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(1) Show for any cardinal κ that there is a definable surjection from P(x) to κ+, i.e., a formula Φ(x, y)
such that F (A) = α : ⇐⇒ Φ(A,α) defines a surjective function for A ⊆ κ and α < κ+.

[Hint. Consider the proof of Hartogs’s Lemma; you may use that there is a bijection between κ and
κ× κ for infinite κ.]

Solution. Consider the formula

Φ(x, y) = y ∈ Ord ∧ ∃R ⊆ x(R well-orders y) ∧ ∀z ∈ Ord(R well-orders z → z ⊆ y)

It follows that for every cardinal κ and A ⊆ κ×κ there is a unique ordinal α such that Φ(A,α); since A
is a well-ordering of α it follows that α ∈ κ+. In particular, Φ defines a function from P(κ× κ) → κ+.
It is easy to verify that this is a surjection: for any α < κ+ there is a bijection f : κ → α, and so the
relation A := {(x, y) ∈ κ × κ : f(x) < f(y)} is a well-order of κ such that Φ(A,α) is true. Finally,
composing Φ with the definable bijection from κ×κ → κ gives a definable surjection from Φ(x) to κ+.
⊣

(2) Let λ and µ be limit ordinals and f : µ → λ be a function. The function f is called cofinal in λ if
ran(f) is a cofinal subset of λ. Show that

cf(λ) = min{µ, ; there is a cofinal function with domain µ}
= min{µ ; there is a strictly increasing cofinal function with domain µ}.

Conclude that cf(cf(λ)) = cf(λ).

Solution. For the first equality, note that if C ⊆ λ is cofinal, then the map f : |C| → λ given by the
composition of a bijection between C and |C| and inclusion is cofinal. Conversely, if there is α < cf(λ)
with f : α → λ cofinal, then f [a] ⊆ λ is cofinal and |f [a]| ≤ |a| < cf(λ), contradiction.

The second equality follows from the fact that given f : cf(λ) → λ cofinal, there is some g : cf(λ) → λ
strictly increasing and cofinal. Indeed, define g : cf(λ) → λ by β 7→ supδ<β(f(δ) + β). This is clearly
strictly increasing and also maps into λ: if λ = g(β) for some β < cf(λ) then λ =

⋃
δ<β(f(δ) + β),

contradicting that β < cf(λ). Finally, it is easy to see that g is cofinal: if α < λ then ∃β < cf(λ) such
that a < f(β) ≤ g(β + 1) < λ.

Clearly, cf(cf(α)) ≤ cf(α). For the other direction, pick f : cf(cf(α)) → cf(α) and g : cf(α) → α strictly
increasing and cofinal. Their composition is a strictly increasing and cofinal map cf(cf(α)) → α, and
so cf(α) ≤ cf(cf(α)) by the above. ⊣

(3) Presentation Example. Let κ be regular, η be any ordinal and f : κ → η a strictly increasing function.
Define λ :=

⋃
ran(f). Show that cf(λ) = κ. Conclude that cf(ℵλ) = cf(λ) and cf(ℶλ) = cf(λ).

Solution. Fix some cofinal map g : cf(λ) → λ. Consider the map h : cf(λ) → κ given by mapping
α < cf(λ) to the least β < κ such that g(α) < f(β). This is well-defined and cofinal. Indeed, if
γ < κ, then find some α < cf(λ) with g(α) > f(γ). Since f is strictly increasing, the least β with
f(γ) < g(α) < f(β) must be strictly greater than γ, so h(α) > γ. It follows that cf(λ) = κ by regularity
of κ.



Finally, we show that cf(ℵλ) = cf(λ). Take a strictly increasing cofinal map cf(λ) → λ and compose
it with α 7→ ℵα. Then we have a strictly increasing cofinal map f : cf(λ) → ℵλ, and ℵλ =

⋃
ran(f).

Since cf(λ) is regular, we use the argument from the previous part to deduce that cf(ℵλ) = cf(λ).
Applying the same argument to the map α 7→ ℶα it follows that cf(ℶλ) = cf(λ). ⊣

(4) Prove that every successor cardinal is regular. Note that the proof uses some fragment of the Axiom
of Choice.

Solution. Fix a cardinal κ and a map f : κ → κ+. Observe that

| sup
α<κ

f(α)| ≤ κ× κ = κ,

by a standard cardinal arithmetic argument (which uses the Axiom of Choice). It follows that f cannot
be cofinal, and since this holds for any such f , cf(κ+) > κ. Since the cofinality is a cardinal, this implies
that cf(κ+) = κ+, i.e. κ+ is regular. ⊣

(5) A class function F : Ord → Ord is called a normal ordinal operation if for all α < β, we have
F (α) < F (β), and for all limit ordinals λ, we have F (λ) =

⋃
α<λ F (α). Prove that every normal ordinal

operation has arbitrarily large fixed points, i.e., for each α, there is a γ ≥ α such that F (γ) = γ.

Solution. Fix an ordinal α and define by recursion on ω:

R(0) := α+ 1;

R(n+ 1) := F (R(n)).

Using Replacement, let γ =
⋃

n∈ω R(n). We argue that γ is a fixed point of F above α. First, starting
with α < R(0) and using that F is strictly increasing, we obtain by an easy induction argument that
γ > α. We now distinguish two cases. If there is some n ∈ ω such that R(n) is a fixed point of F , then
by definition γ = R(n) and so F (γ) = γ. On the other hand, if no R(n) is a fixed point of F then the
sequence (R(n))n∈ω is strictly increasing, and so γ is a limit ordinal. It therefore follows by continuity
of F and the fact that (R(n))n∈ω is cofinal in γ that:

F (γ) =
⋃
α<γ

F (α) =
⋃
n∈ω

F (R(n)) =
⋃
n∈ω

R(n+ 1) = γ,

as required. ⊣

(6) We call the axiom system that contains all axioms of ZFC except for the Axiom of Infinity FST (for
“Finite Set Theory”). Consider the property I(α) defined by “α is a limit ordinal and α ̸= 0”. Show
that the property I is a large cardinal property for FST in the following sense:

If FST is consistent, then FST does not prove the existence of a cardinal with property I.

Solution. Suppose that FST ⊢ ∃αI(α). Since FST + ∃αI(α) ⊢ Infinity, we know by modus ponens that
FST ⊢ Infinity, and hence FST ⊢ ZFC. However, Vω is a model of FST that is not a model of full ZFC.
Indeed, all but the Replacement scheme can be easily verified. For this, observe that if F : Vω → Vω

is a function and x ∈ Vω, then for all y ∈ x, rank(F (y)) < ω. Then C := {rank(F (y)) : y ∈ x} ⊆ ω is
a finite set, so rank(F [x]) ≤ supC + 1 < ω. Therefore F [x] ∈ Vω. ⊣

(7) Let κ be a regular cardinal. If x is any set, we write tcl(x) for the transitive closure of x. Define
Hκ := {x ; |tcl(x)| < κ}. Why is this a set? Which axioms of ZFC hold in Hℵ1

? Show that for any κ,
Hκ+ cannot be a model of ZFC.

Solution. We first show that Hκ ⊆ Vκ for all infinite ordinals κ, and hence Hκ is a set. We adapt
the proof from Kenneth Kunen’s Set Theory, p. 131. Let x ∈ Hκ. We shall argue that rank(x) < κ.
Indeed, let t = tcl(x) and S = {rank(y) : y ∈ t} ⊆ Ord. Let α be the first ordinal not in S.
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By definition, this implies that α ⊆ S. If α ̸= S, let β be the least element of S larger than α,
and fix some y ∈ x with rank(y) = β. By transitivity of t, rank(z) < α for all z ∈ y, and so
rank(y) =

⋃
{rank(z) + 1 : z ∈ y} ≤ α, contradiction. So S = α. Therefore |t| < κ =⇒ α < κ, and so

rank(x) ≤ α < κ.

We now argue that when κ is regular, x ⊆ Hκ and |x| < κ, then x ∈ Hκ. Indeed, tcl(x) = x∪ {tcl(y) :
y ∈ x}, and so tcl(x) is the union of < κ sets of cardinality < κ. By regularity, |tcl(x)| < κ so x ∈ Hκ.

With this, we show that Hκ |= ZFC−Powerset for all regular κ > ω. It is easy to verify Extensionality,
Foundation, Union, Pairing, and Comprehension. By the observation above, we also have that Hκ

satisfies (second order) Replacement. Since ω ∈ Hκ, we also obtain Infinity. Finally, Hκ |= ∀A∃R(R
well orders A). Indeed, being a well-order is absolute for transitive models of ZF− Powerset (see
Chapter IV, Theorem 5.4 in Kunen), and so for any A ∈ Hκ there is some R ⊆ A × A which is a
well-order on A. By the argument above, R ∈ Hκ gives the required well-order in Hκ. Finally, note
that if κ is not a strong limit then Hκ ̸|= Powerset. Indeed, if there is λ < κ such that 2λ ≥ κ then
P(λ)Hκ = P(λ) /∈ Hκ, since |P(λ)| = 2λ. ⊣

(8) Show that Vκ = Hκ if and only if κ is inaccessible.

Solution. Assuming that κ is inaccessible, we have that x ∈ Vκ =⇒ x ∈ Vα for some α < κ. By
transitivity, tcl(x) ⊆ Vα and therefore |tcl(x)| ≤ |Vα| = α < κ since κ is inaccessible. Therefore
x ∈ Hκ. Conversely, suppose that Vκ = Hκ. Then if α < κ, P(α) ∈ Vκ since κ is a limit ordinal, and
therefore 2α ≤ |tcl(P(α))| < κ. So κ is a strong limit, and therefore inaccessible. ⊣

(9) Suppose M ⊆ Vλ is countable and transitive. Show that the formula describing “x is a cardinal” is
not absolute for M and Vλ.

Solution. We know that ZFC ⊢ ∃κ(κ ∈ Card∧κ > ω). Taking M to be a countable transitive submodel
of Vλ it follows that there is some κ ∈ M such that M |= κ ∈ Card ∧ κ > ω. Since M is transitive it
follows that κ is a countable ordinal above ω, and so in particular there is (in Vλ) a bijection to ω, i.e.
κ is not a real cardinal. ⊣

(10) Show that every worldly cardinal is an aleph fixed point.

Solution. Let κ be worldly. We first argue that ϕ(x, y) = “x, y ∈ Ord∧ y is the least such that there is
no surjection x → y” is absolute between Vκ and V. Firstly, since this statement is Π1 it is downwards
absolute. So, consider α < β ∈ Ord ∩Vκ such that ϕ(α, β) is false. Then, either there is some γ < β
such that there is no surjection from α → γ or there is a surjection α → β. Clearly, since γ ∈ Ord∩Vκ

the former cannot possibly be true. On the other hand if f : α → β is any map, then f ⊆ α×β ∈ Vβ+3,
and so f ∈ Vβ+4. It follows that f ∈ Vκ and since being a surjection is absolute between transitive
models, Vκ |= ¬ϕ(α, β). From this we deduce that for all cardinals µ < κ, (µ+)Vκ = µ+.

Hence, we argue that for all λ ∈ Vκ, (ℵλ)
Vκ = ℵλ. Proceed by induction. SinceVκ |= ZFC, (ω)Vκ = ω,

and so (ℵ0)
Vκ = ℵ0. Assume that (ℵα)

Vκ = ℵα. Then (ℵα+1)
Vκ = (ℵ+

α )
Vκ = ℵα+1. Finally the limit

case follows from absoluteness of unions.

So, assume for a contradiction that κ is not an aleph fixed point. In particular, this implies that κ = ℵλ

for some cardinal λ < κ. By the above claim, (ℵλ)
Vκ = ℵλ ∈ Vκ, and so κ ∈ Vκ; contradiction. ⊣

(11) If T is any theory, we write T ⋆ := T + Cons(T ). Define by recursion

ZFC(0) := ZFC and

ZFC(n+ 1) := (ZFC(n))⋆.

We write WorC for “there is a worldly cardinal”. Show that WorC implies ZFC(n) for all n ∈ ω.

Solution. Assume WorC and let κ be a worldly cardinal. Clearly V |= ZFC, and since κ is worldly,
Vκ |= ZFC. So, assume that V |= ZFC(n) and Vκ |= ZFC(n). It follows that V |= “Vκ |= ZFC(n)”
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and so V |= Cons(ZFC(n)), implying that V |= ZFC(n + 1). Moreover since arithmetic statement are
absolute between transitive models we obtain that Vκ |= Cons(ZFC(n)), and so Vκ |= ZFC(n + 1).
Proceeding by induction, we get that V |= ZFC(n) for all n ∈ ω. ⊣

(12) Let β be any ordinal and R ⊆ Vβ . An ordinal α < β is called an R-Lévy ordinal for β if (Vα,∈, R∩Vα)
is an elementary substructure of (Vβ ,∈, R). Show that no α can be an R-Lévy ordinal for all R ⊆ Vβ .

Solution. Take R = Vα, and suppose that (Vα,∈,Vα) ≼ (Vβ ,∈,Vα). Since Vβ |= ∃x(¬R(x)), then
so does Vα. But this is a contradiction. ⊣

(13) Presentation Example. Show the following theorem due to Lévy: an ordinal κ is an inaccessible cardinal
if and only if for each R ⊆ Vκ there is an R-Lévy ordinal for κ.

Solution. Suppose that κ is inaccessible, and let R ⊆ Vκ. Define by recursion on ω: α0 = ∅, αn+1 =
the least β ≥ αn such that whenever y1, . . . , yk ∈ Vαn and (Vκ,∈, R) |= ∃xϕ(x, y1, . . . , yk) for some
formula ϕ, there is an x0 ∈ Vβ such that (Vκ,∈, R) |= ϕ(x0, y1, . . . , yk). Since κ is inaccessible,
|Vαn

| < κ and so αn+1 < κ. Finally take α =
⋃

ω αn. Using Tarski-Vaught, we may easily verify
that (Vα,∈, R ∩Vα) ≼ (Vκ,∈, R). Note that by starting with any arbitrary α0 = λ < κ, the above
argument shows that {α : (Vα,∈, R ∩Vα) ≼ (Vκ,∈, R)} is in fact unbounded in κ.

For the converse, notice first that κ must necessarily be infinite. If κ is not regular, then there is β < κ
and f : β → κ cofinal. Let R = {β} ∪ f and find α < κ such that (Vα,∈, R ∩Vα) ≼ (Vκ,∈, R). Since
β is the only ordinal in R, we see that β ∈ Vα by elementarity. But then there is some γ < β in Vα

with α < f(γ) < κ and f(γ) ∈ Vα, contradiction.

Also, if κ is not a strong limit then we can find β < κ with 2β ≥ κ. Find a surjection g : P(β) → κ
and take R = {β + 1} ∪ g. By assumption, there is α < κ such that (Vα,∈, R ∩ Vα) ≼ (Vκ,∈, R).
Since β + 1 ∈ Vα, it follows that P(β) ∈ Vα and so again we can find some x ∈ P(β) such that
g(x) = α ∈ Vα, contradiction. ⊣

(14) Let 2IC be the statement “there are λ < κ such that both λ and κ are inaccessible”. Show that if
ZFC+ IC is consistent, then IC does not imply 2IC.

Solution. Assume for a contradiction that V |= ZFC+ IC and ZFC+ IC ⊢ 2IC. It follows that V |= 2IC,
so consider the first two inaccessibles λ < κ. It follows that Vκ |= IC by downwards absoluteness of
inaccessibility. By our assumption this implies that Vκ |= 2IC, and so there are λ1 < λ2 < κ such
that Vκ |= “λi is inaccessible”. Since κ is inaccessible itself, this implies that λ1 and λ2 are indeed
inaccessible, contradicting that there is only one inaccessible below κ. ⊣

(15) Prove that under appropriate consistency assumptions, the formula describing “λ is inaccessible” is
not absolute for transitive models of ZFC. Comment on the consistency assumptions: what are they
and why are they needed?

Solution. Assume 2IC, and let κ < λ be inaccessibles. It follows that Vλ |= ZFC+ IC. Take a countable
elementary submodel of Vλ and consider its Mostowski collapse M . This is now a countable transitive
model of ZFC + IC, so there is some α ∈ M such that M |= “α is inaccessible”. However, transitivity
of M implies that α is in reality a countable ordinal, and therefore not inaccessible. ⊣

(16) Let ∞IC be the statement “for any ordinal α, there is an inaccessible cardinal κ > α”. Assume ∞IC
and consider the ordinal operation ι : Ord → Ord such that ι(α) is the αth inaccessible cardinal. Show
that ι is not a normal ordinal operation and that if ZFC+∞IC is consistent, it cannot prove that ι has
any fixed points.

Solution. By definition, ι(ω) is inaccessible and therefore regular. It follows that cf(ι(ω)) ̸= ω and
therefore ι(ω) ̸= ∪n<ωι(n), i.e. ι is not continuous. Write FPι for the statement that ι has a fixed point,
and assume for a contradiction that ZFC+∞IC is consistent and ZFC+∞IC ⊢ FPι. Let κ be the least
fixed point of ι. It follows that any ordinal α < κ is not a fixed point of ι, and so α < ι(α) < ι(κ) = κ.
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In particular, for any α < κ there is an inaccessible above α in Vκ, i.e. Vκ |= ∞IC. Our assumption
implies that Vκ |= FPι, and therefore there some λ < κ which is a fixed point of ι, contradicting that
κ is the least such fixed point. ⊣
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