We fix any set X. If n is a natural number (note that we include 0 in the natural numbers), then X^n is the set of n-tuples of elements of X; we call these objects X-strings of length n (usually denoted by letters such as α , β , γ , σ , and γ). In the usual set-theoretic representation, $n = \{0, 1, ..., n-1\}$ and a string of length n is a function from the set n into X. Note that X^0 only contains the empty sequence which we shall denote by ε . We write X^* for the set of all X-strings ¹ and write $|\alpha| = n$ if $\alpha \in X^n$ (or equivalently, dom($\alpha| n = \{0, ..., n-1\}$); the number $|\alpha|$ is called the l-ngth of α . Since strings are functions, we can use the usual notation for function restriction to denote their initial segments, i.e., if $\alpha \in X^n$ and $k \le n$, then α/k is the unique initial segment of α of length k.

If $\alpha, \beta \in X^*$, we can concatenate them in the usual way and write $\alpha\beta$ for the concatenated string. If α has length n and β has length n, then $\alpha\beta$ has length n+m:

$$\alpha \beta(k) := \begin{cases} \alpha(k) & \text{if } k < n \text{ and} \\ \beta(\ell) & \text{if } k = n + \ell \text{ and } \ell < m. \end{cases}$$

If $x \in X$, we use the notation x^n for the string of length n consisting only of the symbol x. Similarly, if $\alpha \in X^r$, we write α^n for the concatenation of n copies of the string α (formally, we can define this by recursion as $\alpha^0 := \varepsilon$, $\alpha^{n+1} := \alpha^n \alpha$). We often (slightly incorrectly) confuse $x \in X$ with the string of length 1 consisting of the element x. So, if we write αx , we mean the string α with an extra element x appended at the end; if we write $x\alpha$, we mean the string α prefixed by an element x. If $Y, Z \subseteq X^r$, we write $YZ := \{\alpha \beta : \alpha \in Y \text{ and } \beta \in Z\}$; if $Y = \{\alpha \}$, we abbreviate this to αZ and if $Z = \{\beta \}$, we write $Y\beta$.

Given any function $f:X\to Y,$ we can recursively extend it to a function $\hat{f}:X^*\to Y^*$ by

$$\hat{f}(\varepsilon) := \varepsilon,$$

 $\hat{f}(\alpha x) := \hat{f}(\alpha)f(x) \text{ (for } \alpha \in X^* \text{ and } x \in X).$