16 Nov 2022 Michaelmas 2022: Part II Automata & Formal Languages 57

4.6 Remark on the choice of alphabet

We defined computability for partial functions f : W* --» W in terms of Y-register machines:
the instructions and behaviour of register machines are closely tied to their alphabet and
register machines can only compute partial functions that use the letters that the machines
are built for. Clearly, if © C ¥/ and f : W¥ ——» W is computable by a X-register machine, then
it is computable by a Y'-register machine. But could it be that the notion of computability
gets stronger if we add more letters to the alphabet? The answer is no as will be shown in
this section.

We shall encode computations in binary notation. For this, let us assume that we have
two special symbols 0 and 1 in ¥. Suppose 2 < n = [X| and k is such that 2™ > n. Then
we can represent the elements of ¥ by binary sequences of length m by using our favourite
injection i from ¥ into {0, 1}*. The injection ¢ induces an injection (also denoted by 7) from
W into ({0,1}™)* C {0,1}* € W. We extend that induced injection further to injections
7: W" — W" defined componentwise and again using the same notation.

Lemma 4.20. The injection i : W — W is computable and so is its inverse it : W --» W
(which has domain ({0,1}™)%).

Proof. We can easily write a register machine program that removes the final letter of register
k, say, a and copies i(a) in reverse order into register ¢. Repeating this until register k is
empty results in the reverse of the i-image of the original content of register k£ to be stored

in register £. Now reverse the order and you obtain the i-value of the content of register k.
For the inverse, we do the same except that the program reads m many letters from the
content of the register k, check that it’s an element of {0,1}* (if not, we loop forever) and
writes the i-preimage of that string into register . The rest of the construction is the same.
Q.E.D.

Using the map i, we can represent a partial function on W by a partial function on {0, 1}*
as follows:

({0, 1})* {0,1}"
Let us write ]?for this partial function i o f oi~ .
Proposition 4.21. The partial function f is computable by a Y-register machine if and only
if the partial function f is computable by a {0, 1}-register machine.

Proof. It M is the Y-register machine computing f, all we need to do is to replace all in-
structions by sequences of instructions that do the same for the represented sequences. l.e.,
if the instruction is +(¢, a,q) we replace it with m many instructions that add the m bits
that form i(a) to register ¢; if the instruction is ?(¢, a, q,q’), we replace it with a sequence of



16 Nov 2022 Michaelmas 2022: Part II Automata & Formal Languages 58

instructions that reads the final m bits from register ¢ and checks whether this sequence is
i(a); if the instruction is —(¢, ¢, ¢"), we remove the final m bits from register ¢ instead. The
instruction ?(¢, e, q, q’) can remain unchanged. Q.E.D.

Corollary 4.22. Suppose {0,1} C ¥ C ¥’ and f : W* --» W is computable by a ¥'-register
machine. Then it is computable by a Y-register machine.

Proof. We consider f as a partial function from ((X')*)* to (X’)* and apply Proposition 4.21,
making use of an appropriate injection i : ¥ — {0,1}™. This gives us a {0, 1}-register
machine that computes f. Consider j = i[Z: ¥ — {0,1}™. The injection j and the induced
injections for W and W* as well as all of the partial inverses are computable by a Y.-register
machine by Lemma 4.20. But f = j7'o fo 4, so f is computable by a X-register machine.
Q.E.D.

Corollary 4.22 allows us to use the word computable without referring to the alphabet.
It also allows us to extend the alphabet with additional letters for the convenience of proofs
and show that a function f : W¥ — W is computable by a machine using these additional
letters: Corollary 4.22 tells us that these additional letters are not really needed since they
can be coded away appropriately.



