

Large Cardinals Lent Term 2024 Part III of the Mathematical Tripos University of Cambridge Prof. Dr. B. Löwe, I. Eleftheriadis

MODEL SOLUTIONS FOR EXAMPLE SHEET #3 Ioannis Eleftheriadis (ie257)

(33) Give concrete functions $f : \kappa \to \kappa$ such that $(f) = (\mathrm{id}) + 1$, $(f) = (\mathrm{id}) + \omega_1$, $(f) = (\mathrm{id}) \cdot 2$, $(f) = (\mathrm{id})^+$, and $(f) = (\mathrm{id})^{++}$. Fix $\xi < \kappa$ and consider the function $f(\alpha) := \xi$ if α is even and $f(\alpha) := \alpha$ if α is odd. What can we say about the relation between (id) and (f)?

[*Remark.* As usual, an ordinal α is even if it is of the form $\lambda + 2n$ where λ is a limit ordinal and n is a natural number.]

Solution. Let $f_1 : \kappa \to \kappa$ be given by $\alpha \mapsto \alpha + 1$. Clearly (f_1) is an ordinal, and furthermore $\{\alpha < \kappa : f(\alpha) = id(\alpha) + 1\} \in U$, so $(f_1) = (id) + j(1) = (id) + 1$. Similarly, taking $f_2 : \alpha \mapsto \alpha + \omega_1$ and $f_3 : \alpha \mapsto \alpha \cdot 2$ we may show that $(f_2) = (id) + \omega_1$ while $(f_3) = (id) \cdot 2$.

Now fix $\xi < \kappa$ and take $f : \kappa \to \kappa$ with $f(\alpha) := \xi$ if α is even and $f(\alpha) := \alpha$ if α is odd. Let $E := \{\alpha < \kappa : \alpha \text{ is even}\} \subseteq \kappa$, and $O := \kappa \setminus E$. By regularity of κ we can see that both E and O have size κ , so either one could be in U. If $E \in U$ then $(f) = j(\xi) = \xi < (\text{id})$, while if $O \in U$ then (f) = (id). In either case, $(f) \leq (\text{id})$.

(34) Prove that if $U \in M$, then there is a surjection from κ^{κ} onto $j(\kappa)$ in M. Deduce that $U \notin M$.

Proof. Recall that $j(\kappa) = \{(f)_U : f \in \kappa^\kappa\}$. Hence, the map $\Phi : \kappa^\kappa \to j(\kappa)$ given by $f \mapsto (f)$ is a surjection from κ^κ onto $j(\kappa)$. Now, suppose that $U \in M$. Then the relation $\sim_U \subseteq \kappa^\kappa \times \kappa^\kappa$ given by

$$f \sim_U g \iff \{\alpha < \kappa : f(\alpha) = g(\alpha)\} \in U$$

is in M by Separation. Hence, for every $f \in \kappa^{\kappa}$, $[f]_U \in M$ by Separation. In particular, $\{[f]_U : f \in \kappa^{\kappa}\} \in M$ by Replacement. Hence, the map $\Phi_1 : f \mapsto [f]_U$ is in M by Separation. Since the Mostowski collapsing function is absolute between transitive models of $\mathsf{ZF}^- - \mathsf{P}$, it follows that the map $\Phi_2 : [f]_U \mapsto (f)_U$ is also in M. Consequently, $\Phi = \Phi_2 \circ \Phi_1 \in M$, and so $M \models |j(\kappa)| \leq 2^{\kappa}$, contradicting that $M \models "j(\kappa)$ is a strong limit". \Box

(35) Prove that U is normal ultrafilter if and only if (id) = κ .

Suppose that U is normal, and let f be arbitrary such that $(f) \in (id)$, i.e. $S := \{\xi < \kappa : f(\xi) < \xi\} \in U$. In particular, S is U-stationary and $f : S \to \kappa$ is regressive. It follows by normality and (29) that there exists some $\alpha < \kappa$ such that $f^{-1}(\{\alpha\}) \in U$. Consequently, $(f) = j(\alpha)$. Since f was arbitrary, we obtain that $(id) \leq \kappa$, and so $(id) = \kappa$.

Conversely, assume that (id) = κ . Fix an arbitrary $X \in U$ and a regressive function $f : X \to \kappa$. It follows that $(f) < (id) = \kappa$, and so there is some $\alpha < \kappa$ such that $(f) = \alpha = j(\alpha)$. Consequently, $\{\xi < \kappa : f(\xi) = \alpha\} \in U$, i.e. $f^{-1}(\alpha) \in U$. Since X and f were arbitrary, (29) implies that U is normal as required.

(36) Presentation Example. Assume that $M \models \kappa$ is measurable" witnessed by an ultrafilter $(g) \in M$ and $(f) = \kappa$. Use this to prove directly (without using a reflection argument) that there are κ many measurable cardinals below κ .

[We discussed "alternative reflection theorems" in the lectures which were similar, but used a normal ultrafilter U which we do not assume here.]

Solution. Let $(g) \in M$ and $(f) = \kappa$ be such that $M \models "(g)$ is a non-principal (f)-complete ultrafilter on (f)". It follows by Los that

 $\{\alpha < \kappa : g(\alpha) \text{ is a non-principal } f(\alpha) \text{-complete ultrafilter on } f(\alpha)\} \in U.$

Fix some $\gamma < \kappa$. Since $\gamma = j(\gamma) < \kappa$ it follows that $\{\alpha < \kappa : \gamma < f(\alpha)\} \in U$. In particular, there is some $\alpha < \kappa$ with $f(\alpha) > \gamma$ and $g(\alpha)$ a $f(\alpha)$ -complete non-principal ultrafilter on $f(\alpha)$. Thus, $f(\alpha)$ is a measurable cardinal strictly between γ and κ . Since γ was arbitrary, this implies that the set of measurables below κ is unbounded in κ , and so by regularity, it must have size κ .

(37) Let U be a κ -complete nonprincipal ultrafilter on κ . Show that if $\{\alpha + 1; \alpha < \kappa\} \in U$, then U cannot be normal. Use this to show that if κ is measurable, then there are κ -complete nonprincipal ultrafilters on κ that are not normal.

[*Hint.* Use the fact that there is a bijection between $\{\alpha + 1; \alpha < \kappa\}$ and κ .]

Solution. Suppose that $S := \{\alpha + 1 : \alpha < \kappa\} \in U$. Then $A_{\alpha} := \{x < \kappa : \alpha + 1 < x\} \in U$, since its complement has size $< \kappa$ and U is κ -complete. Consider $\Delta_{\alpha < \kappa} A_{\alpha}$. It follows that this cannot contain any successor ordinals, as if $\beta + 1 \in \Delta_{\alpha < \kappa} A_{\alpha}$ then $\beta + 1 \in \bigcap_{\alpha < \beta + 1} A_{\alpha} = A_{\beta}$, contradiction. Thus, $\Delta_{\alpha < \kappa} A_{\alpha} \cap S = \emptyset$, and so $\Delta_{\alpha < \kappa} A_{\alpha} \notin U$, i.e. U is not normal.

So, assume that κ is measurable, and fix a bijection $f: \kappa \to S$ and a κ -complete non-principal ultrafilter U on κ . Let $g: \kappa \to \kappa$ be the composition of f with the inclusion map $S \hookrightarrow \kappa$. It follows by (23) that g_*U is a κ -complete ultrafilter on κ , which moreover is easily seen to be non-principal. Finally $S \in g_*U$ and so the fact above implies that g_*U is not normal.

(38) Assume that $\kappa < \lambda$ are ordinals and U is an ultrafilter on κ that is not ω_1 -complete. Prove that $\mathbf{V}_{\lambda}^{\kappa}/U$ is illfounded.

[*Remark.* In the lectures, we proved the converse. So, together, we have that U is ω_1 -complete if and only if the ultrapower is wellfounded.]

Solution. If U is not ω_1 -complete, then there are sets $\{X_n : n \in \omega\} \subseteq U$ such that $\bigcap_{n \in \omega} X_n \notin U$. For each $k \in \omega$ define, $g_k : S \to V$ by $g_k(i) = n - k$ if $i \in (\bigcap_{m < n} X_m) \setminus X_n$ and $n \ge k$, and otherwise $g_k(i) = 0$. It follows that

$$\{i \in S : g_{k+1}(i) \in g_k(i)\} \supseteq \bigcap_{m \le k} X_m \setminus \bigcap_{n \in \omega} X_n \in U$$

for every $k \in \omega$, and so $\langle (g_n) : n \in \omega \rangle$ confirms that $\mathbf{V}_{\lambda}^{\kappa}/U$ is illfounded.

(39) Assume that $\kappa < \lambda$ are ordinals, and U is a *principal ultrafilter* on κ . Form the ultrapower and its transitive Mostowski collapse M as in the case of nonprincipal ultrafilters and prove that $M = \mathbf{V}_{\lambda}$.

Solution. Suppose that U is principal, i.e. there is some $\alpha < \kappa$ such that $\{\alpha\} \in U$. We argue that the ultrapower embedding is surjective. Indeed, let $f : \kappa \to \mathbf{V}_{\lambda}$ be an arbitrary function, and let $s := f(\alpha)$. Then $\{\beta < \kappa : f(\beta) = s\} \supseteq \{\alpha\} \in U$, implying that $[f]_U = [\text{const}_s]$. Consequently, the ultrapower embedding is an isomorphism. Finally, the transitivity of \mathbf{V}_{λ} implies that it is equal to its Mostowski collapse, and thus $M = \mathbf{V}_{\lambda}$.

(40) Presentation Example. Suppose that κ is a measurable cardinal and U is a κ -complete ultrafilter on κ , and $\pi : \mathbf{V}_{\kappa} \to \text{Ult}(\mathbf{V}_{\kappa}, U)$ is the ultrapower embedding, i.e., $\pi(x) := [c_x]_U$. By Loś's Theorem, π is an elementary embedding. Show that $\{\pi(x); x \in \mathbf{V}_{\kappa}\}$ is isomorphic to \mathbf{V}_{κ} and transitive in $\text{Ult}(\mathbf{V}_{\kappa}, U)$, i.e., if $z \in \pi(x)$, then there is $y \in \mathbf{V}_{\kappa}$ such that $z = \pi(y)$.

Conclude that the order type of the ordinals of $\text{Ult}(\mathbf{V}_{\kappa}, U)$ is not equal to κ and that therefore $\text{Ult}(\mathbf{V}_{\kappa}, U)$ is not isomorphic to \mathbf{V}_{κ} .

 \dashv

(41) Prove that the Mitchell order on normal ultrafilters is a transitive relation, i.e., if U_0 , U_1 , and U_2 are normal ultrafilters, $U_0 < U_1$, and $U_1 < U_2$, then $U_0 < U_2$.

Solution. Let U_0, U_1, U_2 be κ -complete normal non-principal ultrafilters on κ , and assume that $U_0 < U_1$ and $U_1 < U_2$. We wish to show that $U_0 < U_2$. By the Mitchell lemma, this is equivalent to finding some $X \in U_2$ and $\{V_\alpha : \alpha \in X\}$ such that V_α is a normal α -complete non-principal ultrafilter on α , and for all $Z \subseteq \kappa$

$$Z \in U_0 \iff \{\alpha \in X : Z \cap \alpha \in V_\alpha\} \in U_2.$$

Our assumptions on U_1 and U_2 guarantee the existence of $X_1 \in U_1$, $\{U_{\alpha}^1 : \alpha \in X_1\}$, and $X_2 \in U_2$, $\{U_{\alpha}^2 : \alpha \in X_2\}$ satisfying the conditions of the Mitchell lemma. Letting $X := \{\beta \in X_2 : X_1 \cap \beta \in U_{\beta}^2\}$, we see that $X_1 \in U_1$ implies that $X'_2 \in U_2$. Moreover, define for each $\beta \in X$ the sets $V_{\beta} \subseteq \mathcal{P}(\beta)$ by

$$S \in V_{\beta} \iff \{\alpha \in X_1 \cap \beta : S \cap \alpha \in U^1_{\alpha}\} \in U^2_{\beta}$$

It is easy to see that each V_{β} is closed under supersets and intersections of size $<\beta$. Moreover,

$$S \notin V_{\beta} \implies \{ \alpha \in X_1 \cap \beta : S \cap \alpha \in U_{\alpha}^1 \} \notin U_{\beta}^2 \implies$$

$$\{\alpha \in X_1 \cap \beta : S \cap \alpha \notin U_{\alpha}^1\} \in U_{\beta}^2 \implies \{\alpha \in X_1 \cap \beta : (\beta \setminus S) \cap \alpha \in U_{\alpha}^1\} \in U_{\beta}^2 \implies \beta \setminus S \in V_{\beta}.$$

Hence, each V_{β} is a β -complete non-principal ultrafilter over β , which can moreover easily be verified to be normal by a similar argument. It follows that for all $Z \subseteq \kappa$:

$$Z \in U_0 \iff \{\alpha \in X_1 : Z \cap \alpha \in U_{\alpha}^1\} \in U_1 \iff \{\beta \in X_2 : \{\alpha \in X_1 : Z \cap \alpha \in U_{\alpha}^1\} \cap \beta \in U_{\beta}^2\} \in U_2$$
$$\iff \{\beta \in X : Z \cap \beta \in V_{\beta}\} \in U_2,$$

implying that $U_0 < U_2$ as required.

We define by recursion: κ is 0-measurable if it is measurable; κ is $\alpha + 1$ -measurable if it α -measurable and there are unboundedly many α -measurables below κ ; for a limit ordinal $\lambda \leq \kappa$, κ is λ -measurable if it is ξ -measurable for all $\xi < \lambda$.

(42) Prove that if κ is surviving, it is κ -measurable.

Solution. An easy induction argument reveals that if N is a transitive model of ZFC such that $\mathbf{V}_{\kappa+2} \subseteq N$ then " κ is α -measurable" is absolute between \mathbf{V} and N.

So, fix a surviving cardinal κ . We argue by induction that κ is α -measurable for all $\alpha < \kappa$, and hence it is κ -measurable. Clearly, κ is measurable so it is 0-measurable. The non-zero limit stages follow trivially by the induction step. Assume that κ is α -measurable. Then for all $\beta < \kappa$ we have

$$M \models \exists \gamma (\beta < \gamma < j(\kappa) \land \gamma \text{ is } \alpha \text{-measurable}).$$

By elementarity this implies that

$$\mathbf{V}_{\lambda} \models \exists \gamma (\beta < \gamma < \kappa \land \gamma \text{ is } \alpha \text{-measurable}).$$

This implies that $\gamma < \kappa$ is indeed α -measurable. Consequently, there are unboundedly many α -measurables below κ , i.e. κ is $\alpha + 1$ -measurable, as required.

(43) Prove that κ is strongly compact if and only if for every set S, if F is a κ -complete filter on S, there is a κ -complete ultrafilter U extending F.

[*Remark.* In the lectures, we proved the forward direction for $S = \kappa$. *Hint.* For the backward direction, use Example (31).]

 \dashv

Proof. We show the backward direction. Suppose that for any set I, if F if a κ -complete filter on I then there is a κ -complete ultrafilter U extending F. Let S be a set of non-logical symbols, L_S an $L_{\kappa\kappa}$ -language, and $\Phi \subseteq L_S \kappa$ -satisfiable. Let I be the collection of all subsets of Φ of size $< \kappa$. For every $i \in I$, fix some $M_i \models i$, and let $i^* = \{j \in I : i \subseteq j\}$. Define

$$F := \{ X \subseteq I : \exists \alpha < \kappa \text{ and } f : \alpha \to I \text{ such that } \bigcap_{\beta < \alpha} f(\beta)^* \subseteq X \}.$$

Clearly, F is closed under supersets and $< \kappa$ -many intersections. Moreover, for every $\alpha < \kappa$ and $f: \alpha \to I$ the set $\bigcap_{\beta < \alpha} f(\beta)^*$ contains $f[\alpha]$ and so it is non-empty. It follows that F is a κ -complete filter on I. By our assumption on κ , there exists a κ -complete ultrafilter U on I extending F. Let $M := \prod_{i \in I} M_i/U$ be the ultraproduct of the M_i over U. We argue that this is a model of Φ . Indeed, let $\phi \in \Phi$ and observe that

$$M \models \phi \iff \{i \in I : M_i \models \phi\} \in U.$$

by Los. The latter is a superset of $\{\phi\}^* = \{i \in I : \{\phi\} \subseteq i\}$ and therefore is in U by construction. It follows that $M \models \phi$ for all $\phi \in \Phi$ as required.

(44) Let λ be inaccessible and $S \in \mathbf{V}_{\lambda}$. Suppose that U is an ω_1 -complete ultrafilter over S, M the transitive Mostowski collapse of \mathbf{V}_{λ}^S/U , and j the ultrapower embedding. Show that for any cardinal μ , we have that M is closed under μ -sequences if and only if $\{j(\alpha); \alpha < \mu\} \in M$.

Solution. Let λ, S, U, M be as above. We first argue that if $j[X] \in M$ for some set X and $Y \subseteq M$ is such that $|Y| \leq |X|$ then $Y \in M$. Indeed, enumerate Y by the elements of X as $\{(f_x) : x \in X\}$. Let $h: S \to \mathcal{P}(X)$ be so that (h) = j[X]. Define $g: S \to \mathbf{V}_{\lambda}$ by letting g(i) be the function with domain h(i) such that $g(i)(x) = f_x(i)$. Then $(g)(j(x)) = (f_x)$ for every $x \in X$ and so $\operatorname{Im}((g)) = Y$ as required.

Now, if $j[\mu] \in M$, then letting $f : \mu \to M$ we observe that $f \subseteq M$ and $|f| \leq |\mu| = |j[\mu]|$. Consequently, $f \in M$, and since f was arbitrary we obtain that ${}^{\mu}M \subseteq M$. Conversely, if ${}^{\mu}M \subseteq M$ then $j|_{\mu} \in M$ and so $j[\mu] \in M$ by Separation.

For Examples (45) to (47), let λ be an inaccessible cardinal. If $j: \mathbf{V}_{\lambda} \to M$ is an elementary embedding with critical point κ and $\mu < \lambda$ is any cardinal, we say that j covers sets of size μ if for every $X \in [M]^{\mu}$, there is a $Y \in M$ such that $X \subseteq Y$ and $M \models |Y| < j(\kappa)$.

(45) Prove that if $\mu < j(\kappa)$ and M is closed under μ -sequences, then j covers sets of size μ .

Proof. Assume that $\mu < j(\kappa)$ and M is closed under μ -sequences. Let $X \in [M]^{\mu}$, and let $f : \mu \to M$ enumerate X. It follows that $f \in M$, and so by Separation $X = f[\mu] \in M$. Clearly, $X \subseteq X$ while $M \models |X| = \mu < j(\kappa)$.

(46) Prove that if $j: \mathbf{V}_{\lambda} \to M$ is an ultrapower embedding defined from a κ -complete nonprincipal ultrafilter on κ , then j does not cover sets of size κ^+ .

Proof. Consider $X := \{j(\alpha) : \alpha < \kappa^+\} \in [M]^{\kappa^+}$. Suppose that X is covered by some $Y \in M$. Then $M \models "Y \cap j(\kappa^+)$ is a cofinal set in $j(\kappa^+)$ of size $< j(\kappa)$ ", contradicting that $M \models "j(\kappa^+)$ is regular". So j does not cover sets of size κ^+ .

(47) Prove that if $\kappa < \lambda$ is strongly compact, then for each $\mu < \lambda$ there is an elementary embedding $j: \mathbf{V}_{\lambda} \to M$ that covers sets of size μ .

[*Hint.* Let $S := [\mu]^{<\kappa}$ and generate a κ -complete filter on S from the sets $A_{\gamma} := \{A \in S ; \gamma \in A\}$ (for $\gamma < \mu$). If $X \in [M]^{\mu}$, say, $X = \{(f_{\gamma}); \gamma < \mu\}$, let $f(A) := \{f_{\gamma}(A); \gamma \in A\}$ and let Y := (f).]

Solution. Let $S := [\mu]^{<\kappa}$, $A_{\gamma} := \{A \in S ; \gamma \in A\}$, and let

$$F := \{ A \subseteq S : \exists \alpha < \kappa \text{ and } f : \alpha \to \mu \text{ such that } \bigcap_{\beta < \alpha} A_{f(\beta)} \subseteq A \}.$$

This is evidently closed under supersets and $< \kappa$ intersections. Moreover, $f[\alpha] \in \bigcap_{\beta < \alpha} A_{f(\beta)}$, and so F is a κ -complete filter. It follows by strong compactness that F extends to a κ -complete ultrafilter U on S. Let M be the Mostowski collapse of the ultrapower $\prod_{A \in S} \mathbf{V}_{\lambda}/U$, and $j : \mathbf{V}_{\lambda} \to M$ the ultrapower embedding. We argue that this covers sets of size μ . Indeed, suppose that $X = \{(f_{\gamma}) : \gamma < \mu\} \in [M]^{\mu}$. Define $f : S \to \mathbf{V}_{\lambda}$ by $A \mapsto \{f_{\gamma}(A) : \gamma \in A\}$, and let Y := (f). Clearly, $Y \in M$ and for all $\gamma < \mu$, $\{A \subseteq S : f_{\gamma}(A) \in f(A)\} \supseteq A_{\gamma} \in U$, implying that $(f_{\gamma}) \in (f)$ by Los. Consequently, $X \subseteq Y$. Finally, $|f(A)| \leq |A| < \kappa$ for every $A \in S$, and so $M \models |Y| < j(\kappa)$ as required.