Proposition 1.26. Any grammar is equivalent to an ε -adequate grammar. Moreover, any grammar with property Q is equivalent to an ε -adequate grammar with property Q.

Proof. Suppose $G = (\Sigma, V, P, S)$ is a grammar. Take a new variable $T \notin V$ and let

$$V' := V \cup \{T\},$$

$$P' := P \cup \{T \rightarrow \alpha; S \rightarrow \alpha \in P\}, \text{ and }$$

$$G' := (\Sigma, V', P', T).$$

Clearly, all rules in P' are T-safe, so G' is ε -adequate and obviously $\mathcal{L}(G) = \mathcal{L}(G')$. Observe that the transformation $P \mapsto P'$ preserves all four properties that \mathbb{Q} can stand for. $\mathbb{Q}.E.D.$