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Definition 2.10. Let L € W be a language. We say that L salisfies the (regular) pumping
lenma with pumping number n if for every word w € L such that [w] > n there are words
x,y. = such that w=ry=z. Iyl > 0, |zy| < n and for all & € N, we have that ry*z € L. We
say that L satisfies the (reqular) pumping lemma if there is some n such that it satisfies the

(regular) pumping lemma with pumping number n.
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Example 2.13. Fix some positive number n € N. Then the language L := {0"w; w € W}
is regular and there cannot be an automaton 2 with n or fewer states such that £(D) = L.

| Towards a contradiction, let's assume that there is such an automaton. By the |1?l.|ul' of
Theorem 2.11, we get that L satisfies the pumping lemma with pumping number n. Consider
the word w = 0" € L. Clearly, |w| = n, so the word can be pumped, in particular, pumped
down. Since it consists entirely of zeros, we know that for w = ryz. the words x, y, and =
also consist entirely of zeros and ry"z = xz is a sequence of n = |y| < n zeros. Hence it’s not
in L: contradiction!|
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Since the pumping lemma b= a very useful Lo o Lhat languages are mol II'EMNO \
it is quite natural to wonder whetheptheSTatement of the pumping lemma is equivalent to e
regulacity, Le., whet o e L s regular if and only if it satisfies the regular pumping
lewmmn. The answir w s wi shall show now,

If ir & B is a hinde dl that contains at least one zero, we write tail(w) for the monber
of ones in w that follow the last oceurring zero. Eg, tail(0101111) = 4. Let X C N be an
arbitrary set of natural mumbers (by Proposition 1.3, there are uncountably many of those).
Weo define a language Ly € B by w € Ly if w consists entirely of ones or if w has some zero,
then tail(w) € X. Let us show that if X # Y, then Ly # Ly: wlog., we can assume that
there is some n € X\Y. Then 01" € Ly\ Ly, This shows that X «— Ly is an infection from
the power set of M into the collection of ]HJIglmgﬁi of the form I._\. g0 there are umeountably
many such Innguages,

Proposition 2.15. Every langnage Ly satisfies the {regular) pumping kemumea,
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b an arbitrary binary word with |w| > 2

Case 1. It starts with 0. Lot r =2 gy =0, and = such that w = ryz = 0. Pumping up
produces 0z (for & > 1), but clearly tail{(0*z) = tail{0z) € X, s0 0z € Ly. Pumping down
produces = i = still contadns a 0, then tadl(z) = tadl(0z) € X, 50 = € Ly; if = containg no
O, then = € Ly anyway,

Case 2. It starts with 1. Let r =7, y = 1, and 2 such that o = ryz = 12, If = does not
contain any 08, then all results of pumping y will resalt in a word without 08, so they are
all in Ly, Il = contains o 0, then all rsults of pumping y will resalt in o word that has the
s tall as 1z, and henee they are all in Ly, Q.E. v

Corollary 2.16. There are languages satisfving the (regular) pamping lemmea that are not
regulnr

Proof. There are only countably many regular lnnguages (by Proposition 116G), but aneount-
ably many languages satisfying the regular pumping lemma by Proposition 2,15 Q.E.D.
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