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(1) Show for any cardinal » that there is a definable surjection from P(x) to kT, i.e., a formula ®(z,y)
such that F(A) = a: < ®(A4,a) defines a surjective function for A C k and «a < k™.

[Hint. Consider the proof of Hartogs’s Lemma; you may use that there is a bijection between x and
k X k for infinite k.|

Solution. Consider the formula

O(z,y) =y € Ord A 3R C (R well-orders y) A Vz € Ord(R well-orders z — z C y)

It follows that for every cardinal xk and A C k X k there is a unique ordinal « such that ®(A, «); since A
is a well-ordering of « it follows that o € k*. In particular, ® defines a function from P(x X k) — k™.
It is easy to verify that this is a surjection: for any o < x* there is a bijection f : K — «, and so the
relation A := {(z,y) € kK X k: f(z) < f(y)} is a well-order of k such that ®(A,«a) is true. Finally,
composing ® with the definable bijection from k X k — K gives a definable surjection from ®(x) to k™.
_|

(2) Let A and p be limit ordinals and f : 4 — A be a function. The function f is called cofinal in X\ if
ran(f) is a cofinal subset of A\. Show that

cf(\) = min{y, ; there is a cofinal function with domain p}

= min{p; there is a strictly increasing cofinal function with domain p}.

Conclude that cf(cf(\)) = cf(N).

Solution. For the first equality, note that if C' C X is cofinal, then the map f : |C| — X given by the
composition of a bijection between C and |C| and inclusion is cofinal. Conversely, if there is a < cf()\)
with f : @ — A cofinal, then f[a] C A is cofinal and |f[a]| < |a|] < cf()N), contradiction.

The second equality follows from the fact that given f : cf(\) — X cofinal, there is some g : cf(\) — A
strictly increasing and cofinal. Indeed, define g : cf(\) — A by B+ sups;_5(f(0) + 3). This is clearly
strictly increasing and also maps into A: if A = g(B) for some 3 < cf(A) then A = J;_5(f(3) + B),
contradicting that 8 < cf(\). Finally, it is easy to see that g is cofinal: if & < A then 38 < cf(\) such
that ¢ < f(B) < g(B+1) < A

Clearly, cf(cf(a)) < cf(«). For the other direction, pick f : cf(cf(a)) — cf() and g : cf(a) — « strictly
increasing and cofinal. Their composition is a strictly increasing and cofinal map cf(cf(a)) — «, and
so cf(a) < cf(cf(a)) by the above. o

(3) Presentation Example. Let x be regular, n be any ordinal and f : k — 7 a strictly increasing function.
Define A := [Jran(f). Show that cf(A\) = k. Conclude that c¢f(Ry) = cf(A) and cf(3y) = cf(N).

Solution. Fix some cofinal map ¢ : ¢f(A\) — A. Consider the map h : ¢f(A) — & given by mapping
a < cf(N) to the least 8 < & such that g(a) < f(8). This is well-defined and cofinal. Indeed, if
v < K, then find some o < cf(\) with g(a) > f(7y). Since f is strictly increasing, the least 8 with
f(y) < gla) < f(B) must be strictly greater than v, so h(a) > . It follows that cf(A) = & by regularity
of k.



Finally, we show that cf(X,) = cf()A). Take a strictly increasing cofinal map cf(A) — A and compose
it with a — N,. Then we have a strictly increasing cofinal map f : cf(A) — Ny, and Ry = [Jran(f).
Since cf(A) is regular, we use the argument from the previous part to deduce that cf(Ry) = cf(A).
Applying the same argument to the map « — 3, it follows that cf(3y) = cf(A). =

Prove that every successor cardinal is regular. Note that the proof uses some fragment of the Axiom
of Choice.

Solution. Fix a cardinal x and a map f : k — k7. Observe that

|sup f(a)| < & X kK = &,
a<k

by a standard cardinal arithmetic argument (which uses the Axiom of Choice). It follows that f cannot
be cofinal, and since this holds for any such f, cf(x™) > k. Since the cofinality is a cardinal, this implies
that cf (k) = kT, i.e. KT is regular. =

A class function F' : Ord — Ord is called a normal ordinal operation if for all « < §, we have
F(a) < F(B), and for all limit ordinals \, we have F'(A) = |J, ., F'(c). Prove that every normal ordinal
operation has arbitrarily large fixed points, i.e., for each «, there is a v > « such that F'(y) = .

Solution. Fix an ordinal « and define by recursion on w:
R(0) :==a+1;

R(n+1):= F(R(n)).

Using Replacement, let v = [, ¢, R(n). We argue that v is a fixed point of I above a. First, starting
with a < R(0) and using that F' is strictly increasing, we obtain by an easy induction argument that
v > a. We now distinguish two cases. If there is some n € w such that R(n) is a fixed point of F', then
by definition v = R(n) and so F(v) = v. On the other hand, if no R(n) is a fixed point of F' then the
sequence (R(n))new is strictly increasing, and so v is a limit ordinal. It therefore follows by continuity
of F and the fact that (R(n))ney is cofinal in v that:

F(y)=J Fla) = |J FRM) = |J Rn+1) =7,

a<ly new new

as required. =

We call the axiom system that contains all axioms of ZFC except for the Axiom of Infinity FST (for
“Finite Set Theory”). Consider the property I(a) defined by “« is a limit ordinal and « # 0”. Show
that the property I is a large cardinal property for FST in the following sense:

If FST is consistent, then FST does not prove the existence of a cardinal with property I.

Solution. Suppose that FST F Jal(«). Since FST + Jal(«) F Infinity, we know by modus ponens that
FST F Infinity, and hence FST F ZFC. However, V, is a model of FST that is not a model of full ZFC.
Indeed, all but the Replacement scheme can be easily verified. For this, observe that if F': V,, — V,,
is a function and = € V,,, then for all y € z, rank(F(y)) < w. Then C := {rank(F(y)) :y € 2} Cw is
a finite set, so rank(F[z]) < supC + 1 < w. Therefore F[z] € V. =

Let x be a regular cardinal. If x is any set, we write tcl(z) for the transitive closure of x. Define
H, := {z; |tcl(z)| < x}. Why is this a set? Which axioms of ZFC hold in Hy,? Show that for any k,
H,+ cannot be a model of ZFC.

Solution. We first show that H, C V, for all infinite ordinals x, and hence H, is a set. We adapt
the proof from Kenneth Kunen’s Set Theory, p. 131. Let € H,,. We shall argue that rank(z) < k.
Indeed, let ¢ = tcl(z) and S = {rank(y) : y € t} C Ord. Let o be the first ordinal not in S.
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By definition, this implies that o € S. If a # S, let 8 be the least element of S larger than «,
and fix some y € z with rank(y) = 8. By transitivity of ¢, rank(z) < « for all z € y, and so
rank(y) = J{rank(z) + 1 : z € y} < «, contradiction. So S = a. Therefore |t| < K = «a < K, and so
rank(z) < a < k.

We now argue that when « is regular,  C H,; and |z| < &, then x € H,. Indeed, tcl(z) = z U {tcl(y) :
y € x}, and so tcl(z) is the union of < & sets of cardinality < x. By regularity, [tcl(z)| < & so z € H.

With this, we show that H, = ZFC — Powerset for all regular x > w. It is easy to verify Extensionality,
Foundation, Union, Pairing, and Comprehension. By the observation above, we also have that H,
satisfies (second order) Replacement. Since w € Hy, we also obtain Infinity. Finally, H, = VAIR(R
well orders A). Indeed, being a well-order is absolute for transitive models of ZF — Powerset (see
Chapter IV, Theorem 5.4 in Kunen), and so for any A € H, there is some R C A x A which is a
well-order on A. By the argument above, R € H, gives the required well-order in H,,. Finally, note
that if # is not a strong limit then H, [~ Powerset. Indeed, if there is A < & such that 2* > & then
P(NH= = P()\) ¢ H,, since |P()\)]| = 2*. =

Show that V, = H, if and only if « is inaccessible.

Solution. Assuming that k is inaccessible, we have that © € V, = 1z € V, for some a < k. By

transitivity, tcl(z) C V,, and therefore [tcl(z)] < |V,| = @ < & since k is inaccessible. Therefore
x € H,. Conversely, suppose that V,, = H,. Then if o < x, P(«) € V,, since & is a limit ordinal, and
therefore 2% < |tcl(P(w))| < k. So & is a strong limit, and therefore inaccessible. =

Suppose M C V is countable and transitive. Show that the formula describing “z is a cardinal” is
not absolute for M and V.

Solution. We know that ZFC + 3k(k € Card Ak > w). Taking M to be a countable transitive submodel
of V, it follows that there is some k € M such that M | k € Card A kK > w. Since M is transitive it
follows that & is a countable ordinal above w, and so in particular there is (in V) a bijection to w, i.e.
K is not a real cardinal. -

Show that every worldly cardinal is an aleph fixed point.

Solution. Let k be worldly. We first argue that ¢(z,y) = “x,y € Ord Ay is the least such that there is
no surjection x — y” is absolute between V,, and V. Firstly, since this statement is II; it is downwards
absolute. So, consider a < 8 € Ord NV, such that ¢(«, B) is false. Then, either there is some v <
such that there is no surjection from a — -y or there is a surjection a — B. Clearly, since v € OrdN'V
the former cannot possibly be true. On the other hand if f : o« — /3 is any map, then f C axf € Vgya,
and so f € Vgi4. It follows that f € V,; and since being a surjection is absolute between transitive
models, V. = =é(«, B). From this we deduce that for all cardinals u < r, (u*)Vr = ™.

Hence, we argue that for all A € V., (R))V* = Ry. Proceed by induction. Since V,, = ZFC, (w)Vr = w,
and so (Rg)V» = Ng. Assume that (R,)V* = R,. Then (No41)Vr = (RE)V+ =R, 1. Finally the limit
case follows from absoluteness of unions.

So, assume for a contradiction that x is not an aleph fixed point. In particular, this implies that x = Xy
for some cardinal A < k. By the above claim, (NA)VN =Ny € V., and so k € V; contradiction. =

If T is any theory, we write T* := T + Cons(T'). Define by recursion

ZFC(0) := ZFC and
ZFC(n +1) := (ZFC™)*.

We write WorC for “there is a worldly cardinal”. Show that WorC implies ZFC™ for all n € w.

Solution. Assume WorC and let k be a worldly cardinal. Clearly V = ZFC, and since x is worldly,
V. = ZFC. So, assume that V = ZFC(n) and V, | ZFC(n). It follows that V = “V | ZFC(n)”
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and so V | Cons(ZFC(n)), implying that V |= ZFC(n 4+ 1). Moreover since arithmetic statement are
absolute between transitive models we obtain that V, = Cons(ZFC(n)), and so V,, = ZFC(n + 1).
Proceeding by induction, we get that V = ZFC(n) for all n € w. -

Let 8 be any ordinal and R C V. An ordinal @ < § is called an R-Lévy ordinal for § if (Vq, €, RNV,)
is an elementary substructure of (Vg, €, R). Show that no « can be an R-Lévy ordinal for all R C V.

Solution. Take R =V, and suppose that (V,, €, V,) < (Vg, €, Vy). Since Vg = Jz(—R(z)), then
so does V. But this is a contradiction. -

Presentation Example. Show the following theorem due to Lévy: an ordinal k is an inaccessible cardinal
if and only if for each R C 'V there is an R-Lévy ordinal for .

Solution. Suppose that k is inaccessible, and let R C V. Define by recursion on w: ag = 0, a1 =
the least 5 > a,, such that whenever y1,...,yx € V,, and (Vi, €, R) E Jx¢(z,y1,...,yx) for some
formula ¢, there is an zy € Vg such that (V,€,R) = é(xo,y1,.--,Yx). Since k is inaccessible,
|Va,,| < k and so ay41 < k. Finally take @ = |J,, o,. Using Tarski-Vaught, we may easily verify
that (Va, €, RN V,) < (Vi, €, R). Note that by starting with any arbitrary ag = A < k, the above
argument shows that {a: (V,,€, RNV,) < (Vi, €, R)} is in fact unbounded in .

For the converse, notice first that x must necessarily be infinite. If x is not regular, then there is 5 < k
and f: 8 — k cofinal. Let R = {f} U f and find o < & such that (V,,€,RNV,) < (Vi, €, R). Since
[ is the only ordinal in R, we see that § € V, by elementarity. But then there is some v < g in V,
with o < f(y) < k and f(y) € V,, contradiction.

Also, if x is not a strong limit then we can find 8 < k with 2 > k. Find a surjection g : P(8) — &
and take R = { + 1} U g. By assumption, there is @ < k such that (V,,€,RNV,) < (V., €, R).
Since 8+ 1 € V,, it follows that P(8) € V, and so again we can find some x € P(3) such that
g(x) = o € V, contradiction. o

Let 2IC be the statement “there are A < s such that both A\ and k are inaccessible”. Show that if
ZFC + IC is consistent, then IC does not imply 2IC.

Solution. Assume for a contradiction that V' |= ZFC +1C and ZFC 4 IC | 2IC. Tt follows that V' |= 2IC,
so consider the first two inaccessibles A < k. It follows that V,, |= IC by downwards absoluteness of
inaccessibility. By our assumption this implies that V, = 2IC, and so there are A\; < Ay < Kk such
that V = “\; is inaccessible”. Since k is inaccessible itself, this implies that A; and Ag are indeed
inaccessible, contradicting that there is only one inaccessible below k. a

Prove that under appropriate consistency assumptions, the formula describing “X is inaccessible” is
not absolute for transitive models of ZFC. Comment on the consistency assumptions: what are they
and why are they needed?

Solution. Assume 2IC, and let k < A be inaccessibles. It follows that V), = ZFC+IC. Take a countable
elementary submodel of V), and consider its Mostowski collapse M. This is now a countable transitive
model of ZFC + IC, so there is some o € M such that M | “« is inaccessible”. However, transitivity
of M implies that « is in reality a countable ordinal, and therefore not inaccessible. 4

Let oolC be the statement “for any ordinal «, there is an inaccessible cardinal £ > «”. Assume ocolC
and consider the ordinal operation ¢ : Ord — Ord such that ¢(«) is the ath inaccessible cardinal. Show
that ¢ is not a normal ordinal operation and that if ZFC + oolC is consistent, it cannot prove that ¢ has
any fixed points.

Solution. By definition, ¢(w) is inaccessible and therefore regular. It follows that cf(:(w)) # w and
therefore t(w) # Un<wt(n), i.e. ¢ is not continuous. Write FP, for the statement that ¢ has a fixed point,
and assume for a contradiction that ZFC + oolC is consistent and ZFC + oolC F FP,. Let s be the least
fixed point of ¢. It follows that any ordinal o < & is not a fixed point of ¢, and so a < () < t(k) = k.



In particular, for any o < k there is an inaccessible above a in V,, i.e. V; = colC. Our assumption
implies that V,; = FP,, and therefore there some A < k which is a fixed point of ¢, contradicting that
K is the least such fixed point. _



