AUTOMATTA & FORMAL LANGUAGES Third Lecture Saturday 19 October 2024

Recap

IN YOUR POST-PROCESSING OF LECTORE II, YOU HAVE DONE AT LEAST THREE EXAMPLES OF DERIVATIONS AND LEARNED HOW THEY WORK.

IZ forte set of symbols Q+× 12* production roles (D.P) reconite system There are countably many RWS over 12

12 = ZUV LETTERS/VARIABLES (Z, V, S, P) grammar There are contably many grammors Equivalent grammers: LCG) = LCG') Piere are countably many grammers over Z up to isomorphism.

Question during Lecture II Can you reconte a letter?

The definition correctly allows for that, so let us consider more reasonable grammars.

1.5 The Chomsky hierarchy

Fix Σ , V, and $S \in V$.

- A production rule α → β is called noncontracting if |α| ≤ |β|.
- (2) A production rule A → β is called context-free if A ∈ V and |β| ≥ 1.
- (3) Production rules $A \to a$ and $A \to aB$ are called regular if $A, B \in V$ and $a \in \Sigma$.

Chamiley in 2017

Born: Ayram Noam Chamiley
Desamiler 7, 1026 (app 34)
Philadelphia, Permyshol U.S.

Speakers (m. 1248) (ded 2008)
Walans Wassenster (m. 2014)

We observe that every regular rule is context-free and every context-free rule is noncontracting.

We call a grammar noncontracting, context-free, or regular if all of its production rules are noncontracting, context-free, or regular, respectively. If G is a noncontracting grammar, we know that any string in $\mathcal{D}(G, S)$ must have length at least |S| = 1 [proof by induction on the length of the derivation]. Thus, a noncontracting grammar can never derive the empty word ε .

We call a language noncontracting, context-free, or regular if it is produced by a noncontracting, context-free, or regular grammar, respectively.

TYPE 0: LCa) for any grammar G

TYPE 1: LCa) for noncontracting G

TYPE 2: LCa) for context-free G

TYPE 3: LCa) for regular G

Q: Are these inclusions strict?

Figure 1: The Chomsky hierarchy

a. U.S.

Example 1.10. Let $\Sigma = \{0\}$, $V = \{S\}$, $P_0 := \{S \to \mathbf{00}S, S \to \mathbf{0}\}$, and $G_0 := (\Sigma, V, P_0, S)$. Then $\mathcal{L}(G_0)$ is the set of all odd-length words consisting of the letter $\mathbf{0}$.

$$P_{1} := \{S \to \mathbf{0}S\mathbf{0}, S \to \mathbf{0}\},$$

$$P_{2} := \{S \to S\mathbf{00}, S \to \mathbf{0}\},$$

$$P_{3} := \{S \to \mathbf{00}S, S \to \mathbf{00}S\mathbf{00}, S \to \mathbf{0}\},$$

$$P_{4} := \{S \to \mathbf{00}S, S \to S\mathbf{00}, S \to \mathbf{0}S\mathbf{0}, S \to \mathbf{0}\},$$

$$P_{5} := \{S \to \mathbf{00}S, \mathbf{0}S\mathbf{0} \to \mathbf{000}, S \to \mathbf{0}\},$$

$$P_{6} := \{S \to \mathbf{00}S, \mathbf{00}S \to \mathbf{000}, S \to \mathbf{0}\},$$

$$P_{6} := \{S \to \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S\mathbf{0}, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S \to \mathbf{0}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

$$P_{7} := \{S \to \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, \mathbf{00}S, S \to \mathbf{0}\},$$

CONTRACTIO

This means:

it's hard to prove that a LANGUAGE is not in some Charles class.

ms Chapters 2 & 3

\$1.6 DECISION PROBLEMS

In this section, we'll formulate the typical decision problems for grammars. Let G and G'be formal grammars and $w \in W$ be a word.

The word problem. Is there an algorithm to determine whether $w \in \mathcal{L}(G)$?

The emptiness problem. Is there an algorithm to determine whether $L(G) = \emptyset$?

The equivalence problem. Is there an algorithm to determine whether L(G) = L(G')?

We say that a decision problem is *solvable* if there is such an algorithm and that it is *unsolvable* if there is not.

lu general, all three problems ave vusolvable.

However, restrictions to some Ownsley classes are solvable.

Chomsley Hierarchy A > X = Q+ Context-free A > X = A > aB
Regular Asa a Asa B
The word too blem for moncontracting grammars is solvable.
PmP (1) Nove is a systematic way of listing all G-delivertions
1 0 the number of derivations.
We L(G) (Shore is a G-devilvation of w we L(G) (Shore is a G-devilvation of w
3) Fresh of The Fox 10: Calculate N, list all G-devications of lought & N, chart all of them. If ever produces
(4) Proof of (2) is were jow my "No".
"=>" S - G
Suppose well(G) Take a derivation of 1 (aught ha) (aught ha)
N:= [M] \Omega \Omeg
m=1 dy minimals there can be no sportitions.

1.7 Closure properties

There are a number of algebraic operations on languages that allow us to combine languages to new languages. Let $L, M \subseteq W^+$ be any languages over an alphabet Σ .

- (a) Concatenation. The language LM consists of words vw such that $v \in L$ and $w \in M$.
- (b) Union. The language $L \cup M$ consists of words either in L or in M.
- (c) Intersection. The language L ∩ M consists of words that are both in L and M.
- (d) Complement. The language \(\overline{L}\) := \(\mathbb{W}^+ \L\) consists of nonempty words that are not in \(L\).
- (e) Difference. The language L\M consists of words in L that are not in M.

GOAL

Understand which Chousley classes are closed vuder which operations.

Checkwater Gran $G = (\Xi, V, S, P)$ $\Omega = Z \cup V$ that H : J : J(H) = J(G)J(G') $C' = (\Xi, V, S, P')$ $\Omega' = Z \cup V'$ $C' = (\Xi, V, S, P')$ $\Omega' = Z \cup V'$ $C' = (\Xi, V, S, P')$ $\Omega' = Z \cup V'$ $C' = (\Xi, V, S, P')$ where $C = X \cup X \cup X \cup X$ $C' = (\Xi, V, S, P')$ where $C = X \cup X \cup X \cup X$ $C' = (\Xi, V, S, P')$ where $C = X \cup X \cup X \cup X$ $C' = (\Xi, V, S, P')$ where $C = X \cup X \cup X \cup X$ $C' = (\Xi, V, S, P')$ where $C = X \cup X \cup X \cup X$ $C' = (\Xi, V, S, P')$ $C' = Z \cup V'$ $C' = (\Xi, V, S, P')$ $C' = (\Xi, V, S, P')$ C' =

Proof of P1.26 2 If Sav, S'aw, then T# SS' # ww.

(1) Ucal(#)

The proof of P1.26 2 If Sav, S'aw, then T# SS' # ww.

(2) The recommendation of again, so all where the extension Power S and size that the extension Power S and Size that the extension Power S', respectively.

(3) Share Will of substitute fine V and there in P.

(4) Proceedings in V and there in P.

(5) Respectively.

(6) Resolution that shows all of the P-where and them all of the P'-where and them all of the P'-where in the extension Row S are T# S' Co V S' C' V V = W

(6) Proceedings the P'-where and the all of the P'-where it the extension Row S are T# S' Co V S' C' V V = W

(6) Proceedings the P'-where and the extension Row S are T# S' Co V S' C' V V = W

(7) Proceedings the theory of the extension Row S are T# S' Co V S' C' V V = W

(8) Proceedings the extension Row S are T# S' Co V S' C' V V = W

(9) Proceedings the extension Row S are T# S' Co V S' C' V V = W

(9) Proceedings the extension Row S are T# S' Co V S' C' V V = W

(10) Proceedings the extension Row S are T# S' Co V S' C' V V = W