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(1) If o is an ordinal, the order topology on « is the topology generated by the basic open sets Lg := {7 €
a; v < B} and Rg := {v € a; v > B}. Check that every successor ordinal 8+ 1 € « is an isolated
point in this topology and determine the neighbourhoods of a limit ordinal A\ € a.

Let a and 8 be ordinals with their respective order topologies. Show that an increasing function
f : a — pis continuous if and only if for all limit ordinals A € «, we have that f(A) = U{f(7); v < A}.

Solution. Recall from basic topology that a map f : X — Y is continuous if and only if f is continuous
at all z € X, i.e. for all V. C Y open with f(z) € V, there is an open U C X containing = with
fIU] € V. Now if « is an ordinal with the order topology, then the isolated points of alpha are
precisely the successor ordinals v < « (and zero), since {v} = (lJ7,7+ 1). On the other hand limit
points of « are limit ordinals < a. Therefore any function f : o — 8 between ordinals is by definition
continuous at successor ordinals and zero, and is continuous if and only if it is continuous at limit
ordinals.

By the assumption on f, we know that f(A) 2 U{f(7); v < A}. So, let A < a be a limit and suppose
that f(A) = U{f(7) : v < A}. TV C Bis open with f(\) € V, then w.lg V = (, f(A)] with p < f(N).
Find v < A with u < f(y) < f(A). Then (v, A] is open, and f[(v,A]] C (i, f(A)]. Conversely, suppose
that f is continuous. Let x < f(X), and consider the open set (z, f(A)]. By continuity, there is some
open U C « containing A with f[U] C (z, f(A)]. So, there is some v < A such that f[(v, \]] C (z, f(A)].

Therefore x < f(y+1), and so z € U{f(7) : v < A} -
(2) In Lecture I, we stated that all normal ordinal operations have arbitrarily large fixed points. Prove
that claim.

Solution. Let F': Ord — Ord be a normal ordinal operation, and let A be an arbitrary ordinal. Define
by recursion on w: Ag := A, A1 := F(A4,). Take A = |J{A, : n < w} by Replacement and Union.
Note that by definition each A, is an ordinal, hence A is a union of a set of ordinals and therefore
also an ordinal. We argue that F(A) = A. Indeed, if A = () then F(§) = . If A is a successor
ordinal then A = A, for some ny < w, so F(A) = F(Ap,) = Any+1 = A. If Ais a limit ordinal
then f(A) = U{f(a) : a < A} = U{f(An) : n < w} = A. So A is a fixed point of F. Furthermore
A=Ay C A, so A can be chosen to be arbitrarily large. -

(3) We call the axiom system that contains all axioms of ZFC except for the Axiom of Infinity FST (for
“Finite Set Theory”). Consider the property I(a) defined by “« is a limit ordinal and « # 0”. Show
that the property I is a large cardinal property for FST in the following sense:

If FST is consistent, then FST does not prove the existence of a cardinal with property I.

Solution. Suppose that FST F Jal(«). Since FST + Fal(«) b Infinity, we know by modus ponens
that FST F Infinity, and hence FST F ZFC.

However ZFC  Con(FST). Indeed, we argue that V,, is a model of FST. All but the Replacement
scheme can be easily verified. For this, observe that if F : V, — V,, is a function and x € V,,,
then for all y € z, rank(F(y)) < w. Then C := {rank(F(y)) : v € z} C w is a finite set, so



rank(F[z]) < supC + 1 < w. Therefore F[z] € V. Therefore FST  Con(FST), which contradicts
Godel’s Second Incompleteness Theorem. .

Let A and p be limit ordinals and f : u — X be a function. The function f is called cofinal in A if
ran(f) is a cofinal subset of A\. Show that

cf(A\) = min{y, ; there is a cofinal function with domain u}

= min{p; there is a strictly increasing cofinal function with domain u}.

Conclude that cf(cf(N)) = cf(N).

Solution. For the first equality, note that if C' C \ is cofinal, then the map f : |C| — X given by the
composition of a bijection between C and |C| and inclusion is cofinal. Conversely, if there is a < cf()\)
with f: a — X cofinal, then f[a] C A is cofinal and |f[a]| < |a|] < c¢f(X), contradiction.

The second equality follows from the fact that given f : cf(A) — A cofinal, there is some g : cf(\) — A
strictly increasing and cofinal. Indeed, define g : cf(\) — X by 8+ sups5(f(0) + B). This is clearly
strictly increasing and also maps into A: if A = g(8) for some 8 < cf(A) then A = J;_5(f(0) + B),
contradicting that 8 < cf()). Finally, it is easy to see that g is cofinal: if & < A then 38 < cf(A) such
that a < f(8) <g(B+1) <A

Clearly, cf(cf(a)) < cf(a). For the other direction, pick f : cf(cf(a)) — cf() and g : c¢f(a) — o strictly
increasing and cofinal. Their composition is a strictly increasing and cofinal map cf(cf(a)) — «a, and
so cf(a) < cf(cf(a)) by the above.

Presentation Example. Let x be regular, n be any ordinal and f : k — n a strictly increasing function.
Define A := [Jran(f). Show that cf(A\) = k. Conclude that cf(Ry) = cf(}).

Solution. Fix some cofinal map ¢ : c¢f(A) — A. Consider the map h : cf(A) — & given by mapping
a < cf(A) to the least 8 < k such that g(a) < f(8). This is well-defined and cofinal. Indeed, if
v < K, then find some a < cf(\) with g(a) > f(v). Since f is strictly increasing, the least 5 with
f(v) < g(a) < f(B) must be strictly greater than «y, so h(a) > 7. It follows that c¢f(\) = k by regularity
of k.

Finally, we show that cf(Ry) = cf(\). Take a strictly increasing cofinal map cf(A) — A and compose
it with @ — N,. Then we have a strictly increasing cofinal map f : ¢f(A) — Ry, and Xy = [Jran(f).
Since cf(A) is regular, we use the same argument to deduce that cf(Xy) = cf(A).

4|

We said that a cardinal x satisfies second order replacement if for all G : V,, — V, and z € V, the
set Glz] :={G(y); y € x} € V. In Lecture II, we showed that if  is inaccessible, it satisfies second
order replacement. Show the converse. (This is known as Shepherdson’s Theorem.)

Solution. We ought to show that x is a strongly limit and regular. Suppose for a contradiction that
there is a < & such that 2* > k. Then, there is a surjection P(a) — k. Since a < k and & is a limit
ordinal, P(«) € V.. Therefore f[P(«)] = k € V, which is a contradiction.

Furthermore, if f : & — & is cofinal with @ < k then since a € V;, fla] € V,; by SOR. But then
U fla] € V., so there is some v < & with supgc,, f(8) < 7, contradicting the cofinality of f. =

Let x be a regular cardinal. If x is any set, we write tcl(z) for the transitive closure of x. Define
H, := {z; |tcl(z)| < x}. Show that V,, = H,, if and only if  is inaccessible.

Solution. We first show that H, C V. for all infinite ordinals k. We adapt the proof from Kenneth
Kunen’s Set Theory, p. 131. Let x € H,. We shall argue that rank(z) < x. Indeed, let ¢ = tcl(z)
and S = {rank(y) : y € t} C Ord. Let a be the first ordinal not in S. By definition, this implies that
aCS. Ifa#S,let 8 be the least element of S larger than «, and fix some y € z with rank(y) = 5. By
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transitivity of ¢, rank(z) < « for all z € y, and so rank(y) = J{rank(z) +1: z € y} < «, contradiction.
So S = a. Therefore |t| < Kk = «a < K, and so rank(z) < a < k.

Now, assuming that x is inaccessible we have that © € V, =— =z € V, for some a < k. By

transitivity, tcl(z) C V, and therefore [tcl(z)] < |V,| = o < & since k is inaccessible. Therefore
x € H,. Conversely, suppose that V,, = H,. Then if o < k, P(«a) € V,, since & is a limit ordinal, and
therefore 2% < |tcl(P(«))| < k. So & is a strong limit, and therefore inaccessible. o

Suppose that (M, €) and (N, €) are models of ZFC with M C N and M is transitive in N. Show that
the notions of “function”, “injection”, “surjection”, “bijection”, and “cofinal” are absolute between M
and N.

Solution. We shall show that all of the above are expressible by Aq formulae modulo ZFC. We leave
out some of the details but they can be easily checked.

o fun(f,a,b):=(f Caxbd)AV(zx€a)d(z € flx e2)AV(x €a)lV(z € /IV(Z € fllx € zNz €2 —

z=2")
o inj(f,a,b) :=fun(f,a,b) AV(z € a)V(z' € a)V(y € b)({x,{z,y}} € fA {2 {2/,y}} € f >z =2)
o sur(f,a,b) :=fun(f,a,b) AV(y € b)3(z € a)({z,{z,y}} € f)
e bij(f,a,b) :=inj(f,a,b) Asur(f,a,bd)
e cof(f,a,b) :=fun(f,a,b) A(a € On) A (b€ On) AV (y € b)I(z € a)(y € f(x))
4
Let k be inaccessible and A < . Show that A is inaccessible if and only if V,; = “X is inaccessible”.

Solution. Observe that "\ is a cardinal/regular/strong limit” are all II; sentences modulo ZFC, i.e.
ZFC proves that they are equivalent to formulas of the form VZ¢(A, Z) where all quantifiers in ¢ are
bounded. All such universal properties are ”"downwards absolute”, and so if they hold in V they must
also hold in any V,, that models ZFC. In particular, if A < k and they are both inaccessible, then
V.. =7\ is inaccessible”.

Conversely, assume that V, = 7\ is inaccessible” and suppose for a contradiction that A is not
inaccessible. There are three possibilities with very similar arguments. If A\ is not a cardinal, then
there is some a < A and a bijection f: o — A. Since @ < A < k we have that f C a x A C V,9, and
so f € Vi3 C V,, witnesses that A is not a cardinal in V;. If A is not regular, then there is a < A
and a cofinal map f : o — A. We argue similarly that f € V, and witnesses that A\ is not regular
according to V. Finally, if f is not a strong limit, then there is o < A with 2* > . But & is a strong
limit and 2% < &, so 2% € V; showing that A cannot be a strong limit in V. —

Show that every worldly cardinal is a limit cardinal.

[Hint. Use the fact that the proof of Hartogs’s Lemma implies that there is a surjection from the power set of xk onto
xt. If needed, refresh your memory of that proof.]

Solution. We saw in the lectures that k is a cardinal, so it remains to show that it is a limit. Let o < &
be a cardinal. Then V, |= "3 ordinal 8 > « such that there is no surjection o« — 37. Let § € V,
witness this. Suppose for a contradiction that f : a — 3 is a surjection. Then f C a x 8 C Vo, so
f € Vg3 C 'V, as k is a limit ordinal. Since being a surjection is absolute, this is a contradiction.
Hence there is really no surjection between o and 3, and so a™ < 8 € V. It follows that a™ < k. -

Prove the Tarski-Vaught Test for being an elementary substructure as cited in Lecture III.

Solution. We ought to show that for L-structures M C N, M < N if and only if for all formulas ¢(x, 3)
and m € M, N |= Jz¢(x,m) implies that there is a € M such that N = ¢(a,m). Clearly this holds if
the embedding is elementary.
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Conversely, we show by induction on the structure of ¢ that for all formulas ¢(g) and for all m € M,
M E ¢(m) <= N | ¢(m).

We know that atomic formulas are preserved, while it is also easy to check ¢ = =) and ¢ = ¢ A x.
Suppose that ¢(g) = Jx(z,y). By induction, we may assume that that ¢(x,y) is preserved. So, if
M = ¢(m) then there is a € M such that M = ¢(a,m) and so by induction N = ¢(a,m). If on the
other hand N = ¢(m) then by the assumption there is some a € M such that N = ¢(a,m) and by
induction 1 is preserved, i.e. M = 1 (a,m). Therefore the claim follows, and so M < N. 4

Prove Tarski’s Chain Lemma as formulated in Lecture IV.

Solution. Let (Mj);cr be an elementary chain indexed by some total order (L, <). Consider M :=
Uier Mi. We shall prove that VI € L,M; < M, ie. foralll € L and m € M;, M; = ¢(m) <=
M [ ¢(m) by induction on the structure of ¢. The proof is essentially exactly the same as with the
Tarski-Vaught test, only now the induction is for all [ € L. What changes is the backwards direction of
the existential case. Indeed, if ¢(7) = Jz(x,y) and M | ¢(m) for m € M, then there is some some
a € M such that M = ¢(a,m). By definition, we can find some I, > [ € L such that a € M;,. By
induction M;, = ¢ (a,m), so in particular M;, = ¢(m). But by assumption M; < M;, so M; = ¢(m),
which concludes the proof. a

Let 8 be any ordinal and R C V. An ordinal @ < f is called an R-Lévy ordinal for 8 if (V,, €, RNV,,)
is an elementary substructure of (Vg, €, R). Show that no a can be an R-Lévy ordinal for all R C V.

Solution. Take R = V,, and suppose that (V,, €, V,) < (Vg,€,Vy,). Since Vg |= Jz(—R(z)), then
so does V. But this is a contradiction. =

Presentation Example. Show the following theorem due to Lévy: an ordinal k is an inaccessible cardinal
if and only if for each R C 'V there is an R-Lévy ordinal for .

Solution. Suppose that k is inaccessible, and let R C V. Define by recursion on w: ag = 0, apy1 =
the least 8 > «,, such that whenever yi,...,yx € V,, and (V, €, R) | Jzo(x,y1,...,yk) for some
formula ¢, there is an zy € Vg such that (V,€,R) | é(x0,41,---,Yx). Since k is inaccessible,
|Va,,| < k and so an41 < k. Finally take a = |J,, on,. Using Tarski-Vaught, we may easily verify
that (Va, €, RN V,) < (Vk, €, R). Note that by starting with any arbitrary ag = A < k, the above
argument shows that {a : (V,, €, RNV,) = (Vi, €, R)} is in fact unbounded in x.

For the converse, notice first that x must necessarily be infinite. If £ is not regular, then there is 8 < k
and f: 8 — & cofinal. Let R = {8} U f and find a < & such that (V,, €, RNV,) =< (Vi, €, R). Since
[ is the only ordinal in R, we see that § € V, by elementarity. But then there is some v < 8 in V,
with @ < f(7) < k and f(vy) € V4, contradiction.

Also, if x is not a strong limit then we can find 8 < x with 2% > k. Find a surjection g : P(8) — &
and take R = {8 + 1} U g. By assumption, there is @ < & such that (V,,€,RNV,) < (Vi, €, R).
Since 8 + 1 € V,, it follows that P(5) € V, and so again we can find some z € P(B) such that
g(x) = a € V, contradiction. -



