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1 Formal Languages & Grammars

1.1 Notation & preliminaries

We fix any set X. If n is a natural number (note that we include 0 in the natural numbers),
then X" is the set of n-tuples of elements of X; we call these objects X -strings of length n
(usually denoted by letters such as «, 3, v, o, and 7). In the usual set-theoretic representa-
tion, n = {0,1,...,n — 1} and a string of length n is a function from the set n into X. Note
that X° only contains the empty sequence which we shall denote by . We write

X* ::UX”

neN

for the set of all X-strings' and write |a] = n = {0,...,n — 1} = dom(a) if « € X"; the
number |a/| is called the length of . The set X+ := X*\{e} is the set of non-empty X-strings.
Since strings are functions, we can use the usual notation for function restriction to denote
their initial segments, i.e., if « € X™ and k < n, then alk is the unique initial segment of «
of length k.

If a, 6 € X*, we can concatenate them in the usual way and write a8 for the concatenated
string. If a has length n and 8 has length m, then a3 has length n + m:

[ a(k) ifk<nand
aB(k) { Bl) ifk=n+/¢and {<m.

If x € X, we use the notation z” for the string of length n consisting only of the symbol z.
Similarly, if & € X*, we write " for the concatenation of n copies of the string o (formally,
we can define this by recursion as o’ := &, o™ := a"«a). We often (slightly incorrectly)
confuse x € X with the string of length 1 consisting of the element x. So, if we write ax, we
mean the string o with an extra element x appended at the end; if we write xa, we mean the
string « prefixed by an element z. If Y, Z C X*, we write YZ :={af; a € Y and g € Z};
if Y = {a}, we abbreviate this to oZ and if Z = {8}, we write Y 5.

Given any function f: X — Y, we can use it to define a function ]?: X* — Y™ pointwise
by f(a)(k) := f(a(k)) (i.e., a sequence of length n will be mapped to a sequence of length
n). We often re-use the notation f for the extended function if no confusion is possible, i.e.,

we write f : X* — Y™ instead of ]/C\

!The notation X* is sometimes called the Kleene star after the American logician Stephen Cole Kleene
(1909-1994); more about this in §2.6.
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As usual, we say that a set X is countable if it is empty or there is a surjection from N
onto X,% it is infinite if there is an injection from N into X. A set is called uncountable if
it is not countable.? Clearly, if X C Y, X is countable and Y is uncountable, they are not
the same, so Y\ X # &. Moreover, from the Part IA course Numbers € Sets, we know that
the union of two countable sets is countable, therefore Y\ X cannot even be countable. The
following results are simple applications of techniques learned in Numbers € Sets:

Lemma 1.1. If X and Y are countable, then so is X x Y.

Proof. First of all, if either X or Y is empty, then X x Y is empty, so we can assume that
they are both non-empty and pick surjections 7y : N — X and my: N — Y. Remember from
Numbers € Sets that there is a bijection z: N x N — N, e.g., Cantor’s zigzag bijection

(2'+j)(i+j+1)+]

(i) =

which will feature prominently in § ??. Given any n € N, find ¢ and j such that n = z(4, j)
and define f(n) := (7x(i),my(j)). It is easy to check that this is a surjection onto X x Y.
Q.E.D.

Proposition 1.2. If X # & is countable, then X* is infinite and countable.

Proof. Let x € X (this exists since X is non-empty). The map n — z" is an injection from
N into X*, so X* is infinite.

Clearly, X is countable (since it has only one element). By induction, using Lemma
1.1, we deduce that X™ is countable for every n. But then X* = [ J, .y X" is countable as a
countable union of countable sets (by Numbers & Sets). Q.E.D.

Proposition 1.3 (Cantor’s Theorem). If X is infinite, then the power set of X, i.e., the set
of all subsets of X, denoted by p(X), is uncountable.

Proof. Let i: N — X be an injection. Suppose that 7: N — ©(X) is a function. We shall
show that it is not a surjection. Define D := {i(n); i(n) ¢ m(n)} and claim that D is not in
the range of m. Assume otherwise, then there is some d € N such that D = 7(d). But then
i(d) € D = m(d) if and only if i(d) ¢ m(d). Contradiction! Q.E.D.

Proposition 1.4. If X is countable, then the set of finite subsets of X is countable.

Proof. Without loss of generality, X # @. Let m: N — X be the surjection witnessing count-
ability of X. By Proposition 1.2 we know that X* is countable, so it’s enough to show that
there is a surjection from X* to the set of finite subsets of X. If & € X*, let f(a) := ran(«)

2If X # @, there is an injection from X into N if and only if there is a surjection from N onto X.
3This definition is not the standard definition of “infinite” that will be presented in Part II Logic & Set
Theory, but it is equivalent to it under the assumption of the axiom of choice.
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be the set of all elements of X occurring in a. If F' C X is any finite set and x € F', find
the minimal n, such that 7(n,) = x. Then {n,; x € F'} is a finite set of natural numbers of
the same size as F. Order these by size, e.g., ng < ny < ... < ng. Define a by «a(i) := m(n;).
Then f(a) = F. Q.E.D.

1.2 Rewrite systems

Suppose that €2 is a non-empty finite set whose elements are called symbols. Consider the set
Q* of Q-strings and the set Q1 := Q*\{e} of non-empty Q-strings. An element of Q* x Q* is
called a production rule or rewrite rule over €). To improve readability, we write o — f for
(cr, B). The informal interpretation of such a production rule is: “whenever a string contains
« as a substring, it can be rewritten by £”.

Definition 1.5. A pair (2, P) is called a rewrite system if € is a non-empty finite set and
P is a finite set of rewrite rules over (2.

Proposition 1.6. If €2 is a non-empty finite set, then there are countably many rewrite
systems on ).

Proof. By Proposition 1.2, Q* is countable and so is Q1 x Q* C QO* x Q* by Lemma 1.1. The
set P is a finite subset of Q7 x Q*; thus, by Proposition 1.4, there are only countably many
choices for P. Q.E.D.

If R=(Q,P) is a rewrite system and o, 7 € *, we write
R
oO— T

if there are a, 8,7, € Q* such that ¢ = afy, 7 = ady, and f — § € P and say that R
produces T from o in one step or R rewrites o into T in one step. The relation 2 is defined
as the transitive and reflexive closure of —R>1, ie., o By 7 if and only if either 0 = 7 or
there are oy, ..., 0, such that o9 = 0, 0,, = 7, and for each 0 < k < n, we have oy, —R>1 Oki1-
We say that R produces T from o or R rewrites o into T.

If o 2 7, we call a sequence (0y, ..., 0,,) as in the definition an R-derivation of T from o
using R of length n.* Because of this, we also say 7 can be derived from o in R. Note that
this sequence need not be uniquely determined (cf. Example Sheet # 1).

If R is a rewrite system and « is a string, we write D(R, «) := {5; « N B} for the set
of strings that can be derived from « in R.

1.3 Relation to actual languages

If we think of €2 as a set of basic linguistic construction units, i.e., letters or words or sentences,
then we can think of larger, composite linguistic entities as elements of (2*: words are finite

4Note that even though the derivation is a sequence of length n+1, we call it a derivation of length n. This
is because we are counting the number of rewrite rules applied in the derivation. The sequence consisting of
09 is a derivation of length zero since zero rewrite rules have been applied.
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sequences of letters, sentences are finite sequences of words, and texts are finite sequences of
sentences. Not every finite sequence of letters is a word, not every finite sequence of words is
a grammatical sentence, and not every sequence of sentences form an intelligible text. Thus,
the task is to describe which subset L C Q* consists of the wellformed sequences that we
shall consider acceptable in our language.

In practice, an actual human vernacular language is a finite subset of 2*. E.g., in the
case of words constructed from letters, the language is usually defined by a dictionary: a
finite list of all words existing in this language. However, Noam Chomsky observed that one
of the most fundamental features of language is what he called (linguistic) recursion:

[The| arbitrary decree that there is a finite upper limit to sentence length in
English ... would serve no useful purpose. ... The point is that there are processes
of sentence formation that this elementary model for language is intrinsically
incapable of handling. ... In general, the assumption that languages are infinite
is made for the purpose of simplifying the description. If a grammar has no
recursive steps, ... it will be prohibitively complex. If it does have recursive
devices, it will produce infinitely many sentences.’

E.g., the process of taking subordinate clauses is a productive feature of language. In principle,
no matter how complex a sentence is, one can increase its complexity by prefixing it with
“X observes that”. So, we form an infinite sequence of grammatical sentences

B likes A.

C believes that B likes A.

D reports that C' believes that B likes A.

E observes that D reports that C believes that B likes A.
ete.

Clearly, at some point, these sentences become too complex to be used in practice as a
means of human communication, but there is no non-arbitrary maximum depth: if you
can understand a sentence with n such nestings, you will be able to understand a sentence
with n 4+ 1 such nestings. Chomsky’s proposal is therefore to embrace that the structure of
languages is governed by recursive rules and they are therefore best represented by infinite
sets of sequences. Recursive rules of such a generative grammar could be something like

S — NP VP,
NP — AdjNP,
NP — Noun, (*)
VP — VP Adv,
VP — Verb,

where NP stands for “noun phrase” and VP for “verb phrase” together with a dictionary list
that allows to exchange Noun, Verb, Adj, or Adv with every noun, verb, adjective, or adverb

5Chomsky, N. (1956). Three models for the description of language. IRE Transactions of Information
Theory, 2(3), 113-124; pp. 115f.
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in the dictionary, respectively. This allows the derivation of Chomsky’s famous grammatical,
but nonsensical sentence “Colourless green ideas sleep furiously”.

S
PN
NP VP
Adj NP VP Adv

N |
Adj NP Verb

|
Noun
v

Colourless green ideas sleep furiously.

In contrast, Chomsky’s second example of a string of words “Furiously sleep ideas green
colourless” is not only nonsensical, but cannot be produced from the grammar described
above. It is therefore ungrammatical. Using our definitions from the next section, we shall
be able to prove its ungrammaticality mathematically (Example 1.17).

1.4 Grammars

We shall look at specific rewrite systems that we shall call grammars. Our symbols in 2
come in two types: terminal symbols, also called letters, and nonterminal symbols, also called
variables. We write X C () for the set of letters, also called the alphabet, and V' C 2 for the
set of variables. We assume that > and V' are both non-empty and disjoint. By convention,
we use a, b, ¢ for terminals and A, B, C' for nonterminals.

A popular adage says that “computers can only understand binary”. Since computing is
based on storage with electric signals that can be either switched “on” or “off”, the most
standard encoding of information in computing is done in a binary alphabet consisting only
of the symbols 0 and 1. We write g for this particular alphabet and use it in many of our
examples.

A Y-string, i.e., an element of ¥* is called a word over . We usually use letters such
as u, v, and w to refer to words and use the symbol W := ¥* for the set of words and
Wt := W\{e} for the set of non-empty words. Any subset L C W is called a language over
Y. The set of languages is just the power set of W, so, by Proposition 1.3, we know that
there are uncountably many languages.

If our alphabet is Xgq, we call X-words binary words and write B and BT for the sets
of binary words and non-empty binary words, respectively. Note that there are easy ways
to encode arbitrary alphabets by binary words: let n be such that |X| < 2" then we can
interpret all binary strings of length n as an element of {0, ...,2" — 1}, therefore, there are
surjections 7m: ¥o1 — X. Picking such a surjection yields an encoding of elements of ¥ (and
therefore of ¥* by binary words. This encoding will be discussed in detail in our final chapter

(cf. §4.6).

Definition 1.7. A grammar over ¥ is a tuple (X,V, P, S) where ¥ and V' are non-empty
and disjoint with © := ¥ UV and we have that S € V' and that (2, P) is a rewrite system.
We call S the start symbol.
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Since grammars are special rewrite systems, we can use the notation for rewrite systems
for our grammars, i.e., if G = (X,V, P,S) is a grammar and R := (Q, P), then D(G, «a) :=
D(R,a), « —G>1 G if and only if « —R>1 B, and « N G if and only if « LN 5. We define

L(G) :={weW: S -5 w}=WnD(G,S)

and call this the language generated by GG. These are all the words that can be derived from
the start symbol. The following are very basic properties whose proofs give us a general idea
how to work with grammars. Let G = (X,V, P, S) be a grammar.

Example 1.8. If there is no production of the form S — « € P, then D(G, S) = {S} and
L(G)=2.

[Clearly, there is a unique derivation of length zero and it derives S, so S € D(G, S) for
any grammar (. By our assumption, there are no G-derivations from S of length one (and
therefore not of any greater length), thus D(G,S) = {S} and hence L(G) = D(G,S)NW =
2.

Example 1.9. If there is no production of the form o« — w € P where w € W, then
L(G)=2.

[We prove by induction on the length of derivation that the final string is not a word.

Clearly, the unique derivation of length zero produces S which is not a word. If S Y a by

any derivation of greater length, the final step in the derivation is of the form —G>1 a, in
particular, one of the rules or P is applied in the rewriting of # to . But the right-hand
side of that rule contains a variable, so « contains a variable and thus is not a word.]

Example 1.10. Let ¥ = {0}, V = {S}, Py := {S — 00S,S5 — 0}, and Gy := (X, V, R, 5).
Then L£(G)) is the set of all odd-length words consisting of the letter 0.

[Let’s prove this in detail: first of all, we notice that each rewrite step either keeps the
number of symbols the same or increases it by two. We prove by induction on the length of
the derivation, that every string produced by G from S has odd length: the unique string with
a derivation of length zero is S which has odd length; of all strings produced by derivations
of length n have odd length, say, length 2k + 1, then a string with a derivation of length n+1
has either length 2k + 1 or (2k + 1) + 2, thus odd length.

In order to see that the unique word 0?"*! of length 2n + 1 can be produced, we give
provide a concrete derivation: we apply the production rule S — 00S to the start symbol
n times to obtain 02*S and finally apply S — 0 to remove the nonterminal and acquire the
desired word 0%"! ]

An analysis of the argument in Example 1.10 shows that if in a grammar all production
rules preserve oddness of length and we can provide a derivation of 02**!, then the grammar
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will produce the same language. E.g., G; = ({0}, {S}, P, S) with

P :={S — 050,S — 0},

P, :={S — S00,S — 0},

P;:={S — 00S,S — 00500, S — 0},

P, :={S —00S,S — S00,S — 050,S — 0},
P; = {S — 005,050 — 000, S — 0},

Py :={S — 005,005 — 050,S — 0}, or
P;:={S — 005,005 — 0,S — 0}, etc.

Thus, different grammars can produce the same language. We say that two grammars G and
G" are called equivalent if L(G) = L(G).

Definition 1.11. Let 3 be an alphabet and let G = (X,V, P,S) and G' = (X, V', P, S") be
two grammars over %. Let f: €2 — € be any function and extend it by recursion to 2*. We
say that f is an isomorphism between G and G’ if

(i)
(i) £(5)=
)

(iii) the restriction f[V is a bijection between V and V’; and

it is the identity on X, i.e., f(a) = a for all a € ¥;

(iv) for each o, 5 € QF, we have a — € P if and only if f(a) — f(5) € P'.

If there is an isomorphism between G and G’, we also say that the two grammars are iso-
morphic.

Proposition 1.12. Isomorphic grammars are equivalent.

Proof. If f is an isomorphism between G' and G’, then f~! is an isomorphism between G’
and G. Thus, by symmetry, it’s enough to show that if f is such an isomorphism, then
L(G) C L(G"). We can consider the f-image of any G-derivation of w (i.e., apply f to each
(-string in the derivation to obtain a new sequence of {'-strings). By property (ii), it starts
with S’; by property (iv), it is a G'-derivation; by property (i), it derives f(w) = w. Q.E.D.

Fix finite sets ¥ and V and let G(X,V) be the set of grammars G with alphabet ¥
and set of variables V. Furthermore, let £(X,V) = {£L(G); G € G(X,V)} and L(X) :=
{£(G); V(G eg(E,V))}-

Lemma 1.13. For any fixed finite ¥ and V/, the set G(X,V) is countable. Hence, also the
set L(3, V) is countable.

Proof. Let W be the set of rewrite systems (X UV, P). By Proposition 1.6, W is countable
and hence also V' x W by Lemma 1.1. The map (S, (X UV, P)) — (X,V, S, P) is a surjection
from V' x W onto G(3, V). Q.E.D.
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Proposition 1.14. If G = (X,V, P,S) is any grammar and |V’| = |V/|, then there is a
grammar G' = (X, V', P, S") that is isomorphic to G.

Proof. We first extend the bijection f : V — V' to a bijection from Q to €’ by letting it be
the identity on 3. Then we define S’ := f(5) and P’ by property (iv). This means that the
extension of f to € is an isomorphism between G and G’. Q.E.D.

Corollary 1.15. If |V| = |V’|, then L(X,V) = L(X, V).

Proof. Directly from Propositions 1.12 & 1.14. Q.E.D.

Proposition 1.16. For any finite X, £(X) is countable.

Proof. Let L, := L(X,V) for any |V| = n. By Corollary 1.15, this is well-defined, as the set
does not depend on V, but only on the size of V. Clearly, £L(X) = J,,»; £, and by Lemma
1.13, each of the sets £,, is countable, so £(X) is a countable union of countable sets, whence
countable (by Numbers & Sets). Q.E.D.

We remark that the proof of Proposition 1.14 gives us a very important tool: whenever
we have two grammars and we only care about the languages they produce, we may w.l.o.g.
assume that their sets of variables are disjoint. If not, we just pick a disjoint set of variables
of the same size and use the isomorphic grammar with that set of variables instead.

Proposition 1.16 also shows that there are many languages that cannot be produced by
any grammar: By Proposition 1.3, there are uncountably many languages, but only countably
many of them are generated by a grammar. Thus, most languages are not generated by a
grammar.

Example 1.17. As an illustration, we show that Chomsky’s example “Furiously sleep ideas
green colourless” is not derivable in the grammar given in § 1.3. We first need to specify the
grammar G formally: ¥ is the finite set of all words in some English dictionary,

V :={S,NP, VP, Adj, Adv, Verb, Noun},

and P is the list of production rules given in (*) together with the dictionary rules that
transform the nonterminals into the corresponding terminals, i.e., the relevant production
rules are

S — NP VP, Noun — ideas,
NP — Adj NP, Verb — sleep,
NP — Noun, Adj — colourless,
VP — Verb, Adj — green,

VP — VP Adv, Adv — furiously.
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We claim that no derivable string ends in either Adj or colourless (let’s call a string that
does not end in either of these two good) and show this by induction on the length of the
derivation. Clearly, any derivation of length zero produces S which is a good string. Suppose
all derivations of length n produce only good strings and assume that « is produced by a

derivation of length n + 1. Let’s assume that the last step of that derivation is —G>1 a.
Clearly, 8 has a derivation of length n, so by induction hypothesis, 3 is a good string.

An inspection of our grammar rules show that since § does not end in Adj and —G>1 a,
then a does not end in Adj. So, if « is not good, it must end in colourless. Furthermore,
the only rule that could produce colourless is the rule Adj — colourless. Thus, if a ends in
colourless, then $ must end in Adj. Contradiction!

1.5 The Chomsky hierarchy
Fix ¥, V,and S e V.

(1) A production rule o — 3 is called noncontracting if |a| < |f|.
(2) A production rule A — § is called context-free if A € V and |8] > 1.
(3) Production rules A — a and A — aB are called regular if A,B € V and a € X.

We observe that every regular rule is context-free and every context-free rule is noncon-
tracting.

We call a grammar noncontracting, context-free, or regular if all of its production rules
are noncontracting, context-free, or regular, respectively. If G is a noncontracting grammar,
we know that any string in D(G, S) must have length at least |S| = 1 [proof by induction on
the length of the derivation]. Thus, a noncontracting grammar can never derive the empty
word ¢.

We call a language noncontracting, context-free, or regular if it is produced by a noncon-
tracting, context-free, or regular grammar, respectively.

By the above remark, noncontracting, context-free, and regular languages cannot contain
e. As a consequence, we shall focus for most of this course on languages L C W*. In §1.8,
we discuss the possibility of generalising the notions to allow our grammars to derive the
empty word.

Example 1.18. The rules in the generative grammar for Chomsky’s example sentence
“Colourless green ideas sleep furiously” from Example 1.17 is context-free, since all pro-
duction rules have a single variable on the left-hand side. This is not in general true for
production rules of natural language. Suppose we have variables SNoun for “singular noun”,
SVerb for “singular verb”, PNoun for “plural noun”, and PNoun for “plural verb”. Then the
context-free rules

NP — SNoun, NP — PNoun, VP — SVerb, and VP — PVerb

would allow us to derive the ungrammatical sentences “Idea sleeps” and “Ideas sleep” by the
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All languages

Figure 1: The Chomsky hierarchy

derivations
S and S
PN < O\
NP VP NP VP
¥ ¥ v ¥
SN ¢oun P\ierb PNfun S\/'frb
Idea sleep Ideas sleeps,

so we need to replace them with the noncontracting production rules

NP VP — SNoun VP, NP VP — PNoun VP,
SNoun VP — SNoun SVerb, and PNoun VP — PNoun PVerb.

Chomsky called languages generated by any grammar type 0 languages, noncontracting
languages type 1 languages, context-free languages type 2 languages, and regular languages
type 3 languages.

By the above remarks, we know that the four Chomsky types form a hierarchy, i.e.,
that the set of languages of a type is a subset of the set of languages of any lower type.
Furthermore, by Proposition 1.16, we know that each of the classes of languages is countable.
We call this hierarchy the Chomsky hierarchy (Figure 1). A hierarchy like this is called proper
if all of the classes are distinct, i.e., if each type has languages that are not of any higher
type (e.g., that there is a context-free language that is not regular).

On the level of grammars, it is easy to see that there are context-free grammars that are
not regular, noncontracting grammars that are not context-free, and grammars that are not
noncontracting. But a grammar that is not regular can still be equivalent to a grammar that
is regular as the following example shows:
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Example 1.19. Consider ¥ = {0}, V := {A4,S}, Ps :={S — 04,5 — 0,A — 05}, and
Gs = (X,V, Py, S). This is a regular grammar and £(Gg) = {0*"*1; n € N}. Thus, the set
of odd-length Y-words is a regular grammar.

By Example 1.19, {0?"*!: n € N} is a regular language. However, the grammars with
production rules Py, P;, P», P3, and P, given in or after Example 1.10 are not regular;
the grammar with production rules P; and FPs are not context-free; and the grammar with
production rules P; is not noncontracting. And yet, they are all equivalent and produce a
regular language.

This example highlights that proving that the Chomsky hierarchy is proper is more com-
plicated: we need techniques to prove that languages are not in a given Chomsky type.

1.6 Decision problems

Historically, computability theory and the theory of models of computation was driven by
decision problems. David Hilbert (1862-1943) gave an address at the International Congress
of Mathematicians in Paris in the year 1900 in which he formulated mathematical problems
for the 20th century.® One of them was Hilbert’s Tenth Problem:

Given a diophantine equation with any number unknown quantities and with
rational integral numerical coefficients: To devise a process according to which it
can be determined by a finite number of operations whether the equation is solvable
i rational integers.

Several decades later Hilbert and Wilhelm Ackermann (1896-1962) formulated the so-called
Entscheidungsproblem (“decision problem”) in their monograph on mathematical logic:”

From the considerations of the last section, we conclude the fundamental impor-
tance of the problem, to determine for any given formula of predicate calculus
whether it is [logically valid] or not.

Both of these questions ask for a procedure to determine the answer to a question, in the usual
terminology, for an algorithm. If the answer to the two mentioned problems is positive (and
that was presumably Hilbert’s expectation), it can be given by producing such an algorithm.

Note that we did not define the word “algorithm”. As long as we are giving positive
answers, this is not an issue: if a procedure is obviously algorithmic, we do not need a formal
definition of the word “algorithm”. In other words, it is enough to have sufficient criteria
for being an algorithm that allow us to see a proposed algorithm and determine whether it
actually is one. However, negative answers will require a definition of what an “algorithm”
is, or more specifically, necessary criteria for being an algorithm. This means that there is
a strong asymmetry between positive and negative answers to decision problems. Positive

SD. Hilbert (1900). Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-
Kongre3 zu Paris 1900. Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen.
Mathematisch-Physikalische Klasse, 3, 253-297.

"D. Hilbert, W. Ackermann (1928). Grundziige der theoretischen Logik. Springer-Verlag, p. 90.
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answers are usually considerably easier to give. We shall come back to the question of
formalising the notion of an algorithm in § ?7.8

In this section, we’ll formulate the typical decision problems for grammars. Let G and G’
be formal grammars and w € W be a word.

The word problem. Is there an algorithm to determine whether w € £(G)?
The emptiness problem. Is there an algorithm to determine whether £(G) = @7

The equivalence problem. Is there an algorithm to determine whether £(G) = L(G")?

We say that a decision problem is solvable if there is such an algorithm and that it
is unsolvable if there is not. These three decision problems will be a guiding motivation
throughout this lecture course. It will turn out that all three (general) decision problems are
unsolvable. We are therefore particularly interested in restricting the decision problems to
the classes of grammars given by the Chomsky hierarchy. E.g., the word problem for reqular
grammars is the question whether there is an algorithm that determines for any regular
grammar G and word w € W whether w € L(G).

In this section, we shall give a positive solution for the word problem for type 1, type
2, and type 3 languages. We shall return to the word problem for type 0 languages in §4.8
(Corollary 4.42).

Lemma 1.20. If G is noncontracting and w € W, then there is a bound N depending only
on |w| and || such that w € £L(G) if and only if w has a derivation of length at most V.

Proof. Suppose w € L(G), then there is a derivation (o, ...,0,) such that op = S and
o, = w. Let’s assume that n is minimal with the property that there is a derivation of length
n. Since G is noncontracting, we know that for k < ¢, we have |oy| < |04/, so the sequence of
lengths of the strings in the derivation is nondecreasing. However, for a fixed length m, the
number of strings of length m is fixed: it is |Q2|™". This means by the pigeonhole principle
that if there are more than |Q™ consecutive strings of length m in the derivation, then one of
them must repeat. But then the derivation can be shortened by eliminating the loop: that’s
a contradiction to the assumption that n is the minimal length of a derivation of w. So, the
derivation contains at most |Q2|™ strings of length m. But this allows us to give an upper
bound on the length of the entire derivation, viz.

|w|

N =) Q™
=1

Q.E.D.

8We mention briefly that both of the mentioned Hilbert problems have negative answers. The negative
solution to the FEntscheidungsproblem will be discussed in §4.8; the negative solution of Hilbert’s Tenth
Problem was provided by Davis, Matiyasevich, Putnam, and Robinson. Cf. Y. V. Matiyasevich (1993).
Hilbert’s Tenth Problem. MIT Press & M. Davis (1973). Hilbert’s Tenth Problem is Unsolvable. American
Mathematical Monthly 80, 233-269.
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Theorem 1.21. The word problem for noncontracting grammars is solvable.

Proof. Given w and G, compute N := th:':l |2 and systematically check all derivations of
length N. If one of them produces w, output “Yes”; if not, output “No”. By Lemma 1.20,
this algorithm produces the correct result. Q.E.D.

Since type 1, type 2, and type 3 languages are all noncontracting, this solves the word
problem for all of these classes. We shall return to the emptiness and the equivalence problems

in §§2.8, 3.5, & 4.13.

1.7 Closure properties
There are a number of algebraic operations on languages that allow us to combine languages

to new languages. Let L, M C W™ be any languages over an alphabet X.

a) Concatenation. The language LM consists of words vw such that v € L and w € M.

(
(b

Union. The language L U M consists of words either in L or in M.

)
)

(c) Intersection. The language L N M consists of words that are both in L and M.

(d) Complement. The language L := W*\ L consists of nonempty words that are not in L.
)

(e) Difference. The language L\M consists of words in L that are not in M.

We are particularly interested in which classes of languages are closed under which oper-
ations. Basic set theoretic relationships between the operations show that there are various
implications between the closure properties:

Lemma 1.22. Let C be a class of languages. Then the following implications hold:

a) If C is closed under union and complementation, then it is closed under intersection.

(
(b

If C is closed under intersection and complementation, then it is closed under union.

(c) If C is closed under intersection and complementation, then it is closed under difference.

)
)
)
(d) If Wt e C and C is closed under difference, then it is closed under complementation.

Proof. These are all set algebra consequences of the definitions and de Morgan’s Laws
WN\(ANB)=WN\NAUWT\B and WH\(AU B) = WH\ANWTH\B. Q.E.D.

It is useful to realise that some of the operations correspond to simple transformations
of grammars, but they work only if we remove the possibility of undesirable interactions
between the grammars. By Proposition 1.14, we already know that we can assume w.l.o.g.
that two grammars have disjoint sets of variables.

Definition 1.23. A production rule is called variable-based if its left-hand side does not
contain any letters. A grammar is called variable-based if all of its rules are variable-based.
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Lemma 1.24. For every grammar, there is a variable-based grammar that is equivalent to
it.

Proof. Add new variables X, for every letter a € %; let V' := VU {X,;a € X}. For
each production rule &« — g € P, replace every occurrence of a letter a occurring in a by
the corresponding new variable X,; we write X («) for this string. Clearly, X («) does not
contain any letters anymore, and so X(a) — X(f) is a variable-based rule. Now define
P ={X(a) > X(B);a— e PtU{X, —a;aecX}and G':= (35, V' P 9).

Any G-derivation is transformed to a G’-derivation by the operation a — X («); a G-
derivation of w becomes a G’-derivation of X (w). Similarly, if we have a G’-derivation that
contains no letters anywhere, then all strings occurring are of the form X («) for some a € Q*
and the operation of replacing all occurrences of X, with the corresponding a transforms
that derivation into a G-derivation. Together, this shows that w € L(G) if and only if
X(w) € D(G",9).

If X(w) € D(G',S), then (by applying the additional rules of the form X, — a as needed)
we have w € L(G').

Conversely, assume that w € L£(G’) and let S = oy £>1 £>1 om = w be a G'-
derivation of w. If we apply the operation X to this derivation, we obtain a sequence
(T0y oy Tm) With 79 = S = 09 = X(0p) and 7, = X (0;). This sequence is not necessarily a

G'-derivation. If o; —5, oi+1 was an application of a rule of the form X (a) — X(f8), then

the same rule will warrant that X (o;) —Gl>1 X(0i41); if oy —Gl>1 0i41 was an application of
one of the rules X, — a, then applying X will result in X(0;) = X(0;41). Since for each
letter a there is only one production rule that produces a, we know that |w| many steps of
the derivation must be of this form. Thus, removing these |w| many steps will make the
remainder of the sequence (79, ..., 7,n) a G'-derivation of length m — |v| of X (w). But then
w € L(G) by our earlier observation. Q.E.D.

Note that the transformation P — P’ in this proof preserves being noncontracting and
being context-free, but not being regular. However, regular grammars are variable-based
anyway, so there is no need to apply Lemma 1.24 to a regular grammar.

Let G = (3,V,P,S) and G' = (X,V', P', S") be two grammars over the same alphabet 3.

(a) Concatenation. The concatenation grammar of G and G is (X, VUV U{T'}, P*,T) with
a new variable 7" and P* :={T'— SS'} UP U P".

(b) Union. The union grammar of G and G' is (3, VU V' U{T}, P*,T) with a new variable
T and P*:={T - S,T - S'}UPUP".

Remark 1.25. Note that if G and G’ are context-free or noncontracting, then so are their
concatenation and union grammars (since all three new productions 7' — SS’, T' — S, and
T — S’ are context-free). Even if G and G’ are regular, then their union and concatenation
grammars are not regular, since the new productions 7' — S, T'— S’, and T' — SS’ are not
regular rules. (We’ll discuss this in §2.1.)

Proposition 1.26. Let G and G’ be grammars that do not share any variables and are
variable-based. Let H be their concatenation grammar. Then L(H) = L(G)L(G").
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Proof. For the forward direction, let vw € LM, i.e., v € L and w € M. By definition, we
have a G-derivation (oy, ...,0,) of v and a G'-derivation (7, ..., 7:,) of w. Then

T2 85 = 005" 51 08" 5y . =51 0,8 = 08"
= V7o —G/>1 VT —G/>1 —G/>1 VT — VW
is an H-derivation of vw.

For the converse, let T = oy —H>1 o1 —H>1 —H>1 o, = u be any H-derivation. Since
there is only one rule involving T, we know that oy = SS5’. For i > 1, if 0; = xg...xy, wWe
define by recursion what it means that x; belongs to the first half in o;. Our definition will
be done in such a way that all variables occurring in the first half are in V' and all variables
occurring in the other half are in V’. If i = 1, we say that S € V belongs to the first half
in o7 and S” € V’ doesn’t. Suppose 0; = ayf and ;.1 = adf, i.e., ;41 is produced by
an application of the rule v — 0. We assumed that our grammars were variable-based, and
hence 7 consists only of variables. By definition of H, these must either all be from V or all
from V'. In the first case, 7 lies entirely in the first half; in the second case, 7 lies entirely in
the other half. Any symbol instance occurring in o, lies either in «, §, or 5. If the symbol
instance is in « or 8 then it already occurred in o;, and we say that it belongs to the first
half in 0,41 if and only if it belonged to the first half in ¢;. If the symbol instance is in 9,
then it belongs to the first half in 0,41 if and only v was entirely in the first half in o; (that’s
equivalent to v € V*\{e}). If that’s the case, we also say that the production step from i to
i 4+ 1 belongs to the first half.

An induction shows that the symbols belonging to the first half form an initial segment
of each ;. So, we have u = vw where v is the subword of letters belonging to the first half.
We now collect all production steps that belong to the first half and observe that they form
a G-derivation of v from S; similarly, all production steps that do not belong to the first half
form a G’-derivation of w from S’. This shows that u = vw € LM. Q.E.D.

Proposition 1.27. Let G and G’ be grammars that do not share any variables and are
variable-based. Let H be their union grammar. Then £(H) = L(G) U L(G').

Proof. Clearly, if S N v, then T Y by using the rule 7' — S; similarly, if S’ <, v, then
T -5 v. Thus, £(G) U L(G") C L(H).

Since V NV’ = & and the grammars are variable-based, no rule from P can apply to
a string that contains no variables from V' and no rule from P’ can apply to a string that
contains no variables from V’. As a consequence, we see (by induction) that any H-derivation
starting from S will only use rules from P and any H-derivation starting from S’ will only

use rules from P’. Thus, if S A, v, then S s v and if 8" v, then S’ 9 v. But since
there are only two rules involving 7', any H-derivation (og, 071, ..., 0,) with o9 = T will have

H . .. G G’
o1 =S or o, =295 s0T — v implies either S — v or S —— v. Q.E.D.

Corollary 1.28. The classes of type 0, type 1, and type 2 languages are closed under
concatenation and union.



27 Jan 2025 Michaelmas 2024: Part II Automata & Formal Languages 17

Proof. As mentioned, context-free grammars are variable-based; note, furthermore, that the
construction in the proof of Lemma 1.24 preserves being noncontracting. Thus, by the proofs
of Proposition 1.14 and Lemma 1.24, we may assume w.l.o.g. that VNV’ = & and that P
and P’ are variable-based, thus we can apply Propositions 1.26 & 1.27 in combination with
Remark 1.25. Q.E.D.

It is not obvious how to produce grammars for the other closure properties (intersection,
complementation, difference). The question whether the relevant classes are closed under
these operations will play a major role in our discussions of the Chomsky classes.

1.8 A comment on the empty word

As mentioned, noncontracting grammars cannot produce the empty word e (cf. the proof of
Lemma 1.20). What if we wish to talk about languages that may contain the empty word,
e.g., the language of even-length words or the set of words that do not contain the letter a?

We can fix this easily by additionally allowing rules that produce the empty word in our
production rules. Let us call any production rule o — € an e-production and the rule S — ¢
the basic e-production. Of course, these rules are not noncontracting, so adding these rules
to any grammar will catapult it out of the Chomsky hierarchy.

Even with just the basic e-production, we can easily mimic arbitrary production rules in
a noncontracting way: if « — f is a rule with |5| < |a], say, |a] = n+k > n = |f|, then
consider the (noncontracting) rule o — $S*. In the presence of S — ¢, this rule can be used
to produce the effect of the original contracting rule oo — f3.

In order to avoid this, for any nonterminal A, we call a production rule A-safe if the symbol
A does not appear on the right-hand side. A grammar (G,V, P, S) is called e-adequate if all
of its production rules are S-safe. In order to avoid very lengthy theorem statements, we
use the letter Q to stand for one of the three properties of being regular, context-free, or
noncontracting.

Proposition 1.29. Any grammar is equivalent to an e-adequate grammar. Moreover, any
grammar with property Q is equivalent to an e-adequate grammar with property Q.

Proof. Suppose G = (X,V, P, S) is a grammar. Take a new variable T' ¢ V and let

V=V Uu{T},
P':=PU{T - «a; S — a € P}, and
G = (3, V', P, T).

Clearly, G’ is e-adequate. We claim that £(G) = L(G’): note that T never occurs on the
right-hand side of any production rule, so if & does not contain 7', then « . wif and only if
aiw. ThusS—G>1aiwifandonlyifT—G/nai)wifandonlyifT—G;la&w.
Observe that the transformation P — P’ preserves all three properties that Q can stand for.

Q.E.D.
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A grammar is called essentially Q if it is e-adequate and all of its production rules are
either the basic e-rule or have property Q. A language is called called essentially Q if it is
produced by an essentially Q grammar.

Proposition 1.30. A language L is essentially Q if and only if L\{e} is Q.

Proof. “=": Let L be a language that is essentially Q as witnessed by a grammar G that is
essentially Q. First of all, let us observe that if all rules are e-adequate, then no derivation
will contain S except at the very beginning: no rule can ever introduce an instance of S, and
the only instance of S will need to be rewritten by a string without S in the first step of the
derivation. That means that if S — ¢ is a rule of G, it must be used in the first step of the
derivation. All other derivation steps will only use productions that have property Q. Thus,
the grammar obtained by removing the rule S — ¢ from G will produce a language L’ that
is Q and L' = L\{e}.

“<”": Let G be a Q grammar producing L\{e}. By Proposition 1.29, we can assume
w.l.o.g. that GG is e-adequate; so G is essentially Q. As in the proof of the other direction,
any G-derivations can only contain S at the very beginning. If ¢ ¢ L, then £(G) = L and
we are done. If ¢ € L, then the grammar G’ that adds S — ¢ to G will satisfy L(G') = L
(using the fact that no G-derivations contain S except at the very beginning). Q.E.D.
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2 Regular languages

2.1 Understanding regular derivations

A regular grammar only has two types of production rules, A — aB, called nonterminal
rules, and A — a, called terminal rules. The syntactic form of regular grammars seriously
restricts what we can do with them.

Lemma 2.1. Let G = (X, V, P, S) be a regular grammar.

(a) If « € Q* and S N a, then « is either a word or of the form wA where w € W and
AecV.

(b) Ifv € Wand S —%, v, then any derivation of v has length |v| and only the final step of the
derivation is an application of a terminal rule, the others are application of nonterminal
rules. The terminal rule creates the final letter in the word v.

Proof. (a) is easily proved by induction: it is true for S and if any of the rules of G is applied
to wA, it either produces a word or some w'B where w’ € W and B € V.

For (b), we observe that nonterminal rules keep the number of variables the same; ter-
minal rules reduce the number of variables by one. Claim (a) shows that the derivation of
a word w consists of strings of the form wA for all steps except the last. Therefore, all
production steps except for the last must have been nonterminal and the last one is terminal.
Note that nonterminal rules increase the length by one and terminal rules keep the length
the same. Since the length of the string consisting only of the start symbol is 1, we have
applied |v| — 1 nonterminal rules before reaching a string of length |v|. Since the penultimate
string is of the form wA and the final production step is a terminal rule, it’s clear that this
rewrites A into the final letter of v. Q.E.D.

Note that even in this severely restricted case, we do not have uniqueness of derivations:
the following is a regular grammar for the language {01}: S — 04,5 —- 0B, A — 1, B — 1;
both S — 0A — 01 and S — 0B — 01 are derivations of 01.

Now that we understand what regular derivations look like, we can re-visit the question
of closure under union and concatenation. The union and concatenation grammars we used
in § 1.7 were not regular, so we need to give alternative constructions. Let G = (3, V, P,S)
and G' = (X, V', P'| S") be regular grammars.

(a) The regular concatenation grammar of G and G'is (X, V UV’ P* S) where P* := P'U
(P\{A —»a;A—aecP}HU{A—aS; A—ac P}

(b) The regular union grammar of G and G' is (X,V UV’ U{T}, P*,T) with a new variable
Tand PP :=PUP U{T »a;S—acPtU{T —-a;5 -ac P}

Clearly, if G and G’ are regular, then so are the regular concatenation and regular union
grammars.
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Proposition 2.2. Let G and G’ be regular grammars with disjoint sets of variables. If H is
their regular concatenation grammar, then £(H) = L(G)L(G"); if H is their regular union
grammar, then L(H') = L(G) U L(G).

Proof. Concatenation. Suppose vw € L(G)L(G') and let S S vand ' - w. By Lemma
2.1 (b), we know that the final production in the derivation of v is a terminal rule, say A — a
and therefore A — aS’ is a rule in H. Thus, we have that S M, 18’ We also have that
$" < w and hence §" L w, so together S 2w,

For the other direction, suppose S o andlet § = oL —H>1 o1 —H>1 —H>1 o, = Uu be
an H-derivation, By Lemma 2.1, we know that all strings o; (for 0 < < n) contain exactly
one variable. If o; contains a variable from V’, then this remains true for all o; with j > i.
Therefore, the strings with variables from V' form an initial segment of the derivation. Let m
be the unique number such that o,, has a variable from V' and o,,,1 has a variable from V".
The only H-rule that allows to do that is of the form A — aS’, so 0,, = ©A and 0,,,1 = zaS’
and all rules applied before m are G-rules and all rules applied after m+ 1 are G’-rules. Thus

S % 24 and therefore (using the original rule A — a in G), S 9, va. Write v := za and
w = vw. Then §' %5 w.

Union. This proof does not need that G and G’ are regular; we shall only use that they
are variable-based. The direction “2” is obvious since any derivation S i) w or S’ i> w

can be made into a derivation T — w by exchanging the first rule application rewriting
either S or S’ by the corresponding rule in P* rewriting 7.

For the other direction, suppose T’ 2. Since H is variable-based, all strings occurring
in this derivation except for the last one must contain variables (once a string is a word,
nothing can be rewritten anymore as every production rule needs a variable to be rewritten).

Itr —H>1 w, i.e., the derivation has length one, then it is the result of a rule application of
T — w. By definition, either S — w € P or 8" — w € P', so w € L(G) U L(G"). Otherwise,

we have T’ —H>1 o L w with o containing variables. That T’ —H>1 « is either witnessed by
some rule S — « € P or some rule 8" — « € P’. In the former case, all variables in « are
in V; in the latter case, all variables in « are in V. W.l.o.g., let’s assume that we are in the
first situation, i.e., all variables in o are in V' and S — « € P. By induction (and the fact

that H is variable-based), all variables occurring in the rest of the derivation « Ay w will
also be in V, so all rules applied in the derivation come from P and thus we have « .
But now S —%, a —= w, thus S ~Z+ w, and therefore w € L(G) C L(G)UL(G"). Q.E.D.

Corollary 2.3. The class of regular languages is closed under concatenation and union.

2.2 Deterministic automata

Let ¥ be an alphabet. Then a tuple D = (3, Q, 9, qo, F') is called a (deterministic) automaton

if @ is a finite set such that ¢o € Q, F € Q\{qo}, and 6 : @ x ¥ — Q. The elements of @
are called states; the function ¢ is called the transition function.
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We graphically represent automata by directed labelled graphs where the vertices are
labelled by the elements of @), each vertex has precisely |X| immediate successors marked by
directed edges labelled with the letters of the alphabet Y. The vertices labelled with non-
elements of F' get a single circle, and the vertices labelled with elements of F' get a double
circle. The following is an example for ¥ = Yg1, Q = {qo0, ¢1, ¢2}, and F = {q1 }:

Note that we simplify our graphical representations by writing a single arrow with multiple
labels if they all have the same source and target (e.g., the arrow from ¢; to itself in the
above diagram).

We interpret the automaton D = (X, Q, d, qo, F') as follows: qq is the start state and the
automaton starts in this state. The automaton is given a word w € W and reads it letter
by letter from the beginning. The transition function § tells the automaton what to do: if
the automaton is in the state ¢ and reads the letter a, it moves to the state 6(q,a). After
reading a letter from the word, the automaton then proceeds to the next letter. Once it is
done reading the word, it will be in a particular state q. The set F' is the set of accepting
states: the automaton accepts the word w if and only if that state is in F'.

More formally, we define a function 6 : Q x W — ) by recursion on the length of the
word:

g(q, ) :=q and
3(q, wa) := 5(3(g,w), a),

and define the language accepted by D via L(D) = {w; g(qo,w) € F'}. Here, we say that
D accepts w if g(qo, w) € F and that D rejects w if g(qo, w) ¢ F. Note that for every w =
ag...an, the function 5 uniquely determines a sequence of states that the automaton passes
through during a computation: gy = 5(qo, £), q1 == 5(610,%) G = 5(q0,a0a1) o Qnel =
(5(q0, ag...an) = (5(q0, w). The sequence is also called the state sequence of the computatz’on.

Example 2.4. The automaton graphically represented above accepts the language

L := {w; w contains at least one 0}.

[Let us analyse which words will result in state qo, ¢1, and go, respectively. By this we
mean words s such that S(QO, w) = ¢;. Since go has no incoming edges, the only word that
results in qg is €. The state ¢o has two incoming edges, a 1-transition from ¢y which means
that the word €1 = 1 results in ¢o, and then a 1-transition from ¢,. So, by induction, any
finite sequence consisting entirely of 1s will result in ¢o; thus, the words that result in ¢y are
precisely the words in {1}". Finally, all O-transitions lead to ¢, so any word that contains a
0 will always be in state ¢; immediately after reading that 0. However, since both transitions
from ¢; lead to ¢i, you cannot ever leave that state. In summary, the empty word ends in
qo, any word consisting of 1s results in ¢», and any word that contains a 0 results in ¢;.
This description covers all possible words. We note that ¢; is the only accepting state, which
proves the claim.]
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If D=(3,6q,F) and D' = (X,Q,d,q,, F') are deterministic automata over the
same alphabet X, we say that a map f : Q — Q' is a homomorphism from D to D' if

(i) for all ¢ € @ and a € X, we have that 0'(f(q),a) = f(d(q,a)),
(ii) we have f(qo) = ¢, and
(iii) for all ¢ € @, q € F if and only if f(q) € F".

As usual, bijective homomorphisms are called isomorphisms and automata that have an
isomorphism between them are called isomorphic. Note that if f is a bijection, then f~!
satisfies (i) to (iii) and thus is a homomorphism.

If f is a homomorphism, property (i) extends by induction to 5 (f(q),w)=f (A(q, w)) for
weW.

This means that while homomorphisms are not in general surjective, they hit every state
in @’ that is reachable from ¢ (i.e., a state of the form ¢'(¢q[, w) for some word w € W) by
property (i); these states are the only states that matter for £(D’). Similarly, homomorphisms
are not in general injective, but if f(p) = f(gq), then p and ¢ have to agree on everything
that is relevant for determining the accepted language: e.g., p € F' if and only if ¢ € F' by
property (iii). The two states need to be what we shall later (§2.7) call indistinguishable.

Proposition 2.5. If there is a homomorphism from D to D', then £(D) = L(D’).

Proof. Let f be a homomorphism from D to D’; then for any word w, we have

(q0, w) €

(6 (CIO, )) € F
'(f(q0),w) € F'
(40

g, w) € F' < we L(D).

=)

w e L(D) <=

SR EN

<)

111

%)kh

Q.E.D.

Theorem 2.6. Any language accepted by a deterministic automaton is regular.

Proof. Let D = (X,Q,0,qo, F') and define G = (X, Q, P, qy) with the following production
rules (for p,qg € Q and a € ¥): p — aq is in P if and only if (p,a) = ¢ and p — a is in P if
and only if §(p,a) € F.

Suppose ag...a,, = w € L(D), i.e., g(qo,w) € F. This means the state sequence of the
computation is given by ¢; 11 := §(¢;, a;) such that g(qo, w) = 0(qn, an) = Gni1. By definition,
¢ — a1 € P and ¢, — a, € P (since ¢,,1 € F). Thus, the state sequence yields a
G-derivation

G G G G G
qo —1 Goq1 —*1 ApG1q2 —>1 - .. —>1 GA1...Ap_1qy —>1 QpQA1...Qp = W, (T)

so L(D) C L(G).
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Conversely, suppose apa;...a, = w € L(G) and apply Lemma 2.1 to see that any G-
derivation of w is the form (1) for letters a; and variables ¢; and furthermore that this means
that for all ¢« < n, we have ¢; — a;q;,01 € P, as well as ¢, — a, € P. By definition of
P, this in turn means that 6(g;,a;) = ¢;11 and §(q,, a,) € F. We obtain immediately that

~

3(qo, w) = 0(qn, an) € F, so w € L(D). Q.E.D.

Accepting the empty word. To match § 1.8, we should briefly comment on the role of
the empty word for automata. By the stipulation that gy ¢ F', we make sure that the empty
word can never be accepted by an automaton. This matches with our definition of regular
grammars and we need this in the proof of Theorem 2.6: an automaton that accepts the
empty word would require a derivation gy — ¢ in the grammar. If we modify our definitions
of grammars as discussed in § 1.8, we could remove the stipulation that ¢y ¢ F' from our
definition of automata and retain the equivalence.

2.3 Nondeterministic automata

We would like to prove the converse of Theorem 2.6. However, the transformation of an
automaton into a grammar from the proof of Theorem 2.6 is not invertible since a regular
grammar could contain production rules A — aB and A — aC for B # C, but transformation
functions in deterministic automata have to assign a unique value 6(g,a). This suggests a
more liberal notion of automaton:

Let 3 be an alphabet. Then a tuple N = (X,Q, 9, qo, F') is called a nondeterministic
automaton if @ is a finite set such that ¢o € Q, F C Q\{q}, and § : Q@ x X — p(Q).
We think of §(q, a) as the set of possible states that the automaton can reach from ¢ upon
reading a. The graphical representation of nondeterministic automata is the same as for
deterministic automata, except that a given vertex may have multiple or no outgoing arrows
labeled with the same letter a. R

For nondeterministic automata, we recursively define a similar function 6 : @ xW — ©(Q)
by

g(q,g) :={q} and
g(q, wa) := U{5(pa a);p € g(Qu w)}

~

and define the language accepted by N via L(N) := {w; 6(qo, w) N F # @}. The function
5 collects all possible resulting states for all possible paths through the automaton. The
automaton accepts a word if there is at least one such path that results in an accepting
state. For deterministic automata, we had a state sequence given by the transition function.
Similarly, 6 produces a state set sequence for nondeterministic automata where Xy = {q}
and X, 11 = J{o(p,a:); p € Xi}.

Nondeterministic automata are a generalisation of deterministic automata: If D =
(3,Q,6,q0, F) is a deterministic automaton, then §"(q,a) := {0(q,a)} defines a transition
function of a nondeterministic automaton N := (3, @, d", qo, F'), and by induction, it is easy
to see that 6"(q,a) = {6(q,a)}, so L(N) = L£(D). However, at least superficially, nonde-
terministic automata feel much more general as they are able to check many computation
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sequences at the same time. The following theorem shows that this superficial intuition is
wrong.

Theorem 2.7. For every nondeterministic automaton N there is a deterministic automaton
D such that £(D) = L(N).

Proof. The construction in this proof is known as the subset construction. Let N =
(3, Q,6,qo, F') be a nondeterministic automaton. We define the a deterministic automaton

D = (%,0(Q),A,{q}, G) where

A(X,a) = U{é(q,a); g€ X} and
XelG@ <= XNF+#0o.

Since states in D are sets of states in N, any sequence of states in D is a sequence of
sets of states in N. Fix a word w = ag...a, and let (X, ..., X,,11) be the state sequence
corresponding to w in D and (Y, ..., Y,11) be the state set sequence corresponding to w in
N, then we easily see by induction that X; =Y. Thus

weLD) < X, €G << X, NF#+£0 << Y, NF#3 < weL(N).

Q.E.D.

Note that the subset construction in general produces a deterministic automaton with 2"
states if the original nondeterministic automaton had n states.

Theorem 2.8. Every regular language is accepted by a nondeterministic automaton.

Proof. Let G = (X,V, P, S) be a regular grammar. Let H ¢ XUV and define Q :=V U{H}.
We define N := (3,Q, 6,5, {H}) with

5(A, q) = {B; A— aB € P} if A—a¢ P;
YTV {B:A—aBePYU{H} ifA—acP.

Note that since H ¢ V', we have that 0(H,a) = @ for all a € X.
If ag...a,, = w € L(G), by Lemma 2.1, there is a G-derivation

G G G G G
AO =5 —1 CLQAl —1 a0a1A2 — 1 ... —1 aoal...an_lAn —>1 Qpaq...Qy = W,

with production rules A; — a;A;41 and A, — a, in P. By definition (and induction), we
obtain H € 0(S,w), and thus w € L(N).

Conversely, if ag...a, = w € L(N), then there is a path through N via arrows labelled
with the a; leading to H, i.e., a path of states ¢ = S, q1, ..+, Gn, ¢ni1 = H such that for each
i, we have that ¢;11 € 0(g;,a;). In particular, all of the ¢; except for the last one must be
elements of V', and so ¢;11 € 0(g;, a;) must be witnessed by a production rule ¢; — a;q; 11 € P;
furthermore, the fact that ¢,.1 = H € 6(qn, a,) means that ¢, — a, € P. Combining these

results in a G-derivation
G G G G G
go = S —1 Qo1 —>1 ApA1q2 —>1 ... —>1 AQ...Ap—1¢y, —1 Ag...Qyp, = W,

thus showing that w € L(G). Q.E.D.
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Corollary 2.9. A language L is regular if and only if it is accepted by a deterministic
automaton.

Proof. Follows directly from Theorems 2.6, 2.7, & 2.8. Q.E.D.

2.4 The pumping lemma for regular languages

We now have a good understanding of how we can show that a language is regular, but we
are still missing tools to prove that a language is not regular, even though we already know
(Proposition 1.16) that almost all languages are not regular. In this section, we shall provide
the main tool for proving non-regularity.

Definition 2.10. Let L C W be a language. We say that L satisfies the (regular) pumping
lemma with pumping number n if for every word w € L such that |w| > n there are words
x,y, z such that w = xyz, |y| > 0, |zy| < n and for all k& € N, we have that zy*2 € L. We
say that L satisfies the (regular) pumping lemma if there is some n such that it satisfies the
(regular) pumping lemma with pumping number n.

If a language L satisfies the pumping lemma and we have written w = xyz as in the
definition, then zz = xy°z, zy*z, x1%2, etc. are all in L. We call the transition from w = zyz
to wz pumping down and the transition to zy*z (for k > 1) pumping up.

Theorem 2.11 (The regular pumping lemma). For every regular language L, there is a
number n such that L satisfies the regular pumping lemma with pumping number n.

Proof. By Corollary 2.9, we know that L is accepted by a deterministic automaton D =
(3,Q,6,q0, F). Let n := |Q| and suppose that w € L£(D) such that |w| > n. We write
w = ag...a,_1v for some v € W. Consider the state sequence qo, q1, ..., ¢, obtained by letting
D read ag...a,_1, i.e., we have §(q;, a;) = ¢;+1. The state sequence has n + 1 elements, and so
by the pigeonhole principle, one of the states must occur twice in the state sequence. Let’s
fix 0 <14 < j < n such that ¢; = ¢; and let

= ap...a;_1,

= @;...a;_1, and

ISTENSJENE

= Qj...0p17,

where the latter means z = ev = v if j = n. Note that our construction implies that w = zyz,
ly| > 0, and |zy| < n. We also observe that

3(q0, ) = g, (a)
(i, y) = 0(q;, >—qj—qz, and (b)
(i 2) = 8(qj.2) € (c)

Fix any k and prove that xy*z € £(D). For this, we prove by induction that 5(q0, ry®) = ¢
for all k. For k = 0, this is just (a). If 8(go, zy*) = ¢, then &(qo, zy*!) = 8(g;,y) = ¢; by
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(b). Now, this implies that g(qo, zykz) = S(Qi, z) € F by (c). Q.E.D.

The pumping lemma is our main tool to prove that languages are not regular.

Example 2.12. The language L := {0*1%; k£ > 0} is not regular.

[Suppose it was. Then it satisfies the pumping lemma by Theorem 2.11, i.e., there is
some n such that it satisfies the pumping lemma with pumping number n. Consider the
word w = 0"1™ € L. Clearly, |w| = 2n > n, so the word can be pumped. This means that
we can write w = zyz with |y| > 0 and |zy| < n. By choice of w, this means that both x and
y consist entirely of zeros. If we now pump down, we obtain that xy°2 = xz € L, but this
word contains n — |y| < n many zeros and n many ones. Hence it’s not in L: contradiction!]

Since the proof of the pumping lemma tells us that the pumping number is the number
of states of the automaton accepting the language, it also gives us lower bounds on its size.

Example 2.13. Fix some positive number n € N. Then the language L := {0"w; w € W}
is regular and there cannot be an automaton D with n or fewer states such that £(D) = L.

[Towards a contradiction, let’s assume that there is such an automaton. By the proof of
Theorem 2.11, we get that L satisfies the pumping lemma with pumping number n. Consider
the word w = 0" € L. Clearly, |w| = n, so the word can be pumped, in particular, pumped
down. Since it consists entirely of zeros, we know that for w = xyz, the words z, y, and z
also consist entirely of zeros and xy°z = 2 is a sequence of n — |y| < n zeros. Hence it’s not
in L: contradiction!]

Corollary 2.14. If D is an automaton with n states and there is a path from ¢ to ¢/, then
there is a path from ¢ to ¢’ of length at most n.

Proof. As in the proof of the pumping lemma, if the path is longer, a state repeats, and thus,
the loop from the first to the second occurrence of that repeating state can be removed to
obtain a shorter path. Therefore, the shortest path must have length at most n. Q.E.D.

Since the pumping lemma is a very useful tool to prove that languages are not regular,
it is quite natural to wonder whether the statement of the pumping lemma is equivalent to
regularity, i.e., whether a language L is regular if and only if it satisfies the regular pumping
lemma. The answer is “No” as we shall show now.

If w € B is a binary word that contains at least one zero, we write tail(w) for the number
of ones in w that follow the last occurring zero. E.g., tail(0101111) = 4. Let X C N be an
arbitrary set of natural numbers (by Proposition 1.3, there are uncountably many of those).
We define a language Lx C B by w € Ly if w consists entirely of ones or if w has some zero,
then tail(w) € X. Let us show that if X # Y, then Lx # Ly: w.l.o.g., we can assume that
there is some n € X\Y. Then 01" € Lx\Ly. This shows that X +— Lx is an injection from
the power set of N into the collection of languages of the form Ly, so there are uncountably
many such languages.

Proposition 2.15. Every language Lx satisfies the (regular) pumping lemma.
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Proof. We shall prove that it satisfies the pumping lemma with pumping number 2. Let w
be an arbitrary binary word with |w| > 2.

Case 1. 1t starts with 0. Let x = ¢, y = 0, and z such that w = zyz = 0z. Pumping up
produces 0%z (for k > 1), but clearly tail(0*2) = tail(0z) € X, so 0¥z € Ly. Pumping down
produces z: if z still contains a 0, then tail(z) = tail(0z) € X, so z € Ly; if z contains no
0Os, then 2z € Lx anyway.

Case 2. 1t starts with 1. Let x = ¢, y = 1, and z such that w = xyz = 1z. If 2z does not
contain any Os, then all results of pumping y will result in a word without 0s, so they are
all in Ly. If z contains a 0, then all results of pumping y will result in a word that has the
same tail as 1z, and hence they are all in Lx. Q.E.D.

Corollary 2.16. There are languages satisfying the (regular) pumping lemma that are not
regular.

Proof. There are only countably many regular languages (by Proposition 1.16), but uncount-
ably many languages satisfying the regular pumping lemma by Proposition 2.15. Q.E.D.

2.5 Closure properties

We shall now show that the class of regular languages is closed under all five closure properties
listed in § 1.7: Concatenation, Union, Intersection, Complement, and Difference. Union and
Concatenation were proved in Corollary 2.3.

Proposition 2.17. The class of regular languages is closed under complementation, inter-
section, and difference.

Proof. We are going to show closure under complementation; the other claims follow from
Lemma 1.22 (a) & (c). Suppose that L = L(D) for some deterministic automaton D =
(3,Q,6,q, F). W.lo.g., we can assume that gy is not in the range of 6. [Just add a new
state g; and let

6(¢q,a) if ¢ € Q and 0(q, a) # qo,
§'(g,a) =14 d(qo,a) if ¢ =g and d(qo,a) # qo, and
9% otherwise.

Then (3,Q U{¢;}, ¢, qo, F') accepts the same language as D and does not have ¢o in the
range of its transition function.] Thus, let us assume that D has this property and define

D = (2,Q.0,q0, Q\(F U{qo}),

then we claim that £(D) = WH\L(D).
“C”: Suppose w € L(D), i.e., ¢ := d(qo,w) € Q\(F U {q}). This means that w # ¢

~ ~

(since d(qo,€) = qo) and 6(qo,w) ¢ F, so w ¢ L(D).
“D”: Suppose € # w is such that w ¢ L(D), i.e., d(qo,w) ¢ F. Since w # &, we know

-~

that (qo,w) # qo (by our assumption about the range of §), so together, this implies that
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w € L(D). Q.E.D.

There is an alternative proof for union and intersection that can be instructive in certain
contexts. Given nonempty sets @ and @', as well as F' C Q and F’' C ', we let

FAF ={(q,d)€eQxQ ;qe Fand ¢ € F'} = F x F' and
FVF ={(q,d)eQxQ ;qe ForqeF'}

We can now give a product construction of two automata: if D = (X,Q, 4, qo, F') and D’ =
(3,Q, 9, q,, F') are two automata, we define

Ix§:Ex(QxQ)—=QxQ :(a,(q,q)) = (8(a,q),(a,q)).
This allows us to define product automata for intersection and union as follows:

DAD :=(3,QxQ",0 x0d, (q,q), F NF'),
DVD :=(20QxQ,6xd (q,q), FVFE).

Proposition 2.18. For any automata D and D', we have

L(DAD') = L£(D)N L(D') and
L(DV D) = L£(D)UL(D).

~

Proof. By definition (and induction), m(w, (¢,4")) = (6(w, q), (/5\’(10, q')). Therefore,

weLDAD) < §x 0w, (q,q)) €FANF
= (0(w,q),0(w,q)) € F x F'
> d(w,q) € F and 8'(w, q})) € F'
< we L(D)and we L(D'),

and similarly for D Vv D’. Q.E.D.

2.6 Regular expressions

We shall consider two more operations on languages, the Kleene plus and the Kleene star
operation. If L is a language, we write

Lt := {w; Jwp... 3w, € L(w = wy...w,)},
i.e., L* is a finite concatenation of elements of L. Furthermore, we write
L*:=L"U{e}.

Note that this notation clashes slightly with our earlier star-operation X* which denoted
the set of finite sequences of elements of X. The result L* of applying the Kleene star
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operation to a language is not the set of finite sequences of words in L, but the set of their
concatenations. These two notions are closely related, but not quite identical. If there is any
chance of confusion, we shall be explicit about what we mean.
Let ¥ be an alphabet. Among the finite strings over the set X U {&,¢,(,),+,7,* }; we
shall define the notion of reqular expressions over ¥ by recursion:’
1
2
3

(1) The symbol & is a regular expression;

(2)

(3)

(4) if R and S are regular expressions, then (R + S) is a regular expression;
(5)

(6)

(7)

(8)

the symbol ¢ is a regular expression;

every a € X is a regular expression,

ot

if R and S are regular expressions, then (RS) is a regular expression;

(=)

if R is a regular expression, then R is a regular expression;
7
8

if R is a regular expression, then R* is a regular expression;

nothing else is a regular expression.

Note that construction steps (3) and (4) introduce a lot of parentheses that will turn out to
be unnecessary since the corresponding operations on languages turn out to be associative.
So, informally, we shall often drop some of these parentheses and write, e.g., R + S instead
of (R+95), R+ 5+ T instead of (R+S5)+T) or (R+ (S+1T)), and R(S + T') instead
of (R(S + T)). We shall also assume that concatenation has higher binding priority than +
and write RS + T for (RS) + T, or more accurately ((RS)+T).

We now associate languages to regular expressions by recursion:

(1) If E = @, then L(F) = &;

(2) if E =g, then L(F) = {e};

(3) if E=afor a € ¥, then L(E) = {a};

(4) if R and S are regular expressions, then L((R+ S)) = L(R) U L(S);
(5) S)) = LIR)L(S);

(6) if R is a regular expression, then £L(R*) = L(R)*;

(7) if R is a regular expression, then L(R") = L(R)".10

(R
(R

if R and S are regular expressions, then £

Proposition 2.19. If R is a regular expression, then £(R) is an essentially regular language.

Proof. This follows inductively via the recursive definition of regular expressions. Clearly,
&, {¢}, and {a} are essentially regular languages and we have proved in Corollary 1.28
and Proposition 2.2 that the regular languages are closed under union and concatenation,

9Note that @, €, 4+, T, and * are symbols here, not objects or operations. They will, however, be interpreted
as the empty set, the empty sequence, the operation of union, the Kleene star operation, and the Kleene plus
operation, respectively.

0These equations are nice examples of the issue raised in footnote 9: e.g., in the equation L(R") = L(R)T,
the first T is a symbol that is part of the regular expression R*, whereas the second T is the operation of
Kleene plus applied to the language L(R).
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respectively. This implies by Proposition 1.30 that essentially regular languages are closed
under union and concatenation as well.

So, we only need to show that the essentially regular languages are closed under the
Kleene star and plus operations. Since £L(L)* = L(L)* U {e}, it is enough to show that if L
is regular, then so is L™.

Let G = (%,V, P,S) be a regular grammar for L. Let P*:= PU{A — aS; A — a € P}
and G := (X,V, PT,S). Note that G* is a regular grammar. We claim that £(G*) = L*.

For “D”, let w = wy...w, € LT where wy,...,w, € L. We prove the claim by induction
onn. If n=0,then w=wy, € L =L(G) C L(G"). Suppose the claim holds for n and

+
w = Wy...wW,W,y1. By induction hypothesis, we have S AN wy...w, and by assumption,

we have that S -Z Wyy1. By Lemma 2.1, we know that the last rule application in the
derivation of wy...w, is a rule of the form A — a; replacing it with the rule A — aS € P,

. G+ . . o
we obtain S — wy...w,S. Prefixing wy...w, to every string in the derivation of w, 1, we

+
obtain wy...w, S -, Wo...WpWy11 = w. Since P C P, these two derivations yield S G .
For “C”, using Proposition 1.29, we may assume w.l.o.g. that P is e-adequate, i.e., that
it does not contain any instances of S on the right-hand side of its rules. We shall show the

claim by induction of the number of occurrences of S in the derivation S G—+> w. Note the
only rules that are in P*\P introduce an S and all rules in P remove S from the current
string (by e-adequacy). So, the number of occurrences of S counts how many times one of
the additional rules is used in the derivation. If there is exactly one occurrence of S (the

start symbol at the beginning), we have that S N w, so w € L(G) = L C LT. Suppose

+
that we have shown the claim for derivations with n occurrences of S and let S <5 w be a
derivation with n + 1 occurrences of S. Then S <= vS <5 w. The final production rule
of the first part is of the form A — aS € P* whence A — a € P. Replacing the former

+
with the latter, we obtain S S » and this is now a derivation with n occurrences of S.
Hence, v € LT by induction hypothesis. By Lemma 2.1, all strings in the remainder of the

+ +
derivation vS <5 w are prefixed by v and we can remove them to obtain S G w with

: o G
w = vu. This derivation has only one occurrence of S, so we have S — wu, and hence u € L.
Thus w =vu € LTL C L™. Q.E.D.

The proof of Proposition 2.19 tells us that the class of regular languages has another
closure property: it is closed under the Kleene plus operation.

While we are not going to prove this in this course, the converse of Proposition 2.19
is true: regular expressions describe exactly the essentially regular languages. There are
many algorithms to transform an automaton into a regular expression; the oldest is Kleene’s
algorithm.**  On Example Sheet # 2, we shall look at several special cases transforming
regular grammars into regular expressions.

HCf. S. C. Kleene. Representation of events in nerve nets and finite automata. In: C. E. Shannon, J.
McCarthy (eds.). Automata Studies. Annals of Mathematics Studies, Vol. 34, Princeton University Press,
1956; pp. 3-42.
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2.7 Minimisation of deterministic automata

If D=(%,Q,9,q,F) is a deterministic automaton, we call a state ¢ € Q) inaccessible if there

is no word w such that §(go, w) = ¢q. We call two states q,¢" € Q indistinguishable if for all
words w, we have that R R
é(g,w) € F < 0(¢',w) € F.

A word w such that §(¢, w) € F and §(¢’,w) ¢ F or vice versa is said to distinguish q and ¢'.
Given ¢,¢ € Q and a € ¥ and §(q,a) and (¢, a) are distinguished by a word w, then ¢ and
¢ are distinguished by the word aw. If f: Q — @’ is a homomorphism from an automaton
D to an automaton D', then if p, g € @) are distinguishable, then f(p) # f(q). Furthermore,
if ¢ € Q' is accessible, then ¢’ € ran(f).

We write ¢ ~ ¢ if they are indistinguishable. Note that ~ is an equivalence relation on
Q, i.e., reflexive, symmetric, and transitive. We write [g] for the ~-equivalence class of . We
define the quotient automaton

D/~ = (3,Q/~. 0], q], [F])

where [0]([¢],a) := [0(q,a)] and [F] :={[q]; ¢ € F'}. By induction, we get that [§]([¢], w) =

~

[0(q, w)].

Proposition 2.20. The quotient automaton is well defined and no two of its states are
indistinguishable.

Proof. Let ¢ ~ ¢ € @ and consider §(q,a) and §(¢’,a). As mentioned, if they are distin-
guished by a word, then so are ¢ and ¢'. Therefore, §(q,a) ~ §(¢, a).

—

Towards the second claim, we know that since {w; [6]([q], w)} = {w; d(q,w)}, we have
that [¢] ~ [¢'] if and only if ¢ ~ ¢/, i.e., [¢] = [¢{]- Q.E.D.

Proposition 2.21. For every deterministic automaton D, we have £(D) = L(D/~).

Proof. Clearly, the quotient map ¢ — [g] is a homomorphism and the result follows from
Proposition 2.5. Q.E.D.

We call an automaton irreducible if it has neither inaccessible states nor indistinguishable
distinct states.

Lemma 2.22. If f is a homomorphism between automata D and D’, then
(a) if D is irreducible, then f is an injection;
(b) if D’ is irreducible, then f is a surjection; and

(c) if both are irreducible, then f is a bijection.

Proof. This follows directly from the observations in §2.2: if f(p) = f(q), then p and ¢ must
be indistinguishable; if ¢’ ¢ ran(f), then ¢’ must be inaccessible. Q.E.D.
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Theorem 2.23. For every deterministic automaton D, there is an irreducible automaton [
with at most as many states as D such that £(D) = L(I).

Proof. Clearly, if ¢ is an accessible state, then all states of the form d(q,a) with a € 3 are
accessible. As a consequence, if A C () denotes the accessible states, then if §* := 0[A x X,
we have that 0* : A x 3 — A. Thus, D* := (3, A, 0%, qo, F N A) is a deterministic automaton.
Clearly, if w € £(D), then (o, w) € F N A, so w € £(D*) if and only if w € £(D).

We now consider [ := D*/~, the quotient automaton of D*. By the previous argument

and Proposition 2.21, we obtain
we L(D) <= we L(D) < we L(D/~)=L(I).

Clearly, the quotient construction preserves the property that there are no inaccessible states

~

(since if 0(qo, w) = q, then [8]([qo], w) = [q]), so I has all the desired properties. Q.E.D.

We shall see now that up to isomorphism, there is a unique irreducible automaton.

Theorem 2.24. If I and I’ are two irreducible automata such that £(I) = £(I’), then there
is a homomorphism from [ to I’.

Proof. Let I :== (¥,Q,0,q, F) and I' := (3,Q", ¢, q}, F'). As usual, w.l.o.g., we can assume
that QN Q" = @. The notion of indistinguishability is an equivalence relation on both ) and
Q'; we now extend it to Q U Q" and say that if ¢ € Q and ¢’ € @)/, then g ~ ¢ if

{w; (g, w) € F} = {w; §'(¢,w) € F'};

note that the new relation is an equivalence relation on QU@". We use the same terminology
as before, e.g., we say that “w distinguishes g and ¢ if (¢, w) # ¢'(¢/, w). By the assumption
that £(I) = L(I"), we have that the two start states are not distinguished by any word, i.e.,

{w; 8(go,w) € FY = £(I) = L(I') = {w; §(q),w) € F'}.

Claim 1. Every state in @ is indistinguishable from some state in ()’

[Since I does not have any inaccessible states, every state in @) is reachable from ¢y. We
let sp(q) be the length of the shortest path from ¢y to ¢ and prove the claim by induction on
sp(q). Clearly, sp(q) = 0 if and only if ¢ = ¢o; as mentioned above, we have {w ; g(qo, w) €
Fy =A{w; (?(qé,w) € ['}. Let us assume that sp(q) = k+ 1 and find p € @ and a € ¥ such
that sp(p) = k and §(p,a) = ¢. By induction hypothesis, there is some p’ € @’ such that
{w; d(p,w) € F} = {w; 0'(p/,w) € F'}. Let ¢ :=&'(p',a). Then if w distinguishes ¢ and ¢/,
then aw distinguishes p and p’, so g ~ ¢'.]

Claim 2. No two states in () are indistinguishable from the same state in )’. Similarly, no
two states in )" are indistinguishable from the same state in Q.

[If p ~ ¢ ~ g, then by transitivity, we have that p ~ ¢, but by irreducibility, then p = g¢.
The second claim follows by symmetry.]

Thus, we can define f(q) to be the unique ¢’ € @’ such that ¢ ~ ¢’. Claims 1 and 2 imply
that this is an injection from ) to @)'. Let us check that it is a homomorphism:
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(i) Let ¢ ~ ¢, 6(q,a) = p, and p ~ p’. We need to show that §'(¢’,a) ~ p’. Suppose they
are not equivalent, say, there is a w such that

5(8'(¢,a),w) = (¢, aw) € F" and &' (p, w) ¢ F'.
Since p ~ p’, we have that g(p, w) ¢ F and thus g(q, aw) ¢ F. But then aw distinguishes
between ¢ and ¢'.

(ii) By definition, g ~ gp.
(iii) If ¢ € F and ¢’ ¢ F’, then ¢ distinguishes between them, so g % ¢'.

Q.E.D.

Corollary 2.25. Any two irreducible automata that accept the same language are isomor-
phic.

Proof. Follows directly from Theorem 2.24 and Lemma 2.22. Q.E.D.

This also means that all irreducible automata producing the language L have the same
size and any automaton producing L must be at least as large in terms of its number of
states. Thus, the (up to isomorphism) unique irreducible automaton for the language L is
minimal in size and we call it the minimal automaton.

2.8 Decision problems

As mentioned in § 1.6, we shall consider the word problem, the emptiness problem, and the
equivalence problem for our classes of languages. In Theorem 1.21, we already solved the
word problem for regular languages positively. Note that the connection to deterministic
automata makes this particularly obvious since a deterministic automaton is an algorithm
and therefore the automaton provides the evidence that whether w € £(D) can be checked
by an algorithm.

The positive solution to the emptiness problem follows easily from the pumping lemma:

Corollary 2.26. If L satisfies the regular pumping lemma with pumping number n, then if
L # @, then there is a word w € L with |w| < n.

Proof. If lw| > n and w € L, then w can be pumped down. In particular, w cannot be the
shortest word in L. Since L # &, the language L has a shortest word which then must have
length smaller than n. Q.E.D.

Corollary 2.27. There is an algorithm that on input of a regular grammar G determines
whether £(G) = @.
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Proof. We know that there is a deterministic automaton D such that £(G) = £(D) and the
number of states of D is at most 2™ where m is the number of nonterminal symbols of
G (cf. Example Sheet # 1). Thus, £(G) satisfies the regular pumping lemma with pumping
number 2™, Now check for every single word w of length at most 2! (there are only
finitely many such words) whether w € £(D) or not; if it is, then £(G) is non-empty; if none
of them are, then £(G) = @ by Corollary 2.26. Q.E.D.

The positive answer to the equivalence problem will follow from our construction of the
minimal automaton as a quotient of the original automaton. We need to check that the
construction steps that we used can be done algorithmically. Given D, we only need to find
an irreducible automaton as a quotient; this will be unique up to isomorphism by Corollary
2.25.

Proposition 2.28. There is an algorithm that determines which states of an automaton are
inaccessible.

Proof. Let D = (X,Q,0,qo, F') and n := |@Q|. By Corollary 2.14, a state ¢ is inaccessible if
and only if there is no word w of length < n such that §(qo, w) = g. Since there are finitely

~

many such words, we can just check d(qo, w) for all such words to determine which states are
accessible; the remaining states must be inaccessible. Q.E.D.

Proposition 2.29. There is an algorithm that determines whether two states of an automa-
ton are equivalent.

Proof. We determine whether the states are indistinguishable; from this, we can easily
determine equivalence. This algorithm is known as the table filling algorithm. We write Q) X )
as a table; note that due to the fact that indistinguishability is an equivalence relation, we
only need to fill half of the table, so we can ignore the lower left triangle.

do q1 Qg2 n—-1 Gn
4 X
a s X
0K
e * 1
. ........ y

In the first step of the algorithm, we check all relevant pairs (¢,q’) and mark them as
distinguished if ¢ € F and ¢’ ¢ F or vice versa. These states are distinguished by ¢, and so
we can write £ as the witness into the table.
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In subsequent steps, we check every pair (g, ¢’') that is not yet marked as follows: for every
a € X, we let ¢, := d(¢q,a) and ¢, := 0(¢’,a) and check whether the pair (g.,q,) is already
marked. If it is marked by w, then we mark (¢, ¢’) by aw.

At the end of each step of the algorithm, we check whether a new pair was marked or
not. If not, then we terminate the algorithm; otherwise, we go into the next step. Note that
since only finitely many table entries can be filled, this algorithm will eventually terminate.

Claim. Two states ¢ and ¢’ are indistinguishable if and only if (¢, ¢’) is unmarked at the end
of the algorithm.

[For the forward direction, let a pair (¢, ¢’) is marked by w, then by construction and
induction, g(q, w) € F and g(q’ ,w) ¢ F or vice versa, so g and ¢’ are distinguished by w.

Towards proving the backward direction, assume towards a contradiction that there is a
pair that can be distinguished by a word and is not marked by the end of the algorithm.
Let’s call such a pair a bad pair. Each bad pair has a distinguishing word that witnesses
that it is bad. Find a bad pair (q,¢") with a distinguishing word w of minimal length, i.e.,
no other bad pair can have a shorter distinguishing word. Note furthermore that |w| > 0
since pairs that are distinguished by ¢ are marked by definition of the table-filling algorithm
and so can’t be a bad pair. Thus, let a be the first letter of w, i.e., w = av. Then consider
¢« :=9(q,a) and ¢, := 0(¢’,a). Clearly, ¢. and ¢, are distinguished by v, since

-~

3(6(q,a),v) g(q,cw) = g(q,w) and

q7
3(5(¢,a),v) = (¢, av) = 3(q',w).

=)

(s, v)
(¢, v)

=)

However, ¢, and ¢, cannot be marked: if they were, then in the step after the pair (g.,q.)
is marked in the algorithm, (q,¢’) would be marked. So, (g¢.,¢.) is a bad pair, but it has
a distinguishing word of length |w|—1 in contradiction to the minimality assumption.] Q.E.D.

Theorem 2.30. Given two deterministic automata, there is an algorithm to determine
whether they accept the same language. In other words, the equivalence problem for regular
grammar has a positive solution.

Proof. Using Propositions 2.28 & 2.29, we can produce the minimal automata for each of the
two given automata. Now we only need to determine whether they are isomorphic: note that
this can be done algorithmically. If the minimal automata are of different sizes, the answer is
“no”; otherwise, they have the same number n of states and there are at most n" functions
that need to be checked to see whether they are an isomorphism.

Given a regular grammar, transform it to a deterministic automaton via the algorithms
in the proofs of Theorems 2.7 & 2.8 and then apply the first statement to check equivalence.

Q.E.D.
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3 Context-free languages

We remember that a grammar is context-free if all of its rules are of the form A — « where
A eV and a € Q*\{e}. We can quite easily see some non-regular languages are context-free.

Example 3.1. The grammar consisting of the rules S — 051 and S — 01 produces the
language {0%1*; k > 0}, our standard example of a non-regular language.

[Clearly, every derivation is just the application of some (possibly none) applications of
the rule S — 051 followed by a final application of the rule S — 01. This implies the claim.]

While more general than regular languages, the specific form of context-free grammars
still gives us a great deal of control over its productions. In the next sections, we shall exploit
this control to understand better how context-free languages work.

3.1 Parse trees

We call a subset T' C N* a (finitely branching) tree if it is closed under initial segments (i.e., if
t € T and s C ¢, then s € T') and for each t € T there is a natural number n such that tk € T
if and only if £ < n. In this case, we say that ¢ has n successors or that t is n-branching.
An element ¢ € T that has no successors is called a leaf (or terminal node). The sequence
¢ is contained in every non-empty tree and is called the root of the tree. The elements of
length k in a tree form its kth level. If T is a finite tree, then there is a maximal k such that
T has an element on the kth level. This number is called the height of T'. If T" is a tree and
t € T is the kth level (i.e., |t| = k), then the corresponding branch through T is the sequence
{tIm; m < k}; it is a sequence of nodes of T of length k + 1.
If T is a tree, we can define a partial order < called the left-to-right order as follows:

s <t:<= s#tandif kis least such that s(k) # t(k), then s(k) < t(k).

If X is a set of nodes on the same level of a tree T', then < is a total order on X; similarly,
if X is a set of leaves of T, then < is a total order on X. In particular, the leaves of a tree
are totally ordered from left to right via the order <.

If G=(3,V,P,S) is a context-free grammar and A € V| we say that a pair T := (T, /)
is a G-parse tree starting from A if T is a finite finitely branching tree and ¢ : T" — 2 is a
function satisfying

(a) £(e) = A,
(b) if £(t) € X, then ¢ is a leaf in T, and

(c) if £(t) = B € V and t is n + 1-branching, then there is a rule B — x...x,, € P such that
U(tk) =z, for all k <mn + 1.

Since a parse tree is finite, it has finitely many leaves which are totally ordered by the left-
to-right order. Let ty < t; < ... < t,, be the leaves of T; we then write o := £(ty)...¢(t,,) for
the string parsed by T. As a finite tree, T has a last level, and we can graphically extend all
leaves to that level; if we do so, then the left-to-right order corresponds to reading the string
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NN
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Figure 2: Left. A finitely branching tree; leaves are marked in boldface font. Middle. The
same tree labelled to form a G-parse tree. Right. The same parse tree with the leaves
extended to the final level to highlight that the parse tree parses the word dabecf.

from left to right on the last level. This is depicted in Figure 2. If we have a branch in a
parse tree (starting from A) of height k&, then it is a sequence of length k£ 4+ 1 and its labels
form a sequence of k + 1 symbols.

Proposition 3.2. If G is a context-free grammar, then w € £(G) if and only if there is a
G-parse tree T starting from S such that w = or.

Proof. A sequence (T, ..., T,) of G-parse trees is called derivative if
(a) Ty = {e} and {y(e) = 5,

(b) for each i < n, the parse tree T;.; = (T;41,%;41) is obtained by taking a terminal node
t of T; with £;(t) € V and a rule 4;(t) — x¢...x;, € P, adding m + 1 successors to ¢ and
labelling them by ¢, (tk) = .

Clearly, there is a one-to-one correspondence between G-derivations and derivative sequences

of G-parse trees: a derivation S = oy —G>1 o1 —G>1 —G>1 o, uniquely defines a derivative
sequence of G-parse trees (T, ..., T,) such that op, = o0, and vice versa. This shows the
direction “=" of our claim.

For the other direction, let T be a G-parse tree starting from S with o = w. We
construct a derivative sequence of subtrees of T, starting with Ty = ({e},¢[{c}). In each
step of the construction, assume that T; was already constructed and find a ¢t € T; that is a
leaf in T}, but not in 7. Form T;,; by adding the T-successors of ¢t to T;. If we cannot find a
leaf in T} that is no leaf in T', we terminate the construction.

We claim that the construction terminates when 7; = 1. Suppose it’s not, then there is
at € T\T;. Consider the branch leading to ¢ in 7 there must be a maximal element of T;
on this branch (note that ¢ € T;): by construction (whenever we add successors, we add all
successors), that is a leaf in 7T;, but no leaf in T'. So, the construction has not terminated in
contradiction with the assumption. Q.E.D.

If T is any G-parse tree and ¢t € T is not a leaf, we can define the subtree at t by
T, := (T}, ;) with T, := {s; ts € T} and {,(s) := £(ts). Clearly, if £(t) = A, then T, is a



27 Jan 2025 Michaelmas 2024: Part IT Automata & Formal Languages 38

NN S
/
g5

|
AT /\

N\
| \

A
AN

B D D a

L

b d d

Figure 3: A G-parse tree T (left), a G-parse tree T' starting from C', and the result of grafting

T’ into the unique node ¢ labelled C' in T. Note that op = dabecf, or, = ecf, o = bdda,
and that bdda replaces ecf in the word parsed by the result of the graft, i.e., dabbdda.
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G-parse tree starting from A. Moreover, the left-to-right ordering of the leaves means that
the leaves of T are a consecutive subsequence of the leaves in T: therefore, there are strings
7 and 7’ such that op = 7o, 7. The string 7 corresponds to all of the leaves of T that are
to the left of the leaves of T; in the left-to-right order; similarly, the string 7’ corresponds to
all of the leaves to the right of those of T;.

Note that if T and T’ are G-parse trees and t € T' with ¢(t) = A and T’ starts from A,
then we can graft T’ into T as follows: we remove T; and replace it by T'. By definition,
this results in a G-parse tree. More formally, we define graft(T,¢,T) := (5,¢*) with S =
{seT;tZs}U{ts; seT'} and

(s) = { ((s) ift < sand

¢'(u) if s = tu for some u € T".

In terms of the parsed strings, grafting a tree T' into the position of ¢ in T corresponds to
removing the substring o, from or and replacing it with op/. This can be seen in Figure 3.

3.2 Chomsky normal form

We say that a grammar G = (X, V, P,S) is in Chomsky normal form if all of its production
rules are either of the form A — BC for A, B,C € V or of the form A — a for A € V and
a € ¥. Clearly, a grammar in Chomsky normal form is context-free. Moreover, the parse
trees of these grammars are particularly nice: all nodes are either binary branching with two
non-leaves as successors or not branching with a leaf as successor.

Lemma 3.3. If G = (X,V, P,S) is a grammar in Chomsky normal form and w € £(G) with
|w| = n, then any G-derivation of w has length 2n — 1.

Proof. If o € Q* is a string, write v(o) for the number of variables in 0. Let’s call a rule of the
form A — BC binary and a rule of the form A — a unary. A binary rule increases both |o]|
and v(o) by 1; a unary rule keeps |o| the same and decreases v(o) by 1. Since |S| = v(S5) = 1,
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we need n — 1 applications of a binary rule to reach length n; these n — 1 applications of
binary rules will increase the number of variables by n — 1, i.e., to 1 + (n — 1) = n. Since w
is a word and has no variables, we need n applications of a unary rule to ensure v(w) = 0.
Together, this shows that any G-derivation consists of n — 1 many applications of a binary
rule and n many applications of a unary rule, i.e., has length 2n — 1. Q.E.D.

Lemma 3.4. If G is a grammar in Chomsky normal form, T a G-parse tree of height h+ 1,
and o = w € W, then |w| < 2"

Proof. By definition, |w| is the number of leaves in T. Parse trees for grammars in Chomsky
normal form are at most binary branching. The full binary tree of height h + 1 has 2!
many leaves. Every rule in a Chomsky normal form grammar is either binary and does not
produce letters or unary and produces a single letter. So, if w € W, then the parse tree must
have at least |w| many unary rule applications. Each unary rule application in T reduces the
number of leaves by at least one. As a consequence, we have that |w| < 2"+ — |w|, whence
lw] < 2" Q.E.D.

Theorem 3.5 (Chomsky). For every context-free grammar G = (X,V, P, S), there is a
grammar in Chomsky normal form G’ such that £(G) = L(G').

In order to prove Theorem 3.5, we need to provide some technical lemmas and remove all
productions that violate Chomsky normal form. These are

Unit productions: A — B where A, B € V;
Bad productions: A — a where a € V* with |a| > 3; and
Very bad productions: A — « where |a| > 2 and ¥ Nran(a) # 2.

Lemma 3.6. If G = (X,V, P,S) is any context-free grammar, then there is a context-free
grammar G’ that contains no very bad productions such that £(G) = L(G").

Proof. Fix G = (X,V, P, S). We use the ideas from the proof of Lemma 1.24: for each a € ¥,
we introduce a new variable X,. For a € %, let X («) be the string o which each occurrence
of a letter replaced by the corresponding new variable. Let V' :=V U{X,; a € ¥},

P*:=PU{A— X(a); A= a€P}U{X,—a;a€ X}, and

G* = (X,V’, P*,S). Then G* produces the same language as G. If A — « is a very bad
production, it can be replicated by A — X («) and X, — a for all X, that occur in X («),
so removing all very bad productions from P’ does not change the language. Let G’ be G*
with all very bad productions removed: then £(G') = L(G). Q.E.D.

Note that the transformation in the proof of Lemma 3.6 may have added new unit pro-
ductions and bad productions in the process of removing all very bad productions.

We call a grammar unit closed if for any unit production A — B € P and any production
B — a € P, we also have A — a € P.
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Lemma 3.7. If GG is any context-free grammar, then there is a unit closed grammar G’ with

L(G) = L(G").

Proof. Form the unit closure by iteratively adding A — « if it was not in P already. (Note
that it’s not necessarily enough to do this once: if A - B, B — C,C — « € P, then the first
step will add B — « to the set of productions, but only the second step will add A — «.
However, the number of new rules to be added is bounded by |V'||P|.) Clearly, this does not
change the language. Q.E.D.

Note that all new rules added in the transformation in the proof of Lemma 3.7 have a
right-hand side that already occurs in the original grammar . Thus, if G had no very bad
productions, G’ does not do so either.

Lemma 3.8. If G = (X, V, P, S) is any context-free unit closed grammar, then removing all
unit productions from it does not change the language.

Proof. Clearly, if G’ is G with the unit productions removed, then £(G') C L(G), so we
need to show the other direction. We prove that by showing that any G-derivation that uses
a unit production can be shortened. This means that the shortest G-derivation for a word

cannot use unit productions and thus is a G’-derivation.
Let

s < aApB —5, aBp S (+)

where A3 —G>1 aBg is the final unit production that occurs in the derivation. Since B is a
variable, does not occur in w, and G is context-free, we know that there is some rule B — (
applied to B in the last part of the derivation. Let us write

SiHyAﬁ —G>1 ozB,BgyBé —G>1 7C5i>w

where vBJ —G>1 ~v(Cd is the first rule applied to that instance of B after the use of the unit
production.

By our assumptions (and because G is context-free), all derivations between the applica-
tion of A — B and the application of B — ( in that derivation are independent of which

symbol is in place of the B, so we also have aAfS N ~vAd with the very same derivation

(i.e., it has precisely the same length as aBf3 N vBJ).
We know that both A — B and B — ( are in P, so by unit closure, we also have
A — ¢ € P. Now, we put the various parts together and get

S % aAB S5 A5 -5 45 S w

which is a production that is one step shorter than the one in (+). This proves our claim
and thus the lemma. Q.E.D.

Lemma 3.9. Let G = (X,V, P, S) be a context-free grammar and A — o = Aq...A,, € P.
Assume that V' =V U { Xy, ..., X;,_o} where the X; are new variables not occurring in V|

Paso i ={A = A X0, Xo = A1 X1, ... . X3 = Ay 0 Xy 0, Xng = A1 Ay},
P = P\{A = a}U Py, and G' = (X, V', P, S). Then L(G) = L(G).
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Proof. Clearly, L(G) C L(G'). For the other direction: if a G’-derivation of a word w € W
uses any of the rules in P4_,,, they have to be used in the order given since the variables X;
do not show up in any other rules: thus, X, has to appear first, is rewritten by Xq — A; X7,
etc., until the rule X,,_o — A,,_1A, removes the new variables. The fact that G is context-
free means that any other rule applications between the rules of P4_,, can be moved before
or after the cycle. [E.g., if

S i> OéAﬁ —G,>1 OéAoXoﬁ i> ’7X05 —G/>1 7A1A2(5 i) w,
then we have by context-freeness that aAq N ~v and 3 BN , and thus
S -5 aAB S Ao A Ao -5 v AL AsB -S54 AL Asd - w]

Q.E.D.

Proof of Theorem 3.5. Let G = (3,V, P, S) be a context-free grammar. We now apply the
constructions from Lemmas 3.6, 3.7, & 3.9: in the first step, we make remove very bad rules
by Lemma 3.6; in the second step, we form the unit closure and observe that this did not
add any very bad rules; then we remove unit productions; finally, we iteratively replace all
bad rules A — a by P4_,, and observe that this does not add very bad, unit, or other bad
productions. Note that all of these steps only require making finitely many changes to the
grammars. The resulting grammar is in Chomsky normal form; Lemmas 3.6, 3.7, 3.8 & 3.9
show that the resulting grammar is equivalent to the original grammar. Q.E.D.

3.3 The pumping lemma for context-free languages

Definition 3.10. Let L C W be a language. We say that L satisfies the (context-free)
pumping lemma with pumping number n if for every word w € L such that |w| > n there are
words u, v, x,y, z such that w = zuyvz, |uv| > 0, |uyv| < n and for all k& € N, we have that
zuFyv*z € L. We say that L satisfies the (context-free) pumping lemma if there is some n
such that it satisfies the (context-free) pumping lemma with pumping number 7.

The first proof of the context-free pumping lemma is usually attributed to Yehoshua
Bar-Hillel (1915-1975); the statement is therefore also known as the Bar-Hillel Lemma.'?

Proposition 3.11. Every language that satisfies the (regular) pumping lemma satisfies the
(context-free) pumping lemma.

Proof. 1If w = zuz with |u| > 0 and |zu| < n, then let y := ¢ and v := €. Clearly,

luv| > |u| > 0 and |uyv| = |uee| = |u| < |zu| < n and zuFyvkz = zufeebz = 2ub2.  Q.E.D.

Therefore, the proof of Corollary 2.16 implies that there are uncountably many languages
satisfying the context-free pumping lemma. As in the case of the regular pumping lemma,
this means that the pumping lemma cannot characterise any of our classes of languages.

12Cf. Y. Bar-Hillel, M. Perles, & E. Shamir (1961). On formal properties of simple phrase-structure
grammars. Zeitschrift fir Phonetik, Sprachwissenschaft und Kommunikationsforschung 14:2, 143-172.
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Theorem 3.12 (The context-free pumping lemma). For every context-free language L, there
is an n such that L satisfies the context-free pumping lemma with pumping number n.

Proof. By Theorem 3.5, there is a grammar G = (X,V, P, S) in Chomsky normal form such
that L = L(G). Let m := |V] and n := 2™ + 1. We claim that n is a pumping number of
L. Let w € L(G) such that |w| > n and let T be a G-parse tree starting with S such that
or = w. By Lemma 3.4, we know that the height of T must be at least m + 1. Find some
terminal node t € T such that |t > m + 1 and some s C ¢ on the branch leading to t such
that the subtree T§ has height precisely m + 1. In the subtree T}, the branch from ¢ to t has
length m + 2 and its labels are m + 1 many variables and one letter (labelling the terminal
node ¢ itself). Since |V'| = m, by the pigeonhole principle, there are two nodes on the branch
with the same label, say, to & t1 such that ((ty) = £(t;) = A € V. In particular, Ty, and Ty,
are both parse trees starting with A. We write

or = To0T, %0,
0T, = L10Ty,?1;
or,, = uor, v and
oy, = Y, 80

oT = ToT1UYvz12g.

Observe that |uv| > 0 since tg # t; and that |uyv| = |ox, | < |ox,| < 2™ =n by Lemma 3.4.
Let z := xqz1 and 2z := 2129. Then w = ruyvz satisfies the length bounds of the context-free
pumping lemma. All that’s left to show is that for all ¥ € N, zufyv*z € L. We define
recursively

T(O) = Tt1>
T i1y := graft(Ty,, t1, T(y)), and
Tk = graft(T, to, T(k)).

Then T is a G-parse tree starting with A and o, = uFyvk [by induction]. Therefore T,
is a G-parse tree starting with S and op, = zufyv*z € L. Q.E.D.

Example 3.13. The language L := {0%1%¥2*: k£ > 1} is not context free.

[Suppose it were, then by the pumping lemma, there is a pumping number n. Consider
the word w = 0"1"2" € L with |w| = 3n > n. Thus, we can write w = zuyvz with |uv| > 0
and |uyv| < n. This means that the subword uyv cannot contain all three letters 0, 1, and
2, so it is of the form 0*1‘2™ where either & = 0 or m = 0; the condition |uv| > 0 means
that kK + ¢+ m > 0. So, if we pump down, we have two cases to consider:

Case 1. We have k = 0. Then the word still contains n many Os, but at least one of the
numbers of 1s or 2s has been reduced. Thus the pumped word is not in L anymore.

Case 2. We have m = 0. Then the word still contains n many 2s, but at least one of the
numbers of Os or 1s has been reduced. Thus the pumped word is not in L anymore.

Together, this yields a contradiction.
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3.4 Closure properties

Proposition 3.14. The class of context-free languages is not closed under intersection.

Proof. This follows readily from Example 3.13. Consider

Lo = {0m1™2F ; m k> 1} and
Ly == {0F1m2™ ; m, k > 1};

clearly, Lo N L; = {0F1%*2%; k > 1} which is not context-free. So, we only need to ar-
gue that both Ly and L, are context-free. Let Gy = ({0,1,2}, {5, X,C}, Py, S) and Gy =
({0,1,2},{S, A, Y}, P, S) with P, :={S —- XC, X — 0X1,X — 01,C — 2C,C — 2}
and P, ;== {S — AY,A — 0A,A — 0,Y — 1Y2Y — 12}. Clearly, £(Gy) = Lo and
L(G)) = L.13 Q.E.D.

Therefore by Proposition 1.22; the class of context-free languages cannot be closed under
complements and differences. In light of the product automaton construction from § 2.5, this
tells us that any model of computation that characterises the context-free languages cannot
have a product construction.

In this lecture course, we shall not see the corresponding model of computation: it is the
notion of pushdown automaton. A pushdown automaton is like a regular automaton, but
it as a storage device known as a stack. A stack is a storage unit in which you can store,
remove, and read letters by the last-in-first-out (LIFO) principle. The transition function ¢
of the automaton not only determines the state of the automaton, but also the actions to be
performed with respect to the stack, and it depends on what the automaton can see on the
stack. It can be proved that a language is context-free if and only if it is accepted by such a
pushdown automaton. The failure of closure by intersection informs us that there cannot be
a product construction for pushdown automata.

On Example Sheet # 2, we shall see that the class of context-free grammars is (like the
class of regular grammars) closed under the Kleene plus operation.

3.5 Decision problems

Again, we shall consider the word problem, the emptiness problem, and the equivalence
problem for our classes of languages. In Theorem 1.21, we already solved the word problem
for context-free languages positively. The proof of Theorem 1.21 was not very efficient: it
potentially requires to check a vast (yet finite) amount of possible derivations. Remember that
in §2.8, the solution to the word problem was much more straightforward: the automaton
provided an algorithm that would determine in |w| steps whether the automaton accepted
w. A similar situation can be found in context-free grammars that are in Chomsky normal
form: by Lemma 3.3, we know that the derivation of a word w will have length 2|w| — 1.
The emptiness problem was essentially solved in §2.8: we proved that any language
satisfying the regular pumping lemma with pumping number n that is non-empty must

13 Alternatively, observe that {0™;n > 0} and {2";n > 0} are regular, hence context-free, and that
{1"2™; n > 0} and {0"1"; n > 0} are context-free by Example 3.1. The closure of the context-free languages
under concatenation does the job.
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regular (type 3)  context-free (type 2)

Closure properties.

Concatenation v v
Union v v
Intersection v X
Complementation v X
Difference v X
Decision problems.

Word problem v v
Emptiness problem v v
Equivalence problem v X

Figure 4: Closure properties and decision problems of regular and context-free grammars in
an overview.

contain a word of length less than n. Re-checking the proof, we realise that this had nothing
to do with the regular pumping lemma: also the context-free pumping lemma allows us to
pump down every word of length the pumping number or longer, so a word of minimal length
must be shorter than n.

Corollary 3.15. The emptiness problem for context-free grammars is solvable.

Proof. Given a context-free grammar G, first transform it into Chomsky normal form by the
operations in Lemmas 3.6, 3.7, & 3.9. Note that this is an algorithmic procedure. Now count
the number m of variables and calculate n := 2™. By the above argument, £(G) is non-empty
if and only if there is a word of length < n in £(G). Therefore, we can now systematically
check for all words of length < n whether they are in £(G) (either use Theorem 1.21 or, more
efficiently, Lemma 3.3). If at least one of them is, £(G) # &; otherwise £L(G) = &. Q.E.D.

In contrast, the Fquivalence problem for context-free grammars is undecidable. We will
not prove this in this course, but a proof can be found in Sipser’s textbook,* using the unsolv-
ability of the halting problem (Theorem 4.30) and the technique of reduction functions from
§4.11: Sipser’s Exercise 5.1 (p. 211) reduces the equivalence problem for context-free gram-
mars to the universality problem for context-free grammars {G; L(G) = W} and Sipser’s
Theorem 5.13 (p. 197) reduces that problem to the non-computable set Ky (cf. §4.8). We
summarise what we know so far (including the unproved claim about unsolvability) in Fig-
ure 4.

14M. Sipser. Introduction to the theory of computing. Second edition. Thomson Course Technology, 2006
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4 Computability theory

We already mentioned the adage “computers can only understand binary” (p. 6) and will
restrict our attention for the time being (§§4.1 to 4.5) to the alphabet ¥, and its binary
words B. In §4.6, we shall return to arbitrary alphabets.

4.1 Register machines

As mentioned, our alphabet is ¥ := Yo7 = {0,1}. Let @ a non-empty finite set whose
elements we shall call states. For any k € N and ¢, ¢ € @, expressions of the form

+0(kaQ)7 +1(k),(]), ?O(kaQa q/)7 ?1(k7q7 q/)> ?E<k7Qaq,>a and _(k7Q>q/)

are called Q-instructions. We refer to instructions of the first two types (with a +-sign) as
add instructions, instructions of the next three types (with a ?-sign) as check instructions,
and instructions of the last type as remove instructions and interpret these instructions
as listed in Table 4.1. There is a countably infinite number of instructions of each type,
and so in total only a countable set of instructions. Furthermore, if we bound the natural
number k occurring in the instruction, we only have a finite number of instructions: there
are 2n - (|Q| + 2 - |Q|*) many instructions with k& < n (check!).

Definition 4.1. A pair M := (Q, P) is called a register machine if @ is a non-empty finite
set with two special elements qs # gy, the start state and the halt state, and P is a function
with domain @ such that each P(q) is a Q-instruction. The function P is called the program
of the register machine. For a fixed g € ), we also refer to (¢, P(q)) as a program line.

We observe that because () is finite, the range of P contains only finitely many instruc-
tions, so for any given register machine M there is a maximal number k& that shows up in
any of the instructions in the range of P. This number is called the upper register index of
M. If n is the upper register index of a register machine M, we can think of M as a device
that has n + 1 many storage units, called registers, that can contain binary words in B and
is in a state ¢ € ) that determines what it going to do next via the program P. So, at any
given time, the situation of the register machine is determined by its state and what is in the
n + 1 many registers.

Instruction Interpretation

+4(k,q) “Add the letter a to the content of register k and go to state ¢.”
?.(k,q,q")  “Check whether the last letter in register k is a; if so, go to

!

state ¢; otherwise, go to state ¢'.
?.(k,q,q')  “Check whether register k is empty; if so, go to state ¢; otherwise,

VAR

go to state ¢q'.
—(k,q,q¢')  “Check whether register k is empty; if so, go to state ¢; otherwise,

/7

remove the final letter of its content and go to state ¢'”.

Table 1: Interpretations of register machine instructions.
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We say that a sequence C := (q, wy, ..., w,) € Q x B" is a configuration or snapshot of
length n + 1. In such a configuration, the first entry ¢ is called the state of the configuration
and the rest is called the register content of the configuration. If M is a register machine
with upper register index n and C' is any configuration of length m > n + 1, then we can
define the action of M on C: we say that M transforms C to C" if the following is true:

Case 1. If P(q) = +4(k,q') and C" = (¢, wo, -.., W1, W@, Wi i1, -evy Wiy)-
Case 2. If P(q) = 7.(k,q,q"),

Subcase 2a. wy = wa for some w and C" = (¢, wo, ..., Wy, ) or

Subcase 2b. wy # wa for any w and C" = (¢", wy, ..., wp,).
Case 3. If P(q) = 7.(k,q,q"),

Subcase 3a. wy = ¢ and C" = (¢, wy, ..., wy,) or

Subcase 3b. wy # € and C’' = (¢", wo, ..., Wy,).
Case 4. If P(q) = —(k, ¢, q"),

Subcase 4a. wy = ¢ and C" = (¢, wy, ..., wy,) or

Subcase 4b. w; = wa for some a and C" = (¢", wo, ..., Wg_1, W, W41, -y W)

We think of a register machine M as a model of computation in the following sense: the
start state gg is the state the machine is in at the beginning of the computation. We give the
machine some input in its registers, i.e., a sequence @ = (wy, ..., w,,) € W* where n is the
upper register index of M. Then we can define the sequence of computational snapshots by
recursion:

Definition 4.2. If M = (@, P) is a register machine with upper register index n and o :=
(wo, ..., wy,) € B"™! then the computation sequence of M with input 1 is defined by recursion
as follows:

C<OaM7 ’U?) = (CIS)w)a
C(k + 1, M,w) := C where M transforms C(k, M, ) to C.

In order to apply the recursion, we need an input sequence « that has at least length n+1
where n is the upper register index of M. We shall use the following notational convention:
if ¥ = (vo, ..., vx) is a shorter sequence, we interpret it as @ = (vo, ..., Vg, W41, ..., Wy,) Where
w; = €. In particular, if £ = 0, we talk about “input w” for a single word w (which is then
interpreted as a sequence of length n + 1 with all other registers being empty).

Note that the function k — C(k, M, &) is always defined, so any computation sequence
represents an infinitely long computation. Of course, we are not interested in infinitely long
computations, but rather in those computations that will eventually halt. This is where our
second special state, the halt state gy comes into play. We say that a computation sequence
halts if there is some element (g, ) in the sequence such that ¢ = gy. Otherwise, we say
that the computation sequence does not halt.
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If M is a register machine and 0 a sequence of words, we say that M halts on input w in
k steps if the computation sequence of M with input @ halts and £ is the least number such
that C(k, M, W) = (qu, V) for some ¥; this sequence ¥ is called the register content at the time
of halting; we also use the terminology M converges on input w for this. If the computation
sequence does not halt, we also say that M diverges on input .

We can call two register machines M = (X, Q, P) and M’ = (X, Q’, P’) strongly equivalent
if the register content of each of the elements of their computation sequences is the same,
i.e., for all k and all &, if C(k, M,wW) = (q,v) and C(k, M’ W) = (¢, ), then ¥ = 4,
and furthermore the state of a configuration in the computation sequence of one of the
machines is the halting state if and only if the state in the corresponding configuration in
the other computation sequence is the halting state, i.e., C'(k, M,w) = (qu,v) if and only
if C(k, M', &) = (qj;, 7). As with grammars (cf. the proof of Proposition 1.16), we observe
that if |Q| = |@’|, then for each register machine M = (Q, P), there is a register machine
M’ = (Q', P") that is strongly equivalent, so the precise nature of @ is irrelevant, only its
size matters.

Proposition 4.3. There are only countably many register machines up to strong equivalence.

Proof. Fix k and n and observe that for any |Q| = n, there are only finitely many register
machines with upper register index < k. [This follows from our previous finite upper bound
on the number of @Q-instructions.] By the previous remark, only the size of the set () matters
up to strong equivalence, so for fixed k and n, the set of register machines with any state set
of size n and upper register index < k up to strong equivalence is finite. But then the set
of all ¥-register machines up to strong equivalence is a countable union of finite sets, thus
countable. Q.E.D.

Proposition 4.4 (Padding Lemma). For each register machine there are infinitely many
strongly equivalent register machines.

Proof. Let M = (Q, P) be any register machine and let ¢ ¢ Q). Because ¢ is not in @, it
does not show up in any instructions in the range of P. Define M* := (Q U {q}, P*) where
PT1Q = P and P*(q) :=7.(0,q,q). Clearly, the state set of M ™ has one element more than
the state set of M. By construction, if C' is a configuration with state in (), then M™* and
M will transform C' in precisely the same way. Since g5 € @), we can show by induction that
the computation sequences of M are precisely the computation sequences of M (actually,
the entire sequences, not just the register content of the configurations). The construction
M — M produces a strongly equivalent machine with strictly bigger state set. We can
now produce infinitely many pairwise distinct machines by recursively adding additional new
elements that are irrelevant for the computation. Q.E.D.

4.2 Performing operations and answering questions

In the following, we shall talk about partial functions, i.e., functions that are not necessarily
defined everywhere. In this lecture, we shall use the notation f : X --» Y for “f is a partial
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function from X to Y7, i.e., dom(f) C X and ran(f) C Y. In addition, for partial functions,
we introduce the following useful notation: if f: X --» Y we write

f(z)d if and only if € dom(f) and
f(z)t otherwise

and use our terminology for computations by saying “f converges on input x” for f(x)] and
“f diverges on input z” for f(z). If f: X --» Y and g : Y --» Z, then the concatenation
of [ and g, denoted by go f : X --» Z is defined by g o f(z) = g(f(x)); in particular, if
x ¢ dom(f), then x ¢ dom(go f).

Fix an upper register index m and n < m. If @ = (wy, ..., w,) € B"™, we write @™ for
the m + 1-tuple (w, ..., Wy, €, ...,€) € B™ ie., the tuple w with all remaining entries filled
up with the empty word. We think of the registers with the indices n + 1 to m as scratch
space that the machine can use to keep information while performing its computation.

Let F: B"*! —-—s B"*! be any partial function. We say that a register machine M with
upper register index m performs the operation F if for all @ € B™+!

(i) if F(@)1, then M diverges on input @' and
(ii) if F(w)] = ¥, then M converges on input @' with register content ¢'" at time of halting.

If F'is a total function, we sometimes emphasise this by using the phrase “M performs the
total operation F".

A question about n + 1-tuples with k+ 1 answers is a partition of B"™! into k + 1 disjoint
sets Ag, ..., Ar. E.g., the question “does the second register end with a?” is the partition
Ag = {w; Fv(wy = va)} and A; := B""\ Ag. A register machine M with upper register
index m answers a question about n + 1-tuples with k + 1 answers if it has k + 1 designated
answer states qu, ..., Qr, and for any input @ € B™*!, the computation of M with input @
produces in finitely many steps a configuration (g;, ) if and only if @ € A;.

Example 4.5. (1) The operation “never halt” corresponds to the partial function
f: B ——s B""! with dom(f) = @ and is performed by the register machine with
programme ¢s — +¢(0, ¢s). Note that many register machines perform this operation:
e.g., any register machine that does not have gy in any of its instructions.

(2) The operation “halt without changing anything” corresponds to the total identity function
f(w) = and is performed by the register machine with programme gs — 7.(0, g, gu)-

(3) The question “Is register i empty?” corresponds to the partition given by Ay := {0 ; w; =
e} and A; = {W; w; # ¢} and is answered by the register machine with programme
gs — ?E(iv 667 é\l)

(4) The question “Does register i end with letter a?” corresponds to the partition given by
Ag = {w; Iv(w; = va)} and A; := B""\ Ay and is answered by the register machine
with programme gs — ?7,(7,qo, ¢1)-

Lemma 4.6 (Subroutine Lemma). Let M = (Q,P) and M’ = (@', P') be two register
machines. If M performs operation I’ and M’ performs operation F”’, then we can construct
a register machine that performs operation F’ o F'.
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Proof. We can assume w.l.o.g. that Q N Q' = @. If we only care about whether a machine
performs an operation, the value of P(gy) never matters: for each input, the state gy is either
never reached, or if it is reached, the tail of the computation sequence after the computation
reaches gy is irrelevant for the output of the computation. So, we can alter that instruction
without affecting the fact that M performs F. Let Q := Q U Q\{qu}. Define a set P*
consisting of P without (gu, P(qn)) and all instances of gi in the instructions replaced by ¢.
Then P := P*U P is a Q*-program and M : (Q P) is a register machine that performs
the operation F” o F. Q.E.D.

Lemma 4.7 (Case Distinction Lemma). Let W = {A;; ¢ < k} be a question with & + 1
answers and f;: B"™1 --» B"*! be operations for ¢ < k. If W is answered by a register
machine M = (@, P) and f; is performed by M; = (Q;, P;) (for i < k), then we can
construct a register machine that performs the operation defined by ¢(w) := f;(w) if and
only if i € A;.

Proof. As in the proof of Lemma 4.6, we observe that the instructions P(gqy) and P’'(qj;) are
irrelevant, so we can w.l.o.g. assume that the machines M; all share the same halt state gy
and that their programs agree on that state, i.e., ;.. Q: = {qu} and P;(qu) = P;j(qu) for all
i,j < k; furthermore, we can assume w.l.o.g. that for all i < k, we have that Q N Q; = @.
Let gs,; be the start state of M; and ¢; be the answer states of the machine M. Let P} be the
program consisting of the program lines of P; with all occurrences of ¢g; replaced by ¢; and

P* = PIQ\{q:; i < k}. Let @ = QUUigk<Qi\{qs,i})a P = P*UUigk P, and M := (@a ﬁ)
Then M performs the operation g. Q.E.D.

Let W = {Ag, A1} be a question about n-tuples with two answers and F': B" --» B" an
operation. Define by recursion FO(w) := « and F™" (&) := F(F™(w)) and

Ry (1) = Fm™ () if m is the least number such that F™(w) € A; and
EWAW) = 0 if there is no such number.

The operation R can be described as “repeat F' until the answer to W is A;”. Note that
since F' is partial, it can be that the iteration breaks down: i.e., for some n, we have that
F(F™(w))T. If that happens and the answer hasn’t been A; for any previous iterate, then

Lemma 4.8 (Repeat Lemma). If W = {Ay, A1} be a question about n-tuples with two
answers that can be answered by a register machine and F': B" --+ B™ an operation performed
by a register machine. Then Rpy is performed by a register machine.

Proof. Let M = (@, P) be a register machine performing F' and M’ = (@', P') be a register
machine answering (). As before, we can assume that Q N Q' = &; let g5 and gy be the
start and halt states of M, respectively and q§, ¢, and ¢ be the start and answer states of
M', respectively. We define M = (2, @, ﬁ) where @ = QU@ and Pis P U P where all
occurrences of ¢g in the instructions are replaced by ¢g and all occurrences of gy are replaced
by ¢4 and the unnecessary instructions are removed. The start state of M is ¢§ and the halt

state is ¢;. Then M performs the operation Rpyy . Q.E.D.
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We emphasise that the operations producing the machines M in the proofs of Lemmas
4.6, 4.7, & 4.8 are concrete constructions: given the required register machines, the proofs
provide a concrete definition of the desired machine M. As a consequence, any description
of the construction of a register machine using subroutines, case distinctions, and repeat
loops is not just an informal description, but rather a concrete instruction how to explicitly
write down the resulting register machine (if one cares to do the hard work and provide
all of the detail). Thus, in the following, we shall not explicitly give the program lines
for the machine, but rather build descriptions of register machines performing operations
or answering questions using previously described register machines and linking them by
subroutines, case distinctions, or repeat loops. E.g.,

s ={§ e )

can be performed by a register machine as follows: check if the ith register is empty; if so,
halt without any change; if not, never halt.

Example 4.9. The following operations and questions are performed or answered by register
machines:

(1) “Delete the final letter in register i, if it exists.”

[The program gs +— —(i, qu, qu) performs this operation.]

(2) “Delete the content of register i.”

[The program gs — —(i, qu, gs) performs this operation.

(3) “Add 0O to the end of register i.” (Similarly, 1.)
[The program gs — +o(7, gn) performs this operation. Note that this also performs the
operation “guarantee that register i is not empty” ]

(4) “Add w to the end of register i.”
[If w = bg...by, then concatenate the operations “Add b; to the end of register i” by
Lemma 4.6 and (3).]

(5) “Replace the content of register i with w.”
[First empty register ¢ by (2), then add w to register i by (4).]

(6) “What is the final letter of register i ?”
[This is a question with three answers, i.e., Ag := {w; Jv(w; = v0)}, Ay := {; Jv(w; =
v1)}, and Ay = {W; w; = €}. We can answer this question using Example 4.5 (4):
“Does register ¢ end in 07”7 If yes, we go to state qo; if not, we ask “Does register i end
in 177; If yes, we go to state ¢i; otherwise, we go to state ¢.]

(7) “Copy the final letter of register i (if it exists) to register j.”

[Determine the final letter of register ¢ by (6). If the answer is ¢z, perform “halt” via
Example 4.5 (2); if it is ¢o (or ¢1), perform “add 0 (or 1) to the end of register j” (3),
respectively.]
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(8) “Move the final letter of register i (if it exists) to register j.”

[Check whether register i is empty via Example 4.5 (3). If so, perform “halt”. If not,
perform “copy the final letter of register ¢ to register ;7 (7) and then “delete the final
letter in register ¢” (1).]

(9) “Move the content of register i into register j in reverse order.”

[Using Lemma 4.8, perform the operation “move the final letter of register i (if it exists)
to register j” (8) repeatedly until register i is empty and halt.]

(10) “Move the content of register i into register j.”

[Take a register k from the scratch space. Then move the content of register i to register
k in reverse order (9) and after that move the content of register k to register j in reverse
order.]

(11) “Copy the content of register i into register j in reverse order.”

[Take a register k from the scratch space. Using Lemma 4.8, perform the operations
“Copy the final final letter of register ¢ (if it exists) to register £” (7) and “move the
final letter of register 4 (if it exists) to register j” (8) repeatedly until register i is empty.
After that, move the content of register k to register ¢ in reverse order (9).]

(12) “Copy the content of register i to register j.”

[Take a register k from the scratch space. Copy the content of register i to register k in
reverse order (11) and then move the content of register k to register j in reverse order

(9)]
(13) “Is the content of register i exactly w?”

[If w = bg...b, answer the questions “Is by the final letter of register i?” from the back of
the word. If one of the questions gets a negative answer, answer “no”. If the answer is
positive, move the final letter to a scratch register and continue. If all £ + 1 checks are
positive, move the word back from the scratch register and answer “yes”.|

Note that some of these operations and questions require the use of scratch space to store
information that would otherwise be lost: it is not always possible to perform an operation
on B"*! with only n + 1 many registers. E.g., copying the content of register i to register j
in Example 4.9 (12) requires the storage of the word in a scratch register k.

Also observe that there is some informality in our descriptions since we do not precisely
determine which registers are our scratch registers. This could be formalised if necessary
(e.g., by always using the next register that hasn’t been used in the program before), but
this choice is immaterial for the performance of the machine. Note that two machines that
use different scratch registers but are otherwise the same are not strongly equivalent: this
suggests that for many purposes, the notion of strong equivalence of register machines is too
strong.
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4.3 Computable functions & sets
If M is a register machine and k > 0, we can define a partial function fy;, : B¥ --» B by

fark(W)T if and only if M does not halt on input ),

fark(W) = vg if and only if M halts on input « with register content
v at the time of halting.

Note the subtle difference to the setting in §4.2: there we considered the entire ¢ as the
output of the computation; here, we consider only what happens in register 0 as output.
Everything else is considered as part of the input and scratch space. If two register machines
M and M’ are strongly equivalent, then the partial functions defined by them are equal, i.e.,
favg = far . However, it can be easily seen that the converse does not hold, i.e., there can
be machines that produce the same function, but are not strongly equivalent: they do not
produce the same computation sequences, but they still produce the same halting behaviour
and the same output (which only lives in register 0). The domain of the partial function
fum is exactly the set of k-tuples of words « for which the machine M halts if given the
input . If k =1, we write Wy, := dom(fp1). This gives rise to an even weaker notion of
equivalence: machine M and M’ are called weakly equivalent if Wy, = Wy, Again, if the
defined functions fy, and fyr, are the same, then M and M’ are weakly equivalent, but
the converse need not hold.

Definition 4.10. A partial function f: B¥ --» B is called computable if there is a register
machine M such that f = fu .

The Padding Lemma (Proposition 4.4) immediately implies that the machine computing
f is not unique; in fact, for every computable partial function f there are infinitely many
different machines that compute f. Proposition 4.3 yields that there are at most countably
many computable partial functions.

Example 4.11. Based on the constructions in §4.2, we already know many examples of
computable partial functions:

(1) The identity function id : w — w (Example 4.5 (2));

(2) constant functions cg,: B¥ — B : @+ v (Example 4.9 (5));

(3) projection functions 7y, : B¥ — B : @ + w; for some i < k (if k = 0, the identity does
the job; otherwise, empty register 0 and copy the content of register i to register 0).
If X C B*, we call the function

() = 1 ifwe X and
XXA= N 0 itw ¢ X,

the characteristic function of X and the partial function

)= 1 ifwe X and
St ifdé X

]

¥x(

the pseudo-characteristic function of X. A set X C BF is called computable if its characteristic
function is computable; it is called computably enumerable if its pseudo-characteristic function
is computable.



27 Jan 2025 Michaelmas 2024: Part IT Automata & Formal Languages 53

Proposition 4.12. Let X C B*.

(a) If X is computable, then so is B*\ X, i.e., being computable is closed under complemen-
tation.

(b) A set X is computably enumerable if and only if it is the domain of a computable partial
function. (If £ = 1, this is equivalent to “there is an M such that X = W,,”.)

(c) Every computable set is computably enumerable.

We shall see later that the converse of (¢) does not hold (Theorem 4.30) and that (a) does
not hold for computably enumerable sets (Corollary 4.37).

Proof. (a) Consider g: B — B defined by ¢(0) = 1 and g(w) = 0 for any w # 0. This is
computable: first check whether w = 0; if so, empty register 0, add 1 to that register, and
halt. If not, empty register 0, add O to it, and halt. Clearly, xgx\x = g © xx, so the claim
follows from Lemma 4.6.

(b) Clearly, X = dom(tx), so the forwards direction follows directly from the definitions.
If ¢(w) := 1 is the constant function and ® is such that dom(¢)) = X, then co = ¢ x. The
second equivalence is just the definition.

(c) Consider g: B — B defined by ¢(0) =1 and g(w) = 1 for any w # 0. This is com-
putable: first check whether w = 0; if so, never halt; otherwise, empty register 0, add 1 to
it, and halt. But for any set X; we have ¢»x = f o xx. Q.E.D.

Theorem 4.13. Every regular language L C B is computable.

Proof. Let L be regular and let D = (3¢, @, 0, qo, F') be a deterministic automaton such
that £(D) = L. We describe a register machine M = (Q, P) that takes w as input in register
0, mimics the computation of the automaton D, and outputs 1 or 0 depending on whether
w € L or not. For each state of the automaton ¢ € @, our register machine will have a subset
(), € Q of states such that for ¢ # ¢/, we have Q, Ny = @: this subset of register machine
states will only be left if we explicitly say so, and while the register machine is in states from
@)y, it is mimicking steps of automaton computation in state gq.

First we reverse the order of w in register 0 (since automata read words from the front
and register machines read words from the back). We do this by reversing the content of
register 0 into register 1 via Example 4.9 (9). We then move into the subset @), i.e., those
states that correspond to the automaton being in the start state qq.

Whenever the register machine gets into a state in @)y, it reads and removes the final
letter in register 1, say b, and then moves into a state in the subset Q) where ¢’ = (¢, b). If
there are no letters remaining in register 1, it either empties register 0, writes 0, and halts
(in case ¢ ¢ F') or empties register 0, writes 1, and halts (in case ¢ € F). Q.E.D.

On Example Sheet # 3, we shall see that Theorem 4.13 can be extended to all Type 1
languages. We shall return to the question of Type 0 languages in §4.8.
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4.4 Coding numbers and numerical functions

It is natural to think of binary words as encoding natural numbers as binary expansions.
However, just taking w € B and interpreting it as a binary representation does not result
in a bijective encoding due to leading zeros (e.g., 110, 0110, and 00110 are all mapped to
6=1-22+1-2"+0-2°. We can make it bijective by interpreting each binary word w € B
of length n as a binary representation of a number b(w) < 2" and then defining a bijection

H = 2V p(w) — 1

as indicated in the following table (note that we interpret the empty word ¢ as representing
the number 0 in binary).

w o fw[ b(w) #w

€ 0 0 2°40-1=0
0 1 0 2140-1=1
1 1 1 2l4+1-1=2
00 2 0 2240-1=3
01 2 1 24+1-1=4
10 2 2 2242-1=5
11 2 3 2243-1=6

3 0

000 284+0-1=7

This corresponds to ordering all binary words first by length and words of the same length
lexicographically. This order is usually called the shortlex order:

W <ghortlex U S |U}| < |U| or
|lw| = |v| and w # v and
if ¢ is minimal such that w(i) # v(i), then w(i) = 0 # 1 = v(i).

The shortlex order orders B such that the function # becomes an isomorphism witnessing
(B, <shortlex) = (N, <). We say that the function # 1 encodes a number as a binary word
and the function # decodes it. Encoding and decoding transfers to functions: we call partial
functions f: N¥ ——s N numerical partial functions. If f: N¥ ——s N is a numerical partial
function, we call

f#:B" ——» B defined by w — # ' f(#wo, ..., #wi_1)

its encoding. We say that f is computable if and only if its encoding is computable. If
X C N*, we say that X is computable or computably enumerable if its preimage under #,
ie.,

{(U)(), s wk—l) ) (#w07 ) #wk—l) € X}7

is computable or computably enumerable, respectively.
Proposition 4.14. The following numerical sets and functions are computable:

(i) the identity function n — n,
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(ii) constant functions 77 — c,

)
(iii) projection functions 7 +— n;,
(iv) {(n,m);n <m} C N? and
)

(v) the successor function n — n + 1.

Proof. The encodings of the numerical identity function, constant functions, and projection
functions are just the identity function, constant functions, and projection functions on binary
words. We have seen that these are computable in Example 4.11 (1) to (3), respectively.

For (iv), we need to show that the set {(w,v); w <ghortlex v} is computable. The question
“What is the relationship of the lengths of the contents in registers i and j¢” with answers
“the content of register i is shorter than the content of register 5”7, “the content of register j
is shorter than the content of register :”, and “they are of equal length” can be answered by
a register machine (copy the contents into scratch registers and remove letters one by one; if
one of them is empty before the other, it’s shorter; if they both become empty in the same
step, they are of equal length). If |v| < |w|, we empty register 0, add 1 to it, and halt; if
|w| < |v|, we empty register 0, add 0 to it, and halt; if they are of the same length, we copy
the contents into scratch registers and remove letters one by one, checking whether they are
the same; once we see that they are different, say a = v(i) # w(i) = b, we either empty
register 0, add 1 to it, and halt (if a < b) or empty register 0, add 0 to it, and halt (if b > a).
Finally, if we emptied both registers without finding a difference, we empty register 0, add 0
to it and halt.

For (v), we need to prove that the function v — w where #w = #uv + 1 that assigns the
shortlex successor to each binary word is computable. The immediate successor of a binary
word w with |w| = k in shortlex is either the lexicographic successor or the sequence 0%*! if
w = 1*. So, finding the successor can be described as follows: move all instances of the letter
1 from the back of the word into a scratch register (say, j) until you either hit a 0 or the
register is empty. If the former, then change 0 to 1 and then add precisely as many Os after
this as you have letters in the scratch register j. If the latter, add precisely as many Os as
you have letters in the scratch register j (that’s k many) and after that add another 0. Q.E.D.

Applications: numerical information in computation & truncations. Being able
to refer to numbers via their codes allows us to represent several operations that require the
use of numerical information.

Proposition 4.15. The question “If v is the register content of register v, what is the #uvth
letter of register j2” can be answered by a register machine.

Proof. Take unused registers k£ and ¢ and empty them. Copy the content of register j in re-
verse order to register k by Example 4.9 (11). Repeat the following subroutine until register ¢
contains v: Remove one letter from register k£ and apply the successor function s to register /.
When register ¢ contains v, answer the question “What is the final letter of register k7”7 by
Example 4.9 (6). Q.E.D.
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We refer to the construction in the proof of Proposition 4.15 as a count-through argument:
the content of register ¢ serves as a counter and is increased after each run of the subroutine
until it hits the target. This will be used in many arguments.

Proposition 4.16. The operation “Write v in register j where #v is the length of the content
of register i” can be performed by a register machine. Thus, the question “If v is the register
content of register i, does the content of register j have length #v?” can be answered by a
register machine.

Proof. For the operation, find an unused register k£ and empty it; also empty register j. Copy
the content of register ¢ to register k; then remove letters from register k£ while applying the
successor function s to register 5. Once register k is empty, the content of register j is the
code of the length of the content of register . To answer the question, perform the operation
and check whether the content of register j is equal to v. Q.E.D.

Similarly, referring to numerical information can be used to refer to computation steps
asking a given machine to run for a fixed number of steps; we call this truncation and it will
play a very important role in §4.8. If M is a register machine and k,n € N, we can define
sets TM,k,n - ]Bk, TM,k Q Bk—H, and TM,k g Bk+2 as follows:

Targn :={W; M has halted with input @ after at most n steps},
Targ := {(@W,u); M has halted with input « after at most #u steps}, and

Tarp = {(i,u,v); (@,u) € T and v is the content of register 0
at time of halting}.

Proposition 4.17. The sets T kn, Thr i, and T\Mﬁk are computable.

Proof. We show this for fMJg; the other cases are obvious simplifications of the same argument
(e.g., removing the check of register 0).

Given input (, u, v), we run the following computation. Let ¢ be an unused register and
empty it. Now run the computation of M on w step by step, but after each step do the
following subroutine: check whether the register content of register ¢ is equal to u; if so,
write 0 in register 0 and halt; otherwise, apply the encoded successor function s: B — B
from the proof of Proposition 4.14 (v) to register ¢ and continue with the next step of the
computation of M. If the computation of M ever reaches the halting state, check whether
the content of register 0 is equal to v; if so, halt and replace the content of register 0 with 1;
if not, halt and replace the content of register 0 with O. Q.E.D.

4.5 Godel’s primitive recursive functions

In his famous paper proving Gédel’s incompleteness theorem,® Kurt Godel considered the
following operations on numerical functions.

15G6del, K. (1931). Uber formal unentscheidbare Sitze der Principia Mathematica und verwandter Sys-
teme I. Monatshefte fiir Mathematik und Physik 38, 173-198.
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Suppose f: N¥ ——» N, g: N**2 5 N, and g1, ...,gx: N* ——» N are partial numerical
functions, then the partial numerical function ¢ defined by

c() := f(g1(1), .., g (7))
is called the composition of f with (g1, ..., gr) and the partial numerical function r defined by

r(7,0) = f(7) and

r(ii,m+1) = g(it, m, (i, m))

is called the recursion result of f and g. A class C of numerical functions is closed under
composition or recursion if, whenever f, g, g1, ..., g are in C, then the composition of f with
(g1, -+, gm) or the recursion result of f and g, respectively, are in C. The numerical functions
listed in Proposition 4.14, i.e., the identity function, the constant functions, the projection
functions, and the successor function are called basic functions. Proposition 4.14 proved that
they are all computable.

Definition 4.18. The class of primitive recursive functions is the smallest class of partial
functions containing all basic functions that is closed under composition and recursion.

Note that we can prove statements about the class of primitive recursive functions by
induction due to its definition as the “smallest class closed under operations”: a sequence
(fo, .-, fn) of numerical functions is called a primitive recursive derivation if for every i <n

(i) either f; is a basic function,
(ii) or there are j, ji, ..., ji < @ such that f; is the composition of f; with (f;,, ..., fj.),
(iii) or there are j,k < i such that f; is the recursion result of f; and fj.

Clearly, every function that occurs in a primitive recursive derivation is primitive recursive
and the class of such functions contains all basic functions and is closed under composition
and recursion. Thus, because the primitive recursive functions are the smallest class with
these closure properties, we get that a function is primitive recursive if and only if it occurs
in a primitive recursive derivation. Therefore we can prove statements by induction on the
length of the shortest primitive recursive derivation or by proving that the three conditions
(i) to (iii) preserve the validity of the induction hypothesis.

Proposition 4.19. Every primitive recursive function is total.

Proof. All basic functions are total and the operations composition and recursion preserve
totality. Q.E.D.

We observe that the primitive recursive functions include the standard arithmetical op-
erations such as addition, multiplication, and exponentiation.

Example 4.20. We build addition using the basic functions and operations.

(a) The identity function is a basic function.
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(b) The function 73 9(n, m, k) = k is a basic function.
(c¢) The function s(n) = n + 1 is a basic function.

(d) The function soms, is a concatenation of the functions in (b) and (c): somga(n, m, k) =
kE+1.

(e) We now apply recursion to the functions in (a) and (d), i.e.,
+(n,0) = id(n)
+(n,m+1) = s(m32(n,m, +(n,m))) = +(n,m) + 1.
The addition function + defined by these recursion equations is primitive recursive.
The recursion equations given in (e) are the so-called Grassmann equations for addition.
Similar recursions using the Grassmann equations for multiplication
x(n,0) =0
X (n,m+1) = +(x(n,m),n)
and exponentiation
exp(n,0) =1
exp(n,m + 1) = x(exp(n,m),n).

show that multiplication and exponentiation are primitive recursive as well. Similarly, other
basic arithmetical operations such as subtraction and division with remainder are primitive
recursive.

Example 4.21. The functions fy (signum function), fi (predecessor function), fo (cut-off
subtraction function), fs (absolute difference function), fi (difference check function), and
fs (remainder mod q function) defined below are primitive recursive:

fo(n) = signum(n) := { [1) i Z i 8 and
o { i
fa(n,m) = = { . gz ; ;nl;and
fs(n,m) :=|n—m|:= { n-— TL gz i ?nl‘and
fa(n,m) :=

if n =m; and

{ if n # m and
k

f5(n) :==r(n,m) := k if and only if n = k (modm).

[We build the functions by recursion: first, signum(0) = 0 and signum(n + 1) = 1 defines
the signum function and p(0) = 0 and p(n+1) = n defines the predecessor function. Building
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on this, we get that n =0 =n and n ~ (m+ 1) = p(n = m) defines cut-off subtraction. Then
In —m| = (n=m)+ (m=n) and fy(n,m) = signum(|n — m|). Finally, (0,m) = 0 and
r(n+1,m) = (r(n,m) + 1) - f4(r(n,m),p(m)) are recursion equations for the remainder
function.]

Theorem 4.22. Every primitive recursive function is computable.

Proof. We have already established in Proposition 4.14 that the basic numerical functions
are all computable. As a consequence, we only need to show that the computable functions
are closed under the operations of composition and recursion, or, equivalently, that the com-
putable functions on binary words are closed under the encoded versions of these operations,
ie.,

(i) if f: B¥ --» Band gy, ..., gr: B’ --» B are computable, then h(@): = f(g1(0), ..., gr(@))
is computable and

(ii) if f: B¥ --» B and g: B¥*2 --» B is computable, then so is the function h defined by

Claim (i) is essentially the Subroutine Lemma (Lemma 4.6); note that the proof of the
Subroutine Lemma only deals with the case £ = 1 but readily generalises to running k
subroutines.

Considering claim (ii), let f and g be computable and h be defined by recursion from f
and ¢. Fix @ and v and describe how to compute h(w,v): we use two registers that will not
be needed otherwise, say, registers n and m, and empty them. We then calculate f(w) and
write it into register m. In each step of the computation, we check whether v is equal to
the content of register n. It this happens to be the case at the beginning of the computa-
tion (i.e., when register n is empty), then we just output f(w) and halt. If not, we repeat
the following routine: we apply the successor function (which is computable by Proposition
4.14) to the content of register n and calculate g(w,v,u) where u is the current context of
register m and write this into register m. If w is equal to the content of register n, then we
output what is in register m. Otherwise, we go back to the beginning of the routine. Since
(B, <shortlex) = (N, <), counting up with the successor function will eventually reach a point
when the content of register n is equal to w (unless one of the f- or g-calculations fails to
halt before that happens). Q.E.D.

We call a function f: B*¥ — B primitive recursive if there is a primitive recursive numerical
function ¢g: N¥ — N such that f = g#. As in the proof of Theorem 4.22, there are encoded
versions of composition and recursion and each primitive recursive function f: B¥ — B has
a primitive recursive derivation using these operations (the same as its decoded function).

There is a class of partial functions known as the recursive (partial) functions, defined by
Alonzo Church (1903-1995); the recursive functions are the closure of the primitive recursive
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functions under the operation of minimisation: suppose f: B¥*! --s B is a partial function,
then the partial function h defined by

v if for all u <gyort1ex v, We have that f(w,u)] and
h(wW) = v 18 <ghortlex-minimal such that f(w,v) =€ or
1 otherwise

is called the minimisation result of f. Students are asked on Example Sheet # 3 to show that
the class of computable (partial) functions is closed under minimisation. Thus, all recursive
functions are computable. We shall discuss this class further in §4.10.

Using primitive recursive arithmetic in computations. The fact that additional,
multiplication, and most simple arithmetical functions are computable via Examples 4.20
& 4.21 means that we can use these operations in our constructions of register machines.
For instance, we can improve the operations and questions from Propositions 4.15 & 4.16 to
answer the following questions:

(a) Is the length of the content of register i divisible by four?,

(b) Is it the case that for each k, the 4k + 3rd letter in register i is equal to O (if it exists)?;
or

(c) If you split the content of register i into consecutive blocks of length four, is each of these
blocks in X ¢ (where X is some computable set).

This will be discussed in more detail on Example Sheet #3. We refer to machines
answering questions such as these and performing the related operations as primitive recursive
computations.

Splitting & merging words. We use our access to arithmetical functions to define split-

ting and merging operations on binary words. Consider the arithmetical function

(i+5)(+j+1)
2

z:(i,7) = +J
which is the well-known Cantor zigzag bijection that Cantor used to prove the countability of
the rational numbers Q (cf. the proof of Lemma 1.1). This function is a composition of the
basic arithmetical functions that we already established are primitive recursive, and hence
by Theorem 4.22 computable. So, the map (v, w) — w if #u = z(F#v, #w) is a computable
function. We write v * w := u and call this operation merging v and w into a single word.
The merging function is a total computable bijection between B? and B. It’s inverse
taking a word v and finding v and w such that v *w = u can also be performed by a register
machine: note that we know that these words must exist, since the Cantor zigzag function
is a bijection and that if the formula is valid, then u,v < w, so we only need to search
through finitely many possible values of u and v. This operation is called splitting u into two
words. It gives rise to two computable total functions -y: B — B and -(;): B — B such that
U(o) * U(l) = Uu.
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4.6 Coding languages and machines

Coding languages. We already indicated that binary words can easily encode words from
arbitrary alphabets. Suppose > = n and we take m such that 2™ > n; then there is an
injection i: ¥ — {0,1}™ onto ¥; pick your favourite one and extend it to an injection
i: W— ({0,1}™)" CB. Asin §4.4, we say that i(w) € B codes w € W.

Again as in §4.4, we can now extend our definitions of computability to W: if f: WF --»
W is a numerical partial function, we call

fi: B* -—» B defined by @ > (i o f)(¥) if there is @ such that i(¥) = @

its encoding. We say that f is computable if and only if its encoding is computable. If
X C W*, we say that X is computable or computably enumerable if its image under 1, i.e.,
{i(w); & € X} is computable or computably enumerable, respectively.

Example 4.23. The sets @, W C W are computable.

[By definition, we need to check the computability of the ¢ preimages of @ and W. The
former is just @ which is computable; the latter is the set of all codes of words, i.e., all
v € ({0,1}™)* such that all m-blocks of Os and 1s are in the range of i. Note that this can
be done by primitive recursive computation (cf. p. 60).]

Re-visiting the proof of Theorem 4.13, we notice that the proof that every regular language
L C B is computable readily extends to regular languages in arbitrary alphabets: if the letters
of the alphabet ¥ are encoded by m binary letters, just read m letters in each automaton
computation step.

Coding machines. We had remarked on p. 47 that, as it was the case for automata, the
precise nature of the states of a register machine does not matter, only the size of the set of
states does. Thus, if || = n, we can assume that our states are represented by the first n
binary words in the shortlex order, i.e., €, 0, 1, ..., w for #w = n — 1 with € representing
the start state and O representing the halt state. With this representation fixed, the register
machine is just a list of Q-instructions, written in increasing shortlex order, e.g.,

_<27170)7?6(17070>7+0<270) (T)
represents the function

gs — —(2,92,qs), qu —7(1,qu, qu), @ — +o(2,qn),

i.e., the machine that first empties register 2 and then adds a single 0 to it and halts. In
order to avoid some confusion with the use of commas and parentheses, let us replace the
parentheses with square brackets, the commas by a separator symbol /; if we then replace
the natural numbers that represent the registers in () by binary words as well, i.e.,

—[1/1/0]/7:[0/0/0]/ +¢ [1/0], (1)

we obtain a finite string that contains only the symbols 0, 1, +¢, +1, —, 7, %0, 71, |, |, and /.
Thus, we call 3 := {0,1, +9, +1, —, %, 70, 71, [, |, / } the encoding alphabet; it has eleven letters
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and thus can itself be encoded by binary strings of length four. We use W to denote words
in the encoding alphabet. Then if M is a register machine, we write code’(M) € W for the
code of M in W and code(M) € B for the binary code of code’(M).

Note that for each of the symbols +q, +1, —, 7., 70, 71, the set of codes of instructions
starting with that symbol forms a regular language, e.g., the ones starting with +¢ are
described by the regular expression

R(+0) := +0[(0 +1)*/(0 + 1)*].
Therefore, the set of codes of any instructions is described by the regular expression
R := R(+¢) + R(+1) + R(—) + R(?.) + R(?0) + R(?1),

and the set of all codes of register machines by the regular expression (R/)*R; by Theorem
4.13 (or more precisely, by the above observation that it generalises to arbitrary alphabets),
the set of codes of register machines is computable.

Similarly to register machines, we can encode configurations. Since a configuration is just
a tuple consisting of a state and a finite sequence of register contents and we have already
represented our states by binary numbers, the following regular expression describes codes
for configurations in our encoding alphabet:

O+ 1)"(/(0+ 1))

as before, this implies by Theorem 4.13 that the set of codes of configurations is computable.
Using primitive recursive computations, we can access the information that is in these codes;
e.g., if you want to know which instruction type the machine M uses when in the fourth
state, check the code code(M) for the third symbol “|” occurring, then for the next following
symbol “/” and then read the immediately following symbol; or if you want to know whether
register 3 in a configuration C' is empty, check code(C') for the third and fourth occurrence
of the symbol “/” and check whether there is a symbol between them or not.

Lemma 4.24. The transformation function

fr: W? ——s W: (code(M), code(C)) + code(C") if M transforms C to C"

is computable.

Proof. Let C' = (¢q,w). The code of M contains information about what P(q) is; apply that
concrete operation corresponding to the instruction P(q) to @ as given on p. 46. Q.E.D.

Lemma 4.25. The computation sequence function
fos: W2 ——s W: (code(M), code(gs, 1), v) + code(C(#v, M, 1))
is computable.

Proof. We have seen that the computable functions are closed under recursion (proof of
Theorem 4.22), so we define this by recursion via
fos(code(M), code(w), €) := code(gs, W),
fos(code(M), code(w), s(v)) := fr(g(code(M), code(w), v))

where fr is the transformation function from Lemma 4.24. Q.E.D.
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4.7 Software and universality

Theorem 4.26 (The Software Principle). There is a register machine U, called a universal
register machine, such that

faugsr (W) if v = code(M) for a register machine M with upper register
index k£ and u = code(C') for a configuration with register
content w of length k + 1,
T otherwise.

fuz2(v,u) =

Theorem 4.26 tells us that there is a single register machine that can mimic the behaviour
of all register machines. This is quite remarkable since the universal register machine is a
finite object and, in particular, has a fixed upper register index and a fixed number of states
and instructions. The register machines whose behaviour it can mimic can use many more
registers than U and can be a lot bigger than U in terms of the number of states. But U will
need this information in the input (since it uses code(M) as part of its input data) and so
we have moved the additional registers and states that would require a much larger machine
than U into the realm of software (hence the name). We can think of U as the actual machine
with its storage space and universal program and of code(M) as the software that is being
installed on U to run the program that produces fas .

Proof. We describe the register machine U by the operations it performs: at the beginning, we
check whether v is a code for a register machine and whether u is a code for a configuration; if
not, we diverge. Now use initially empty scratch registers n, m, and £ and repeat the following
subroutine until register n contains code(gy). Once this happens, output the register content
of register m.

In the subroutine, let ¢ be the content of register . Use the computation sequence func-
tion fog from Lemma 4.25 to calculate C(#t, M, ) = (q, §). Write the binary code for ¢ into
register n and sy (i.e., the register content in register 0 at time #t) into register m. Then
apply the successor function to register £. (Note that this repeat loop terminates if and only
if far, k(w)], as desired.) Q.E.D.

Theorem 4.26 allows us to simplify our notation in a natural way: instead of using the
register machine M as parameter of our computable functions, we can define for arbitrary
words v

fo (W) :== fua(v, code(gs, W)).

If v = code(M), this partial function coincides with fisx; if v is not the code of a register
machine, it’ll give the nowhere defined partial function. We extend this notation to the

computably enumerable sets W, by writing W,, := dom( f,,1) and to truncations by writing
T, := Ty for v = code(M).

Theorem 4.27 (The s-m-n Theorem). Let g: B¥*! -—s B be any partial computable func-
tion. Then there is a total computable function A: B — B such that for all v € B and all
W € B*, we have Jh(w) (W) = g(w,v).

The curious name of this theorem derives from the notation S]" used for the function
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h in the original publication.!® The s-m-n Theorem pulls one of the parameters of the

function g into the index. This process is also called Currying, after the logician Haskell
Curry (1900-1982).17

Proof. Clearly, for a fixed v, the function g, : W +— g(w,v) is computable, so there is some
word u such that f, (@) = g(w,v). However, what we need to establish here is that a register
machine can find such a w.

For a fixed v, the operation @ +— (,v) is performed by a register machine M,: the
register machine consists of the instructions that add the word v letter by letter into register
k. We can explicitly construct a register machine that performs the operation v — code(M,).

Since g is computable, there is a register machine M that computes it, i.e., fas 41 (W, v) =
g(wW,v). This means that for a fixed word v, the function g, is performed the concatenation
of the two register machines M, and M.

For register machines M, and M, let us write M, o M, for their concatenation machine
from the proof of Lemma 4.6. In the comment after Lemma 4.6, we highlighted that the
concatenation of register machines is a concrete operation that provides a definition for the
register machine that performs the concatenated operation (making the state sets disjoint
and replacing the halt state of the first register machine with the start state of the second).
Thus, the operation (code(M), code(My)) — code(My o M) can be performed by a register
machine.

Clearly, the operation w +— (w,code(M)) is performed by a register machine (viz. the
case k =1 and v = code(M) of the machine M, above). Thus, fitting all of these together,

v — code(M,) — (code(M,),code(M)) + code(M o M,)

is performed by a register machine and thus h(v) := code(M o M,) is a total computable
function with

fh(v),k(w) = faront, k(W) = go(W) = g(v, ).
Q.E.D.

The Recursion Theorem. We close this section by mentioning another important result
that follows from the conceptual work performed here: the Recursion Theorem or Fized Point
Theorem. If p: B --» B and w € W, we call w a fized point of ¢ if fow)1 = fuw,1-

Theorem 4.28 (Recursion Theorem or Fixed Point Theorem). If ¢: B — B is total, then ¢
has a fixed point.

This theorem is not lectured in this course since students are asked to prove it (with
a useful hint) on Example Sheet #4. Theorem 4.28 allows us to find interesting examples
of words, e.g., a word w such that W,, = {w}; again, this will be discussed on Example
Sheet #4. The Fixed Point Theorem also plays an important role in the constructions of
unprovable sentences in the proof of Godel’s Incompleteness Theorem.

16¢Cf. S. C. Kleene (1938), On notation for ordinal numbers, Journal of Symbolic Logic 3 (4): 150-155; p.
153.

7This is conceptually related to the fact that functions from X x Y into Z can be considered as functions
from X into the set of functions from Y into Z, sometimes referred to as Curry-Howard Correspondence;
arithmetically, this is just the equality z¥* = (2¥)®.
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4.8 Computably enumerable sets

Using our universal register machine, we can now get the most important computably enu-
merable set, the halting problem and its two-variable variant:

K = {w; fui(w)l} and
Ko == {(w,v); fw,l(v)i}-

Theorem 4.29. The sets K and K, are computably enumerable.

Proof. By Proposition 4.12, we only need to show that they are domains of a computable
functions. By Theorem 4.26, we have that fys(w,v) = fi,1(v), so Ko = dom(fy2). The
operation w +— (w,w) can be performed by a register machine; hence, f : w — fya(w,w) is
computable and K = dom(f). Q.E.D.

Theorem 4.30. The sets K and K; are not computable. In particular, they are computably
enumerable set that are not computable.

Proof. Suppose either of them is, i.e., xx or xk, are computable functions. Define
_ )i (w,w) = xk(w) =1
flw) = { e if xyk,(w,w) = yx(w) = 0.
This is clearly computable, so let d € B be a word such that f;; = f. Then we have that

f(d)T — XK(d) =1 — XKo(d7d> =1 — <d7d) S KO
— deK = fu(d)l <= [f(d).

Contradiction! Q.E.D.

Definition 4.31. A set X C B* is called ¥ if there is a computable set Y C B*+! such that
for all @ € B*, we have
we X <— F((w,v)eY).

It is called II; if it is the complement of a ¥; set; it is called A; if it is both ¥; and II;.

The terminology derives from the fact that 3J; sets are defined using one existential quan-
tifier and logicians tend to think of existential quantifiers as analogues of sums; similarly, 11y
sets are defined using one universal quantifier and logicians tend to think of these as analogies
of products. The letter A comes from the German word “Durchschnitt” (intersection) since
the class of Ay sets is the intersection of the classes of >; and II; sets.

Proposition 4.32. Every computable set is A;.

Proof. By Proposition 4.12 (a), we only need to show that every computable set is ¥;. Let
X C B* be computable. Define Y by (w,v) € Y if and only if @ € X. The set Y is clearly
computable (ignore v and do the computation to check that @ € X). But then @ € X if and
only if there is a v such that (@,v) € Y by definition. Q.E.D.
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Figure 5: The search space B? (or, more precisely, {w} x B?) traversed by Cantor’s zigzag
function as in the argument of Example 4.34.

Theorem 4.33. Let X C B*. Then the following are equivalent:
(i) The set X is computably enumerable and

(ii) the set X is ¥.

Proof. “(i)=(ii).” Let X = dom(f) and let M be a register machine that computes f and
consider the truncated computation set Th; which is computable by Proposition 4.17. Then

w € dom(f) < Jv((w,v) € Ty).

“(ii)=-(1).” Let Y C B*"!. We use the operation of minimisation (cf. p.60 & Example
Sheet # 3): apply minimisation to yy to find a function h: B* --» B that searches for the
least v such that (@, v) € Y. Thus, X = dom(h) and so X is computably enumerable. Q.E.D.

The following results use a method we call the zigzag method: using Cantor’s zigzag
function, we can line up the elements of B? in an ordering isomorphic to (N, <) and thus fold
two existential quantifiers into one. We can visualise the computation process as running
through B? via Cantor’s zigzag function and checking the relevant question for each pair in
the ordering that is determined by the zigzag function as depicted in Figure 5.

More specifically, if Y C B*+2 is computable, then

X ={w; Fou((d,v,u) € Y)}

is computably enumerable: write Z := {(&,v); ((W,v),v@)) € Y)}. This is computable
since the two component functions of the splitting operation are. Then
we X < Fvu((w,v,u) €Y)
= Fv((W, v),vq)) €Y)
— Ju((w,v) € Z),

whence X is ¥; and so computably enumerable by Theorem 4.33.
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Example 4.34. If f: B**! --» B is computable, then the set
X = {0 € B*; (f(@,0)))

is computably enumerable.

[Let M be such that fyx+1 = f. Consider the truncated computation set T, which is
computable by Proposition 4.17, i.e., (w0, v,u) € Ty, if and only if the computation of M with
input « has halted after at most #u steps. Clearly, @ € X if and only if there are v and u
such that (@, v,u) € Ty, so the zigzag method yields that X is computably enumerable.]

The following important results are further applications of the zigzag method.

Proposition 4.35. Let @ # X C B. Then X is computably enumerable if and only if there
is a computable g: B --» B such that X = ran(g).

Proof. For the forward direction, let f: B --+ B be computable; then so is
w if f(w)] and
g(w) = { Fuly

1 otherwise.

Clearly, ran(g) = dom(g) = dom(f) = X.

For the other direction, let X = ran(g) and let M be a register machine such that
g = fua1- Then consider the truncated computation set TM, ie., (v,u,w) € TM if and only if
the computation with machine M and input v has halted in at most #u steps and produced
the output w, and observe that

we X <= Fvu((v,u,w) € fM),

so by the zigzag method, X is 3; and thus computably enumerable by Theorem 4.33. Q.E.D.

Proposition 4.36. A set is computable if and only if it is A;.

Proof. The forward direction was proved in Proposition 4.32. Thus, assume that X is Ay,
i.e., by Theorem 4.33, there are register machines M and M’ such that X = dom(fy; ) and
B\ X = dom(fys ). Therefore

we X < Ju(w,v) € Ty and

WX < Ju(w,v) € Ty

Let

Yo = {(W,u) ; #u(y is even and (W, uy) € Tar},

Y: = {(W,u) ; #u( is odd and (W, u(1)) € T}, and

Y :=YyUY.
The sets Yy and Y] and therefore Y are computable sets, so use minimisation (again, cf.
p. 60 and Example Sheet # 3) to obtain a function h that searches for the least u such that
(wW,u) € Y. Since for each w, we either have @ € X or @/ ¢ X, we know that such a u must

exist, so h is a total function. Now output 1 if #h(@)) is even and 0 if #h(wW) ) is odd.
This computes the characteristic function of X. Q.E.D.
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Corollary 4.37. The class of 3 sets is not closed under complementation; more specifically,
B\K is not computably enumerable.

Proof. We proved that the halting problem is computably enumerable but not computable
(Theorems 4.29 & 4.30), so by Theorem 4.33 and Proposition 4.36, it’s 3, but not A;. In
particular, it is not II;, so B\K cannot be ¥;. Thus ¥ is not closed under complementation.

Q.E.D.

Corollary 4.38. Any type 0 language L C B is computably enumerable.

Proof. Let G := ({0,1},V, P, S) be the grammar such that £(G) = L, 2 :={0,1} UV, and
T :=QU{/} with a new separator symbol / ¢ . Sequences of Q-strings are represented by
the regular language 7' := (Q*/)*Q2* (computable by Theorem 4.13). Furthermore, the set

{(a, B); —G>1 B} C 92 is computable and therefore
D :={a € T'; a represents a G-derivation}

is computable.

[Check whether the first entry is S. For each occurrence of the symbol /, if « is the
()-string immediately preceding / and 3 the -string immediately following /, check whether

[0 HGI 5]
Let D’ C B be the encoding of D as binary words and Y := {(v,w) € B*; v € D’ with
final Q-string w}. By the above, Y is computable and by construction,

w € L(G) <= Jv(v,w) €Y,
so L(G) is X1 and hence by Theorem 4.33, it is computably enumerable. Q.E.D.

As in Theorem 4.13 or the result for Type 1 languages discussed on Example Sheet # 3,
there is nothing special about the alphabet {0, 1} and the same proof works (with an extra
layer of coding) for languages L C W for arbitrary alphabets .

The converse of Corollary 4.38 also holds: every computably enumerable language is type
0. This is not proved in this lecture course; a proof can be found as Theorem 4.4 (p. 37) in
Salomaa’s textbook,'® formulated in terms of Turing machines rather than register machines.

The general idea is as follows: suppose that L is c.e., i.e., L is the set of w such that
there is a machine that halts on input w and produces the output 1: starting from a final
configuration of the halting computation, we consider the computation sequence in reverse,
i.e., leading from this final configuration to the start configuration which contains the word
w, and design a grammar that can reverse the computation steps of the computation and
finally produce the input from the start configuration.

The details of the proof are subtle and complex: in fact, register machines do not make
this easy due to the very highly non-local nature of the computation steps. If C' = (¢, ) is
transformed into C’ by modifying the kth register, then the rewrite rule would involve two
locations in the code of the configuration that are very far apart. As a consequence, Turing
machines (cf. p. 70 in §4.10) whose actions are entirely local are much more convenient for
this argument.

18A. Salomaa (1973). Formal Languages, Academic Press.
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4.9 Closure properties

Proposition 4.39. The class of computable languages is closed under union, intersection,
complement, and concatenation.

Proof. Let A and B be computable sets, i.e., x4 and xp are computable functions. Then

_ )1 ifxa(w) =1 = xp(w)
Xanp(w) = { 0 otherwise,

[0 ifxa(w)=0=xg(w)
Xaup(w) = { 1 otherwise, and

Xuna(w) = { 0 otherwise

are computable functions, and so AN B, AU B, and W\ A are computable sets. Also, the
concatenation AB is computable: given a word w, check all initial segments of w whether
they are in A, using the computable function y 4; if one of them is, check the remainder of w
by xg; if both checks are successful, output a; after all |w| many initial segments of A have
been checked unsuccessfully, output e. Q.E.D.

Proposition 4.40. The computably enumerable languages are closed under union, intersec-
tion, and concatenation, but not under complementation and difference.

Proof. The construction for intersection from the proof of Proposition 4.39 works for pseudo-
characteristic functions as well:

1 otherwise.

Yans(w) = {
For union, write both A and B in ¥; form, i.e.,

weA <= Jv((w,v) € C) and
we B < Jv((w,v) € D)

and use the zigzag method to get

(w,vqy) € C if #v() is even and

we€ AU B <= there is v such that { (w,v(l)) €D if #ug is odd.

The set described on the right-hand side of the equivalence is computable by Proposition 4.39.

The argument for concatenation is a modification of the concatenation argument from
the proof of Proposition 4.39. As before, we let C' and D be the computable sets that witness
that A and B are ¥, respectively. Given w,v € B, we write I(w,v) for the initial segment
of w of length #v (possibly all of w, if #v > |w|) and F(w,v) for the final segment of w that
remains after removing i(w, v) (possibly empty). We need to split a word v into three parts:
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concatenation union intersection complement difference

regular (type 3)

context-free (type 2)
noncontracting (type 1)
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Figure 6: The closure properties of all classes of languages we discussed in an overview.

let v(9) := (v(1))(0) and v(g) := (v(1))1); then v = vy * (V) * v(z)). With these definitions, we
have

w € AB <= there is some v such that (/(w,v(),v@)) € C and (F(w,v()),v@s)) € D

which is in 3 form, so AB is computably enumerable.
That the computably enumerable sets are not closed under complementation (and thus
not under differences) is Corollary 4.37. Q.E.D.

We summarise all of the closure properties discussed in this lecture course in Figure 6.
The results on type 1 languages were not discussed in this lecture course. The closure of the
class of noncontracting languages under complementation was a famous open problem for
several decades which was solved independently by Immerman and Szelepcsényi in 1987.19
Using the Immerman-Szelepcsényi theorem, closure under intersection and difference follows
by general set algebra.

4.10 The Church-Turing thesis

We have seen, in particular in §§4.4, 4.5, & 4.6, that our notions of computation and com-
putability cover many of the things that we expect to be possible to compute. We would like
to argue that the formal notion of computability, as defined in terms of register machines,
covers precisely what we would consider computable in the informal or intuitive sense. How
can we argue that it is not possible to come up with another notion of computation that
gives rise to a non-equivalent notion of computability?

In the history of computability, authors have tried to define conceptually different no-
tions of computation: e.g., Turing’s original paper introduced computability not via register
machines, but via Turing machines.?® A Turing machine consists of an infinite tape and a
head that moves on the tape and can read and write letters on the tape. This model of
computation is different from register machines in several aspects. It only has one storage
device (an infinitely long tape) and the access the machine has to the information stored on
the device is quite different: while a register machine has LIFO (“last in first out”) stacks

19N. Immerman (1988), Nondeterministic space is closed under complementation. SIAM Journal on Com-
puting, 17 (5): 935-938. R. Szelepcsényi, (1987), The method of forcing for nondeterministic automata,
Bulletin of the EATCS, 33: 96-100.

20Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc.
London Math. Soc. 58 (1936), 230-265.
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and needs to delete information on the stack in order to get to information that is further
down, a Turing machine head can move to the precise place where the information is stored.

A partial function f: B¥ --» B is called Turing computable if and only if there is a Turing
machine that performs f.

Given that register machines, Turing machines, and the calculus of Church’s recur-
sive functions have very different underlying computational ideas, the following theorem,
stated without proof, is surprising. Note that the direction “(ii)=-(i)” was done on Example
Sheet # 3 (cf. also p. 60).

Theorem 4.41. If f: B¥ --» B, then the following are equivalent:
(i) the partial function f is computable,

(ii) the partial function f is recursive, and

(iii) the partial function f is Turing computable.

The confluence of so many different attempts to formalise the notion of computability
suggests that the concept that we described is robust and reflects something substantial
about the pre-theoretical concept of computation. In fact, when defining his Turing machines,
Turing had the intention to capture the essence of the nature of computation and describe
it formally.

The Church-Turing Thesis. The mentioned equivalent formal concepts of
computability describe the informal notion of computability successfully: any
reasonable attempt to describe the informal notion of computability will lead to
a formal notion that is equivalent to the ones we have described.

It is very important to note that the Church-Turing thesis is not a mathematical state-
ment: it cannot be proved or refuted, but it makes a prediction about the human practice of
mathematics. It could be refuted in practice if mathematicians find a formal description of a
model of computation that yields a non-equivalent notion of computability and unanimously
agree that this formal description describes the informal notion of computability. There
have been candidates for this in the decades that followed the Church-Turing discovery: e.g.,
quantum computing, DNA computing, and other models of so-called unconventional comput-
ing. While they often produced models where computation behaves rather differently from
computation by register machines in various respects, their notions of computability remain
equivalent to our notion of computability.

The Church-Turing Thesis finally provides us with an answer to the question raised ear-
lier about the definition of the word “algorithm”. Informally, by “algorithm”, we meant a
computational procedure that produces an answer to the decision problem in a finite amount
of time. If we accept the Church-Turing Thesis, this informal notion of a computational
procedure is correctly formalised by the concept of a register machine, i.e., it corresponds
to the notion of computability: each of our decision problems just becomes a set and the
question whether it is solvable becomes the question whether that set is computable.

More precisely, we consider an encoding of grammars as words in B such that w — G,
is a function assigning grammars to binary words such that {G,; w € B} is the set of
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all grammars. Then the word problem is the set {(u,v); u € L(G,)} C B?, the empti-
ness problem is the set {u; L(G,) = @} C B, and the equivalence problem is the set
{(u,v); L(G,) = L(G,)} € B2 Similarly, the decision problems restricted to a class C
of grammars are these sets restricted to words that decode into grammars in C.

Of course, there is no reason to restrict decision problems to grammars only: the same
definitions also give us the word, emptiness, and equivalence problem for register machines
or any other encodable model of computation.

The interpretation of the word “algorithm” via the Church-Turing thesis finally gives us
the mathematical specificity needed to prove the unsolvability of a decision problem: in order
to do so, we have to show that the corresponding set is not computable. On Example Sheet
# 3, we saw that the solution algorithm for the word problem for type 1 grammars can be
performed by a register machine; consequently {(u,v); u € £(d,) and v is a code for a type
1 grammar} is computable. We furthermore note that all algorithms given in §§1.6, 2.8, &
3.5) can be performed by register machines, so all of our solvability results from previous
chapters give computability results for the corresponding sets.

Corollary 4.42. The word problem for type 0 languages is unsolvable.

Proof. As mentioned above, the word problem is the set W := {(u,v); v € L(G,)}. We
replicate the proof of Theorem 4.30: if W is computable, then so is the function

|1 ifwe L(Gy) and
flw):= { 0 ifwé L£(G,).

Let dom(f) be computably enumerable, so (by the equivalence of type 0 languages and
computably enumerable sets; cf. p. 68) there is a grammar G, such that dom(f) = L(Gy).
We obtain the contradiction by

de L(Gy) < dedom(f) < d¢ L(Gy).

Q.E.D.

Note that the set W in the proof of Corollary 4.42 is essentially the halting problem K
if you assume that a register machine can perform the transformation between computably
enumerable sets and grammars (cf. 4.11).

4.11 Reduction functions

A binary relation < on a set X is called a partial preorder if it is reflexive and transitive
(i.e., for all x,y,z € X, we have x < z and if + < y < z, then x < 2). If < is a partial
preorder, we can define a binary relation = by z = y if and only if x <y and y < x. This is
an equivalence relation and < respects the equivalence classes, i.e., if = 2’ and = < y, then
' <y, similarly, if z = 2’ and y < x, then y < 2/. If [z] and [y] are =-equivalence classes,
we can define [z] < [y] if and only if # < y; this is well defined since < respects equivalence
classes. If (X, <) is a partially preordered set, then (X/=, <) is a partially ordered set (i.e.,
partially preordered and anti-symmetric).
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If L, L' C B, we call a total computable function f: B — B a reduction of L to L’ if for
all w € B, we have
weL < f(w)el

We say that L is many-one reducible to L' and write L <, L' if there is a reduction from L
to L'2V If L <, L' and L' <., L, we say that L and L' are many-one equivalent and write
L =,, L'. We observe that the identity is a reduction of L to L and that a concatenation of
a reduction of L to L’ and a reduction of L’ to L” produces a reduction of L to L”; thus <,
is a partial preorder. Note that by definition of what it means to be a reduction function,

L<, L < B\L<,B\L. (#)

As a consequence, a language is many-one reducible to its complement if and only if it is
many-one equivalent to its complement. In other words, a language and its complement are
either many-one equivalent or incomparable by <,,.

Proposition 4.43. Let L, L' C B.
(a) If L <., L' and L' is computable, then so is L.

(b) If L <, L' and L’ is computably enumerable, then so is L.

Proof. For (a), let f be the reduction and let x; be computable. Then y;, = xp o f is
computable. For (b), use ¢, and ¥, instead of the characteristic functions. Q.E.D.

If there is a reduction of L to L', we can think of L as “at most as complicated as L'”:
having access to the characteristic function of L’ gives us access to the characteristic function
of L.

The notion of reduction was implicitly used in some of the discussions about algorithmic
solvability. In §4.10, we claimed that the set {(w,v); w € L(G,)} representing the word
problem for type 0 grammars is “essentially the halting problem K| if you assume that a
register machine can perform the transformation between computably enumerable sets and
grammars”. If we let f and g be the total computable functions that translate between codes
of grammars and codes of register machines and vice versa, then this just means that f and
g witness that

{(w,v); w e L(G)} =m {(w,v); w e W,} =K.

Similarly, we can identify the emptiness problem and the equivalence problem for type 0
grammars with {w; W,, = @} and {(w,v); W,, = W, }, respectively.

Proposition 4.44. The sets K and W\K are incomparable in <,.

Proof. Since W\K is not computably enumerable, we have W\K« K by Proposition 4.43
(b). But if K <,;, W\K, then W\K <,, K by (#). Q.E.D.

21The term “many-one” is a reminder that the function is not required to be injective (“one-one”), but
can map several words to one word.



27 Jan 2025 Michaelmas 2024: Part II Automata & Formal Languages 74

K ©B\K

K— \]B%\K

all computable sets
except for B and @

B 16}

Figure 7: The many-one degrees.

We can define for any two sets X, Y C B the Turing join of X and Y:
XpY =0XUlY.

Clearly, the function w — Ow is a reduction from X to X &Y and the function w +— 1w is
a reduction from Y to X @Y, so X, Y <, X @Y. In particular, the Turing join produces
something that is at least as complicated as the two original sets and thus K @ B\K is a set
that is strictly more complex than both K and B\K, in particular, it cannot be either ¥ or
IT;. On Example Sheet # 4, we shall see that the Turing join corresponds to the least upper
bound operation in the preorder <,,. The results about the notion of many-one reducibility
are collected in Figure 7 (cf. also Example Sheet # 4).

Hardness & completeness. If C is a class of languages and L is a language, then L is
called C-hard if for all X € C, we have X <, L. This means that L is an upper bound for
the class C in terms of computational complexity. If L is C-hard and in addition L € C, then
we call it C-complete.

Proposition 4.45. If L is any computable language such that @ # L # B, then L is
Ai-complete.

Proof. By Propositions 4.32 & 4.36, computable and A; are the same, so we only need to
show that if X is an arbitrary computable set, then X <, L. The assumption implies that
there are v,u € B such that v € L and u ¢ L. Let

(w) = v ifwe X and
FW = w ifwé¢ X.

Since X is computable, g is computable and it is a reduction of X to L. Q.E.D.

Theorem 4.46. The halting problem K is >;-complete.

Proof. Let X = dom(f) be computably enumerable. Define g: B? --» B : (w,u) — f(w)
and apply the s-m-n Theorem 4.27 to g to get a total computable function h such that
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Jo)1(w) = g(w,u) = f(w). In particular, we observe that w € X = dom(f) if and only
fnw)1 is everywhere defined and w ¢ X if and only if f()1 is nowhere defined. But if
fh(wm is everywhere defined, then in particular, fiw)1(h(w))l, so h(w) € K and if f()1 is
nowhere defined, then in particular, fyuw)1(h(w))?T, so h(w) ¢ K. Together, we obtain

weX < hw)eK

which shows that h is a reduction of X to K. Q.E.D.

4.12 Index sets & Rice’s theorem

We remember our notion of weak equivalence (now transferred to words rather than ma-
chines): two words w,v € W to be weakly equivalent if W,, = W,,. A set [ C B is called an
index set if it is closed under weak equivalence. We say that an index set is nontrivial, if it is
neither @ nor B. Index sets correspond to properties of computably enumerable sets. Henry
Gordon Rice (1920-2003) proved that nontrivial index sets cannot be computable.??

Example 4.47. The sets Emp := {w; W,, = @}, Fin := {w; W,, is finite}, Inf := {w; W,
is infinite}, and Tot := {w; W,, = B} are nontrivial index sets. Non-empty index sets must
be infinite (by the Padding Lemma, Proposition 4.4).

Note that the Recursion Theorem (Theorem 4.28) can be used to show that K is not an
index set: details are on Example Sheet #4.

Theorem 4.48 (Rice’s Theorem). No nontrivial index set is computable.

Proof. For a fixed w, consider the following function:

| fwi(v) ifueKand
Guw(u,v) = { 0 otherwise.

We first observe that g, is computable: given u and v, we first run the computation f, 1(u).
If that diverges, then the computation outputs T which is the desired result. If it converges,
we run the computation of f,,; on input v and output the result (if there is one). Therefore,
by the s-m-n theorem, we obtain a total computable h,, such that fy, (1(v) = guw(u,v). If
u € K, then fj,, ()1 is defined whenever f, 1 is, so0 Wy @) = Wy, If v € K, then ff, ()1 is
nowhere defined, so Wi = 9.

Now let I be our index set. Fix some e such that W, = @. Then either e € I or e ¢ I.

Case 1. If e € I, then by nontriviality, there must be some w ¢ I. Consider g,, as above
and the total function h,, obtained by the s-m-n theorem. We claim that h,, is a reduction of
B\K to I. If u ¢ K, then Wy, ) = W, = @, so since [ is an index set, h,,(u) € I. Conversely,
if u € K, then Wy () = Wy, so since I is an index set, h,,(u) ¢ I. So, W\K <, 1.

22H. G. Rice (1953), Classes of recursively enumerable sets and their decision problems, Transactions of
the American Mathematical Society 74 (2): 358-366.
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Word problem  Emptiness problem  Equivalence problem

regular (type 3) v v v
context-free (type 2) v v X
noncontracting (type 1) v X X
computably enumerable (type 0) X X X

Figure 8: The decision problems of all classes of languages we discussed in an overview.

Case 2. If e ¢ I, then by nontriviality, there must be some w € I. The above construction
yields (just with the roles of e and w reversed) that v € K if and only if h,(u) € I. So,
K<, I Q.E.D.

We note that the proof shows more than the statement of Rice’s Theorem: the proof
shows that if e € I, then B\K <,, I, and if e ¢ I, then K <, I, so for our examples of
nontrivial index sets, we obtain B\K <., Emp, Fin and K <,, Inf, Tot.

Corollary 4.49. The emptiness problem for Type 0 languages is not solvable.

Proof. The emptiness problem is represented by the set Emp: since B\K <,, Emp, this set
is not computable (nor computably enumerable). Q.E.D.

On Example Sheet # 4, we shall see that Emp =,, B\K; the other sets in our list are
even more complex as the following statement shows:

Proposition 4.50. The set Fin is neither »; nor II;.

Proof. We already know that B\K <,, Fin, so Fin is not ¥;. To prove the claim, we shall
show that K <, Fin.

We use the computable truncated computation set T, from Proposition 4.17: if (u,v) €
Tw, then f,1(u) has halted within #v steps. Note that if (u,v) € T,,, then for any v > v,
we have (u,v’) € T,,. Consider the computable function

|1 if (w,v) € T}, and
g(w,v) = { 0 otherwise.
By the s-m-n Theorem 4.27, we find a total computable h such that fj1(v) = g(w,v). We
claim that A reduces K to Fin.

Suppose that w € K. Then f,1(w)], so there is some v such that (w,v) € T, which
remains true for all v* > v. Therefore, fy()1 is undefined for all but finitely many v, and
thus Wy, is finite, so h(w) € Fin.

Suppose that w ¢ K. Then f,;(w)?, so for all v, we have that (w,v) ¢ T,,, and thus
fh(w),l(v) =Ec. SO, Wh(w) =B and h(w) §é Fin. Q.E.D.

Note that this implies that Inf cannot be ; or II; either since it is the complement of
Fin; the set Tot will be discussed on Example Sheet # 4.
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4.13 Decision problems

We have discussed the word problem and the emptiness problem in §§ 4.8 & 4.12, respectively.
The only remaining decision problem for type 0 grammars is the equivalence problem, i.e.,
the set {(w,v); W,, = W, }. Its unsolvability can be derived immediate from that of the
emptiness problem.

Corollary 4.51. The equivalence problem for Type 0 languages is not solvable.

Proof. 1f e is such that W, = &, then the operation w — (w, ) can be performed by a register
machine. If x is the characteristic function of {(w,v); W,, = W, }, then let x'(w) := x(w, e).
If y is computable, then so is x’. But x’ is the characteristic function of the emptiness prob-
lem {w; W,, = @} in contradiction to Corollary 4.49 Q.E.D.

We observe that the proof of Corollary 4.51 is a fully general argument that shows that
if C is any class of grammars such that there is a G € C with £L(G) = &, then the solvability
of the equivalence problem for C implies the solvability of the emptiness problem for C.

We summarise the results concerning our decision problems in Figure 8; note that we did
not prove the unsolvability of the equivalence problem for type 2 languages (cf. §3.5) and
the unsolvability of the emptiness problem for type 1 languages. The latter can be found
as Theorem 5.10 (p. 223) in Sipser’s textbook,?® albeit expressed in the language if linear
bounded automata which is the model of computation that corresponds to type 1 grammars.
By the above observation, the unsolvability of the emptiness problem for type 1 grammars
implies the unsolvability of the equivalence problem for type 1 grammars.

Z3M. Sipser. Introduction to the theory of computing. Second edition. Thomson Course Technology, 2006



