

Large Cardinals Lent Term 2022 Part III of the Mathematical Tripos University of Cambridge Prof. Dr. B. Löwe, I. Eleftheriadis

MODEL SOLUTIONS FOR EXAMPLE SHEET #3 Ioannis Eleftheriadis (ie257)

(31) Let κ be inaccessible and L be any $\mathcal{L}_{\kappa\kappa}$ language and M an L-structure. Write L^{α} for the set of L-formulas whose free variables are contained in $\{v_{\xi}; \xi < \alpha\}$. If $X \subseteq M$, we say that X is an L-elementary substructure (in symbols: $X \preccurlyeq_{L} M$) if for all $\alpha < \kappa, \varphi \in L^{\alpha}$ and all $\vec{x} \in X^{\alpha}$, we have that

$$X\frac{\vec{x}}{\vec{v}}\models \varphi \iff M\frac{\vec{x}}{\vec{v}}\models \varphi.$$

Prove the following statement (*Tarski-Vaught Test for* $\mathcal{L}_{\kappa\kappa}$ *languages*): a subset X is an L-elementary substructure if and only if it is an L-substructure and for all $\alpha, \beta < \kappa, \varphi(\vec{v}, \vec{w}) \in L^{\alpha+\beta}$ (with $\vec{v} := \{v_{\xi}; \xi < \alpha\}$ and $\vec{w} := \{v_{\alpha+\eta}; \eta < \beta\}$) and all $\vec{x} \in X^{\alpha}$, if $M_{\vec{x}}^{\vec{x}} \models \exists^{\beta} \vec{w} \varphi$, then there is some $\vec{y} \in X^{\beta}$ such that $M_{\vec{x}}^{\vec{x}} \vec{y} \models \varphi$. (Why do we require the inaccessibility of κ ?)

Solution. Let $X \subseteq M$ be *L*-structures and suppose that *X* is an *L*-elementary substructure of *M*. If $M\frac{\vec{x}}{\vec{v}} \models \exists^{\beta} \vec{w} \varphi$ for $\vec{x} \in X^{\alpha}$ then by elementarity $X\frac{\vec{x}}{\vec{v}} \models \exists^{\beta} \vec{w} \varphi$. Hence by definition there is $\vec{y} \in X^{\beta}$ such that $X\frac{\vec{x}}{\vec{v}}\frac{\vec{y}}{\vec{w}} \models \varphi$, and so $M\frac{\vec{x}}{\vec{v}}\frac{\vec{y}}{\vec{w}} \models \varphi$ again by elementarity.

Conversely, we argue by induction on the structure of $\varphi \in L^{\alpha+\beta}$ that the embedding is elementary. For φ quantifier-free the argument is essentially the same as in the standard Tarski-Vaught test. So, suppose that $\beta < \kappa$ and $\varphi = \exists^{\beta} \vec{w} \vartheta$, for $\vartheta \in L^{\alpha+\beta}$. If $X \frac{\vec{x}}{\vec{v}} \models \exists^{\beta} \vec{w} \vartheta$ then by definition there is $\vec{y} \in X^{\beta}$ such that $X \frac{\vec{x}}{\vec{v}} \frac{\vec{y}}{\vec{w}} \models \vartheta$, and so by the induction hypothesis $M \frac{\vec{x}}{\vec{v}} \frac{\vec{y}}{\vec{w}} \models \vartheta$, i.e. $M \frac{\vec{x}}{\vec{v}} \not\equiv \exists^{\beta} \vec{w} \vartheta$. If on the other hand $M \frac{\vec{x}}{\vec{v}} \not\equiv \exists^{\beta} \vec{w} \vartheta$ then by the assumption there is some $\vec{y} \in X^{\beta}$ such that $M \frac{\vec{x}}{\vec{v}} \frac{\vec{y}}{\vec{w}} \models \vartheta$. By the induction hypothesis we have that $X \frac{\vec{x}}{\vec{v}} \frac{\vec{y}}{\vec{w}} \models \vartheta$, and so $X \frac{\vec{x}}{\vec{v}} \models \exists^{\beta} \vec{w} \vartheta$.

We implicitly use the regularity of κ in the assumption that the variables of the formulas we induct on are bounded in κ . In particular, if $\lambda < \kappa$ and $(\phi_{\beta})_{\beta < \lambda}$ are such that each ϕ_{β} is in $L^{f(\beta)}$ for some $f: \lambda \to \kappa$, then $\bigvee_{\beta < \lambda} \phi_{\beta}$ is in some L^{α} since f ought to be bounded by the regularity of κ .

 \dashv

(32) Let κ be inaccessible, L be any $\mathcal{L}_{\kappa\kappa}$ language, M an L-structure, and $X \subseteq M$ of size $\leq \kappa$. If $\varphi \in L^{\alpha+\beta}$ (with $\vec{v} := \{v_{\xi}; \xi < \alpha\}$ and $\vec{w} := \{v_{\alpha+\eta}; \eta < \beta\}$) and and $\vec{x} \in M^{\alpha}$ such that $M_{\vec{w}}^{\vec{x}} \models \exists^{\beta} \vec{w} \varphi$, then there is some $\vec{y} \in M^{\beta}$ such that $M_{\vec{w}}^{\vec{x}} \cdot \vec{y}_{\vec{w}}^{\beta} \models \varphi$. Use the Axiom of Choice to assign such a witness $w(\varphi, \vec{x})$. Let $H(X, \alpha) := X \cup \bigcup \{\operatorname{Im}(w(\varphi, \vec{x})); \varphi \in L^{\alpha+\beta}, \vec{x} \in X^{\alpha}\}$. Define by recursion $H_0(X) := X, H_{\alpha+1}(X) :=$ $H(H_{\alpha}(X), \alpha)$, and $H_{\lambda}(X) := \bigcup_{\alpha < \lambda} H_{\alpha}(X)$ (for limit ordinals λ) and show that $H_{\kappa}(X) \preccurlyeq_L M$ is an elementary substructure of cardinality $\leq \kappa$.

Solution. Define $w: L^{\alpha+\beta} \times M^{\alpha} \to M^{\beta}$ in the following way: if $M_{\vec{v}}^{\vec{x}} \models \exists^{\beta} \vec{w} \varphi$ then pick (using Choice) a witness $\vec{y} \in M^{\beta}$ such that $M_{\vec{v}}^{\vec{x}} \stackrel{\vec{y}}{=} \varphi$; if $M_{\vec{v}}^{\vec{x}} \not\models \exists^{\beta} \vec{w} \varphi$ then pick a fixed $\vec{m}_{0} \in M^{\beta}$. Let $H_{\kappa}(X)$ be as above. We use the Tarski-Vaught test for $\mathcal{L}_{\kappa\kappa}$ languages to argue that $H_{\kappa}(X) \preccurlyeq_{L} M$. Indeed, suppose that $M_{\vec{v}}^{\vec{x}} \models \exists^{\beta} \vec{w} \varphi$ for some $\varphi \in L^{\alpha+\beta}$ and $\vec{x} \in H_{\kappa}(X)^{\alpha}$. Since $\alpha < \kappa$, there is by regularity some $\gamma < \kappa$ such that $\vec{x} \in H_{\gamma}(X)^{\alpha}$. It follows by construction that $\vec{y} = w(\phi, \vec{x})$ is such that $M_{\vec{v}}^{\vec{x}} \stackrel{\vec{y}}{=} \varphi$, and furthermore $\vec{y} \in H_{\gamma+1}(X)^{\alpha} \subseteq H_{\kappa}(X)^{\alpha}$. It follows by Tarski-Vaught that $H_{\kappa}(X) \preccurlyeq_{L} M$. Furthermore, assuming that $|X| \le \kappa$, we may show by induction on $\alpha < \kappa$ that $|H_{\alpha}(X)| \le \kappa$, and hence $|H_{\kappa}(X)| \le \kappa$. \dashv

- (33) Show that the consistency strength hierarchy has the following properties:
 - (a) 0 = 1 is maximal w.r.t. \leq_{Cons} ;
 - (b) if A is not maximal, then there is B such that $A \leq_{\text{Cons}} B$ and B is not maximal;
 - (c) for all A and B, if $A \leq_{\text{Cons}} B$, then $A \vee B \equiv_{\text{Cons}} A$.

Solution.

- (a) Since 0 = 1 proves anything, we see that $\text{Cons} \cap C_{\mathsf{ZFC}+0=1} = \text{Cons}$, and so for any sentence A, $\text{Cons} \cap C_{\mathsf{ZFC}+\mathsf{A}} \subseteq \text{Cons}$, i.e. $\mathsf{A} \leq_{\text{Cons}} 0 = 1$. In fact, it is easy to see that A is maximal if and only if $\mathsf{ZFC} + \mathsf{A}$ is inconsistent.
- (b) Suppose that A is not maximal. Consider B = A + Cons(ZFC + A). Since A is not maximal it follows that ZFC + A is consistent, and so B is consistent and therefore not maximal. Furthermore, $B \implies A$ and so $A \leq_{\text{Cons}} B$, while $ZFC + B \vdash \text{Cons}(ZFC + A)$ and $ZFC + A \nvDash \text{Cons}(ZFC + A)$. It follows that $A <_{\text{Cons}} B$.
- (c) Suppose that $A \leq_{\text{Cons}} B$. Clearly $A \implies A \lor B$, and therefore $A \lor B \leq_{\text{Cons}} A$. Furthermore, if $ZFC+A \vdash \text{Cons}(ZFC+C)$, then $ZFC+B \vdash \text{Cons}(ZFC+C)$ by the assumption. Hence $ZFC+(A \lor B) \vdash \text{Cons}(ZFC+C)$, i.e. $A \leq_{\text{Cons}} A \lor B$.

 \dashv

(34) Let Φ be a cardinal property (i.e., $\Phi(\kappa)$ implies that κ is a cardinal). Let us say that Φ is *nontrivial* if $\Phi(\kappa)$ implies that κ is inaccessible. Show that there is a nontrivial Φ such that $\Phi C \equiv_{\text{Cons}} IC$ and WC $<_1 \Phi C$. Use this to argue that the following statement is in general false: if $A \leq_{\text{Cons}} B$, then $A \wedge B \equiv_{\text{Cons}} B$.

Solution. Let $\Phi(\kappa) = "\kappa$ is inaccessible \land (WC $\rightarrow \kappa$ is larger than the least w.c.)". Clearly ZFC+ Φ C \vdash IC, so IC $\leq_{\text{Cons}} \Phi$ C. Conversely, suppose that ZFC+ Φ C \vdash Cons(ZFC+ φ). Clearly if ZFC+IC is inconsistent then ZFC + IC \vdash Cons(ZFC + φ) as it proves everything. If ZFC + IC is consistent, then fix some $M \models$ ZFC + IC. If $M \models \neg$ WC then $M \models \Phi$ C so $M \models$ Cons(ZFC + φ). If on the other hand $M \models$ WC then fix some $\kappa \in M$ such that $M \models "\kappa$ is the least weakly compact". By transfinite recursion in M we may define \mathbf{V}_{κ}^{M} , which is transitive in M. Since there are inaccessibles below the least weakly compact, $M \models "\mathbf{V}_{\kappa} \models \mathsf{IC} + \neg WC$ ", and so in fact $M \models "\mathbf{V}_{\kappa} \models \mathsf{ZFC} + \Phi\mathsf{C}$ ". Hence $M \models "\mathbf{V}_{\kappa} \models \mathsf{Cons}(\mathsf{ZFC} + \varphi)$ ", and since this is an arithmetical (so Δ_0) statement $M \models \mathsf{Cons}(\mathsf{ZFC} + \varphi)$. It follows by completeness that $\mathsf{ZFC} + \mathsf{IC} \vdash \mathsf{Cons}(\mathsf{ZFC} + \varphi)$, and so $\mathsf{ZFC} + \Phi\mathsf{C} \equiv_{\mathsf{Cons}} \mathsf{ZFC} + \mathsf{IC}$.

Also, WC <₁ Φ C. Indeed, assuming WC + Φ C then the least weakly compact cardinal is by definition strictly smaller than the least cardinal satisfying $\Phi(\kappa)$.

Observe that $\Phi C \equiv_{\text{Cons}} \mathsf{IC} \leq_{\text{Cons}} \mathsf{WC}$. However, $\Phi C \wedge \mathsf{WC} >_{\text{Cons}} \mathsf{WC}$. Indeed, in $\mathsf{ZFC} + \Phi C + \mathsf{WC}$ we may find $\lambda < \kappa$ with λ the least weakly compact and κ inaccessible. But then $\mathbf{V}_{\kappa} \models \mathsf{ZFC} + \mathsf{WC}$, so $\mathsf{ZFC} + \Phi \mathsf{C} + \mathsf{WC} \vdash \mathsf{Cons}(\mathsf{ZFC} + \mathsf{WC})$. On the other hand $\mathsf{ZFC} + \mathsf{WC} \nvDash \mathsf{Cons}(\mathsf{ZFC} + \mathsf{WC})$ by Gödels 2nd Incompleteness Theorem.

(35) Let A be the statement "if there is a weakly compact cardinal κ , then there is an inaccessible $\lambda > \kappa$ ". Show that the consistency strength of ZFC+A is equal to that of ZFC, but that under some consistency assumptions, ZFC <₀ ZFC + A. What are the required consistency assumptions for the latter claim?

Solution. Clearly $C_{\mathsf{ZFC}} \subseteq C_{\mathsf{ZFC}+\mathsf{A}}$. For the other direction we repeat the argument in (34). Suppose that $\mathsf{ZFC} + \mathsf{A} \vdash \operatorname{Cons}(\mathsf{ZFC} + \varphi)$. Clearly if ZFC is inconsistent then $\mathsf{ZFC} \vdash \operatorname{Cons}(\mathsf{ZFC} + \varphi)$ as it proves everything. If ZFC is consistent, then fix some $M \models \mathsf{ZFC}$. If $M \models \neg\mathsf{WC}$ then $M \models \mathsf{A}$ so $M \models \operatorname{Cons}(\mathsf{ZFC} + \varphi)$. If on the other hand $M \models \mathsf{WC}$ then fix some $\kappa \in M$ such that $M \models "\kappa$ is the least weakly compact". By transfinite recursion in M we may define \mathbf{V}_{κ}^{M} , which is transitive in M. But then $M \models "\mathbf{V}_{\kappa} \models \neg WC$ ", and so in fact $M \models "\mathbf{V}_{\kappa} \models \mathsf{ZFC} + \mathsf{A}$ ". Hence $M \models "\mathbf{V}_{\kappa} \models \operatorname{Cons}(\mathsf{ZFC} + \varphi)$ ", and since this is an arithmetical (so Δ_0) statement $M \models \text{Cons}(\mathsf{ZFC} + \varphi)$. It follows by completeness that $\mathsf{ZFC} \vdash \text{Cons}(\mathsf{ZFC} + \varphi)$, and so $\mathsf{ZFC} + \mathsf{A} \equiv_{\text{Cons}} \mathsf{ZFC}$.

Now assuming that $\mathsf{ZFC} + \mathsf{WC}$ is consistent then $\mathsf{ZFC} \not\vdash \mathsf{A}$. Indeed, if $\mathsf{ZFC} \vdash \mathsf{A}$ then $\mathsf{ZFC} + \mathsf{WC} \vdash \mathsf{A}$ so if κ is the least weakly compact, find $\lambda > \kappa$ inaccessible. Then $\mathbf{V}_{\lambda} \models "\kappa$ is weakly compact" and so in fact $\mathbf{V}_{\lambda} \models \mathsf{ZFC} + \mathsf{WC}$ by inaccessibility. Hence $\mathsf{ZFC} + \mathsf{WC} \vdash \mathsf{Cons}(\mathsf{ZFC} + \mathsf{WC})$, which is a contradiction on the assumption of the consistency of $\mathsf{ZFC} + \mathsf{WC}$

(36) Suppose that there are unboundedly many inaccessible cardinals. Let ι_{α} be the α th inaccessible cardinal. Show that it is not possible to prove (in ZFC+"there are unboundedly many inaccessible cardinals") that the operation $\alpha \mapsto \iota_{\alpha}$ has a fixed point, i.e., some $\kappa = \iota_{\kappa}$. This must mean that the operation is in general not a normal ordinal operation. What is the reason?

Solution. Write uIC for the statement that there exist unboundedly many inaccessible cardinals, and suppose that we could prove in ZFC + uIC that the above operation has a fixed point. Let $\kappa = \iota_{\kappa}$ be the least fixed point. We argue that $\mathbf{V}_{\kappa} \models \mathsf{ZFC} + u$ IC. Clearly, $\mathbf{V}_{\kappa} \models \mathsf{ZFC}$ by inaccessibility of κ . Furthermore, let $\alpha \in \operatorname{Ord} \cap \mathbf{V}_{\kappa} = \kappa$. Since $\alpha < \kappa$, it follows that $\alpha \neq \iota_{\alpha}$, and so in particular $\alpha < \iota_{\alpha} < \iota_{\kappa} = \kappa$. Hence, $\iota_{\alpha} \in \mathbf{V}_{\kappa}$ and $\mathbf{V}_{\kappa} \models \iota_{\alpha}$ is inaccessible" by ES1. It follows that $\mathbf{V}_{\kappa} \models$ $\forall x(x \in \operatorname{Ord} \to \exists y(x < y \land y \text{ is inaccessible}))$, thus $\mathbf{V}_{\kappa} \models u$ IC. Hence, $\mathsf{ZFC} + u$ IC $\vdash \operatorname{Cons}(\mathsf{ZFC} + u$ IC), contradiction. This implies that we cannot show in $\mathsf{ZFC} + u$ IC that this is a normal ordinal operation. In fact, we can prove that it is not. Clearly $\alpha < \beta \to \iota_{\alpha} < \iota_{\beta}$, so it must be that $\iota_{\lambda} \neq \bigcup_{\alpha < \lambda} \iota_{\alpha}$ for at least one limit ordinal λ . Indeed, for $\lambda = \omega$ we see that cf $(\bigcup_{n < \omega} \iota_n) = cf(\omega) = \omega$ which is clearly not the ω -th inaccessible.

(37) Show that if U is an ultrafilter, then U is free if and only if U is non-trivial.

Solution. Let U be an ultrafilter on a set I, and suppose that U is trivial, i.e. it contains a singleton $\{x\}$. Since $A \cap B \neq \emptyset$ for any $A, B \in U$, it must be that $x \in A$ for all $A \in U$. Hence, $\bigcap U = \{x\} \neq \emptyset$, i.e. U is fixed.

Conversely, suppose that U is non-trivial. Since no singleton $\{x\}$ is in U and U is an ultrafilter, it must be that $I \setminus \{x\} \in U$ for all $x \in I$. Since $\bigcap_{x \in I} (I \setminus \{x\}) = \emptyset$, it follows that $\bigcap U = \emptyset$.

(38) Presentation Example. Let λ be inaccessible and $M \subseteq \mathbf{V}_{\lambda}$ a transitive set. Suppose $j : \mathbf{V}_{\lambda} \to M$ is an elementary embedding. Show that if $j \neq id$, then there is an ordinal α such that $j(\alpha) > \alpha$.

Solution. Let $j: \mathbf{V}_{\lambda} \to M$ be a non-trivial elementary embedding with $M \subseteq \mathbf{V}_{\lambda}$ transitive. Suppose for a contradiction that j is the identity on ordinals of \mathbf{V}_{λ} . Then for all $x \in \mathbf{V}_{\lambda} \operatorname{rank}(j(x)) = j(\operatorname{rank}(x))$ by absoluteness of rank, and that is equal to $\operatorname{rank}(x)$ by the assumption on j. So let $x \in \mathbf{V}_{\lambda}$ be of least rank such that $x \neq j(x)$. It follows that for all $y \in j(x)$, $\operatorname{rank}(y) < \operatorname{rank}(j(x)) = \operatorname{rank}(x)$ so y = j(y). Hence $y \in j(x) \iff j(y) \in j(x) \iff y \in x$, and therefore x = j(x), contradiction.

Finally, let α be least with $j(\alpha) \neq \alpha$. Then, for all $\beta \in \alpha$, $\beta = j(\beta) \in j(\alpha)$. Hence $\alpha < j(\alpha)$.

(39) We assume that $\kappa < \lambda$ are measurable and inaccessible, respectively, and that $j : \mathbf{V}_{\lambda} \to M$ is the ultrapower embedding. We use the notation from the lectures. In Lecture XI, we showed that $\kappa \leq (\mathrm{id}) < j(\kappa)$. Give concrete functions $f : \kappa \to \kappa$ such that $(f) = (\mathrm{id}) + 1$, $(f) = (\mathrm{id}) + \omega_1$, $(f) = (\mathrm{id}) \cdot 2$. Fix $\xi < \kappa$ and consider the function $f(\alpha) := \xi$ if α is even and $f(\alpha) := \alpha$ if α is odd. What can we say about the relation between (id) and (f)?

[As usual, an ordinal α is even if it is of the form $\lambda + 2n$ where λ is a limit ordinal and n is a natural number.]

Solution. Let $f_1 : \kappa \to \kappa$ be given by $\alpha \mapsto \alpha + 1$. Clearly (f_1) is an ordinal, and furthermore $\{\alpha < \kappa : f(\alpha) = id(\alpha) + 1\} \in U$, so $(f_1) = (id) + j(1) = (id) + 1$. Similarly, taking $f_2 : \alpha \mapsto \alpha + \omega_1$ and $f_3 : \alpha \mapsto \alpha \cdot 2$ we may show that $(f_2) = (id) + \omega_1$ while $(f_3) = (id) \cdot 2$.

Now fix $\xi < \kappa$ and take $f : \kappa \to \kappa$ with $f(\alpha) := \xi$ if α is even and $f(\alpha) := \alpha$ if α is odd. Let $E := \{\alpha < \kappa : \alpha \text{ is even}\} \subseteq \kappa$, and $O := \kappa \setminus$. By regularity of κ we can see that both E and O have size κ , so either one could be in U. If $E \in U$ then $(f) = j(\xi) = \xi < (\text{id})$, while if $O \in U$ then (f) = (id). In either case, $(f) \leq (\text{id})$.

(40) Let κ be measurable. Show that there is some ultrafilter U on κ such that in the ultrapower M_U , we have that $\kappa = (\mathrm{id})_U$ where $\mathrm{id} : \kappa \to \kappa : \alpha \mapsto \alpha$.

Solution. Let κ be measurable, and U a non-principal κ -complete ultrafilter on κ . Fix $f : \kappa \to \kappa$ so that $(f)_U = \kappa$, and let $W = \{X \subseteq \kappa : f^{-1}[X] \in U\}$. We argue that this is a non-principal κ -complete ultrafilter, and furthermore that $\kappa = (\mathrm{id})_W$. Indeed this is clearly a filter, while if $X \notin W$ then $f^{-1}[X] \notin U$, hence $\kappa \setminus f^{-1}[X] = f^{-1}[\kappa \setminus X] \in U$, i.e. $\kappa \setminus X \in W$. Furthermore, this is non-principal. Indeed, if $\{\gamma\} \in W$ then $f^{-1}[\{\gamma\}] \in U$, i.e $\{\alpha < \kappa : f(\alpha) = \gamma\} \in U$, and so $(f)_U = j(\gamma) = \gamma$, contradiction. Finally, this is κ -complete as $\bigcap_{\gamma < \alpha} f^{-1}[X_{\gamma}] = f^{-1}[\bigcap_{\gamma < \alpha} X_{\gamma}]$ for any $\alpha < \kappa$.

It remains to show that $(\mathrm{id})_W = \kappa$. We already know that $\kappa \leq (\mathrm{id})_W$, so let $g: \kappa \to \kappa$ be such that $(g)_W \in (\mathrm{id})_W$. It follows that $S = \{\alpha < \kappa : g(\alpha) < \alpha\} \in W$, so $f^{-1}[S] = \{\beta < \kappa : g(f(\beta)) < f(\beta)\} \in U$, and therefore $(g \circ f)_U < (f)_U$. So, there exists $\gamma < \kappa$ such that $(g \circ f)_U = \gamma = j(\gamma)$, i.e. $\{\beta < \kappa : g(f(\beta)) = \gamma\} \in U$. It follows that $\{\alpha < \kappa : g(\alpha) = \gamma\} \in W$, i.e. $(g)_W = \gamma < \kappa$. Hence $(\mathrm{id})_W \subseteq \kappa$, implying that $(\mathrm{id})_W = \kappa$.

Remark. A κ -complete non-principal ultrafilter on κ with the property that $\kappa = (id)_U$ is called *normal*. The above therefore shows that every measurable cardinal has a normal ultrafilter.

(41) Let κ be a cardinal. We say κ is

0-inaccessible if κ is inaccessible

 $\alpha + 1$ -inaccessible if κ is α -inaccessible and { $\mu < \kappa$; μ is α -inaccessible} is unbounded in κ , and λ -inaccessible if κ is α -inaccessible for all $\alpha < \lambda$ and λ is a limit ordinal.

Show that every measurable cardinal κ is κ -inaccessible.

Solution. Let κ be measurable and $j : \mathbf{V}_{\lambda} \to M$ be the elementary embedding defined from it. We saw in the lectures that for $\gamma \leq \kappa$, the statement " γ is inaccessible" is absolute between \mathbf{V}_{λ} and M (Lecture XII, page 6) and that this implies by the technique of reflection that κ is 1-inaccessible (Lecture XII, page 7).

It is easy to see by induction that for $\gamma \leq \kappa$ and any α , the statement " γ is α -inaccessible" is absolute between \mathbf{V}_{λ} and M.

Now we can prove by induction on $\alpha < \kappa$ that κ is α -inaccessible: as mentioned, the case $\alpha = 1$ was already proved in the lectures.

If λ is a limit ordinal and κ is α -inaccessible for all $\alpha < \lambda$, then κ is λ -inaccessible by definition.

If κ is α -inaccessible in \mathbf{V}_{λ} , then by absoluteness, it is α -inaccessible in M. Thus, for each $\gamma < \kappa$, M is a model of "there is some mu such that $j(\gamma) < \mu < j(\kappa)$ which is $j(\alpha)$ -inaccessible". By elementarity, \mathbf{V}_{λ} is a model of "there is some mu such that $\gamma < \mu < \kappa$ which is α -inaccessible". Since γ was arbitrary, this means that κ is $(\alpha + 1)$ -inaccessible in \mathbf{V}_{λ} . So, by definition, κ is κ -inaccessible.

 \dashv

(42) Let λ be inaccessible. Suppose that $M \subseteq \mathbf{V}_{\lambda}$ is an inner model of ZFC closed under κ -sequences (i.e., $M^{\kappa} \subseteq M$) with $\mathbf{V}_{\kappa+1} \subseteq M$, L is a language with at most κ many non-logical symbols, and that N is an L-structure with $|N| \leq \kappa$. Show that there is some $\overline{N} \in M$ such that N and \overline{N} are isomorphic. Use this and (32) to finish the proof started in Lecture XIII that a measurable cardinal κ remains weakly compact in the ultrapower.

Solution. Since $|N| \leq \kappa$, w.l.g assume that there is $f : \kappa \to N$ which is a bijection. Let S be a non-logical symbol of L and consider the interpretation S^N of S in N. Then we may interpret S in κ through f, depending on whether S is a function or relation symbol. For example, if S is an α -ary relation symbol for $\alpha < \kappa$, then let $S^{\underline{\kappa}} := \{\vec{x} \in \kappa^{\alpha} : f(\bar{x}) \in S^N\}$. Since $\kappa \in M$ and M is closed under κ -sequences, it follows that $S^{\underline{\kappa}} \in M$. We proceed by interpreting all κ non-logical symbols in this way, and write $\underline{\kappa}$ for the resulting L-structure. Again, since M is closed under κ -sequences it follows that $\underline{K} \in M$, while the function $f : \kappa \to N$ is an isomorphism of L-structures by construction.

We can now prove that every measurable cardinal κ remains weakly compact in the ultrapower. Indeed, let L be an $\mathcal{L}_{\kappa,\kappa}$ language with at most κ many non-logical symbols, and Φ a set of L-sentences such that $M \models ``\Phi$ is κ -satisfiable". As in Lecture XIII, this implies that $\mathbf{V}_{\lambda} \models ``\Phi$ is κ -satisfiable", and since κ is weakly compact in \mathbf{V}_{λ} we have that $\mathbf{V}_{\lambda} \models ``\Phi$ is satisfiable". Hence, there is some $N \in \mathbf{V}_{\lambda}$ such that $\mathbf{V}_{\lambda} \models ``N \models \Phi''$, i.e. $N \models \Phi$. Starting from any substructure X of N of size $\leq \kappa$, we may construct an L-elementary substructure $H_{\kappa}(X) \preccurlyeq N$ of size $\leq \kappa$ using (32). By the previous argument, we may find some $\overline{N} \in M$ such that $H_{\kappa}(X)$ and \overline{N} are isomorphic. It follows that $\overline{N} \models \Phi$, and so $M \models ``\overline{N} \models \Phi''$, i.e. $M \models ``\overline{N}$ is consistent". Hence $M \models ``\kappa$ is weakly compact".

(43) Presentation Example. In Lecture XIV (page 6), we showed that if κ is surviving, there are functions f and g such that

 $M_U \models (g)_U$ is an $(f)_U$ -complete ultrafilter on $(f)_U$.

Use this to give an alternative proof of the fact that a surviving cardinal κ must be the κ th measurable cardinal.

Solution. Let κ be a surviving cardinal, with U, V κ -complete non-principal ultrafilter on κ such that $V = (g)_U \in M_U$, and $\kappa = (f)_U$. Since $M_U \models (g)_U$ is an $(f)_U$ -complete ultrafilter on $(f)_U$ it follows by Loś's that $\{\alpha < \kappa : g(\alpha) \text{ is an } f(\alpha)\text{-complete ultrafilter on } f(\alpha)\} \in U$. Fix some $\gamma < \kappa$. Since $\gamma = j(\gamma)$ it follows that $\{\alpha < \kappa : \gamma < f(\alpha)\} \in U$. Hence, we can find some $\alpha < \kappa$ such that $f(\alpha) > \gamma$ and $g(\alpha)$ is an $f(\alpha)$ -complete ultrafilter on $f(\alpha)$. Hence $f(\alpha)$ is measurable, and since $f(\alpha) < \kappa$, the set of measurables below κ is unbounded in κ . It follows that κ is the κ -th measurable.

(44) Show that if κ is 2-strong and satisfies $o(\kappa) \ge n$, then there are unboundedly many cardinals $\lambda < \kappa$ such that $o(\lambda) \ge n$.

Solution. Suppose that κ is 2-strong with Mitchell rank $\geq n$, i.e. there are $(U_i)_{i \in n} \kappa$ -complete nonprincipal ultrafilters on κ with $U_i < U_j \iff i < j$. Since κ is 2-strong there is an inner model M and an elementary embedding $j : \mathbf{V}_{\lambda} \to M$ such that $\mathbf{V}_{\kappa+2} \subseteq M$. But $U_1, \ldots, U_n \in \mathbf{V}_{\kappa+2}$, so $U_1, \ldots, U_n \in M$. Furthermore, it follows from the lectures (Lecture XIV, page 7) that $M \models U_i < U_j$ if and only if i < j. Hence for any $\alpha < \kappa$, $M \models \alpha < \kappa < j(\kappa) \land o(\kappa) \geq n$ and so $M \models \exists \beta (\alpha < \beta < j(\kappa) \land o(\beta) \geq n)$. Finally, since $j(\alpha) = \alpha$ we may use elementarity to obtain that $\mathbf{V}_{\lambda} \models \exists \beta (\alpha < \beta < \kappa \land o(\beta) \geq n)$, and hence there is some $\beta > \alpha$ with $o(\beta) \geq n$. It follows that there are unboundedly many $\lambda < \kappa$ such that $o(\lambda) \geq n$.

(45) Let κ be measurable and M the ultrapower built from a κ -complete ultrafilter on κ . Show that M is not closed under κ^+ -sequences by producing a function $f : \kappa^+ \to M$ that is not an element of M.

Solution. Consider the map $f : \kappa^+ \to M$ given by $\alpha \mapsto j(\alpha)$. Then by Replacement in M, the set $j[\kappa^+] = \{j(\alpha) : \alpha < \kappa^+\}$ is in M. However $\bigcup j[\kappa^+] = j(\kappa^+)$. Indeed, if $(f)_U \in j(\kappa^+)$ then w.l.g $\operatorname{Im}(f) \subseteq \kappa^+$ and so $\exists \alpha < \kappa^+$ such that $\operatorname{Im}(f) \subseteq \alpha$ by regularity of κ^+ . It follows that $(f)_U \leq j(\alpha)$, so $(f)_U \in \bigcup j[\kappa^+]$. But then $M \models "|j[\kappa^+]| = \kappa^+$ " as witnessed by $f \in M$, and furthermore $M \models "j(\kappa^+)$ is regular" $\wedge "|j(\kappa^+)| \geq (2^{\kappa})^+$ ", contradiction.