayer II has a weakly optimal strategy in the game ĜA.Proof of Lemma 3.3.24. We �rst topologize the set Prob(R) of all Borel proba-bilities on the reals. Consider the following map � : Prob(R) ! <!2[0; 1℄: Given aBorel probability � on the reals, for any �nite binary sequen
e s, �(�)(s) = �([s℄).We topologize <!2[0; 1℄ by the produ
t topology where ea
h 
oordinate [0; 1℄ isequipped with the relative topology of the real line and we identify Prob(R) withits image via � and topologize it with the relative topology of <!2[0; 1℄. Then thespa
e Prob(R) is 
ompa
t.Claim 3.3.26. For any set B of reals, the map � 7! �(B) is a 
ontinuous mapfrom Prob(R) to [0; 1℄.Proof of Claim 3.3.26. This is easy when B is 
losed or open. In general, itfollows from the following equations: For any � 2 Prob(R),�(B) = supf�(C) j C � B and C is 
losedg= inff�(O) j O � B and O is openg: � (Claim 3.3.26)Next, we introdu
e a 
omplete metri
 d on Prob(R) 
ompatible with thetopology we 
onsider. Let (sn j n 2 !) be an inje
tive enumeration of �nite binarysequen
es. For � and �0 in Prob(R), d(�; �0) = Pn2! j�([sn℄) � �0([sn℄)j=2n+1.Then d is a 
omplete metri
 
ompatible with our topology. Sin
e Prob(R) is
ompa
t, the map � 7! �(A) is uniformly 
ontinuous with the metri
 d. Hen
ethere is an � > 0 su
h that if d(�; �0) < �, then j�(A)� �0(A)j < 1=2. Let us �x asequen
e (�n j n 2 !) of positive real numbers su
h that Pn2! �n=2n+1 < �. Forany �nite binary sequen
e s0, let ns0 be the natural number su
h that sn0s = s0.Let � be an optimal strategy for player I in the game ~GA. We show thatthere is a weakly optimal strategy ~� for player I in the game ĜA. Given a reala. Consider the fun
tion F 0a : R ! 2[0; 1℄ as follows: Given a real b, F 0a (b)(i) =��;�(a;b)�f(x0; y0) j �(u0) = ig� for i = 0; 1, where y0 is identi�ed with (u0; x1; y1)as dis
ussed. Sin
e every set of reals has the Baire property, F 0a is 
ontinuous ona 
omeager set. Then there is a perfe
t set P of reals su
h that for any b and b0
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 101in P , jF 0a (b)(i)� F 0a (b0)(i)j < �n(i) . Sin
e the set X0 = f(a; P ) j (8b; b0 2 P ) (8i <2) jF 0a (b)(i)�F 0a (b0)(i)j < �n(i)g is proje
tive in �I0, there is a real a0 su
h that thefun
tion f0 = U�II0a0 uniformizes X0. Let ~�(;)(0) = maxfF 0a0(b)(0) j b 2 f0(a0)gand ~�(;)(1) = 1� ~�(;)(0). We have spe
i�ed ~� for the �rst round.Next, suppose player II played a real t0 for her �rst round. We de
ide theprobability ~�(t0) on 2. Let a be a real. Consider the fun
tion F 1a : R ! 2[0; 1℄ asfollows: For a real b, F 1a (b)(i) = ��;�(a0;(t0;a;b))�f(x0; y0) j �(u1) = ig� for i = 0; 1,where y1 = (t1; x2; y2) as dis
ussed. Then the fun
tion F 1a is 
ontinuous on a
omeager set. Then there is a perfe
t set P of reals su
h that for any b and b0in P , jF 1a (b)(i) � F 1a (b0)(i)j < minf�ns_hii j s 2 12g for i = 0; 1. Sin
e the setX1 = f(a; P ) j (8b; b0 2 P ) (8i < 2) jF 1a (b)(i)�F 1a (b0)(i)j < minf�ns_hii j s 2 12ggis proje
tive in �I1 , there is a real a1 su
h that the fun
tion f1 = U�II1a1 uniformizesX1. Let ~�(t0)(0) = max fF 1a1(b)(i) j b 2 f1(a1)g and ~�(t0)(1) = 1� ~�(t0)(0).Continuing this pro
ess, we 
an spe
ify ~� with the following property: Forany natural number m and m-tuple reals (t0; : : : ; tm�1), j~�(t0; : : : ; tm�1)(i) �Fmam(b)(i)j < minf�ns_hii j s 2 m2g for ea
h b 2 fm(am). Also we have spe
i-�ed the reals am and bm for all m < !.We show that ~� is weakly optimal in the game ĜA. Let (tn j n < !) be an!-sequen
e of reals su
h that the tree Sn<! Tn+1�n is illfounded. We show thatthe probability of the payo� set via �~�;�(tnjn<!) is greater than 1=2. (The 
asewhen the tree is wellfounded is dealt with in the same way.)First note that together with (tn j n < !), ~� produ
es a Borel probability �on the reals su
h that for any �nite binary sequen
e s, �([s℄) = Qi<m ~�(tj j j <i)�s(j)�, where m is the length of s. Sin
e the tree from (tn j n < !) is illfounded,it suÆ
es to show that �(A) > 1=2. On the other hand, the measure ��;�(a0;b0)indu
es a Borel probability measure � on the reals as follows: For a �nite binarysequen
e s, �([s℄) = ��;�(a0;b0)�f(x0; y0) j (8i < m) �(ti) = s(i)g�, where m isthe length of s. By the property of ~�, d(�; �) < �. Hen
e j�(A) � �(A)j < 1=2.Sin
e � is optimal for player I in the game ~GA and the tree from (tn j n < !) isillfounded, �(A) = 1. Therefore, �(A) > 1=2, as desired.From Lemma 3.3.24 together with Theorem 3.3.10, one 
an 
on
lude the fol-lowing:Lemma 3.3.27. There is no optimal strategy for player I in the game ~GA.Proof. To derive a 
ontradi
tion, suppose player I has an optimal strategy in thegame ~GA. Then by Lemma 3.3.24, player I has a weakly optimal strategy � inthe game ĜA su
h that � is in a 
ountable union of sets in �In for some n as a setof reals.Consider the following set:X = f(t; s) 2 !R � <!R j ��;�t�f(z; t0) j t0 = t and z 2 Ag� > 1=2 and(8i < s) �js(0)j<II0 ; : : : ; js(i)j<IIi � 2 Ti+1�ig;



102 Chapter 3. Games themselveswhere js(i)j<IIi is the rank of s(i) with respe
t to the wellfounded relation <IIi andTi = �IIi �t(i)�. For (t; s) and (t0; s0) in X, (t; s) < (t0; s0) if t and t0 
ode the sametree T and s 
odes a node in T extending a node 
oded by s0. Note that forany (t; s) in X, if T is the tree 
oded by t, T is wellfounded be
ause � is weaklyoptimal in the game ĜA. Hen
e (X;<) is a stri
t wellfounded relation on X. Let
! = supf
IIn j n 2 !g. By DC, the 
o�nality of � is greater than !. Hen
e
! < �. Note that for any ordinal � < 
+! , there is a wellfounded tree T 
odedby some real t as in the de�nition of X su
h that the length of T is �. Hen
e thelength of (X;<) is 
+! .Sin
e � is a 
ountable union of sets in �In for some n as a set of reals, the set< on X is in 9RV!W!Sn2! �In, i.e., it is a proje
tion of a 
ountable interse
tionof 
ountable unions of sets in �In for some n. Sin
e every set in �In has a strong1-Borel 
ode whose tree is on 
IIn for every n, every set in V!W!Sn2! �In hasa strong 1-Borel 
ode whose tree is on 
+! . By Theorem 3.3.10, the lengthof < must be less than 
+! , whi
h is not possible be
ause it was equal to 
+! .Contradi
tion!We 
lose this se
tion by proving that Conje
ture 3.3.25 implies Conje
ture 3.3.1.Proof of Conje
ture 3.3.1 from Conje
ture 3.3.25. By Lemma 3.3.27, player I doesnot have an optimal strategy in the game ~GA. Hen
e by Bl-AD, player II hasan optimal strategy in the game ~GA. By Conje
ture 3.3.25, player II has aweakly optimal strategy � in the game ĜA. Note that � 
an be seen as areal be
ause ea
h measure on the reals given by � is with �nite support bythe weak optimality of � . For ea
h �nite binary sequen
e s with length n, letts = fu 2 nR j (8i < n) ��(s�i)��u�(i�1)���s(i)� 6= 0g, where (s�i)��u�(i�1)�is the 
on
atenation of s�i and u�(i � 1) bit by bit. For ea
h �nite binary se-quen
e s, we identify ts with a set of n-tuples of natural numbers via a map �sby using the isomorphisms between (a;<R) and (n;2) for a �nite set of reals aand a natural number, where <R is a standard total order on the reals. For anyreal x, tx = Sn2! tx�n is a tree on natural numbers and (�s j s 2 <!!) indu
es ahomeomorphism �x between [tx℄ and [ft0 2 <!R j ��x;� ([t0℄) 6= 0g℄. Consider thefollowing tree:T = f(s; t; u) 2 [n2!(n2� n! � n
!) j t 2 �s(ts) and �8i < lh(s)� u(i) = jxij<IIi g;where xi is the t(i)th real of the set of su

essors of (xj j j < i) in ts�i. Thenby the weak optimality of � , the following holds: Setting B = f(x; y) 2 R � !! j(9f 2 !
!) (x; y; f) 2 [T ℄g, for any real x,x 2 A () ��x;���x[Bx℄� > 1=2() (9T 0 : a tree on 2) [T 0℄ � Bx and ��x;���x�[T 0℄�� > 1=2:
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e B is Suslin, the set f(x; T 0) j [T 0℄ � Bxg is also Suslin. Hen
e A isSuslin, as desired.We have shown that every set of reals is Suslin. Then by Theorem 1.14.5, ADholds. Now by Theorem 3.3.2 and Theorem 1.14.9, ADR holds.3.4 Toward the equi
onsisten
y between ADRand Bl-ADRIn the last se
tion, we have dis
ussed the possibility of the equivalen
e betweenADR and Bl-ADR under AD+DC. Solovay proved the following:Theorem 3.4.1 (Solovay). If we have ADR and DC, then we 
an prove the
onsisten
y of ADR. Hen
e the 
onsisten
y of ADR+DC is stri
tly stronger thanthat of ADR.Proof. See [78℄.Hen
e assuming DC to see the equivalen
e between ADR and Bl-ADR is notoptimal. One 
an ask whether they are equivalent without DC. So far we do nothave any s
enario to answer this question. Instead, one 
ould ask the equi
on-sisten
y between ADR and Bl-ADR. In this se
tion, we dis
uss the following
onje
ture:Conje
ture 3.4.2. ADR and Bl-ADR are equi
onsistent.Woodin 
onje
tured the following:Conje
ture 3.4.3 (Woodin). Assume the following:1. The prin
iple DCR holds,2. Every Suslin & 
o-Suslin set of reals is determined, and3. There is a �ne normal measure on P!1(R).Then either there is an inner model of ADR or there is an inner model M of AD+su
h that M 
ontains all the reals and �M = �V .We show that Conje
ture 3.4.3 implies Conje
ture 3.4.2.Proof of Conje
ture 3.4.2 from Conje
ture 3.4.3. First note that the assumptionsin Conje
ture 3.4.3 hold if we assume Bl-ADR. Hen
e by Conje
ture 3.4.3, thereis an inner model of ADR or there is an inner model M of AD+ su
h that M
ontains all the reals and �M = �V . If there is an inner model of ADR, then weare done. Hen
e we assume that there is an inner model M of AD+ su
h that M
ontains all the reals and �M = �V .



104 Chapter 3. Games themselvesWe show that ADR holds in V . First we 
laim that M 
ontains all the setsof reals. Suppose not. Then there is a set of reals A whi
h is not in M . Thenby Lemma 3.3.21, every set of reals in M is �12(A). Then �M must be less than�V be
ause one 
an 
ode all the prewellorderings by reals using A in V , whi
h
ontradi
ts the 
ondition of M . Hen
e every set of reals is in M . Sin
e we haveuniformization for every relation on the reals in V , it is also true in M . We usethe following fa
t:Fa
t 3.4.4. Assume AD+. Then the following are equivalent:1. The axiom ADR holds, and2. Every relation on the reals 
an be uniformized.By Fa
t 3.4.4, sin
e every relation on the reals 
an be uniformized in M , Msatis�es ADR. Sin
e P(R) \M = P(R), ADR holds in V , as desired.3.5 QuestionsWe 
lose this 
hapter by raising questions.The equivalen
e between ADR and Bl-ADR under ZF+DC As dis
ussedin x 3.3, it is enough to show Conje
ture 3.3.25 to prove the equivalen
e betweenADR and Bl-ADR. In the proof of Lemma 3.3.24, in ea
h round, we shrank the re-als into a perfe
t set suÆ
iently enough so that the strategy we 
onstru
ted givesus a measure on the reals whi
h is 
lose enough to the measure derived from agiven optimal strategy and the opponent's moves, whi
h yields the weak optimal-ity of the strategy. But the same argument does not work for Conje
ture 3.3.25be
ause one 
annot shrink the reals into a perfe
t set to get the 
ontinuity of agiven fun
tion from R to R[0; 1℄. Nonetheless, we 
an pro
eed the similar argu-ment to the 
oded spa
e Qn2! P(n
IIn ) from the spa
e !R by using the fa
t thatthe meager ideal on the reals is 
losed under any wellordered union and de
idingthe probability on the spa
e Qn2! P(n
IIn ) is enough to determine the probabilityof the payo� set. Although the details of the argument seem 
ompli
ated and itis not yet done, we believe it is possible and it is not so diÆ
ult.The equi
onsisten
y between ADR and Bl-ADR By the argument in x 3.4,it is enough to show Conje
ture 3.4.3 to prove the equi
onsisten
y between ADRand Bl-ADR. It seems possible be
ause Bl-ADR gives us a generi
 embeddingsimilar to the one obtained by an !1-dense ideal on !1, CH and \The restri
tionof the generi
 embedding given by the ideal to On is de�nable in V ". Let us seemore details. If one takes a generi
 �lter G of the partial order <!R ordered byreverse in
lusion, then this �lter generates an ultra�lter U 0 extending the dual
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 105�lter of the meager ideal in !R in the same way as we have seen in Lemma 3.3.12.If one takes the generi
 ultrapower of V via U 0 and lets M be the target modelof the ultrapower embedding j, then  Lo�s's Theorem holds for M if the 
o�nalityof � is !, the reals in V belongs to M as an element (as a real), M 
ontains allthe reals in V [G℄ and j�On is de�nable in V (the last statement is ensured by theexisten
e of a �ne normal measure U in Theorem 3.1.2, in fa
t, the ultrapowerembedding via U 0 agrees with j on ordinals as we have seen). In general, M isnot well-founded (in the 
ase 
of(�) = !). But � is always in the well-foundedpart of M . Together with the determina
y of Suslin & 
o-Suslin sets of reals, thisseems enough to pro
eed the Core Model Indu
tion up to � = �!, i.e., a minimalmodel of ADR.A stronger weak Mos
hovakis' Lemma As we have seen in x 3.3, a weak ver-sion of Mos
hovakis's Lemma 3.3.18 holds assuming Bl-AD. One 
an ask whetherone 
an prove a stronger version of Mos
hovakis's Lemma formulated in [66,7D.5℄ from Bl-AD. If this is possible, it would be plausible to show that the setof strong partition 
ardinals is unbounded in � and that every Suslin set of realsis determined from Bl-AD.





Chapter 4 Games and Large Cardinals
In this 
hapter, we investigate the upper bound of the 
onsisten
y strength of theexisten
e of alternating 
hains with length !, whi
h are essential obje
ts provingproje
tive determina
y from Woodin 
ardinals.4.1 The 
onsisten
y strength of the existen
e ofalternating 
hainsIn late 1980s, Martin and Steel [60℄ proved that if there are n Woodin 
ardi-nals and a measurable above them, then every �1n+1 set of reals is determined forea
h natural number n, where they introdu
ed the notion of iterations trees whi
horiginally 
omes from the development of the inner model theory for strong 
ardi-nals. To build the inner model theory above one strong 
ardinal, one would haveto iterate premi
e not only linearly but in more 
ompli
ated way whi
h wouldgive us tree stru
tures labeled with extenders that they 
all iteration trees. Thisgeneralization gives us another diÆ
ulty when we iterate premi
e more than !times: In a limit stage, there 
ould be many 
o�nal bran
hes in the tree we have
onstru
ted and we have to 
hoose one of them so that the dire
t limit throughthat bran
h will be wellfounded. This problem o

urs when we rea
h the regionof Woodin 
ardinals and Martin and Steel used this obsta
le to prove proje
tivedetermina
y by 
oding one se
ond-order existential quanti�er by the existen
e of
o�nal wellfounded bran
h of suitable iteration trees (in their 
ase, they arrangedthe iteration trees in su
h a way that the wellfounded bran
h is always unique).Alternating 
hains are the simplest iteration trees with this obsta
le: They areiteration trees with length ! su
h that their tree stru
ture is given as follows: Forall natural numbers n;m,mTn () m = 0 or n�m is a positive even number.107
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2n + 1 ���� ���� 2n+ 23 ���� ���� 41 � � 2�EEEEEEEEE yyyyyyyyy0Figure 4.1: An alternating 
hain with length !This is the simplest tree stru
ture with two 
o�nal bran
hes. Let us 
allthese two bran
hes Even (= f2n j n 2 !g) and Odd (= f2n + 1 j n 2 !g [f0g). Sin
e these two bran
hes are 
ompletely symmetri
 with respe
t to the treestru
ture, there is no 
anoni
al way to 
hoose one of them so that the 
hosen oneis wellfounded. This gives us the basi
 idea of how to 
ode 
ertain information viaiteration trees. A
tually, in the proof of proje
tive determina
y, Martin and Steelrepla
ed the odd part by <!! and ensured that the bran
h Even is ill-foundedand that exa
tly one of the 
o�nal bran
hes is wellfounded. This is how they
ode a real via a wellfounded 
o�nal bran
h.But the above argument works only when there is only one wellfounded 
o-�nal bran
h in the iteration tree. So the question is: Is there any iteration treewith length ! with more than one wellfounded bran
hes? Martin and Steel [61℄(independently by Woodin) proved that if there is a Woodin 
ardinal, then thereare a 
ountable transitive model M of (a large enough fragment of) ZFC andan alternating 
hain on M su
h that both bran
hes are wellfounded. Conversely,they proved that if there is an iteration tree with limit length and two 
o�nal well-founded bran
hes, then there is a transitive model of ZF whi
h satis�es \Thereis a Woodin 
ardinal". Hen
e there is a tight 
onne
tion between Woodin 
ardi-nals and the existen
e of iteration trees with more than one 
o�nal wellfoundedbran
hes. In fa
t, what they proved is stronger:Theorem 4.1.1 (Martin and Steel). Suppose there is an iteration tree T withlimit length and two 
o�nal bran
hes b and 
. Let Æ be the supremum of thelength of extenders used in T and � be an ordinal with � > Æ and � is in thewellfounded part of both Mb and M
 where Mb and M
 are the dire
t limit of
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 109models in T through b and 
 respe
tively. Then L�(V MbÆ ) � \Æ is Woodin".Proof. See [62, Corollary 2.3℄.This theorem gives us more information: Note that V MbÆ = V M
Æ and it isalways a subset of the wellfounded part of both models. Sin
e every wellfoundedpart of a model of KP is also a model of KP, we have the following: If one of Mband M
 is wellfounded and � is the least ordinal that is not in the wellfoundedpart of one of Mb and M
 and � > Æ, then L�(V MbÆ ) � \KP + Æ is Woodin".Hen
e we get the Woodin-in-the-next-admissibleness from the assumption, herewe say Æ is Woodin-in-the-next-admissible if there is an ordinal � > Æ su
h thatL�(VÆ) � \KP+Æ is Woodin". Andretta [2℄ proved the following stronger 
onverse:Theorem 4.1.2 (Andretta). Suppose Æ is Woodin-in-the-next-admissible. Thenfor any tree order on ! with an in�nite bran
h, there is an iteration tree su
h thatfor any in�nite bran
h b of the tree, Æ! is in the wellfounded part of Mb, whereÆ! is the supremum of the length of extenders in the iteration tree.Proof. See [2, Theorem 1.3℄.Hen
e Woodin-in-the-next-admissible 
ardinals are intimately 
orrelated toiteration trees with more than one 
o�nal bran
hes. The natural question wouldbe: What if we do not demand that Æ! is in the wellfounded part of Mb? In thisse
tion, we partially answer this question in the 
ase of alternating 
hains. In fa
t,we do not need Woodin-in-the-next-admissible 
ardinals to 
onstru
t alternating
hains:Theorem 4.1.3. Suppose Æ is an ordinal su
h that Æ is �2-Woodin and VÆ ��2 V .Then there is an alternating 
hain with length !.The assumption of the above theorem (whi
h we will explain later) is mu
hweaker than Woodin-in-the-next-admissibleness. Hen
e we do not need Woodin-in-the-next-admissibleness just to 
onstru
t alternating 
hains.Let us prepare for introdu
ing the notions in the above theorem. For a tran-sitive model M of ZFC and an ordinal � in M , we write M j� for abbreviatingV M� . Furthermore, for a subset A of M , Thy�(M ;2; A) denotes the �-theory ofM with parameters in A where � is �n for some natural number n � 1. Also, fora set A and an ordinal �, A � � denotes A \ V�.Let � < Æ be ordinals and � be �n for some natural number n � 1. We say� is <Æ-�-strong if it is <Æ-A-strong where A = Thy�(V jÆ;2; V jÆ), i.e., for anyordinal � < Æ there is a non-trivial elementary embedding j : V !M with 
riti
alpoint � where M is transitive su
h that V� �M , j(�) > � and A � � = j(A) � �.If Æ is a limit of ina

essible 
ardinals, su
h an embedding 
an be easily 
oded byan extender in VÆ. An ordinal Æ is �-Woodin if it is a limit of <Æ-�-strongs.Note that if Æ is a limit of <Æ-strong 
ardinals, then Æ is �1-Woodin and VÆis a �1 elementary substru
ture of V . Hen
e we 
annot repla
e �2 with �1 in
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ause if we 
ould, then we 
ould run the argument in a mousebelow 0 j� with a 
ardinal Æ whi
h is a limit of <Æ-strong 
ardinals, whi
h isimpossible by [73, Lemma 2.4℄.Also note that �n-Woodinness for a natural number n is mu
h weaker thanWoodin-in-the-next-admissibleness. In fa
t, if Æ is Woodin-in-the-next-admissible,then for any natural number n � 1, Æ is a limit of <Æ-strong 
ardinals � su
h thatthe set of <�-An-strong 
ardinals is stationary in � where An = Thy�n(V jÆ;2; V jÆ), whi
h immediately gives us that the set of �n-Woodin 
ardinals Æ0 withVÆ0 ��n V� is stationary in �. Hen
e the assumption of Theorem 4.1.3 is mu
hweaker than Woodin-in-the-next-admissibleness.Proof of Theorem 4.1.3. We will 
onstru
t �(�n; En; �n) j n < !� with the fol-lowing properties:(1)n Thy�2�M2njÆ;2;M2nj�2n� = Thy�2�M2n _�1j�n;2;M2n _�1j�2n�,(2)n �2n is <Æ-�2-strong in M2n,(3)n Thy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+1 + 1� = Thy�2�M2njÆ + 1;2;M2nj�2n+1 + 1�, and(4)n �2n+1 is <�n+1-�2-strong in M2n+1,where n _�1 = maxfn� 1; 0g, M0 = V and Mn+1 = Ult(Mn _�1; En) for ea
h n 2 !.At the same time, we will arrange that �n+1 is less than the strength and thelength of En for ea
h n 2 !, whi
h will ensure that ea
h Mn is well-founded bythe result of Martin and Steel [61, Theorem 3.7℄.Also note that all the extenders we will use belong to VÆ. Sin
e Æ is a limit ofina

essible 
ardinals, Æ will not move under any embedding we will 
onsider.Let �0 = Æ. Then (1)0 is true. Sin
e Æ is �2-Woodin in V , we 
an pi
k �0 < Æsu
h that �0 is <Æ-�2-strong in V , hen
e (2)0 is also true.Suppose we have 
onstru
ted (�i j i � 2n); (Ei j i < 2n); (�i j i � n) with theproperties (1)n and (2)n. We will �nd �2n+1; E2n; �n+1; �2n+2 and E2n+1 with theproperties (3)n; (4)n; (1)n+1 and (2)n+1.Sin
e Æ = �0;2n(Æ) is �2-Woodin in M2n, we 
an pi
k �2n+1 > �2n su
h that�2n+1 is <Æ-�2-strong in M2n. By (2)n, �2n is <Æ-�2-strong in M2n. Hen
e we 
anpi
k E2n 2 M2n su
h that E2n is an extender with 
riti
al point �2n and lengthand strength greater than �2n+1 + 3 in M2n, su
h that �E2n(A) � (�2n+1 + 3 ) =
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 111A � (�2n+1 + 3) in M2n, where A = Thy�2�M2njÆ;2;M2njÆ�. ThenThy�2�M2n+1j�2n _�1;2n+1(�n);2;M2n+1j�2n+1 + 3�=�2n _�1;2n+1�Thy�2�M2n _�1j�n;2;M2n _�1j�2n�� � �2n+1 + 3=�E2n�Thy�2�M2njÆ;2;M2nj�2n�� � �2n+1 + 3=Thy�2�M2njÆ;2;M2nj�2n+1 + 3�:Now the following is true in M2n witnessed by � = Æ:(�) There is an ordinal � su
h that B = Thy�2�V j� + 1;2; V j�2n+1 + 1� and�2n+1 is <�-�2-strong and � is �2-Woodin,where B = Thy�2�M2njÆ+1;2;M2nj�2n+1+1�. Note that this statement is �2 inM2n with parameters B and �2n+1 be
ause the statement \�2n+1 is <�-�2-strongand � is �2-Woodin" is de�nable in V j� if � is a limit of ina

essibles, whi
h isalso �2 de�nable.Sin
e VÆ is a �2-elementary substru
ture of V , M2njÆ = M2nj�0;2n(Æ) is a �2-elementary stru
ture of M2n. Hen
e (�) is also true in M2njÆ. But by the previous
al
ulation, (�) is also true in M2n+1j�2n _�1;2n+1(�n).Let �n+1 be a witness for (�) in M2n+1j�2n _�1;2n+1(�n). Then it follows thatThy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+1 + 1�= Thy�2�M2njÆ + 1;2;M2nj�2n+1 + 1�;that is (3)n. Also we have that �n+1 is �2-Woodin and �2n+1 is <�n+1-�2-strongin M2n+1, that is (4)n. Sin
e �n+1 is �2-Woodin in M2n+1 and �n+1 > �2n+1, we
an pi
k �2n+2 < �n+1 large enough and su
h that �2n+2 is <�2n+1-�2-strong inM2n+1.By (4)n, we 
an take E2n+1 2 M2n+1 su
h that E2n+1 is an extender with
riti
al point �2n+1 and length and strength greater than �2n+2 + 3 in M2n+1 su
hthat �E2n+1(A0) � �2n+2 + 3 = A0 � �2n+2 + 3, where A0 = Thy�2�M2n+1j�n+1;2;



112 Chapter 4. Games and Large CardinalsM2n+1j�n+1�. ThenThy�2�M2n+2jÆ + 1;2M2n+2j�2n+2 + 1�=�2n;2n+2�Thy�2�M2njÆ + 1;2;M2nj�2n+1 + 1�� � �2n+2 + 1=�E2n+1�Thy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+1 + 1�� � �2n+2 + 1=Thy�2�M2n+1j�n+1 + 1;2;M2n+1j�2n+2 + 1�;and by this 
al
ulation, we obtain Thy�2�M2n+2jÆ;2;M2n+2j�2n+2� =Thy�2�M2n+1j�n+1;2;M2n+1j�2n+2� and �2n+2 is <Æ-�2-strong in M2n+2, whi
hare (1)n+1 and (2)n+1 respe
tively, as desired.Note that in the above 
onstru
tion, we have arranged that �n+1 < �2n _�1;2n+1(�n)for ea
h n 2 !. Hen
e MOdd is always ill-founded.4.2 QuestionsWe 
lose this 
hapter with asking one question.Question 4.2.1. What is the 
onsisten
y strength of the existen
e of alternating
hains with length !?



Chapter 5Wadge redu
ibility for the real line
In this 
hapter, we study the Wadge redu
ibility for the real line and show thatthe Wadge's Lemma fails and that the Wadge order for the real line is ill-founded.This situation is 
ompletely di�erent from the 
ase of the Baire spa
e as givenin x 1.15 and it is not possible to get the same kind of game 
hara
terization of
ontinuous fun
tions from the real line to itself as in the 
ase of the Baire spa
e.Throughout this 
hapter, we work in ZF+DC. In 
ase we need more assump-tions, we expli
itly mention them. In this 
hapter, R denotes the real line, notthe Baire spa
e or the Cantor spa
e.5.1 Wadge redu
ibility for the real lineIt was probably known to the Polish s
hool of mathemati
ians before the Wadgeredu
ibility was introdu
ed that Wadge's Lemma for the Wadge order �RW fails:Let A be a subset of the real line and assume A and A
 are dense. Then A
annot be a 
ontinuous preimage of any nowhere dense subset of the real line. Inparti
ular, there are subsets A and B of the real line su
h that neither A �RW Bnor B �RW A
 holds (e.g., A = Q , B = any nowhere dense, non-�02 set).We say that a subset A of the real line is non-trivial if it is neither the emptyset ; nor the whole spa
e R. We remark that the 
ondition for A
 in the aboveremark is not ne
essary:Proposition 5.1.1. Let A, B be subsets of the real line and assume A is non-trivial and dense and B is nowhere dense. Then A 
annot be a 
ontinuous preim-age of B.Proof. Toward a 
ontradi
tion, suppose there is a 
ontinuous fun
tion f : R ! Rsu
h that A = f�1(B). Sin
e A is non-trivial, f is not a 
onstant fun
tion. Hen
ethe range of f 
ontains an interval. But sin
e A is dense and f is 
ontinuous, therange of f is in
luded in the 
losure of B, whi
h 
ontradi
ts the fa
t that B isnowhere dense. 113



114 Chapter 5. Wadge redu
ibility for the real lineNote that the failure of Wadge's Lemma for the real line o

urs for subsets ofthe real line whi
h are the di�eren
e of the two open sets (see Corollary 5.1.7).Next, we dis
uss the failure of the wellfoundedness of the Wadge order �RW,whi
h was proved by Peter Hertling in his Ph.D. thesis [32℄. We prove the fol-lowing stronger result:Theorem 5.1.2. There is an embedding i from (P(N);��n) to (P(R);�RW) su
hthat the range of i 
onsists of subsets of real numbers whi
h are the di�eren
e ofopen sets, where a ��n b if a n b is �nite for subsets a; b of N and N = ! n f0g.Proof. Let us start with an easy observation:Observation 5.1.3. Let a; b; 
; d; e; f; g be real numbers with a < b < 
 < dand e < f < g and h be a 
ontinuous fun
tion from the real line to itself withh(b) 2 [e; f), h�[a; b)� \ [e; f) = ;, h�[b; 
)� \ [f; g) = ;, h�[
; d)� \ [e; f) = ; andh�[b; 
)� + (e� �; e) for any � > 0. Then h(b) = e, h(
) = f and h�[b; 
)� = [e; f).This observation allows us to en
ode subsets of N into sets formed from asequen
e of half-open intervals by suitably inserting points between them.Let us dis
uss this idea in detail. We �rst 
onstru
t in
reasing sequen
es ofreal numbers ha�; b� j � < !!i and h
n j n 2 Ni with the following properties:For � < !!, a limit 
, and a natural number n � 1,a� < b� < a�+1;supfa� j � < 
g < a
; andsupfa� j � < !ng < 
n < a!n ;where !! and !n are ordinals given by ordinal exponentiation. Hen
e the point
n is inserted after the �rst !n many intervals. Now de�ne i : P(N) ! P(R) asfollows: For a subset x of N ,i(x) = [�<!![a�; b�) [ f
n j n 2 N n xg:It is easy to see that ea
h i(x) is the di�eren
e of two open sets. For simpli
ity,let a�
 = supfa� j � < 
g. The sets are 
onstru
ted in su
h a way that i(x) �RWi(y) for all x � y � N . To see this, we 
onstru
t a 
ontinuous fun
tion f : R ! Rsu
h that f�1�i(y)� = i(x). For ea
h n 2 N , we pi
k a real number dn between
n and a!n . Note that i(x) � i(y) and i(x) n i(y) = f
n j n 2 y n xg. Now de�nef(t) = t unless t 2 [a�!n ; a!n ℄ and n 2 y nx. If t 2 [a�!n ; a!n ℄ and n 2 y nx, then wemap the interval [a�!n ; 
n℄ to [a�!n ; a!n ℄ by preserving the order, mapping the endpoints to the end points. We further map [
n; dn℄ to [dn; a!n ℄ with f(
n) = a!nand f(dn) = dn by swit
hing the order around and then map [dn; a!n ℄ to itselfby the identity fun
tion. This 
ompletes our 
onstru
tion of f and it is easy to
he
k that f is as desired.By modifying the above argument, we get the following:
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 115Claim 5.1.4. If x ��n y (i.e., x n y is �nite), then i(x) �RW i(y).Proof of Claim 5.1.4. Let n = max(x n y) + 2. De�ne g : R ! R as follows: g isequal to f above on [a�!n ;1) and sin
e the order type of the set fa� j !n�1 �� < !ng is !n, we 
an de�ne g on (�1; a�!n ℄ to (dn�1; a�!n℄ in the same way aswe did before so that g�1(i(y)) = i(x) (the point is that there is no point 
m ini(y) inserted between a!n�1 and a�!n). This g is the witness for i(x) �RW i(y).Claim 5.1.5. If i(x) �RW i(y), then x ��n y.Proof of Claim 5.1.5. Suppose i(x) �RW i(y) via h : R ! R. If h(a�) = 
n forsome � and n, then h(b�) = 
n by 
ontinuity, whi
h is absurd. Hen
e for ea
h� < !! there is some � < !! su
h that h(a�) 2 [a�; b�). Let �0 and n0 be su
hthat h(a0) 2 [a�0 ; b�0) and �0 < !n0.We prove that h(a�) = a�0+�, h(b�) = b�0+� and h�[a�; b�)� = [a�0+�; b�0+�)for every � < !! by indu
tion on �.The 
ase � = 0 is done by Observation 5.1.3 for a = a0� 1; b = a0; 
 = b0; d =a1; e = a�0 ; f = b�0 and g = a�0+1.If � is a su

essor ordinal, let � = � + 1. By indu
tion hypothesis, h(b�) =b�0+�. By Observation 5.1.3 for a = a�; b = b�; 
 = a�+1; d = b�+1; e = b�0+�; f =a�0+�+1 and g = b�0+�+1, h(a�+1) = a�0+�+1 and h�[b�; a�+1)� = [b�0+�; a�0+�+1).Again by Observation 5.1.3 for a = b�; b = a�+1; 
 = b�+1; d = a�+2; e =a�0+�+1; f = b�0+�+1 and g = a�0+�+2, h(b�+1) = b�0+�+1 and h�[a�+1; b�+1)� =[a�0+�+1; b�0+�+1).If � is a limit ordinal, then by the 
ontinuity of h, we have h(a�� ) = a��0+�.If � is not of the form !n for some n, by the same argument as when � isa su

essor ordinal, we 
an 
on
lude that h(a�) = a�0+�, h(b�) = b�0+�, andh�[a�; b�)� = [a�0+�; b�0+�). If � is of the form !n for some n, then there are two
ases: When n 2 x, there is no inserted point in i(x) between a�� and a�. Hen
ethere is no inserted point in i(y) between a��0+� and a�0+�, otherwise h would notredu
e i(x) to i(y). By the same argument as before, h(a�) = a�0+�, h(b�) = b�0+�and h�[a�; b�)� = [a�0+�; b�0+�). When n =2 x, there is an inserted point 
n in i(x).But no matter whether there is an inserted point in i(y) between a��0+� and a�0+�,h will map [a�� ; a�℄ to [a��0+�; a�0+�℄ and h(a�) = a�0+� by the similar argumentas before. Hen
e h(a�) = a�0+�, h(b�) = b�0+�, and h�[a�; b�)� = [a�0+�; b�0+�).Therefore, h(a�) = a�0+�, h(b�) = b�0+� and h maps [a�; b�) to [a�0+�; b�0+�)for ea
h �. The above argument (for the limit 
ase) also shows that if there isno inserted point in i(x) between a�!n and a!n , then there is no inserted point ini(y) between a��0+� and a�0+�, whi
h implies that x n y � n0 by the de�nition ofi. Hen
e x ��n y as desired.The above two 
laims 
omplete our proof.It is easy to 
onstru
t a des
ending sequen
e of subsets of N with length !with respe
t to ��n. Hen
e,
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ibility for the real lineCorollary 5.1.6 (Hertling). The Wadge order �RW is ill-founded.Corollary 5.1.7. There are two sets A and B whi
h are the di�eren
e of twoopen sets su
h that neither A �RW B nor B �RW A
 holds.Proof. Let Even and Odd be the set of even natural positive numbers and theset of odd natural numbers respe
tively and set A = i(Even) and B = i(Odd)where i is from the proof of Theorem 5.1.2. By Theorem 5.1.2, A �RW B. Hen
eit suÆ
es to show that B �RW A
.Suppose B �RW A
. Then there is a 
ontinuous fun
tion f from R to itselfsu
h that f�1(A
) = B. We show that this is impossible. Note thatA
 = (�1; a0) [ [�<!![b�; a�+1) [ [
limit[a�
 ; a
) n f
n j n =2 Eveng! :Sin
e a0 is in B, f(a0) = b� for some � < !! or f(a0) = a�
 for some limit
. In the former 
ase, by the 
ontinuity of f , f(a�! ) = a��+! while a�! =2 B anda��+! 2 A
, a 
ontradi
tion. In the latter 
ase, if 
 6= !n for any odd n, thenby the same argument as the former 
ase, f(a�! ) = a�
+! and we 
an derive a
ontradi
tion. If 
 = !n for some odd n, then we 
annot redu
e [a0; b0) to a halfinterval inside A
 with a�
 being the left endpoint be
ause 
n is not in A
 in this
ase.We now investigate the lower levels of the Wadge order on the real line and
ompare it with the ones of the Wadge order on the Baire spa
e. The �rst obviousobservation is as follows: The empty set ; and the whole spa
e R are the onlyminimal elements with respe
t to �RW, i.e., for any subset A of the real line, eitherA = ;, A = R, or ;;R <RW A. This statement holds for any topologi
al spa
e.Re
all that a subset A of the real line is non-trivial if A is neither the empty setnor the whole spa
e. Non-trivial subsets are non-trivial in the sense of the Wadgeorder on the real line.The next observation is that 
losed sets and open sets on the real line behavein the same way as those in the Baire spa
e with respe
t to Wadge redu
ibility:Proposition 5.1.8 (Folklore). Any two non-trivial open sets are Wadge equiva-lent. The same holds for non-trivial 
losed sets.Proof. It is enough to see that (0; 1) �RW U for any non-trivial open set U .The fa
t (0; 1) �W U is easy to see: U 
onsists of disjoint open intervals andwe let (a; b) be one of them, then we 
an easily map (0; 1) into a subset of (a; b)and the 
omplement of (0; 1) to the point a 
ontinuously (when a = �1, wemap (0; 1) to a subset of (a; b) and the 
omplement of (0; 1) to the point b). This
ontinuous fun
tion witnesses (0; 1) �RW U .For U �W (0; 1), if f(an; bn) j n 2 !g is a set of pairwise-disjoint open intervalswith U = Sn2!(an; bn), then we 
an 
ontinuously map (an; bn) into a subset of
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h n and the 
omplement of U into the point 0 in the same way asabove. This 
ontinuous fun
tion witnesses U �RW (0; 1).The assertion for 
losed sets follows from the observation that if A �RW B,then A
 �RW B
.As we have seen in Theorem 5.1.2, on
e we go up to the sets obtained by thedi�eren
e of two open sets, then there are a lot of subsets of the real line whi
hare not Wadge 
omparable ea
h other while sets of reals in the Baire spa
e arealmost Wadge 
omparable in the sense of Theorem 1.15.1. Hen
e the agreementof the real line and the Baire spa
e with respe
t to Wadge redu
ibility is limitedto 
losed sets and open sets.Sin
e R is 
onne
ted, there is no 
lopen subset of the real line ex
ept ; andthe whole spa
e R. Hen
e non-trivial open sets 
annot be redu
ed to non-trivial
losed sets and vi
e versa, i.e., non-trivial 
losed sets are not 
omparable to non-trivial open sets with respe
t to �RW. Also they are minimal in the sense thatthere is no subset of the real line between the empty set (or the whole spa
e)and 
losed sets (or open sets) with respe
t to the Wadge order. We say thata subset A of a topologi
al spa
e X is <XW-minimal if ; <XW A and there is noB with ; <XW B <XW A. Non-trivial open sets and non-trivial 
losed sets are<RW-minimal and in the 
ase of the Baire spa
e, the <!!W -minimal sets are exa
tlythe non-trivial 
lopen sets by Wadge's Lemma, in parti
ular every set of reals isWadge 
omparable to a 
lopen set in the Baire spa
e. But as we have seen in theparagraph after Proposition 5.1.1: The rationals Q are not 
omparable to anynon-trivial 
losed set and to any non-trivial open set. We now 
onsider whi
hsubsets of the real line are not 
omparable to non-trivial open sets or non-trivial
losed sets.De�nition 5.1.9. For A � R, we 
onsider the following two 
onditions for A:� (I1): Every point in A is an a

umulation point in A from both sides, i.e.,for any point x in A any open set U with x 2 U , there are points y; z in Asu
h that y < x < z.� (I2): If A 
ontains a bounded interval (a; b), then a; b belong to A.We say A satis�es (I) if A satis�es the 
onditions (I1) and (I2).Any 
ountable dense subset and its 
omplement satisfy the 
ondition (I).Proposition 5.1.10. For any non-trivial subset A of R, the following are equiv-alent:1. The set A satis�es the 
ondition (I1),2. The 
omplement of A satis�es the 
ondition (I2), and3. Any non-trivial 
losed set is not Wadge redu
ible to A.Hen
e A is not 
omparable to any non-trivial open set and any non-trivial
losed set if and only if A satis�es the 
ondition (I). In parti
ular, if A satis�es(I), so do the 
omplement of A and any 
ontinuous preimage of A.
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ibility for the real lineProof. We show the impli
ation 1 to 2 by 
ontraposition. Suppose that the
omplement of A does not satisfy the 
ondition (I2). Then there is an interval(a; b) whi
h is in
luded in A
 but either a or b does not belong to A
, i.e., belongsto A. We may assume a is in A. Then the point a is a 
ounter-example of the
ondition (I1) for A.We show the impli
ation 2 to 3 by 
ontraposition. Suppose F �RW A for somenon-trivial 
losed set F via a 
ontinuous fun
tion f . By Proposition 5.1.8, wemay assume F 
 = (0; 1). Then f [(0; 1)℄ is a subset of A
. Sin
e f is 
ontinuousand 0; 1 do not belong to A
, f [(0; 1)℄ is an interval 
ontained in A
 su
h that atleast one of the end-points of it does not belong to A
. This shows the negationof 2.We show the impli
ation 3 to 1 by 
ontraposition. Suppose there is a pointx in A su
h that x is not an a

umulation point of A from the right side, i.e.,there is a b in A
 su
h that (x; b) is 
ontained in A
. By the same argument as inProposition 5.1.8, we 
an redu
e (0; 1) to A
. Hen
e the 
omplement of (0; 1) isWadge redu
ible to A as desired.The subsets of the real line whi
h are not Wadge 
omparable to any non-trivialopen set and to any non-trivial 
losed set 
annot be very simple:Proposition 5.1.11. Let A be a non-trivial subset of R satisfying (I). Then Ais not �02.Proof. Let A be as above and F be the boundary of A, i.e., A \ A
. We use thefollowing fa
t:Fa
t 5.1.12. If A is �02, then either A \ F or A
 \ F is not dense in F .Proof. See [53, pp. 98, 99, 258, 417℄.Hen
e it suÆ
es to show that A \ F and A
 \ F are dense in F . By Propo-sition 5.1.10, it suÆ
es to see that A \ F is dense in F . We show that for anyopen interval U with U \ F 6= ;, U \ F \ A 6= ;.Take any su
h U . Sin
e U \F 6= ;, there is a point x whi
h is in U and F . Ifx is in A, then x 2 U \ F \ A and we are done.So suppose x is not in A. Sin
e x 2 F � A, there is a point y in A su
h thaty 2 U . Consider the 
onne
ted 
omponent Cy 
ontaining y in A. It will remain
onne
ted in R. Hen
e Cy is a singleton or an interval. If Cy is a singleton namelyfyg, then we are done be
ause y 2 U \ F \ A.So suppose Cy is an interval with endpoints a and b (a or b might be �1 or1). Sin
e x is not in A and x is in U , Cy + U . Therefore either a or b belongsto U . Assume a is in U . Then sin
e (a; b) � A, by the 
ondition (I2) for A, abelongs to A and also to A
. Hen
e a is in U \ F \ A and U \ F \ A 6= ;.
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e Q and the 
omplement of it satisfy the 
ondition (I), the above propo-sition is optimal with respe
t to the 
omplexity.We now investigate the Wadge stru
ture below the rationals Q . The �rstobservation is a trivial appli
ation of a ba
k-and-forth argument:Proposition 5.1.13 (Folklore). Any 
ountable dense subset of the real line isWadge equivalent to the rationals.Proof. Let A be any 
ountable dense subset of the real line. By a standard ba
k-and-forth argument, there is an order isomorphism i between (A;<) and (Q ; <).Let �{ be the 
anoni
al order isomorphism from R to itself extending i, i.e., for areal number r, �{(r) = supfi(a) j a 2 A and a < rg:This is well-de�ned and �{ is homeomorphism be
ause the topology of the real lineis the order topology with its natural order. It is easy to 
he
k that �{�1(Q) = Aand �{(A) = Q . Hen
e A �W Q .It is natural to ask whether Q is <RW-minimal. The answer is \No":Proposition 5.1.14. The rationals Q is not <W-minimal.Proof. We will show that there is a 
ontinuous fun
tion f : R ! R su
h thatf�1(Q) is nowhere dense. By Proposition 5.1.1, Q is not Wadge-redu
ible tof�1(Q). Hen
e f�1(Q) <W Q . Therefore, it suÆ
es to 
onstru
t su
h a 
ontinu-ous fun
tion f .Let g : [0; 1℄ ! [0; 1℄ be the Cantor fun
tion, i.e.,g Xn2! 2an3n+1! = Xn2! an2n+1on the Cantor set and g is 
onstant on ea
h open interval disjoint from the Cantorset in su
h a way that g is 
ontinuous. Let h : R ! R be the 
ontinuous extensionof g obtained by translation, i.e.,h(x) = g(x� n) + n if n � x < n+ 1 for some integer n.Let f = h +p2. Then f is 
ontinuous and surje
tive. Sin
e the preimage ofthe irrationals of g is a subset of the Cantor set, it is nowhere dense. Hen
e thepreimage of the irrationals of h is nowhere dense, whi
h implies that the preimageof the rationals of f (i.e., f�1(Q )) is nowhere dense.In the above proof, the set f�1(Q) is 
ountable and satis�es the 
ondition (I).Hen
e there are two 
ountable sets with the 
ondition (I) su
h that they are notWadge equivalent.
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ibility for the real lineWe do not know whether there is a <RW-minimal set below Q with respe
t tothe Wadge order.We now dis
uss long as
ending and des
ending sequen
es of subsets of the realline with respe
t to the Wadge order. In the 
ase of the Baire spa
e, by Boreldetermina
y proved by Martin, all the Borel sets are almost prewellordered andthe supremum of the rank of them is an ordinal between !1 and !2 by the work ofWadge. Assuming AD, all the sets of reals in the Baire spa
e are prewellorderedand the supremum of the rank of them is equal to �, where � is the supremumof the ordinals whi
h are the surje
tive images from the reals. Under AD we 
anprove that � is quite huge, e.g., it is a limit of measurable 
ardinals. Hen
e one
an 
onstru
t a very long as
ending sequen
e of sets of reals in the Baire spa
ewith respe
t to the Wadge order while there is no in�nite des
ending sequen
eby Theorem 1.15.2.By Theorem 5.1.2, it is natural (and easier) to 
onsider long as
ending anddes
ending sequen
es of sets of natural numbers with respe
t to ��n when wedis
uss long as
ending and des
ending sequen
es of subsets of the real line withrespe
t to the Wadge order. Sin
e (P(N);��n) and (P(N);��n) are isomorphi
,it suÆ
es to 
onsider only as
ending sequen
es.Proposition 5.1.15. For any 
ountable ordinal �, there is an as
ending sequen
eof sets of natural numbers with length � with respe
t to ��n.Proof. Let � be any 
ountable ordinal. Fix a bije
tion � between � � N and Nand for ea
h � < �, let a� = f�(�; n) j n 2 Ng. Then fa� j � < �g is a pairwisedisjoint family of in�nite subsets of N . For � < �, set b� = S�<� a�. Then thesequen
e hb� j � < �i is the desired sequen
e.Corollary 5.1.16. For any 
ountable ordinal �, there are as
ending and des
end-ing sequen
es of subsets of the real line with length � with respe
t to the Wadgeorder.Note that by Theorem 5.1.2, the above sequen
es 
onsist of sets that are thedi�eren
e of two open sets. Given a 
ountable ordinal � � 1, by repla
ing half-open intervals with proper �0� sets whi
h are dense and 
o-dense in a half openinterval in the 
onstru
tion of i in Theorem 5.1.2, one 
ould embed (P(N);��n)into proper �0� sets of the real line with respe
t to the Wadge order, whereproper �0� sets are �0� sets whi
h are not �0� sets and sets are 
o-dense if their
omplements are dense. Hen
eCorollary 5.1.17. For any 
ountable ordinals � � 2 and �, there are as
endingand des
ending sequen
es of proper �0� subsets of the real line with length � withrespe
t to the Wadge order.We do not know whether one 
ould 
onstru
t an as
ending (or des
ending)sequen
e of subsets of the real line with length !1 with respe
t to the Wadge order



D. Ikegami, Games in Set Theory and Logi
 121without using the Axiom of Choi
e. In the presen
e of the Axiom of Choi
e, it ispossible by the following well-known result:Proposition 5.1.18 (AC, folklore). There is an as
ending sequen
e of sets ofnatural numbers with length !1 with respe
t to ��n. Moreover, if Martin's Axiom(MA) holds, then there is an as
ending sequen
e of sets of natural numbers withlength 
ontinuum.Proof. We �rst show the former statement. Given a ��n-in
reasing sequen
ehan j n 2 !i of in�nite and 
o-in�nite sets of natural numbers, it is easy to �ndan in�nite and 
o-in�nite set of natural numbers a su
h that an ��n a for ea
hn. Using this, we 
an re
ursively 
onstru
t a ��n-in
reasing sequen
e of naturalnumbers with length !1.For the se
ond statement, by [65, Theorem 4.23℄, MA implies that there is a��n-in
reasing sequen
e of sets of natural numbers with length 
ontinuum.Corollary 5.1.19 (AC). Let � be any 
ountable ordinal with � � 1. Then thereare as
ending and de
reasing sequen
es of proper �0� subsets of the real line withlength !1 with respe
t to the Wadge order. Moreover if MA holds, then thereare as
ending and de
reasing sequen
es of proper �0� subsets of the real line withlength 
ontinuum with respe
t to the Wadge order.Before 
losing this se
tion, we 
ome to the question whether there is a maximalset in �0� sets for a 
ountable ordinal � � 1 with respe
t the Wadge order. Inthe 
ase of the Baire spa
e, any proper �0� set is maximal in �0� sets by Wadge'sLemma. In the 
ase of the real line, this fails dramati
ally:Proposition 5.1.20 (AC). There is a family fA� j � < !1g of sets, ea
h beingthe di�eren
e of two open sets in the real line su
h that there is no subset B ofthe real line su
h that A� �RW B for every � < !1.Proof. For ea
h 
ountable ordinal �, let A� be the union of a sequen
e of half-open intervals with order type � (we need AC to pi
k up su
h an !1-sequen
e ofsequen
es of half-open intervals). The following is the key point:Claim 5.1.21. If A� �RW B via f , then f(A�) is the disjoint union of �-many halfopen intervals inside B. Hen
e there is a sequen
e of disjoint half open intervalsinside B with length at least �.Proof of Claim 5.1.21. We show the statement by indu
tion on � < !1. The
ase � = 0 is trivial. If � is a su

essor ordinal and � = � + 1 for some �, thenby indu
tion hypothesis, f(A� n I�) is the disjoint union of �-many half openintervals inside B, where I� is the last half-open interval in A�. By argumentslike in Observation 5.1.3, f(I�) is a half open interval disjoint from f(A� n I�).Hen
e f(A�) is the disjoint union of �-many half open intervals as desired. The� is a limit ordinal is also trivial.



122 Chapter 5. Wadge redu
ibility for the real lineHen
e if A� �RW B for every � < !1, then B must 
ontain �-many half openintervals for every � < !1. But any subset of the real line 
annot 
ontain !1-manyhalf open intervals. Hen
e there is no B su
h that A� �RW B for every � < !1.5.2 Con
lusion and QuestionsAlthough we often identify the real line with the Baire spa
e in set theory, 
ontin-uous fun
tions are sensitive obje
ts and give us two 
ompletely di�erent aspe
tsof Wadge redu
ibility (i.e., 
ontinuous redu
tion) in the Baire spa
e and the realline. It is known that Wadge's Lemma for the real line dramati
ally fails whileit holds for the Baire spa
e. We showed that the Wadge order for the real lineis ill-founded while it is known that the Wadge order for the Baire spa
e is well-founded. We also investigated several properties of the Wadge order for the realline and 
ompare it with the one for the Baire spa
e.Let us �nish this 
hapter by raising questions:The Wadge order below the rationals Q . As we have seen, the rationalsQ is Wadge in
omparable to non-trivial 
losed sets and open sets and Q is not<RW-minimal by Proposition 5.1.14. But we do not know how the stru
ture of theWadge order below Q looks like.Question 5.2.1. Is there a <RW-minimal set below Q?Long as
ending and des
ending sequen
es of the Wadge order withoutAC. As mentioned, we 
an produ
e as
ending and des
ending sequen
es of theWadge order with an un
ountable length assuming the Axiom of Choi
e. Howabout without AC?Question 5.2.2. Can we prove the existen
e of as
ending and des
ending se-quen
es of the Wadge order for the real line with length !1 without using AC?The Wadge order for Polish spa
es. We have investigated the Wadge orderfor the real line. For this analysis, the 
onne
tedness of the spa
e was essential.The question is how far 
an we generalize the above results for 
onne
ted Polishspa
es. Some work by Philipp S
hli
ht [74℄ deals with related issues.



Chapter 6Fixed-Point Logi
 and Produ
t Closure

Standard �rst-order logi
 has some simple but important 
losure properties. First,it is 
losed under relativization: Given a formula  with one free variable, forevery formula �, there is a formula (�) whi
h says that � holds in the sub-model 
onsisting of all obje
ts satisfying  . Also useful is 
losure under predi
atesubstitutions: Given unary predi
ate letter P and a formula  with one freevariable, for every formula �, there is a formula [ =P ℄� whi
h says that � holdsin the model that interprets P as the set of all obje
ts satisfying  in the originalmodel and the rest of the interpretation is the same as the original one. Moreover,it is 
losed under some kind of produ
t 
onstru
tion whi
h allows us to interpretthe rationals Q by the integers Z as a de�nable subset of the Cartesian produ
t(Z� Z).The three mentioned properties also hold in many languages extending �rst-order logi
, for example LFP(FO), �rst-order logi
 with added �xed-point oper-ators. In this 
hapter, we de�ne a pre
ise sense of `produ
t 
losure' in terms ofmodal languages whi
h originally 
omes as an extension of publi
 announ
ementin epistemi
 logi
 where we formulate logi
 of knowledge and information 
ow.Then we investigate the produ
t 
losure of modal �xed-point logi
s in
ludingPDL and the modal �-
al
ulus.There are 
ertain in�nite games, 
alled parity games, whi
h serve as the gamesemanti
s for modal �xed-point logi
s, and the history-free determina
y of paritygames is important for the semanti
s of modal �xed-point logi
s. The proofs ofthis 
hapter 
ould be reformulated in terms of parity games, but this would notbe to the bene�t of the 
larity of the argument, so we de
ided not to do it.123



124 Chapter 6. Fixed-Point Logi
 and Produ
t Closure6.1 Basi
 notions and ba
kgroundBasi
 settingWe assume that readers are familiar with basi
s of modal logi
 (e.g., given in [14℄).We �rst �x our setting throughout this 
hapter. In the modal logi
s we are goingto work with, we have Boolean 
onne
tives (negation, disjun
tion, 
onjun
tion,and impli
ation) and modal operators ([i℄ and hii) for i 2 I where I is a �xed�nite set throughout this 
hapter (we do not use �rst-order quanti�ers in ourmodal languages). Hen
e Kripke models are of the form (M; fRigi2I ; V ) whereM is the universe of the stru
ture, Ri is an a

essibility relation (i.e., a binaryrelation on M) for ea
h i 2 I, and V is the valuation for the stru
ture (i.e.,V : Prop ! P(M) and Prop is a �xed 
ountable in�nite set of all propositionalletters). The semanti
s of the propositional letters, Boolean 
onne
tives, andmodal operators for Kripke models are standard. Let us review it only for modaloperators: For i 2 I, a formula �, a Kripke model M = (M; fRigi2I ; V ) and aworld s 2M , M; s � [i℄� () for all t; if sRit; then M; t � �;M; s � hii� () for some t; sRit and M; t � �:Relativization and publi
 announ
ementNext, we introdu
e the relativization of a given Kripke model via a formula. Fora Kripke model M = (M; fRigi2I; V ) and a formula P , 
onsider the followingKripke model MjP : The universe is the set of all worlds s in M with M; s � P(denoted by M jP ), and all the relations and the valuation are the restri
tion ofthe original ones to the new universe, i.e., for ea
h i 2 I, R0i = Ri\ (M jP �M jP )and V 0(p) = V (p) \M jP . For ea
h formula P , we add the new modal operator[!P ℄ with the following semanti
s: Given a Kripke model M with a world s anda formula �, M; s � [!P ℄� () if M; s � P; then M jP; s � �:The dual modal operator h!P i 
an be introdu
ed in the standard way.For a modal logi
 L, let Lrel be the least modal logi
 
ontaining L and theoperators [!P ℄ for ea
h formula P in Lrel (i.e., 
losed under the operation mappingpairs (P; �) to formulas [!P ℄�). A modal logi
 L is 
losed under relativization ifany formula in Lrel is semanti
ally equivalent to some formula in L.Philosophi
ally speaking, we regard I as the set of agents and modalities [i℄as what agent i knows or what is true to the best of i's information via thea

essibility relation Ri, i.e., given a formula �, the formula [i℄� means \Theagent i knows �". From this point of view, the formula [!P ℄� means \After the`event' P happens, � holds" be
ause the new a

essibility relation R0i is restri
ted
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 125to the worlds in M jP where the formula P is true. Hen
e ea
h agent i in I is`announ
ed' the `event' P in the new model MjP . In this way, we express thepubli
 announ
ement of the event P to ea
h agent and this is why we 
all thebasi
 modal logi
 with operators [!P ℄ publi
 announ
ement logi
.Many modal logi
s are not only 
losed under relativization but also have sim-ple re
ursive translations from formulas in the expanded languages to semanti
allyequivalent formulas in the original languages. For example, let the basi
 modallogi
 be the smallest modal logi
 in the setting we have �xed at the beginning (i.e.,it has Boolean 
onne
tives, modal operators [i℄; hii for i 2 I, and propositionalletters in Prop). Then the following equivalen
es (so-
alled redu
tion axioms)give us the translation witnessing its 
losure under relativization:[!P ℄p $ P ! p for propositional letter p;[!P ℄:� $ P ! :[!P ℄�;[!P ℄(� ^  ) $ [!P ℄� ^ [!P ℄ ;[!P ℄[i℄� $ P ! [i℄(P ! [!P ℄�):Is this always the 
ase? No. For example, let us add the following modaloperators CG for G � I to the basi
 modal logi
 expressing 
ommon knowledge(e.g., everyone knows that everyone knows that, and so on: : :). Formally, for anyformula � and Kripke model M = (M; fRigi2I ; V ) with world s,M; s � CG� () for all worlds t rea
hable from s by some �nitesequen
e of [i2GRi steps, M; t � �:This amounts to adding an operator of re
exive-transitive 
losure over the unionof all individual a

essibility relations. This in�nitary operation takes us fromthe basi
 modal language into a fragment of so-
alled propositional dynami
 logi
(PDL) that we will de�ne later. It 
an be shown that this fragment does not havethe relativization property: Indeed, the formula [!p℄CGq is not de�nable withoutmodalities [!p℄. Van Benthem, van Eij
k and Kooi [11℄ proved this unde�nabil-ity and go on to propose ri
her epistemi
 languages, using ri
her fragments ofPDL whi
h do have relativization 
losure, using so-
alled `
onditional 
ommonknowledge' CG(�;  ) whi
h says that � is true in every world rea
hable with stepsstaying inside the  -worlds.Event models and produ
t updateIn publi
 announ
ement [!P ℄, all the agents obtain the same amount of informa-tion, namely P . In real-life s
enarios, di�erent agents often have di�erent powersof observation. Produ
t update was introdu
ed to model these situations. Wework with event models
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 and Produ
t ClosureE = (E; fRigi2I;PRE),where E is a �nite set of \events", Ri is an a

essibility relation on E for theagent i (hen
e Ri � E�E), and PRE is a pre
ondition fun
tion that maps eventse 2 E to pre
ondition formulas PREe (i.e., formulas in a given modal logi
) whi
hmust hold in order for the event to o

ur. For a formula P , the basi
 event modelEP is as follows: It has only one event e0 and Ri = f(e0; e0)g and PREe0 = P .This event model will play the same role as the operator [!P ℄ does.Given an event model E = (E; fRigi2I ;PRE), \produ
t update" turns aKripke model M into another Kripke model M � E as follows: The universeof M � E (we write jM � Ej) is the set of all pairs (s; e) in M � E su
hthat (M; s) � PREe, the new a

essibility relation satis�es (s; e)Ri(t; f) if bothsRit and eRif for ea
h i 2 I, and the new valuation is the same as M, i.e.,V (p) = f(s; e) 2 jM� Ej j s 2 V (p)g for ea
h p in PROP. Note that if E is EPfor some formula P , then M�EP is naturally isomorphi
 to MjP .The produ
t model M�E with a world (s; e) re
ords the information of di�er-ent agents after some event e has taken pla
e in the epistemi
 setting representedby E. The un
ertainty among new worlds (s; e); (t; f) 
an only 
ome from oldun
ertainty among s; t via indistinguishable events a; b.Given an event model E with an event e, we introdu
e the modal operator[E; e℄ as follows: For a formula � and Kripke model M with world s,M; s � [E; e℄� () if M; s � PREe; then M� E; (s; e) � �:The dual modal operator hE; ei 
an be introdu
ed in the standard way. It is easyto see that if E is EP for some formula P , then the modal operator [EP ; e0℄ isreally the same as [!P ℄.We now introdu
e the produ
t update 
losure of modal logi
s. For a modallogi
 L, let Lp be the least modal logi
 
ontaining L and the operators [E; e℄ forea
h event model E with an event e whose pre
ondition fun
tion maps events toformulas in Lp. A modal logi
 L is 
losed under produ
t update if any formula inLp is semanti
ally equivalent to a formula in L.As is expe
ted, the basi
 modal logi
 is 
losed under produ
t update by thefollowing equivalen
es:[E; e℄p $ PREe ! p for propositional letter p;[E; e℄:� $ PREe ! :[E; e℄�;[E; e℄(� ^  ) $ [E; e℄� ^ [E; e℄ ;[E; e℄[i℄� $ PREe ! ^eRif in E[i℄[E; f ℄�:This is due to Baltag, Moss and Sole
ki [8℄.But again, the situation gets more 
ompli
ated when we add 
ommon knowl-edge operators CG for G � I. In this 
ase, no redu
tion to the language without
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an be solved by moving to proposi-tional dynami
 logi
 (PDL) whi
h allows more modalities [�℄ than just the basi
modalities [i℄ for i 2 I. The set of su
h �s (
alled programs in the 
ontext ofPDL) is the smallest set satisfying the following: It 
ontains i for all i 2 I andthe tests ?� for ea
h formula � in the language, and is 
losed under the opera-tions \unions" �1 [ �2, \
ompositions" �1; �2 and \Kleene iterations" ��. Morepre
isely, in the language of PDL, the set of formulas � and the set of programs� are simultaneously and re
ursively de�ned in the following way:� ::= p (p 2 PROP) j :� j � ^ � j � _ � j [�℄� j h�i�;� ::= i (i 2 I) j?� j � [ � j �; � j ��:Semanti
s of formulas in PDL are given by assigning the relations R� on theuniverse of a given Kripke model to ea
h program � given the relations Ri for ea
hi 2 I and interpreting [�℄� and h�i� in exa
tly the same way as for formulas [i℄�and hii� with using R� instead of Ri. Given a Kripke modelM = (M; fRigi2I; V ),the relations R� are re
ursively de�ned as follows:R?� = f(s; s) j (M; s) � �g;R�1[�2 = R�1 [ R�2;R�1;�2 = f(s; t) j (9u 2M) (s; u) 2 R�1 and (u; t) 2 R�2g;R�� = R��;where R�� is the re
exive and transitive 
losure of R�.Theorem 6.1.1 (Van Benthem and Kooi [13℄). The modal logi
 PDL is 
losedunder produ
t update.The produ
t update 
losure of PDL was �rst proved by van Benthem andKooi [13℄ using �nite automata to serve as \
ontrollers" restri
ting state sequen
esin produ
t modelsM�E. The se
ond proof of this fa
t was given by van Benthem,van Eij
k and Kooi [11℄ where they use Kleene's Theorem for regular languages
onne
ting the theory of �nite automata with PDL. The third proof, whi
h wepresent here, is given by van Benthem and the author [12℄ where they regard PDLas a weak fragment of the modal �-
al
ulus (whi
h we de�ne in the next se
tion).In this 
hapter, we strengthen the last point of view: We give a uniform proofof the produ
t update 
losure for three �xed-point logi
s: The modal �-
al
ulus,PDL and the 
ontinuous fragment of the modal �-
al
ulus (CF). We �rst give theproof for the modal �-
al
ulus as a proto-type and then apply the same argumentfor the other two logi
s using Venema's 
hara
terization of PDL as a fragment ofthe modal �-
al
ulus.
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 and Produ
t Closure6.2 The 
ase for the modal �-
al
ulusIn this se
tion, we introdu
e the modal �-
al
ulus and prove its produ
t update
losure. In the syntax of the modal �-
al
ulus, we add two �xed-point operators� and � to the basi
 modal logi
 whi
h denote the \least �xed-point" and the\largest �xed-point" respe
tively. More pre
isely, the set of formulas in the modal�-
al
ulus is re
ursively de�ned as follows:� ::= p (p 2 PROP) j :� j � ^ � j hii� j �x:�(x);where any o

urren
e of the variable x (whi
h is formally an element of PROP) ispositive in �(x), if the number of negation symbols binding the o

urren
e is even.(We say it is negative if the number is odd.) As is usual, one 
an de�ne � _  tobe :(:� ^ : ), [i℄� to be :hii:�, and �x:�(x) to be :�x::�(:x) respe
tively.Formulas �(x) with only positive o

urren
es of the proposition letter x de�nea monotoni
 set transformation from P(M) to itself in any Kripke model M :FM� (X) = fs 2M j (M[x := X℄; s) � �g;where the model M[x := X℄ is obtained by repla
ing V (x) with X and giving thesame stru
ture for the rest as M, i.e., the universe of M[x := X℄ is M , RM℄x:=X℄i =RMi , VM[x:=X℄(p) = X if p = x, and otherwise VM[x:=X℄(p) = VM(p). Note thatthe map FM� is monotone in the sense that X � Y implies that FM� (X) � FM� (Y ).The formula �x:�(x) de�nes the smallest �xed-point of this transformationand �x:�(x) de�nes the greatest �xed-point of FM� , i.e., the subsets X, Y of Msu
h that FM� (X) = X;FM� (Y ) = Y and X is the smallest set with this propertyand Y is the largest set with this property respe
tively. Both exist for monotonemaps by the Tarski-Knaster theorem (for the proof, see, e.g., the Handbook arti
leby Brad�eld and Stirling [18℄). This means that the semanti
s of �x:�(x) is givenas follows: (M; s) � �x:�(x) if s is in the least �xed-point of the operator FM� .The semanti
s of �x:�(x) is de�ned in the same way with the greatest �xed-point of the operator FM� . For 
onvenien
e, we assume that ea
h o

urren
e of a�xed-point operator binds a unique proposition letter.Now we are ready to prove the produ
t update 
losure for the modal �-
al
ulus.Theorem 6.2.1. The modal �-
al
ulus is 
losed under produ
t update.Proof. We prove the statement by indu
tion on the 
omplexity of formulas. Weonly 
onsider the least �xed-point 
ase �x:�(x) be
ause the greatest �xed-point
ase 
an be redu
ed to the ones for the negation and for the least �xed-point andother 
ases have been dealt for the basi
 modal logi
 in the last se
tion.Our main task is to analyze �xed-point 
omputations in produ
t models M�E in terms of similar 
omputations in the original model M. The followingidea turns out to work here. Let X be a subset of M � E. Modulo the event



D. Ikegami, Games in Set Theory and Logi
 129pre
onditions possibly ruling out some pairs, we 
an des
ribe X, without loss ofinformation, in terms of the sequen
e of its proje
tions to the events in E, viewedas a �nite set of indi
es. Thus, we 
an des
ribe the 
omputation in M � E bymeans of a �nite set of 
omputations in M . The following set of de�nitions andobservations makes this pre
ise.Take any Kripke model M and any event model E. Let n be the number ofelements of E and let E = fejg1�j�n. There are 
anoni
al mappings � : P(M)n !P(jM� Ej) and � : P(jM�Ej) ! P(M)n with � Æ � = id:�( ~X) = [1�j�n(Xj � fejg) \ (jM� Ej);�(Y ) = fYjg1�j�n;where Yj = fx 2M j (x; ej) 2 Y g:Given a positive formula �(x) in the modal �-
al
ulus, let FM�E� : P(jM�Ej)! P(jM�Ej) be the monotone fun
tion indu
ed by �(x). De�ne F �(x) : P(M)n !P(M)n as follows: F �(x) = � Æ FM�E� Æ �:We 
laim that FM�E� is monotone if and only if F �(x) is monotone. Sup-pose FM�E� is monotone. Sin
e �; � are monotone and 
ompositions of monotonefun
tions are monotone, F �(x) is also monotone. To prove the 
onverse, supposeF �(x) is monotone. Pi
k any X; Y 2 P(jM � Ej) with X � Y . First note thatFM�E� (X) � FM�E� (Y ) holds if and only if � Æ FM�E� (X) � � Æ FM�E� (Y ) holds.Hen
e all we have to 
he
k is � Æ FM�E� (X) � � Æ FM�E� (Y ). But� Æ FM�E� (X) = � Æ FM�E� �� Æ �(X)� = � Æ FM�E� Æ ���(X)�= F �(q)��(X)� � F �(q)��(Y )� = � Æ FM�E� Æ ���(Y )�= � Æ FM�E� �� Æ �(Y )� = � Æ FM�E� (Y );where the above in
lusion follows from the monotoni
ity of F �(x) and �.Moreover, there is a further 
anoni
al 
orresponden
e : if ~X is an F �(x)-�xed-point, then �( ~X) is an FM�E� -�xed-point, and if Y is an FM�E� -�xed-point, then�(Y ) is an F �(x)-�xed-point. Sin
e � and � preserve in
lusions, the least F �(x)-�xed-point 
orresponds to the least FM�E� -�xed-point in the following way: If ~Xis the least F �(x)-�xed-point, then �( ~X) is the least FM�E� -�xed-point. Also if ~Yis the least FM�E� -�xed-point, then �(~Y ) is the least FM�E� -�xed-point.Remark 6.2.2 (Relating �xed-point 
omputations in di�erent models). The ar-gument above may be seen as a spe
ial 
ase of the following \Transfer Lemma":Given two 
omplete latti
es E and F , a fun
tion f : E ! F and an ordinal �, f is
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t Closure
alled �-sup-
ontinuous (resp., �-inf-
ontinuous) if for any nonde
reasing (resp.,nonin
reasing) sequen
e hx� j � < �i of elements of E,_F f(fx� j � < �g) = f  _E fx� j � < �g!(resp., VF f(fx� j � < �g) = f (VEfx� j � < �g).Lemma 6.2.3 (Transfer Lemma). Let E and F be two 
omplete latti
es. Letf : E ! F be a mapping that is �-inf-
ontinuous and �-sup-
ontinuous for anyordinal � and su
h that f(?E) = ?F and f(>E) = >F .Let g : E ! E and h : F ! F be two monotoni
 mappings su
h that f Æ g =h Æ f . Let a and b be the least and the greatest �xed points of g and let a0 andb0 be the least and the greatest �xed points of h. Then a0 = f(a) and b0 = f(b).Proof. See [3, Lemma 1.2.15℄.This lemma only uses our � fun
tion, while we added the fun
tion � for 
larity,to restri
t an input to the inverse image of � | whi
h is why the equation �Æ� = idholds. For further ba
kground on this kind of argument, 
f. [17℄.So far, we have seen that the least FM�E� -�xed-point 
an be 
orrelated withthe least F �(x)-�xed-point via � and �. Our next task is to show that [E; e℄ �x:�(x)is a
tually de�nable in the modal �-
al
ulus. For that purpose, �rst note that[E; ej℄ �x:�(x) de�nes the jth 
oordinate of the least FM�E� -�xed-point. By thede�nition of �, it is also the jth 
oordinate of the least F �(x)-�xed-point. It iseasy to see that the modal �-
al
ulus is 
losed under simultaneous �xed-pointoperators by using the following lemma repeatedly:Lemma 6.2.4 (Gauss elimination prin
iple). Let E; F be 
omplete latti
es andf1; f2 be monotone operators from E � F to itself. Let � denote the least �xedpoint, � denote the greatest �xed point and � be � or �. Let g1 : F ! F besu
h that g1(y) = �x:f1(x; y) and let (a; b) = �(x; y):�f1(x; y); f2(x; y)�. Thenb = �y:f2(g1(y); y) and a = g1(b).Proof. See [3, Proposition 1.4.7℄.Hen
e if we 
an express F �(x) by a formula of the modal �-
al
ulus withpositive variables, then [E; ej℄ �x:�(x) is de�nable in the modal �-
al
ulus andwe are done.To prove this, we generalize the synta
ti
 analysis to formulas with manyvariables ~x = x1; : : : ; xm. For any formula �(~x) in the modal �-
al
ulus, de�neFM�E�(~x) : P(jM� Ej)m ! P(jM�Ej) as follows:FM�E�(~x) (~Y ) = f(s; a) j �(M� E)[xk := Yk℄; (s; a)� � �(~x)g;where ~Y 2 (jM�Ej)m.
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 131Claim 6.2.5. For any formula �(~x) in the modal �-
al
ulus, there are formulas~ �(~y) su
h that F �(~x) = FM~ � and(�) For any 1 � k � m, if all the o

urren
es of xk in � are positive (resp.,negative), then for ea
h 1 � j; j 0 � n, all the o

urren
es of yk;j in ( �)j0 arepositive (resp., negative),where F �(~q) : P(M)m�n ! P(M)n is de�ned as follows:F �(~q)( ~X) = ��FM�E�(~x) �(�(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)��:Proof of Claim 6.2.5. In the following de�nitions, we only display the essentialargument variables needed to understand the fun
tion values. We prove thestatement by indu
tion on the 
omplexity of �. We identify formulas with theirtruth sets. Also, if ~ is a sequen
e of formulas,  j is the jth 
oordinate of ~ .� Case 1: � = p (p is not in ~q).F �(~x) = �p ^ PREe1 ; : : : ; p ^ PREen�:Hen
e ( �(~x))j = p ^ PREej . It is easy to 
he
k (�).� Case 2: � = xk (xk is the kth 
oordinate of ~x).F �(~x)( ~X) = fXk;j ^ PREejg1�j�n:Hen
e ( �(~x))j = yk;j ^ PREej , where yk;j is the jth variable in the kth blo
k
orresponding to xk. It is also easy to 
he
k (�).� Case 3: � = �1 ^ �2. F �(~x) = ~ �1 ^ ~ �2 :Hen
e ~ �(~x) = ~ �1 ^ ~ �2 . It is easy to 
he
k (�).� Case 4: � = :�0. F �(~x) = f:( �0)j ^ PREejg1�j�n:Hen
e ( �(~x))j = :( �0)j ^ PREej . It is easy to 
he
k (�) by our indu
tivehypothesis, and the simultaneous de�nition for positive and negative o

urren
es.� Case 5: � = hii�0:For any 1 � j � n and s 2M ,s 2 �F �(~x)( ~X)�j ()(1 � 9j 0 � n) (9t 2M) �sRit ^ ejRiej0 ^ t 2 �F �0(~x)( ~X)�j0�:
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 and Produ
t ClosureTo see that this is true, observe that the 
ondition t 2 �F �0(~x)( ~X)�j0 implies(t; ej0) 2 jM � Ej be
ause t must be the j 0th 
oordinate of an image of � by thede�nition of F �0(~x). Therefore, we 
an put� �(~x)�j = _ejRiej0hii� �0(~x)�j0:� Case 6: � = �x0:�0, where all the o

urren
es of x0 are positive in �0.F �(~x)( ~X) =n�FM�E�x0:�0(x0;~x)�(�(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)��jo1�j�n=( �x0 7! FM�E�0(x0;~x)��(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)���!j)1�j�n=� ~X 0 7! FM~ �0 ( ~X 0; ~X)��;where (F (�))� is the least F -�xed-point. In the above equations, the �rst equalityis by the de�nition of F �(~x), the se
ond is by the de�nition of FM�E�x0:�0(x0;~x), and thethird follows from the indu
tion hypothesis and the fa
t that the simultaneous�xed points are invariant under the order of appli
ations of single �xed points.By the indu
tion hypothesis, all the o

urren
es of y0j are positive in ( ~�0)j0 forany 1 � j; j 0 � n, where ~y0 
orresponds to x0. Sin
e the modal �-
al
ulus is 
losedunder simultaneous �xed-point operators, we 
an put ~ �(~x) = �~x0: ~ �0(~x), whi
his also in the modal �-
al
ulus. Sin
e �-operators do not 
hange the positivity(negativity) of variables not bounded by them, (�) also holds in this 
ase.The proof of the last 
ase explains why we needed to `blow-up' in the numberof variables in Claim 6.2.5. Also, we proved the 
laim for arbitrary formulas (notonly for positive ones) be
ause otherwise we 
annot use the indu
tion hypothesisin Case 4 (if a variable is positive in �, then it must be negative in �0).As in the 
ase for the basi
 modal logi
, we also have a re
ursive translationfor [E; ej℄�x:�(x) by taking the jth 
oordinate of the simultaneous �xed-pointexpression �~y:~ �(~y). Sin
e our proof is e�e
tive, we 
an e�e
tively 
ompute theshape of the translation (or the redu
tion axiom).6.3 The 
ase for PDLIn this se
tion, we prove that PDL is also 
losed under produ
t update usingVenema's 
hara
terization of PDL as a fragment of the modal �-
al
ulus. Let us�rst see this 
hara
terization.
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 133Given a �nite subset P of PROP, we de�ne the 
ompletely additive fragmentwith respe
t to P (denoted by PDL0(P )) as follows:� ::= p (p 2 P ) j  j  ^ � j � _ � j hii� j �x:�0(x);where  belongs to the P -free fragment of the modal �-
al
ulus (i.e., none of thevariables in P has a free o

urren
e in  ), and �0 2 PDL0(X [ fxg) and x is notin P . (Hen
e, to be rigorous, the logi
s PDL0(P ) (P � PROP and P is �nite)are simultaneously re
ursively de�ned with the above rules).We de�ne PDL0 to be the fragment of the modal �-
al
ulus where the use ofthe least �xed-point operator is restri
ted to the 
ompletely additive fragment.Formally, � ::= p (p 2 PROP) j :� j � _ � j hii� j �x: (x);where  2 PDL0 \ PDL0(fxg).Theorem 6.3.1 (Venema [85℄). The modal logi
 PDL is e�e
tively equivalent tothe fragment PDL0, i.e., there is an e�e
tive translation from formulas in PDL toones in PDL0 su
h that it preserves the truth values of the formulas in any Kripkemodel and vi
e versa.With the help of this theorem, we 
an apply the same argument for the produ
tupdate 
losure of PDL. As mentioned in the last paragraph of x 6.1, Theorem 6.1.1is due to van Benthem and Kooi [13℄ and is not new. We will give a new proof ofthis known result.Proof of Theorem 6.1.1. We will show that the fragment PDL0 is 
losed underprodu
t update instead of PDL itself. The proof is basi
ally the same as the 
asefor the modal �-
al
ulus. We show the statement by indu
tion on the 
omplexityof formulas. As before, we only 
onsider the �xed-point 
ase. From now on, we�x the event model E.In the proof for the 
ase of the modal �-
al
ulus, one of the points was the
losure under simultaneous �xed-point operators. Here is the 
orresponding fa
tin the 
ase for the fragment PDL0, whi
h is easy to 
he
k:Remark 6.3.2. Let X, fy1; : : : ; yng be disjoint �nite subsets of PROP. Then if�1(y1, : : : ; yn), : : : ; �n(y1; : : : ; yn) are in PDL0\PDL0(X[fy1; : : : ; yng), then ea
h
oordinate of the following formula is in PDL0 \ PDL0(X):�0BBB� y1y2...yn
1CCCA �0BBB� �1(y1; : : : ; yn)�2(y2; : : : ; yn)...�n(y1; : : : ; yn) 1CCCA
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 and Produ
t ClosureBy the same argument as in the 
ase for the modal �-
al
ulus, if we 
anexpress F �(q) by formulas in PDL0 \ PDL0(x1; : : : ; xn) for some fresh variablesx1; : : : ; xn for any formula �(q) in PDL0 \PDL0(fqg), we are done. The following
laim with the above remark is enough for that:Claim 6.3.3. Let �(~q) be a formula in PDL0 \ PDL0(~q) where ~q is a sequen
e ofvariables (possibly not in �) with length m and every variable in ~q does not o

urin any pre
ondition formula inE. Take fresh variables xk;j (1 � k � m; 1 � j � n)whi
h do not appear in any pre
ondition formula in E or in � or in ~q. Thenthere is a sequen
e ~ �(~q) of formulas in PDL0 \ PDL0(~x) with length n su
h thatF �(~q) = FM~ �(~q) for any Kripke model M and(��) for a natural number k with 1 � k � m, if there is a j su
h that xk;j is freein the jth 
oordinate of ~ �(~q), then qk is also free in �(~q).Proof of Claim 6.3.3. In the following de�nitions, we only display the essentialargument variables needed to understand the fun
tion values. We prove thestatement by indu
tion on the 
omplexity of �, following the rules in PDL0. Weidentify formulas with their truth sets. Also, if ~ is a sequen
e of formulas,  j isthe jth 
oordinate of ~ .� Case 1: � = p (p is not in ~q).F �(~q) = �p ^ PREe1 ; : : : ; p ^ PREen�:Hen
e ( �(~q))j = p^PREej . Then this is in PDL0. Sin
e ea
h xk;j does not appearin any pre
ondition formula in E, ( �(~x))j is also in PDL0(~x). Sin
e ea
h xk;j doesnot appear in the formula p ^ PREej , the 
ondition (��) is immediate.� Case 2: � = qk (qk is the kth 
oordinate of ~q).F �(~q)( ~X) = fXk;j ^ PREejg1�j�n:Hen
e ( �(~q))j = xk;j ^ PREej , where xk;j is the jth variable in the kth blo
k
orresponding to qk. By the same reasoning as in Case 1, PREej is in PDL0 \PDL0(~x) and hen
e xk;j ^ PREej is also in PDL0 \ PDL0(~x). It is easy to 
he
k(��).� Case 3: � = :�0. F �(~q) = f:( �0)j ^ PREejg1�j�n:Hen
e ( �(~q))j = :( �0)j ^ PREej and this is in PDL0. Note that in this 
ase,any free variable in �0 is not in ~q (otherwise � would not belong to PDL0(~q)). Bythe indu
tion hypothesis, the 
ondition (��) is true for ~ �0 . Hen
e there is nofree variable in ( �0)j whi
h is of the form xk;j and the formula :( �0)j is also in
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 135PDL0(~x) and so :( �0)j ^ PREej is in PDL0 \ PDL0(~x) as desired. It is easy to
he
k the 
ondition (��).� Case 4: � = �1 _ �2. F �(~q)( ~X) = ~ �1 _ ~ �2 :Hen
e ~ �(~q) = ~ �1 _ ~ �2 and this is in PDL0 \ PDL0(~q) and (��) is immediatelytrue for this formula.� Case 5: � = hii�0:For any 1 � j � n and s 2M ,s 2 �F �(~q)( ~X)�j ()(1 � 9j 0 � n) (9t 2M) �sRit ^ ejRiej0 ^ t 2 �F �0(~q)( ~X)�j0�:To see that this is true, observe that the 
ondition t 2 �F �0(~q)( ~X)�j0 implies(t; ej0) 2 jM�Ej. Therefore, we 
an put� �(~q)�j = _ejRiej0hii� �0(~q)�j0;whi
h is in PDL0 \ PDL0(~x) and it is easy to 
he
k (��).� Case 6: � = �q0:�0.We may assume that q0 is not in any formulas we are 
on
erned ex
ept � and�0 and q0 is free in �0. Sin
e � is in PDL0\PDL0(~q), �0 is in PDL0\PDL0(~q[fq0g).F �(~q)( ~X) =n�FM�E�q0:�0(q0;~q)�(�(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)��jo1�j�n=( �q0 7! FM�E�0(q0;~q)��(X1;1; � � � ; X1;n); � � � ; �(Xm;1; � � � ; Xm;n)���!j)1�j�n=�~Y 7! FM~ �0 (~Y ; ~X)��;where (F (�))� is the least F -�xed-point.By Remark 6.3.2, we 
an put ~ �(~q) = �~y:~ �0(~y), whi
h is in PDL0 \ PDL0(~x),where ~y are variables 
orresponding to ~Y in the above equations, . It is easy to
he
k (��).
6.4 The 
ase for CFOne of the spe
ial properties of formulas in PDL (or PDL0) is that when it givesthe least-�xed point of a monotone operator (i.e., �x:�(x) 2 PDL0 for some �(x)),
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 and Produ
t Closurewe 
an 
ompute the least �xed-point of the operator by applying it ! many timesfrom ; (or ?). This is based on the fa
t that the only �xed-point operator in PDLis the star operation i.e., � 7! �� and this 
orresponds to the 
omplete additivityof the formulas to whi
h we 
an apply �xed-point operators in PDL0 as we haveseen in the last se
tion. If we look at the property of the star operation in PDL,we will rea
h the notion of 
ontinuity of the monotone operators: A fun
tionF : P(X) ! P(X) is 
ontinuous if the value F (A) is 
overed by F (C)s for C � Awhi
h is �nite for any A 2 P(X), i.e.,F (A) = [fF (C) j C � A and A is �niteg:This is equivalent to saying that F is S
ott 
ontinuous, i.e., F is 
ontinuous if weendow (P(X);�) with the S
ott topology where open sets are subsets U of P(X)whi
h are upward 
losed (i.e., if A 2 U ; A � B, then B 2 U) and interse
t withevery dire
ted subset D of P(X) with SD 2 U (a subset D of P(X) is dire
ted iffor any two elements A;B of D there is an element C of D su
h that A;B � C).Note that if F is 
ontinuous, then F is monotone.Given a propositional letter x, a formula �(x) in modal logi
 is 
ontinuousin x if the operator FM� : P(M) ! P(M) indu
ed by �(x) is 
ontinuous for anyKripke model M. It is routine to 
he
k that every formula �(x) in PDL0(fxg) is
ontinuous in x. Also every monotone operator indu
ed by a 
ontinuous formulagives us the least �xed-point within ! steps.Fontaine [26℄ synta
ti
ally 
hara
terized 
ontinuous formulas in the modal �-
al
ulus with the 
ontinuous fragment of the modal �-
al
ulus with respe
t to a�nite subset P of PROP (denoted by CF(P )). The formulas in CF(P ) are de�nedas follows: � ::= p (p 2 P ) j  j � _ � j � ^ � j hii� j �x:�(x);where  is any formula in the modal �-
al
ulus without any free variable in Pand �(x) is a formula in CF(P [ fxg) and x is not in P . Fontaine proved that aformula in the modal �-
al
ulus is 
ontinuous in p if and only if it is equivalentto a formula in CF(fpg).We will de�ne the 
ontinuous fragment CF of the modal �-
al
ulus in thesame way as PDL0 and will prove its produ
t update 
losure. Formulas in CF arede�ned as follows:� ::= p (p 2 PROP) j :� j � _ � j hii� j �x: (x);where  2 CF \ CF(fxg).It is easy to see that PDL (or PDL0) is a fragment of CF and this in
lusionis stri
t: The formula � = �x:�hii(p ^ x) ^ hii(q ^ x)� is in CF but not in PDL.This is due to van Benthem [10℄.Theorem 6.4.1. The modal logi
 CF is 
losed under produ
t update.Proof. The argument is exa
tly the same as the 
ase for PDL (or PDL0).
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lusion and questionsWe introdu
ed the produ
t 
onstru
tion of Kripke models with event modelsgeneralizing the idea of publi
 announ
ement in epistemi
 logi
 and proved thatthree modal logi
s are 
losed under produ
t update using the �xed-point theory.There 
ould be several ways to extend this work whi
h we will list below:Conne
tions with automata theory. In many �xed-point logi
s, there isa one-to-one e�e
tive translation from formulas to `equivalent' some kinds ofautomata (
f. [84℄). By using this translation, it is possible to prove the produ
tupdate 
losure of the modal �-
al
ulus in terms of automata. But so far theargument is nothing but the 
ombination of the translation and our argumentwhi
h is more 
ompli
ated than the proof in this 
hapter. We wonder if there is anatural (and elegant) argument for the produ
t update 
losure starting from anautomaton and translating it to another automaton expressing the formula afterthe update. This would give us more intuitive idea about what is going on whenwe update a 
urrent Kripke model with an event model.The produ
t update 
losure for a general �xed-point logi
. Modal �xed-point logi
s �t with 
oalgebras and our work 
an be 
oalgebrai
ally expressed witha fun
tor whi
h is essentially the same as the power set fun
tor on the 
ategory ofsets. There is a general framework of developing modal �xed-point logi
 via 
oal-gebras so-
alled \
oalgebrai
 logi
" (
f. [84℄). It would be interesting if we 
ouldprove the produ
t update 
losure for a general �xed-point logi
 whi
h is 
oalge-brai
ally de�ned. The �rst step would be to formulate the produ
t 
onstru
tionwe gave in terms of 
oalgebras.General 
losure properties of a general �xed-point logi
. If one 
ouldformulate the produ
t 
onstru
tion in terms of 
oalgebras, it would probably besome fun
tor from the 
ategory of F -
oalgebras to itself where F is the fun
torfor the given 
oalgebrai
 logi
. If this is the 
ase, one 
ould extra
t the propertiesof the fun
tor and of F that we need to prove the produ
t 
losure. This wouldgive us the possibility of exploring the 
losure of general operations in a general
oalgebrai
 logi
.
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Samenvatting
In dit proefs
hrift bekijken we vers
hillende soorten oneindige spelen en aanver-wante onderwerpen in de verzamelingenleer en de wiskundige logi
a. Hoofdstuk1 is gewijd aan de algemene inleiding en te
hnis
he a
htergrondinformatie. Hetvervolg is als volgt opgezet:Hoofdstuk 2: Het is bekend dat de Baire-eigens
hap een zogeheten regu-lariteitseigens
hap is van verzamelingen re�ele getallen, en dat deze eigens
hapgekarakteriseerd kan worden door middel van Bana
h-Mazur-spelen. Wij karak-teriseren vrijwel alle bekende regulariteitseigens
happen van verzamelingen re�elegetallen via de Baire-eigens
hap van bepaalde topologis
he ruimtes en we ge-bruiken Bana
h-Mazur-spelen om de algemene equivalentiestellingen aangaanderegulariteitseigens
happen, absoluutheid van for
ing en trans
endentie-eigens
happenover bepaalde 
anonieke binnenmodellen te bewijzen. Met behulp van deze equiv-alentieresultaten beantwoorden we een aantal open vragen uit de verzamelingen-leer van re�ele getallen.Hoofdstuk 3: We bespreken het verband tussen Gale-Stewart-spelen enBla
kwell-spelen. De eerste zijn oneindige spelen met volledige informatie enkomen uit de verzamelingenleer, de tweede zijn oneindige spelen met onvolledigdeinformatie en komen uit de speltheorie. Het al dan niet gedetermineerd zijn vanGale-Stewart-spelen is een belangrijk onderwerp in de verzamelingenleer en wekunnen ons evengoed over het gedetermineerd zijn van Bla
kwell-spelen buigen.We vergelijken het Gedetermineerdheidsaxioma voor re�ele getallen (ADR) met hetBla
kwell-Gedetermineerdheidsaxioma voor re�ele getallen (Bl-ADR). We latenzien dat de 
onsistentiekra
ht van Bl-ADR strikt groter is dan die van het Gede-termineerdheidsaxioma (AD) in x 3.1. In x 3.2, laten we zien dat Bl-ADR vrijwelalle bekende regulariteitseigens
happen van impli
eert voor alle verzamelingenre�ele getallen . In x 3.3, bespreken we de mogelijkheid dat ADR en Bl-ADRequivalent zijn onder Zermelo-Fraenkel verzamelingenleer verrijkt met het Ax-ioma van Afhankelijke Keuze (ZF+DC). In x 3.4, bespreken we de mogelijkheidvan equi
onsistentie van ADR en Bl-ADR.147



148 SamenvattingHoofdstuk 4: We bestuderen het verband tussen het gedetermineerd zijnvan Gale-Stewart-spelen en grote kardinaalgetallen. Iteratiebomen zijn belang-rijke obje
ten bij het bewijzen het gedetermineerd zijn van Gale-Stewart-spelenuitgaande van grote kardinaalgetallen, en alternerende ketens van lengte ! zijn debelangrijkste iteratiebomen die te maken hebben met het gedetermineerd zijn vanGale-Stewart-spelen. We onderzoeken de bovengrenzen van de 
onsistentiekra
htvan het bestaan van alternerende ketens met lengte !.Hoofdstuk 5: Wadge-redu
eerbaarheid is een manier om de 
omplexiteitvan deelverzamelingen van een topologis
he ruimte te meten via de 
ontinue re-du
tie van een deelverzameling van een topologis
he ruimte naar een andere inde bes
hrijvende verzamelingenleer. Wadge-redu
eerbaarheid 
orrespondeert metmany-one-redu
eerbaarheid in re
ursietheorie. Met behulp van de karakteriseringvan Wadge-redu
eerbaarheid voor de Baire-ruimte door middel van Wadge-spelenkan de elegante theorie van de Wadge-redu
eerbaarheid voor de Baire-ruimte ont-wikkeld worden (denk aan bijna-lineariteit, welgefundeerdheid), als we het gede-termineerdheidsaxioma (AD) aannemen. We bestuderen Wadge-redu
eerbaarheidvoor de re�ele re
hte, welke niet op een soortgelijke manier gekarakteriseerd kanworden door middel van oneindige spelen. We laten zien dat het Wadge Lemmaniet opgaat voor de re�ele re
hte en dat de Wadge-ordening voor de re�ele re
hteniet welgefundeerd is, en we onderzoeken andere eigens
happen van de Wadge-ordening voor de re�ele re
hte.Hoofdstuk 6: Modale dekpuntslogi
a's zijn modale logi
a's met dekpunts-operatoren, welke meerdere wenselijke eigens
happen gemeen hebben met eersteorde-logi
a. We de�ni�eren een produ
t
onstru
tie van een gebeurtenismodel eneen Kripke-model, en we bespreken het gesloten zijn onder het nemen an pro-du
ten van modale dekpuntslogi
a's. We laten zien dat PDL, de modale �-
al
ulus en een fragment van de modale �-
al
ulus gesloten zijn onder het nemenan produ
ten.



Abstra
t
In this dissertation, we dis
uss several types of in�nite games and related top-i
s in set theory and mathemati
al logi
. Chapter 1 is devoted to the generalintrodu
tion and preliminaries. The rest is organized as follows:Chapter 2: It is known that the Baire property is one of the ni
e propertiesfor sets of reals 
alled regularity properties and that it 
an be 
hara
terized byBana
h-Mazur games. We 
hara
terize almost all the known regularity proper-ties for sets of reals via the Baire property for some topologi
al spa
es and useBana
h-Mazur games to prove the general equivalen
e theorems between regular-ity properties, for
ing absoluteness, and the trans
enden
e properties over some
anoni
al inner models. With the help of these equivalen
e results, we answersome open questions from set theory of the reals.Chapter 3: We dis
uss the 
onne
tion between Gale-Stewart games andBla
kwell games where the former are in�nite games with perfe
t information
oming from set theory and the latter are in�nite games with imperfe
t informa-tion 
oming from game theory. The determina
y of Gale-Stewart games has beenone of the main topi
s in set theory and one 
ould also 
onsider the determina
yof Bla
kwell games. We 
ompare the Axiom of Real Determina
y (ADR) and theAxiom of Real Bla
kwell Determina
y (Bl-ADR). We show that the 
onsisten
ystrength of Bl-ADR is stri
tly greater than that of the Axiom of Determina
y(AD) in x 3.1 and that Bl-ADR implies almost all the known regularity propertiesfor every set of reals in x 3.2. In x 3.3, we dis
uss the possibility of the equiva-len
e between ADR and Bl-ADR under the Zermelo-Fraenkel set theory with theAxiom of Dependent Choi
e (ZF+DC). In x 3.4, we dis
uss the possibility of theequi
onsisten
y between ADR and Bl-ADR.Chapter 4: We work on the 
onne
tion between the determina
y of Gale-Stewart games and large 
ardinals. Iteration trees are important obje
ts toprove the determina
y of Gale-Stewart games from large 
ardinals and alternating
hains with length ! are the most fundamental iteration trees 
onne
ted to thedetermina
y of Gale-Stewart games. We investigate the the upper bound of the149



150 Abstra
t
onsisten
y strength of the existen
e of alternating 
hains with length !.Chapter 5: Wadge redu
ibility measures the 
omplexity of subsets of topo-logi
al spa
es via the 
ontinuous redu
tion of a subset of a topologi
al spa
e toanother one in des
riptive set theory 
orresponding to many-one redu
ibility inre
ursion theory. With the help of the 
hara
terization of the Wadge redu
ibil-ity for the Baire spa
e in terms of Wadge games, one 
an develop the beautifultheory of the Wadge redu
ibility for the Baire spa
e (e.g., almost linearity, well-foundedness) assuming the Axiom of Determina
y (AD). We study the Wadgeredu
ibility for the real line whi
h 
annot be 
hara
terized by in�nite games in asimilar way. We show that the Wadge Lemma for the real line fails and that theWadge order for the real line is illfounded and investigate more properties of theWadge order for the real line.Chapter 6: Modal �xed point logi
s are modal logi
s with �xed point oper-ators and they enjoy several ni
e properties as �rst-order logi
 has. We de�ne aprodu
t 
onstru
tion of an event model and a Kripke model and dis
uss the prod-u
t 
losure of modal �xed point logi
s. We show that PDL, the modal �-
al
ulus,and a fragment of the modal �-
al
ulus are produ
t 
losed.



Titles in the ILLC Dissertation Series:ILLC DS-2001-01: Maria AloniQuanti�
ation under Con
eptual CoversILLC DS-2001-02: Alexander van den Bos
hRationality in Dis
overy - a study of Logi
, Cognition, Computation and Neu-ropharma
ologyILLC DS-2001-03: Erik de HaasLogi
s For OO Information Systems: a Semanti
 Study of Obje
t Orientationfrom a Categorial Substru
tural Perspe
tiveILLC DS-2001-04: Rosalie Iemho�Provability Logi
 and Admissible RulesILLC DS-2001-05: Eva HooglandDe�nability and Interpolation: Model-theoreti
 investigationsILLC DS-2001-06: Ronald de WolfQuantum Computing and Communi
ation ComplexityILLC DS-2001-07: Katsumi SasakiLogi
s and ProvabilityILLC DS-2001-08: Allard TammingaBelief Dynami
s. (Epistemo)logi
al InvestigationsILLC DS-2001-09: Gwen KerdilesSaying It with Pi
tures: a Logi
al Lands
ape of Con
eptual GraphsILLC DS-2001-10: Mar
 PaulyLogi
 for So
ial SoftwareILLC DS-2002-01: Nikos MassiosDe
ision-Theoreti
 Roboti
 Surveillan
eILLC DS-2002-02: Mar
o AielloSpatial Reasoning: Theory and Pra
ti
eILLC DS-2002-03: Yuri EngelhardtThe Language of Graphi
sILLC DS-2002-04: Willem Klaas van DamOn Quantum Computation TheoryILLC DS-2002-05: Rosella GennariMapping Inferen
es: Constraint Propagation and Diamond Satisfa
tion



ILLC DS-2002-06: Ivar VermeulenA Logi
al Approa
h to Competition in IndustriesILLC DS-2003-01: Barteld KooiKnowledge, 
han
e, and 
hangeILLC DS-2003-02: Elisabeth Catherine BrouwerImagining Metaphors: Cognitive Representation in Interpretation and Under-standingILLC DS-2003-03: Juan HeguiabehereBuilding Logi
 ToolboxesILLC DS-2003-04: Christof MonzFrom Do
ument Retrieval to Question AnsweringILLC DS-2004-01: Hein Philipp R�ohrigQuantum Query Complexity and Distributed ComputingILLC DS-2004-02: Sebastian BrandRule-based Constraint Propagation: Theory and Appli
ationsILLC DS-2004-03: Boudewijn de BruinExplaining Games. On the Logi
 of Game Theoreti
 ExplanationsILLC DS-2005-01: Balder David ten CateModel theory for extended modal languagesILLC DS-2005-02: Willem-Jan van HoeveOperations Resear
h Te
hniques in Constraint ProgrammingILLC DS-2005-03: Rosja MastopWhat 
an you do? Imperative mood in Semanti
 TheoryILLC DS-2005-04: Anna PilatovaA User's Guide to Proper names: Their Pragmati
s and Semani
sILLC DS-2005-05: Sieuwert van OtterlooA Strategi
 Analysis of Multi-agent Proto
olsILLC DS-2006-01: Troy LeeKolmogorov 
omplexity and formula size lower boundsILLC DS-2006-02: Ni
k BezhanishviliLatti
es of intermediate and 
ylindri
 modal logi
sILLC DS-2006-03: Clemens KupkeFinitary 
oalgebrai
 logi
s



ILLC DS-2006-04: Robert �SpalekQuantum Algorithms, Lower Bounds, and Time-Spa
e Tradeo�sILLC DS-2006-05: Aline HoninghThe Origin and Well-Formedness of Tonal Pit
h Stru
turesILLC DS-2006-06: Merlijn SevensterBran
hes of imperfe
t information: logi
, games, and 
omputationILLC DS-2006-07: Marie NilsenovaRises and Falls. Studies in the Semanti
s and Pragmati
s of IntonationILLC DS-2006-08: Darko Sarena
Produ
ts of Topologi
al Modal Logi
sILLC DS-2007-01: Rudi CilibrasiStatisti
al Inferen
e Through Data CompressionILLC DS-2007-02: Neta SpiroWhat 
ontributes to the per
eption of musi
al phrases in western 
lassi
almusi
?ILLC DS-2007-03: Darrin HindsillIt's a Pro
ess and an Event: Perspe
tives in Event Semanti
sILLC DS-2007-04: Katrin S
hulzMinimal Models in Semanti
s and Pragmati
s: Free Choi
e, Exhaustivity, andConditionalsILLC DS-2007-05: Yoav SeginerLearning Synta
ti
 Stru
tureILLC DS-2008-01: Stephanie WehnerCryptography in a Quantum WorldILLC DS-2008-02: Fenrong LiuChanging for the Better: Preferen
e Dynami
s and Agent DiversityILLC DS-2008-03: Olivier RoyThinking before A
ting: Intentions, Logi
, Rational Choi
eILLC DS-2008-04: Patri
k GirardModal Logi
 for Belief and Preferen
e ChangeILLC DS-2008-05: Erik RietveldUnre
e
tive A
tion: A Philosophi
al Contribution to Integrative Neuros
ien
e



ILLC DS-2008-06: Falk UngerNoise in Quantum and Classi
al Computation and Non-lo
alityILLC DS-2008-07: Steven de RooijMinimum Des
ription Length Model Sele
tion: Problems and ExtensionsILLC DS-2008-08: Fabri
e NauzeModality in Typologi
al Perspe
tiveILLC DS-2008-09: Floris RoelofsenAnaphora ResolvedILLC DS-2008-10: Marian CounihanLooking for logi
 in all the wrong pla
es: an investigation of language, litera
yand logi
 in reasoningILLC DS-2009-01: Jakub SzymanikQuanti�ers in TIME and SPACE. Computational Complexity of GeneralizedQuanti�ers in Natural LanguageILLC DS-2009-02: Hartmut FitzNeural SyntaxILLC DS-2009-03: Brian Thomas SemmesA Game for the Borel Fun
tionsILLC DS-2009-04: Sara L. U
kelmanModalities in Medieval Logi
ILLC DS-2009-05: Andreas WitzelKnowledge and Games: Theory and ImplementationILLC DS-2009-06: Chantal BaxSubje
tivity after Wittgenstein. Wittgenstein's embodied and embedded subje
tand the debate about the death of man.ILLC DS-2009-07: Kata BaloghTheme with Variations. A Context-based Analysis of Fo
usILLC DS-2009-08: Tomohiro HoshiEpistemi
 Dynami
s and Proto
ol InformationILLC DS-2009-09: Olivia LadinigTemporal expe
tations and their violationsILLC DS-2009-10: Tikitu de Jager\Now that you mention it, I wonder. . . ": Awareness, Attention, Assumption



ILLC DS-2009-11: Mi
hael FrankeSignal to A
t: Game Theory in Pragmati
sILLC DS-2009-12: Joel U
kelmanMore Than the Sum of Its Parts: Compa
t Preferen
e Representation OverCombinatorial DomainsILLC DS-2009-13: Stefan BoldCardinals as Ultrapowers. A Canoni
al Measure Analysis under the Axiom ofDetermina
y.ILLC DS-2010-01: Reut TsarfatyRelational-Realizational ParsingILLC DS-2010-02: Jonathan ZvesperPlaying with InformationILLC DS-2010-03: C�edri
 D�egremontThe Temporal Mind. Observations on the logi
 of belief 
hange in intera
tivesystemsILLC DS-2010-04: Daisuke IkegamiGames in Set Theory and Logi



