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(15) Modify the proof that ZFC (if consistent) does not prove IC (Lecture II, page 4) to a proof of “if
ZFC+GCH is consistent, then ZFC does not prove that there are weakly inaccessible cardinals”. Argue
that this gives rise to a proof of the unprovability of the existence of weakly inaccessibles that does not
need all of Gödel’s 1938 theorem (Lecture V, page 6).

Solution. Suppose that ZFC ⊢ WIC. Since ZFC + GCH ⊢ ∀κ(κ is weakly inaccessible ⇐⇒ κ is
inaccessible), this implies that ZFC+GCH ⊢ IC. But ZFC+IC ⊢ Cons(ZFC), so ZFC+GCH ⊢ Cons(ZFC).
But by Gödel’s theorem, Cons(ZFC) → Cons(ZFC + GCH), and so ZFC + GCH ⊢ Cons(ZFC + GCH),
contradiction. Technically this does not use the full strength of Gödel’s theorem: Gödel built an ∅-
definable inner model of ZFC + GCH within ZF, but the implication Cons(ZFC) → Cons(ZFC + GCH)
requires any inner model of ZFC+ GCH built within ZFC. ⊣

(16) Let 2IC be the statement ”there are λ < κ such that both λ and κ are inaccessible”. Show that if
ZFC+ IC is consistent, then IC does not imply 2IC.

Solution. Suppose that there is an inaccessible cardinal. Let λ be the least inaccessible cardinal, and
κ the next inaccessible. Consider Vκ. Since λ < κ is inaccessible Vκ |= IC. However Vκ ̸|= 2IC, as
there is only one inaccessible below κ. So IC cannot possibly imply 2IC. ⊣

(17) Show that there is a Π1 formula ϕ such that ZFC proves ϕ(x) iff x is a strong limit cardinal.

Solution. By the previous sheet we may assume the existence of a Π1 formula card(x) which is provable
in ZFC if and only if x is a cardinal. Then

card(x) ∧ ∀(y ∈ x)∃(z ∈ x)(card(z) ∧ z > 2y), where

(z > 2y) := ∀f(function(f,P(y), z) → ¬surjection(f,P(y), z))

is (equivalent to) a Π1 formula that expresses that x is a strong limit cardinal modulo ZFC. ⊣

(18) Remind yourself of Mostowski’s Collapsing Theorem (Theorem 4 in § 5 of Imre Leader’s notes for the
course Logic & Set Theory). Let κ be inaccessible. In Lecture V, we constructed a countable, non-
transitive M ⊆ Vκ such that M ≼ Vκ. Use Mostowski’s Collapsing Theorem to show that there is
a transitive set M∗ ∈ Vκ such that (M∗,∈) is isomorphic to (M,∈). In particular, M∗ ⊆ Vκ is a
transitive submodel of ZFC.

Solution. We ought to show that ∈ is set-like, well-founded, and extensional on M . Clearly, ∈ is
set-like. Furthermore, if S ⊆ M ⊆ Vκ is non-empty, then it has an ∈-minimal element in Vκ by
the well-foundedness of (Vκ,∈). This will also be minimal in M . Finally, extensionality also follows
trivially: if x = y then {z ∈ M : z ∈ x} = {z ∈ M : z ∈ y}. Now Vκ |= ZFC, so in particular it proves
the Mostowski collapse lemma. So Vκ |= ”(M,∈) is order-isomorphic to a unique transitive (M∗,∈)”.
Being an isomorphism and a transitive set are both absolute between transitive classes, so (M∗,∈) is
indeed a transitive set in Vκ that models ZFC and is isomorphic to (M,∈). ⊣

(19) Using the model M∗ from 18 explain why Π1 formulas are not in general absolute between transitive
models of ZFC.

[Hint. What is Ord ∩M∗? If κ ∈ M∗ is such that M∗ |= “κ is a cardinal”, can κ be a real cardinal?]



Solution. Consider the Π1 formula ϕ(x) saying that x is an uncountable ordinal. Since M∗ |= ZFC,
we may find some α ∈M∗ such that M∗ |= ϕ(α). However it is clear that α is not really uncountable:
α ∈ M∗ implies α ⊆ M∗ by transitivity, and M∗ is countable. So V ̸|= ϕ(α), and hence ϕ(x) is not
absolute between M∗ and V. ⊣

(20) Presentation Example. Show that the smallest Ulam cardinal is a measurable cardinal.

Solution. Let κ be the least Ulam cardinal, and let U be a σ-complete non-principal ultrafilter on κ.
Suppose that U is not κ-complete. We may therefore find a partition {Xα : α < γ} of κ with γ < κ,
such that Xα ̸∈ U for all α < γ. Define a surjection f : κ → γ by f(x) = α if and only if x ∈ Xα.
This induces a ”pushforward” ultrafilter F on γ given by Z ∈ F if and only if f−1(Z) ∈ U . This is
trivially σ-complete as f−1(

⋂
i∈ω Si) =

⋂
i∈ω f

−1(Si), while it is also non-principal. Indeed, if {α} ∈ F
for some α < γ then f−1(α) = Xα ∈ U , contradiction. Hence γ < κ is Ulam, contradicting minimality.
It follows that U is κ-complete, and so κ is measurable. ⊣

(21) Suppose µ : κ→ 2 and U ⊆ ℘(κ); define µU (A) := 1 if A ∈ U and Uµ := {A ; µ(A) = 1}. Show that if
U is a κ-complete nontrivial ultrafilter on κ, then µU is a κ-additive nontrivial measure on κ and if µ
is a κ-additive nontrivial measure on κ, then Uµ is a κ-complete nontrivial ultrafilter on κ.

Solution. It is easy to see that the non-triviality of the measure is equivalent to the non-principality of
the ultrafilter, so we only need to consider additivity and completeness. Suppose that U is κ-complete.
Let (Xα)α<γ be a collection of disjoint subsets of κ with γ < κ. Suppose that

⋃
α<γ Xα ∈ U . Then

exactly one Xα must be in U : if none is then their union cannot be in U , while if more than one are
then their intersection is ∅ and is in U , which is a contradiction. Furthermore, if

⋃
α<γ Xα ̸∈ U then

no Xα is in U by upwards closure. It follows that µU (
⋃

α<γ Xα) =
∑

α<γ µU (Xα).

Conversely, assume that µ is a κ-additive measure. Suppose for a contradiction that Uµ is not κ-
complete. Find γ < κ and a partition (Xα)α<γ of κ withXα ̸∈ Uµ for all α < γ. Then

∑
α<γ µ(Xα) = 0,

while µ(
⋃

α<γ Xα) = µ(κ) = 1, contradicting κ-additivity. ⊣

(22) Let κ be regular. Show that U = {X ⊆ κ : |κ\X| < κ} is a κ-complete filter that is not an ultrafilter.

Solution. Clearly κ ∈ U , ∅ ̸∈ U . If Y ⊃ X ∈ U , then |κ \ Y | ≤ |κ \X| < κ so Y ∈ U . If X1, X2 ∈ U ,
then κ \ (X1 ∩X2) = (κ \X1) ∪ (κ \X2), so (X1 ∩X2) ∈ U . Hence, this is a filter. If (Xα)α<γ is a
collection of subsets of κ with γ < κ, then κ\ (

⋂
α<γ Xα) =

⋃
α<γ(κ\Xα). But |

⋃
α<γ(κ\Xα)| ≠ κ by

regularity, so κ\(
⋂

α<γ Xα) ∈ U . It follows that U is κ-complete. Furthermore this is non-principal, as
no singleton is in U . This implies that ZFC could not possibly prove that this is an ultrafilter. Indeed,
if it did then ZFC would prove the existence of a measurable cardinal, and hence of an inaccessible
cardinal. In fact, it would hold that every regular cardinal is measurable which of course is nonsense.
More directly, we see that X = {α < κ : α is a limit ordinal or 0} and Y = {α < κ : α is a successor
ordinal} are such that X = κ\Y and |X| = |Y | = κ so none of these is in U , i.e. U is not an ultrafilter.

⊣

(23) Using the Axiom of Choice, show that every filter can be extended to an ultrafilter (preserving non-
triviality).

Solution. Let F be a non-principal filter on a set X. Consider S = {U ⊆ P(X) : U is a non-principal
filter and F ⊆ U}, which is a set by separation. Let P = (Xi)i∈I be a chain (w.r.t inclusion) in S,
and consider

⋃
P . This is still a filter on X. Indeed X ∈

⋃
P , while if ∅ ∈

⋃
P then ∅ ∈ Xi for

some i, contradiction. It is clearly upwards closed, while if A,B ∈
⋃
P then we may find some i such

that A,B ∈ Xi and so A ∩ B ∈ Xi ⊆
⋃
P . Since {a} ∈

⋃
P implies {a} ∈ Xi for some i, this is a

non-principal filter extending F so
⋃
P ∈ S. By Zorn’s lemma, S therefore has a maximal element U .

This is an ultrafilter: Suppose that A ⊆ X is such that A ̸∈ U and X \A ̸∈ U , and take some Y ∈ U . If
Y ∩A = ∅, then Y ⊆ X so X \A ∈ U , contradiction. So the set {Z ⊆ X : Z ⊇ Y ∩A or Z ⊇ Y, Y ∈ U}
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is an ultrafilter extending U , contradicting its maximality. Note that U ∈ S so by definition it is
non-principal. ⊣

Remark. Clearly this construction cannot preserve κ-completeness. Otherwise, the filter in Q? can be
extended to a κ-complete non-principal ultrafilter and so ZFC would prove the existence of measurable
cardinals. Essentially we end up putting so many subsets in F to make it an ultrafilter that completeness
eventually breaks.

(24) A model (M,E) |= ZFC is called an ω-model if its natural numbers are standard, i.e., if there is an
isomorphism between ({x ∈M ; M |= “x is a natural number”}, E) and (ω,∈). Let M be an ω-model;
without loss of generality, we can assume that ω ⊆ M . We encode formulas of first-order logic by
natural numbers, writing ⌜φ⌝ for the number coding φ. Let Φ be a set of first-order sentences such
that Φ exists in M , i.e., there is some x ∈M such that φ ∈ Φ if and only if M |= ⌜φ⌝ ∈ x. Show that
Φ is consistent if and only if M |= “Φ is consistent”. Deduce that if ZFC+Cons(ZFC) is consistent, it
cannot show the existence of an ω-model.

Solution. Call a formula φ in the language of set theory arithmetical if there is a formula ψ in the
language of arithmetic such that ZFC proves that φ is equivalent to “N |= ψ” (the latter refers to the
natural formula expressing this in the language of set theory). If M is an ω-model, then arithmetical
formulae are absolute for M (via the isomorphism).

Suppose Φ is inconsistent. This means that there is some finite Φ0 := {φ0, ..., φn} ⊆ Φ which is
inconsistent. The statement “there is a proof of 0 = 1 from φ0, ..., φn” is an arithmetical statement,
therefore absolute for M , so true in M . But then M |=“Φ is inconsistent”.

Suppose M |=“Φ is inconsistent”. This means that in M , there is a finite sequence of formulas that
constitutes a proof of 0 = 1 with assumptions from Φ. Since M is an ω-model, the length of this
sequence is a natural number and there is a finite subset of Φ0 := {φ0, ..., φn} ⊆ Φ such that this
object is (the M -representation of) a Φ0-proof of 0 = 1. But now again, “there is a proof of 0 = 1
from φ0, ..., φn” is an arithmetical statement, therefore absolute for M , so Φ0 is really inconsistent.

For the second part of the question, let Φ be a computable theory, i.e., a theory such that there is a
fixed register machine R that enumerates all of its formulae. The machine R is encoded by a natural
number, so M can refer to it. Therefore ⌜φ⌝ ∈ Φ is described by an arithmetical formula (“there is a
natural number n and a finite sequence of computational snapshots according to the machine R such
that the sequence starts with input n and halts at the end with output ⌜φ⌝”) and thus absolute for M .
Use Separation in M to obtain the set of all natural numbers satisfying that formula; by absoluteness,
this describes Φ, so in the sense defined in the example statement, “Φ exists in M”.

Since ZFC is a computable theory, the above argument shows it “exists in M” and thus we can apply
the first part to ZFC. Now assume towards a contradiction that Φ := ZFC + Cons(ZFC) implies the
existence of an ω-model M |= ZFC. Work in an arbitrary model of Φ. Since ZFC is computable,
we can apply the first part and get that M |= Cons(ZFC), so M |= Φ. But since we were working
in an arbitrary model of Φ, this means that we proved Cons(Φ) from Φ. By Gödel’s Incompleteness
Theorem, this implies that Φ is inconsistent. ⊣

(25) Find an Lω1ω formula that characterises the ω-models of ZFC.

Solution. The ω-models of ZFC are precisely those models M of ZFC such that

M |= ∀x(x ∈ ω →
∨
n∈ω

x = succn(∅))

. ⊣

(26) Give a concrete uncountable collection of Lω1ω sentences that is countably satisfiable, but not satisfi-
able.
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Solution. Consider the Lω1ω language with constant symbols {cn, c0n, c1n : n ∈ ω}. Let S be the set of
sentences

{
∧
n∈ω

(c0n ̸= c1n),
∧
n∈ω

(cn = c0n ∨ cn = c1n)} ∪ {
∨
n∈ω

(cn ̸= cf(n)n ) : f : ω → 2}

This is clearly countably satisfiable but not satisfiable. ⊣

(27) If κ is a strongly compact cardinal, the Keisler-Tarski theorem makes a statement about κ-complete
filters on arbitrary sets X. What does the proof show if κ is only assumed to be weakly compact?
Why is that useless?

[Hint. If λ < κ, which filters on λ can be κ-complete?]

Solution. The Keisler-Tarski theorem says that if κ is strongly compact, and F is a filter on an
arbitrary set X, then this can be extended to a κ-complete ultrafilter on X. The proof of this argues
by considering an Lκκ language with 2|X| non-logical symbols. If κ is only assumed to be weakly
compact, then it must be that 2|X| ≤ κ, and so |X| < κ since it is a strong limit. However, if λ < κ
then all κ-complete ultrafilters on λ will be principal. Indeed, λ =

⋃
α<λ{α}, and so by κ-completeness

exactly one singleton {α} must be in the ultrafilter. All principal ultrafilter are trivially κ-complete
for all cardinals κ, so this does not really tell us anything. ⊣

(28) In a reflection argument, we used Keisler’s Theorem on the Extension Property to show that below
each weakly compact cardinal is an inaccessible by reflecting the property ”κ is inaccessible”. Clearly,
it cannot be possible to reflect the property ”κ is weakly compact”. Explain where the argument breaks
down if you try to prove this.

Solution. The reflection of the property ”κ is inaccessible” relied on the fact that this can be expressed
by a Π1 formula modulo ZFC, and is therefore downwards absolute. Under our definition of weak
compactness, this is clearly not the case. One can show that being weakly compact can be expressed
by a Π2 formula modulo ZFC using an equivalent characterisation of weak compactness in terms of
a Ramsey-like property. In fact, being weakly compact could not possibly be a downwards absolute
property. If it was then taking κ to be the least weakly compact cardinal, we may use the Keisler
Extension Property to find some transitive (X,∈) ≽ (Vκ,∈) such that κ ∈ X. Then X |= WC, so
Vκ |= WC. If λ < κ witnesses this, then using the Ramsey-like characterisation of weak compactness
one may show that λ is actually a weakly compact cardinal, contradiction. ⊣

(29) Let ∞IC be the statement “for all ordinals α, there is κ > α such that κ is inaccessible”. Show that if
κ is weakly compact, then Vκ |= ∞IC.

Solution. Firstly note that modifying the above argument by taking κ to be the (n+1)-th inaccessible
cardinal, we see that Vκ |= nIC and Vκ ̸|= ∞IC so ZFC+ nIC does not imply ∞IC.

Now, let κ be weakly compact. We shall show that the set of inaccessibles below κ is unbounded
in κ. Indeed, fix some α < κ. Then using the Keisler Extension Property, find some transitive
(X,∈) ≽ (Vκ,∈) such that κ ∈ X. Clearly X |= α < κ so X |= ∃λ(λ is inaccessible and α < λ). By
elementarity Vκ |= ∃λ(λ is inaccessible and α < λ), and so there is some λ < κ which is actually an
inaccessible and α < λ. It follows that Vκ |= ∞IC. ⊣

(30) Presentation Example. Suppose that κ is a measurable cardinal and U is a κ-complete ultrafilter on κ,
and π : Vκ → Ult(Vκ, U) is the ultrapower embedding, i.e., π(x) := [cx]U . By Loś’s Theorem, π is an
elementary embedding. Show that {π(x) ; x ∈ Vκ} is isomorphic to Vκ and transitive in Ult(Vκ, U),
i.e., if z ∈ π(x), then there is y ∈ Vκ such that z = π(y).

Conclude that the order type of the ordinals of Ult(Vκ, U) is not equal to κ and that therefore
Ult(Vκ, U) is not isomorphic to Vκ.
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Solution. It is evident that the elementary embedding π is injective, and is therefore an isomorphism
between Vκ and π[Vκ]. Furthermore, π[Vκ] is transitive in Ult(Vκ, U). Indeed, if z ∈ π(x) then
{α < κ : z(α) ∈ x} ∈ U . Since x ∈ Vκ, |x| = λ < κ so fix some enumeration x = {yβ : β < λ}.
Consider the sets Xβ = {α < κ : z(α) = yβ}. Since

⋃
β<λXβ = {α < κ : z(α) ∈ x} ∈ U , this implies

by κ-completeness that Xβ ∈ U for some β < λ. Hence z = π(yβ).

By transitivity, it is clear that Onπ[Vκ] ⊆ OnUlt(Vκ,U). We now show that the order type of the
ordinals of Ult(Vκ, U) is not equal to κ by constructing a ”non-standard” ordinal in the ultrapower.
Consider the embedding f : κ ↪→ Vκ. Since Vκ |= f(α) ∈ On for all α < κ, Ult(Vκ, U) |= [f ] ∈ On.
Furthermore, for each β < κ, the set {α < κ : f(α) > β} is in U as its complement has size < κ.

Hence Ult(Vκ, U) |= [f ] > π(β) for each β < κ. Since π is an isomorphism Onπ[Vκ] = {π(α) : α < κ},
while [f ] ∈ OnUlt(Vκ,U) \Onπ[Vκ]. Hence, Ult(Vκ, U) is not isomorphic to π[Vκ], and is therefore not
isomorphic to Vκ.

⊣
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