

Automata & Formal Languages Michaelmas Term 2022 Part II of the Mathematical Tripos University of Cambridge Prof. Dr. B. Löwe

UNION GRAMMARS FOR REGULAR LANGUAGES

In §1.7, we defined the union grammar of G and G' to be $(\Sigma, V \cup V' \cup \{T\}, P^*, T)$ with a new variable T and $P^* := \{T \to S, T \to S'\} \cup P \cup P'$ and claimed that if G and G' are regular, then so it their union grammar. However, as a very watchful student pointed out, the production rules $T \to S$ and $T \to S'$ are not regular production rules. We had a similar issue with the concatenation grammar where the rule $T \to SS'$ was not regular and this was fixed later in Proposition 2.2 with an alternative construction of a regular concatenation grammar.

In order to produce a regular union grammar, an analogous alternative definition is needed. If $G = (\Sigma, V, P, S)$ and $G' = (\Sigma, V', P', S')$, then the *regular union grammar* is defined as

$$H = (\Sigma, V \cup V' \cup \{T\}, P^*, T)$$

with a new variable T and

$$P^* := P \cup P' \cup \{T \to \alpha; S \to \alpha \in P\} \cup \{T \to \alpha; S' \to \alpha \in P'\}.$$

With this definition, it is clear that if G and G' are regular, then so is H; similarly, if G and G' are context-free or context-sensitive, then so is H.

Claim. If G and G' are context-sensitive and $V \cap V' = \emptyset$, then $\mathcal{L}(H) = \mathcal{L}(G) \cup \mathcal{L}(G')$.

[The direction " \supseteq " is obvious since any derivation $S \xrightarrow{G} w$ or $S' \xrightarrow{G'} w$ can be made into a derivation $T \xrightarrow{H} w$ by exchanging the first rule application rewriting either S or S' by the corresponding rule in P^* rewriting T.

For the other direction, suppose $T \xrightarrow{H} w$. Since H is context-sensitive, all strings occurring in this derivation except for the last one must contain variables (once a string is a word, nothing can be rewritten anymore as every production rule needs a variable to be rewritten). If $T \xrightarrow{H}_1 w$, i.e., the derivation has length one, then it is the result of a rule application of $T \to w$. By definition, either $S \to w \in P$ or $S' \to w \in P'$, so $w \in \mathcal{L}(G) \cup \mathcal{L}(G')$. Otherwise, we have $T \xrightarrow{H}_1 \alpha \xrightarrow{H} w$ with α containing variables. That $T \xrightarrow{H}_1 \alpha$ is either witnessed by some rule $S \to \alpha \in P$ or some rule $S' \to \alpha \in P'$. In the former case, all variables in α are in V; in the latter case, all variables in α are in V'. W.l.o.g., let's assume that we are in the first situation, i.e., all variables get rewritten), all variables occurring in the rest of the derivation $\alpha \xrightarrow{H} w$ will also be in V, so all rules applied in the derivation come from P and thus we have $\alpha \xrightarrow{G} w$. But now $S \xrightarrow{G}_1 \alpha \xrightarrow{G} w$, thus $S \xrightarrow{G} w$, and therefore $w \in \mathcal{L}(G) \subseteq \mathcal{L}(G) \cup \mathcal{L}(G')$.

23 October 2022