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Useful lemma: For every measure µ : P(S) → [0, 1], if T ⊆ {X ⊆ S : µ(X) > 0} is an uncountable family of
subsets of S of positive measure, then there are two distinct sets X,Y ∈ T such that µ(X ∩ Y ) > 0.

Proof. If T is uncountable then since T = ∪∞
n=1{X ∈ T : µ(X) > 1

n} it follows that there is some k ≥ 1 such
that {X ∈ T : µ(X) > 1

k} is uncountable. Consider an enumeration X0, X1, X2, . . . of these sets, and define
by recursion:

A0 = X0;An+1 = Xn+1 \ (
⋃

i∈n+1

Ai).

This is a family of pairwise disjoint subsets of X. Now, assuming that for all X,Y ∈ T the measure of X ∩Y
is 0, we easily obtain by induction that

µ(An) = µ(Xn)

by the additivity of µ. It follows that

µ(
⋃
n∈ω

An) =
∑
n∈ω

µ(An) =
∑
n∈ω

µ(Xn) > 1,

as µ is σ-additive and each Xn has measure > 1
k . This contradicts that µ maps into [0, 1], and therefore

there must exist X,Y ∈ T with µ(X ∩ Y ) > 0.

(17) Assume that there is an set with a Banach measure on it and let κ be the smallest cardinality of such
a set. Prove that every Banach measure on κ is κ-additive.

Solution. Let µ be a Banach measure over κ, and assume for a contradiction that it is not κ-additive.
It follows that there is some γ < κ, and {Xα : α < γ} ⊆ P(κ) pairwise disjoint sets such that

µ(
⋃
α<γ

Xα) ̸=
∑
α<γ

µ(Xα).

By σ-additivity it follows that γ > ω, while the useful lemma above implies that there are at most
countable many α < γ with µ(Xα) > 0. Removing these using σ-additivity, we may assume without
loss of generality that µ(Xα) = 0∀α < γ, but µ(∪α<γXα) = r > 0. We then define µ̄ : P(γ) → [0, 1] by

µ̄(Y ) =
µ(
⋃

α∈Y Xα)

r
.

An easy check reveals that this is a Banach measure over γ, contradicting the minimality of κ. ⊣

(18) If µ is a Banach measure on S, we say that A ⊆ S is an atom of µ if µ(A) > 0 and for each B ⊆ A,
either µ(B) = µ(A) or µ(B) = 0. We call µ atomless if it does not have any atoms. Prove that if µ is
atomless, then for each set A ⊆ S, there is some B ⊆ A such that µ(B) = 1

2 · µ(A).

Solution. Let µ be an atomless Banach measure on S. We first argue that for every > 0 and every
X ⊆ S with µ(X) > 0 there exists some Y ⊆ X such that 0 < µ(Y ) < ε. Towards this, it suffices to
construct an ⊆-descending sequence with 0 < µ(Xi) ≤ 1

2 · µ(Xi) for all i ∈ ω. Indeed, given Xi, since



µ is atomless there exist disjoint sets A,B ⊆ Xi such that A∪B = Xi and 0 < µ(A) ≤ µ(B) < µ(Xi).
We thus let Xi+1 := A and continue in this way.

Now, given A ⊆ X define a ⊆-descending sequence with Y0 = A, and given Xα, if µ(Xα) >
1
2µ(A)

then we use the claim above to find some Xα+1 ⊆ Xα such that

µ(Xα) > µ(Xα+1) ≥
1

2
µ(A).

Finally for limit ordinals λ we let Yλ = ∩α<λXα. If at any stage the sequence can no longer extended
then we have produce some Xα such that µ(Xα) =

1
2µ(A). Otherwise, the family {Xα\Xα+1 : α < ω1}

is uncountable. Hence, if µ(Xα \Xα+1) > 0 for all α then by the useful lemma above there exist β ̸= γ
such that

µ(Xβ \Xβ+1 ∩Xγ \Xγ+1) > 0,

contradiction. ⊣

(19) Assume that there is a κ-additive atomless Banach measure on κ. Prove that κ ≤ 2ℵ0 . Derive that if
there is a real-valued measurable cardinal κ with an atomless κ-additive measure on it, then there are
weakly inaccessible cardinals that are not inaccessible and CH is false.

Solution. For each finite sequence s ∈ <ωω we define Xs ⊆ κ recursively: we first let X∅ = κ, and
given Xs, we apply (18) recursively to construct sets Xsˆ⟨i⟩ for each i ∈ ω such that Xs = ∪i∈ωXsˆ⟨i⟩
is a disjoint union and µ(Xsˆ⟨i⟩) = 2−(i+1) · µ(Xs).

For each f ∈ ωω set Yf = ∩n∈ωX f |n ; in particular µ(Yf ) = 0. It follows that

S =
⋃

{Yf : f ∈ ωω},

and so µ cannot be (2ℵ0)+-additive. Hence ℵ0 < κ ≤ 2ℵ0 as required.

Now, since real-valued measurable cardinals are weakly inaccessible, the above implies that κ is weakly
inaccessible but not strong limit; hence it is not strongly inaccessible. We now distinguish two cases.
If κ = 2ℵ0 then since it is a limit, we obtain some ℵ0 < λ < 2ℵ0 and hence CH fails. On the other hand
if κ < 2ℵ0 then ℵ0 < κ < 2ℵ0 and CH fails once again. ⊣

(20) Show that if µ is a Banach measure on S that has an atom, then there is a two-valued Banach measure
on S.

Solution. Consider an atom A ⊆ S, and let m : P(S) → {0, 1} be given by

m(X) =
µ(X ∩A)
µ(A)

.

An easy check reveals that this is non-trivial, σ-additive, and two-valued as required. ⊣

(21) Let U be an ultrafilter on κ. Show that U is λ-complete if and only if for each γ < λ and
{Aα ; α < γ} ⊆ U , we have that

⋂
α<γ Aα ̸= ∅.

Solution. Clearly, if U is λ-complete then for all γ < λ and {Aα : α < γ} ⊆ U it holds that
⋂
Aα ∈ U ,

and hence
⋂
Aα ̸= ∅. Conversely, suppose that U is not λ-complete. Then there is some γ < λ and

a family {Aα : α < γ} ⊆ U such that A :=
⋂
Aα /∈ U . Consequently, κ \ A ∈ U . It follows that the

family {Aα : α < γ} ∪ {κ \A} contains elements of U , and
⋂
Aα ∩ κ \A = ∅ as required. ⊣

(22) Using the Axiom of Choice, show that every filter can be extended to an ultrafilter

Solution. Let F be a non-principal filter on a set X. Consider S = {U ⊆ P(X) : U is a non-principal
filter and F ⊆ U}, which is a set by separation. Let P = (Xi)i∈I be a chain (w.r.t inclusion) in
S, and consider

⋃
P . This is still a filter on X. Indeed X ∈

⋃
P , while if ∅ ∈

⋃
P then ∅ ∈ Xi
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for some i, contradiction. It is clearly upwards closed, while if A,B ∈
⋃
P then we may find some

i such that A,B ∈ Xi and so A ∩ B ∈ Xi ⊆
⋃
P . Since {a} ∈

⋃
P implies {a} ∈ Xi for some i,

this is a non-principal filter extending F so
⋃
P ∈ S. By Zorn’s lemma, S therefore has a maximal

element U . This is an ultrafilter: Suppose that A ⊆ X is such that A ̸∈ U and X \ A /∈ U , and
take some Y ∈ U . If Y ∩ A = ∅, then Y ⊆ X \ A so X \ A ∈ U , contradiction. So the set
{Z ⊆ X : Z ⊇ Y ∩ A or Z ⊇ Y, Y ∈ U} is an ultrafilter extending U , contradicting its maximality.
Note that U ∈ S so by definition it is non-principal. ⊣

(23) If C is a set of subsets of Z, we say that D is the collection generated by C if D is minimal such that
C ⊆ D ⊆ ℘(Z) and D is closed under finite intersections and supersets.

Let X and Y be sets, f : X → Y a function, F a filter on X and G a filter on Y . Let f∗F be the
collection generated by {f [A] ; A ∈ F} (called the pushout of F ) and f∗G be the collection generated
by {f−1[B] ; B ∈ G} (called the pullback of G).

(a) Under which conditions on f are f∗F or f∗G filters?

(b) Under which conditions on f are {f [A] ; A ∈ F} or {f−1[B] ; B ∈ G} filters?

(c) If F or G are ultrafilters, are f∗F or f∗G?

(d) If F or G are κ-complete, are f∗F or f∗G?

(e) If F or G are nonprincipal, are f∗F or f∗G?

Solution. Firstly, note that since f [A ∩B] ⊆ f [A] ∩ f [B], it follows that f∗F = {S ⊆ Y ; f [A] ⊆ S,A ∈
F} = {S ⊆ Y ; f−1[S] ∈ F}. Moreover, since f−1[A∩B] = f−1[A]∩f−1[B], f∗G = {S ⊆ X : f−1[B] ⊆
S,B ∈ G}. Provided that f is surjective, this implies that f∗G ⊆ {S ⊆ X : f [S] ∈ G}. So:

(a) f∗F is always a filter. Clearly ∅ /∈ f∗F , while it is trivially closed under finite intersections and
supersets. f∗G is a filter provided that f is surjective. Indeed, in that case f∗G does not contain
the empty set, and hence it is a filter.

(b) {f [A] ; A ∈ F} is a filter provided that f is surjective. Indeed, in that case it is closed under
supersets, while f [A ∩ B] ⊆ f [A] ∩ f [B] implies that it is closed under finite unions. Clearly
∅ ̸= f [A] for any A ∈ U , so this is a filter. On the other hand, surjectivity does not suffice to
ensure that {f−1[B] ; B ∈ G} is a filter. For instance, take f : ω → ω given by 0 7→ 0, n+ 1 7→ n,
and let G be a principal ultrafilter on ω focusing on 1. Then {f−1[B] ; B ∈ G} is not closed under
supersets, as {2} = f−1[{1}] but {1, 2} ̸= f−1[S] for any S ∈ G. However, if f is bijective then
f∗G is clearly a filter.

(c) Assuming that F is an ultrafilter, then so is f∗F . Indeed, S /∈ f∗F implies that f−1[S] /∈ F , and
so X \ f−1[S] ∈ F . But then f [X \ f−1[S]] ⊆ Y \ S ∈ f∗F , and so Y \ S ∈ f∗F .

(d) If F is κ-complete, then so is f∗F since f−1[
⋂
Ai] =

⋂
f−1[Ai]. Likewise, if G is κ-complete and

f is surjective then f∗G is κ-complete.

(e) Even if F is non-principal, f∗F can still be principal, e.g. if f is constant. On the other hand f∗G
is non-principal if G is also non-principal and f is surjective. Indeed, in this case |f−1[X]| ≥ |X|
and so if f∗G contains a singleton then so must G.

⊣

(24) Presentation Example. A cardinal κ is called an Ulam cardinal if there is an ℵ1-complete non-principal
ultrafilter on κ. Show that the smallest Ulam cardinal is a measurable cardinal.

Solution. Let κ be the least Ulam cardinal, and let U be an ℵ1-complete non-principal ultrafilter on κ.
Suppose that U is not κ-complete. We may therefore find a partition {Xα : α < γ} of κ with γ < κ,
such that Xα ̸∈ U for all α < γ. Define a surjection f : κ→ γ by f(x) = α if and only if x ∈ Xα. This
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induces the pushout filter f∗U on γ given by Z ∈ F if and only if f−1(Z) ∈ U . This is an ℵ1-complete
ultrafilter by Question 20, while it is also non-principal. Indeed, if {α} ∈ F for some α < γ then
f−1(α) = Xα ∈ U , contradiction. Hence γ < κ is Ulam, contradicting minimality. It follows that U is
κ-complete, and so κ is measurable. ⊣

(25) Show that the Erdős arrow notation is stable under increasing numbers on the left hand side of the
arrow and decreasing numbers on the right hand side of the arrow. I.e., if κ → (λ)mµ and κ′ ≥ κ,

λ′ ≤ λ, µ′ ≤ µ, and m′ ≤ m, then κ′ → (λ′)m
′

µ′ .

Solution. Suppose that κ → (λ)mµ and let κ′ ≥ κ, λ′ ≤ λ, µ′ ≤ µ, and m′ ≤ m. Let χ : [κ′]m
′ → µ′ be

a µ′-colouring of the subsets of κ′ of size m′. Define ξ : [κ]m → µ by mapping a subset {a1, . . . , am} of
κ with ai < aj for i < j to χ({a1, . . . , am′}). It follows that there is a set X ⊆ κ of size λ such that ξ is

constant on [X]m. Letting X ′ be any subset of X of size λ′, this implies that χ is constant on [X ′]m
′
.

Since χ was arbitrary, this shows that κ′ → (λ′)m
′

µ′ . ⊣

(26) Let κ be regular and λ < κ. Let 2λ := {f ; f : λ → {0, 1}} be ordered lexicographically by f <lex g
if f(α) = 0 and g(α) = 1 if α is the least ordinal where f and g differ. Show that (2λ, <lex) has no
strictly increasing or decreasing sequences of length κ.

Solution. Assume for a contradiction that there is a set {fα : α < κ} ⊆ 2λ of size κ such that fi <lex fj
for i < j. Let γ ≤ λ be least such that {fα ↾γ : α < κ} has size κ, and reorder appropriately so that
fi ↾γ<lex fj ↾γ for all i < j from κ. Define g : κ → γ by mapping α to the least ordinal ξα < γ
such that fα ↾ξα= fα+1 ↾ξα , and fα(ξα) = 0, fα+1(ξα) = 1. By regularity of κ, it follows that there
is a set X ⊆ κ of size κ such that f is constant on X; κ is the union of the pre-images of singletons,
and as there are γ many such pre-images one must have size κ by regularity. Let c < γ be such that
g(x) = c for all x ∈ X. We argue that the set {fα ↾c: α < κ} contains pairwise distinct elements.
Indeed, if α < β are in X then fα ↾c= fβ ↾c implies that fα(x) = fα+1(x) = fβ(x) for x < c, and
fα(c) = fβ(c) = 0, fα+1(c) = 1. Hence fα+1 >lex fβ ; contradiction.

A similar argument implies that there are no decreasing sequences of length κ in 2λ. ⊣

(27) Let U be a ultrafilter on κ such that all elements of U have cardinality κ. Show that if U is normal,
then U is κ-complete.

Solution. Let λ < κ and consider a family {Ai : i < λ} ⊆ U . Let A :=
⋂

i<λAi. Define the map
f : κ→ κ by

f(α) =

{
γ, if α /∈ A and γ < λ is the least such that α /∈ Aγ ;

λ, if α ∈ A.

Since f(α) ≤ λ, it follows that {α < κ : f(α) ≥ α} has size at most λ, and therefore is not in U by
our assumption. Hence, X = {α < κ : f(α) < α} ∈ U . It follows by normality and Question 29 that
there is some γ < κ such that {α : f(α) = γ} ∈ U . If γ < λ, then {α < κ : f(α) = γ} ∩ Aγ = ∅ ∈ U ,
contradiction. Hence γ = λ, and so A = {α < κ : f(α) = λ} ∈ U . ⊣

(28) Let κ be regular and uncountable. A set A ⊆ κ is closed if for each limit ordinal λ < κ, if A ∩ λ is
unbounded in λ, then λ ∈ A. A set C is called a club set (for “closed unbounded”) if it is closed and
unbounded. Define

C := {A ⊆ κ ; there is a club set C ⊆ A}.

Show that C is a κ-complete and normal filter on κ.

Solution. We first argue that for all µ < κ and {Ci : i < µ} such that Ci are club sets in κ, C :=
⋂

i<µ Ci

is a club set in κ. Closure follows trivially; if λ < κ is a limit ordinal such that sup(C ∩ λ) = λ, then
sup(Ci ∩ λ) = λ for all i < µ, and so λ ∈ Ci. Hence λ ∈ C. We argue that C is unbounded in
κ. Fix some β0 < κ. We define a sequence β0 < β1 < . . . by induction. Having defined βn, let
βi
n+1 ∈ Ci be an ordinal > βn, which exists by the unboundedness of Ci. We let βn+1 = supi∈µ β

i
n+1.
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By regularity of κ, it follows that βn+1 < κ. Finally, consider β = supn∈ω βn. Since κ is regular
and uncountable, it follows that β < κ. Moreover, βn < βi

n+1 < βn+1 for all n ∈ ω and i < µ, and
so β = supn∈ω βn = supn∈ω β

i
n ∈ Ci by closedness of Ci. Hence, β ∈ C. Since β0 < β and β0 was

arbitrary, this implies that C is unbounded in κ.

We additionally argue that if {Ci : i < κ} are club sets in κ, then so is C := △i<κCi. Without loss of
generality we may assume that Ci ⊇ Cj for i < j; indeed, since the intersection of fewer than κ club
sets is a club set we may consider the sets C ′

i =
⋂

j≤i Ci, which satisfy △i<κC
′
i = △i<κCi. So, we first

argue that C is closed. Let λ < κ and suppose that sup(C ∩ λ) = λ. Fix i < λ, and let β < λ satisfy
i < β. It follows that there is γ > β such that γ ∈ C ∩ λ. Since i < γ and γ ∈ C, this implies that
γ ∈ Ci. As β was arbitrary, this implies that sup(Ci ∩ λ) = λ. By closedness of Ci, we obtain that
λ ∈ Ci for all i < λ. Hence, λ ∈ C by definition, implying that C is closed. Moreover, if α < κ then
using the fact that each Ci is unbounded we may recursively construct a sequence (βn)n∈ω by picking
some β0 > α from C0, and βn+1 > βn from Cβn

. Letting β = supn∈ω βn, observe that β ∈ Cβn
for all

n ∈ ω. Indeed, the sets (Ci)i<κ form a decreasing chain and each Ci is closed. So, if i < β then i < βn
for some n ∈ ω, and so β ∈ Cβn ⊆ Ci. It follows that β ∈ Ci for all i < β, implying that β ∈ C. Since
α < β was arbitrary, this implies that C is unbounded.

Finally, it is clear that C is closed under supersets, while no club set is empty, and so ∅ /∈ C. Together
with the above two arguments, this implies that C is a κ-complete normal filter on κ. ⊣

(29) Let F be a filter on a cardinal κ. Say that for X ⊆ κ, a function f : X → κ is called regressive if
f(α) < α for all 0 ̸= α ∈ X. A set S is called F -stationary if for all X ∈ F , we have that X ∩ S ̸= ∅.
Prove that the following statements are equivalent for a filter F .

(i) The filter F is closed under diagonal intersections.

(ii) For any F -stationary set S and any regressive f : S → κ, there is an α < κ such that f−1({α})
is F -stationary.

Solution. Firstly, observe that a set S ⊆ κ is F -stationary if and only if κ\S /∈ F . Clearly, if κ\S ∈ F
then S cannot be stationary, while if S is not stationary then S∩X = ∅ for some X ∈ F . Consequently,
X ⊆ κ \ S, and so κ \ S ∈ F .

We first argue that (i) =⇒ (ii). Let S be an F -stationary set and f : S → κ a regressive map
such that for all α < κ f−1({α}) is not F -stationary. Then Aα := κ \ f−1({α}) ∈ F , and therefore
△α<κAα = {β ∈ S : f(β) ≥ β} = ∅. It follows that F is not closed under diagonal intersections.

Conversely, let {Aα : α < κ} ⊆ F be such that △α<κAα /∈ F . Hence A := κ\△α<κAα is F -stationary.
Define f : A → κ by mapping β to the least α such that β /∈ Aα. Clearly, f is regressive. However,
f−1({α}) ∩Aα = ∅ for all α < κ, and so f−1({α}) is not F -stationary for any α < κ. ⊣

(30) Assume that κ is measurable with a κ-complete nonprincipal ultrafilter U on κ. Use the notation of
(29) and let W := {f : κ → κ ; Xf

α /∈ U for all α < κ}. Show that there is an h ∈ W such that for all
f ∈ W we have that {α ; h(α) ≤ f(α)} ∈ U . Using the notation of (23), show that h∗U is a normal
κ-complete nonprincipal ultrafilter on κ.

Proof. Suppose for a contradiction that for all h ∈W there is some h′ ∈W such that

{α < κ : h(α) ≤ h′(α)} /∈ U.

Since U is an ultrafilter this implies that

{α : h′(α) < h(α)} ∈ U.

So, picking some arbitrary h0 ∈ W and letting hn+1 = h′n for all n ∈ ω, the κ-additivity of U implies
that ⋂

n∈ω

{α < κ : hn+1(α) < hn(α)} ∈ U
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and so in particular it is non-empty. Hence, if α is in this intersection we obtain that h0(α) > h1(α) >
h2(α) > . . . is an infinitely decreasing chain in κ, contradicting its well-orderness.

We know by (23) that h∗U is a κ-complete ultrafilter on κ. Moreover, it is non-principal, as if {α} ∈ h∗U
for some α < κ then h−1(α) = Xh

α ∈ U , contradicting that h ∈ W . We argue that h∗U is normal. If
not, then by (29) there is some h∗U -stationary set S ⊆ κ and a regressive function f : S → κ such that
for all α < κ the set Xf

α is not h∗U -stationary. Since h∗U is an ultrafilter this implies that Xf
α /∈ h∗U ,

and hence Xf◦h
α /∈ U . Since this holds for all α < κ, we obtain that f ◦ h ∈ W . The choice of h thus

implies that
{α < κ : h(α) ≤ f ◦ h(α)} ∈ U, and so

{γ < κ : γ ≤ f(γ)} ∈ h∗U}.

However, since f is regressive on S we obtain that

S ∩ {γ < κ : γ ≤ f(γ)} = ∅,

contradicting that S is h∗U -stationary.

(31) Presentation Example. Assume that κ is measurable with a κ-complete nonprincipal ultrafilter U on κ.
Formulate and prove Loś’s Theorem for Lκκ-languages for the ultrapowers by U .

Solution. Loś’s Theorem for Lκκ-languages: Suppose that U is a κ-complete ultrafilter over κ, Mα an
LS-structure for all α < κ, and M :=

∏
α<κMα/U the ultraproduct of the Mα over U . Then for every

formula ϕ ∈ LS we have
M |= ϕ([f̄ ]) ⇐⇒ {α :Mα |= ϕ(f̄(α))} ∈ U.

We show this by induction on the structure of Lκκ-formulas. For atomic formulas this follows by the
standard version of Loś’s Theorem, while propositional connectives work as in the classical case too.
So, suppose that ϕ :=

∧
ξ<λ ϕξ. It follows that

M |= ϕ([f̄ ]) ⇐⇒ ∀ξ < λ M |= ϕξ([f̄ ]) ⇐⇒ ∀ξ < λ Xξ := {α < κ :Mα |= ϕξ(f̄(α))} ∈ U,

where the last bi-implication follows by the induction hypothesis. Moreover, the κ-completeness and
upwards closure of U implies that the last condition is equivalent to

{α < κ : ∀ξ < λ Mα |= ϕξ(f̄(α))} ∈ U ⇐⇒ {α < κ :Mα |=
∧
ξ<λ

ϕξ(f̄(α))} ∈ U,

as required. The case ϕ(x̄) := ∃λȳψ(x̄, ȳ) follows similarly. ⊣

(32) Let S be a set of symbols for an Lκκ language LS . Show that if |S| ≤ κ, then |LS | = κ. Use this and
(31) to give a alternative proof of the fact that every measurable cardinal is weakly compact.

[Hint. Use the characterisation—not proved in the course—of weak compactness via compactness of
Lκκ-languages.]

Proof. For the first part, we argue by induction on the structure of Lκκ-formulas. At the base case,
we start with ≤ κ many atoms, while closing under

∧
α<λ ϕα gives

κ<κ =
⋃
λ<κ

κλ = κ

many formulas, by the fact that κ is regular and a strong limit. For the same reasons, closure under
∃λx̄ϕ gives κ many formulas, and so |LS | = κ.
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So, let Φ be a set of Lκκ-formulas, and suppose that every subset of it of size < κ has a model. Since
|LS | = κ, we can enumerate Φ as {ϕα : α < κ}. For λ < κ we may thus let

Φλ = {ϕα : α < λ},

and observe that since |Φλ| = λ, this has a model Mλ. Let M =
∏

λ<κMλ/U be the ultraproduct of
the Mλ over a κ-complete non-principal ultrafilter over κ, we obtain that for all α < κ

{λ < κ : λ > α} ∈ U

and so
{λ < κ :Mλ |= ϕα} ∈ U.

Consequently, Loś’s Theorem for Lκκ-languages implies that M is a model for Φ.
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