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(1) If α is an ordinal, the order topology on α is the topology generated by the basic open sets Lβ := {γ ∈
α ; γ < β} and Rβ := {γ ∈ α ; γ > β}. Check that every successor ordinal β + 1 ∈ α is an isolated
point in this topology and determine the neighbourhoods of a limit ordinal λ ∈ α.

Let α and β be ordinals with their respective order topologies. Show that an increasing function
f : α→ β is continuous if and only if for all limit ordinals λ ∈ α, we have that f(λ) =

⋃
{f(γ) ; γ < λ}.

Solution. Recall from basic topology that a map f : X → Y is continuous if and only if f is continuous
at all x ∈ X, i.e. for all V ⊆ Y open with f(x) ∈ V , there is an open U ⊆ X containing x with
f [U ] ⊆ V . Now if α is an ordinal with the order topology, then the isolated points of alpha are
precisely the successor ordinals γ < α (and zero), since {γ} = (

⋃
γ, γ + 1). On the other hand limit

points of α are limit ordinals < α. Therefore any function f : α→ β between ordinals is by definition
continuous at successor ordinals and zero, and is continuous if and only if it is continuous at limit
ordinals.

By the assumption on f , we know that f(λ) ⊇
⋃
{f(γ) ; γ < λ}. So, let λ < α be a limit and suppose

that f(λ) =
⋃
{f(γ) : γ < λ}. If V ⊆ β is open with f(λ) ∈ V , then w.l.g V = (µ, f(λ)] with µ < f(λ).

Find γ < λ with µ < f(γ) < f(λ). Then (γ, λ] is open, and f [(γ, λ]] ⊆ (µ, f(λ)]. Conversely, suppose
that f is continuous. Let x < f(λ), and consider the open set (x, f(λ)]. By continuity, there is some
open U ⊆ α containing λ with f [U ] ⊆ (x, f(λ)]. So, there is some γ < λ such that f [(γ, λ]] ⊆ (x, f(λ)].
Therefore x < f(γ + 1), and so x ∈

⋃
{f(γ) : γ < λ}. ⊣

(2) In Lecture I, we stated that all normal ordinal operations have arbitrarily large fixed points. Prove
that claim.

Solution. Let F : Ord → Ord be a normal ordinal operation, and let λ be an arbitrary ordinal. Define
by recursion on ω: A0 := λ, An+1 := F (An). Take A =

⋃
{An : n < ω} by Replacement and Union.

Note that by definition each An is an ordinal, hence A is a union of a set of ordinals and therefore
also an ordinal. We argue that F (A) = A. Indeed, if A = ∅ then F (∅) = ∅. If A is a successor
ordinal then A = An0

for some n0 < ω, so F (A) = F (An0
) = An0+1 = A. If A is a limit ordinal

then f(A) =
⋃
{f(a) : a < A} =

⋃
{f(An) : n < ω} = A. So A is a fixed point of F . Furthermore

λ = A0 ⊆ A, so A can be chosen to be arbitrarily large. ⊣

(3) We call the axiom system that contains all axioms of ZFC except for the Axiom of Infinity FST (for
“Finite Set Theory”). Consider the property I(α) defined by “α is a limit ordinal and α ̸= 0”. Show
that the property I is a large cardinal property for FST in the following sense:

If FST is consistent, then FST does not prove the existence of a cardinal with property I.

Solution. Suppose that FST ⊢ ∃αI(α). Since FST + ∃αI(α) ⊢ Infinity, we know by modus ponens
that FST ⊢ Infinity, and hence FST ⊢ ZFC.

However ZFC ⊢ Con(FST). Indeed, we argue that Vω is a model of FST. All but the Replacement
scheme can be easily verified. For this, observe that if F : Vω → Vω is a function and x ∈ Vω,
then for all y ∈ x, rank(F (y)) < ω. Then C := {rank(F (y)) : y ∈ x} ⊆ ω is a finite set, so



rank(F [x]) ≤ supC + 1 < ω. Therefore F [x] ∈ Vω. Therefore FST ⊢ Con(FST), which contradicts
Gödel’s Second Incompleteness Theorem. ⊣

(4) Let λ and µ be limit ordinals and f : µ → λ be a function. The function f is called cofinal in λ if
ran(f) is a cofinal subset of λ. Show that

cf(λ) = min{µ, ; there is a cofinal function with domain µ}
= min{µ ; there is a strictly increasing cofinal function with domain µ}.

Conclude that cf(cf(λ)) = cf(λ).

Solution. For the first equality, note that if C ⊆ λ is cofinal, then the map f : |C| → λ given by the
composition of a bijection between C and |C| and inclusion is cofinal. Conversely, if there is α < cf(λ)
with f : α→ λ cofinal, then f [a] ⊆ λ is cofinal and |f [a]| ≤ |a| < cf(λ), contradiction.

The second equality follows from the fact that given f : cf(λ) → λ cofinal, there is some g : cf(λ) → λ
strictly increasing and cofinal. Indeed, define g : cf(λ) → λ by β 7→ supδ<β(f(δ) + β). This is clearly
strictly increasing and also maps into λ: if λ = g(β) for some β < cf(λ) then λ =

⋃
δ<β(f(δ) + β),

contradicting that β < cf(λ). Finally, it is easy to see that g is cofinal: if α < λ then ∃β < cf(λ) such
that a < f(β) ≤ g(β + 1) < λ.

Clearly, cf(cf(α)) ≤ cf(α). For the other direction, pick f : cf(cf(α)) → cf(α) and g : cf(α) → α strictly
increasing and cofinal. Their composition is a strictly increasing and cofinal map cf(cf(α)) → α, and
so cf(α) ≤ cf(cf(α)) by the above. ⊣

(5) Presentation Example. Let κ be regular, η be any ordinal and f : κ → η a strictly increasing function.
Define λ :=

⋃
ran(f). Show that cf(λ) = κ. Conclude that cf(ℵλ) = cf(λ).

Solution. Fix some cofinal map g : cf(λ) → λ. Consider the map h : cf(λ) → κ given by mapping
α < cf(λ) to the least β < κ such that g(α) < f(β). This is well-defined and cofinal. Indeed, if
γ < κ, then find some α < cf(λ) with g(α) > f(γ). Since f is strictly increasing, the least β with
f(γ) < g(α) < f(β) must be strictly greater than γ, so h(α) > γ. It follows that cf(λ) = κ by regularity
of κ.

Finally, we show that cf(ℵλ) = cf(λ). Take a strictly increasing cofinal map cf(λ) → λ and compose
it with α 7→ ℵα. Then we have a strictly increasing cofinal map f : cf(λ) → ℵλ, and ℵλ =

⋃
ran(f).

Since cf(λ) is regular, we use the same argument to deduce that cf(ℵλ) = cf(λ).

⊣

(6) We said that a cardinal κ satisfies second order replacement if for all G : Vκ → Vκ and x ∈ Vκ, the
set G[x] := {G(y) ; y ∈ x} ∈ Vκ. In Lecture II, we showed that if κ is inaccessible, it satisfies second
order replacement. Show the converse. (This is known as Shepherdson’s Theorem.)

Solution. We ought to show that κ is a strongly limit and regular. Suppose for a contradiction that
there is α < κ such that 2α ≥ κ. Then, there is a surjection P(α) → κ. Since α < κ and κ is a limit
ordinal, P(α) ∈ Vκ. Therefore f [P(α)] = κ ∈ Vκ, which is a contradiction.

Furthermore, if f : α → κ is cofinal with α < κ then since α ∈ Vκ, f [α] ∈ Vκ by SOR. But then⋃
f [α] ∈ Vκ, so there is some γ < κ with supβ∈α f(β) < γ, contradicting the cofinality of f . ⊣

(7) Let κ be a regular cardinal. If x is any set, we write tcl(x) for the transitive closure of x. Define
Hκ := {x ; |tcl(x)| < κ}. Show that Vκ = Hκ if and only if κ is inaccessible.

Solution. We first show that Hκ ⊆ Vκ for all infinite ordinals κ. We adapt the proof from Kenneth
Kunen’s Set Theory, p. 131. Let x ∈ Hκ. We shall argue that rank(x) < κ. Indeed, let t = tcl(x)
and S = {rank(y) : y ∈ t} ⊆ Ord. Let α be the first ordinal not in S. By definition, this implies that
α ⊆ S. If α ̸= S, let β be the least element of S larger than α, and fix some y ∈ x with rank(y) = β. By
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transitivity of t, rank(z) < α for all z ∈ y, and so rank(y) =
⋃
{rank(z)+1 : z ∈ y} ≤ α, contradiction.

So S = α. Therefore |t| < κ =⇒ α < κ, and so rank(x) ≤ α < κ.

Now, assuming that κ is inaccessible we have that x ∈ Vκ =⇒ x ∈ Vα for some α < κ. By
transitivity, tcl(x) ⊆ Vα and therefore |tcl(x)| ≤ |Vα| = α < κ since κ is inaccessible. Therefore
x ∈ Hκ. Conversely, suppose that Vκ = Hκ. Then if α < κ, P(α) ∈ Vκ since κ is a limit ordinal, and
therefore 2α ≤ |tcl(P(α))| < κ. So κ is a strong limit, and therefore inaccessible. ⊣

(8) Suppose that (M,∈) and (N,∈) are models of ZFC with M ⊆ N and M is transitive in N . Show that
the notions of “function”, “injection”, “surjection”, “bijection”, and “cofinal” are absolute between M
and N .

Solution. We shall show that all of the above are expressible by ∆0 formulae modulo ZFC. We leave
out some of the details but they can be easily checked.

• fun(f, a, b) := (f ⊆ a× b)∧∀(x ∈ a)∃(z ∈ f)(x ∈ z)∧∀(x ∈ a)∀(z ∈ f)∀(z′ ∈ f)(x ∈ z ∧ x ∈ z′ →
z = z′)

• inj(f, a, b) := fun(f, a, b) ∧ ∀(x ∈ a)∀(x′ ∈ a)∀(y ∈ b)({x, {x, y}} ∈ f ∧ {x′, {x′, y}} ∈ f → x = x′)

• sur(f, a, b) := fun(f, a, b) ∧ ∀(y ∈ b)∃(x ∈ a)({x, {x, y}} ∈ f)

• bij(f, a, b) := inj(f, a, b) ∧ sur(f, a, b)

• cof(f, a, b) := fun(f, a, b) ∧ (a ∈ On) ∧ (b ∈ On) ∧ ∀(y ∈ b)∃(x ∈ a)(y ∈ f(x))

⊣

(9) Let κ be inaccessible and λ < κ. Show that λ is inaccessible if and only if Vκ |= “λ is inaccessible”.

Solution. Observe that ”λ is a cardinal/regular/strong limit” are all Π1 sentences modulo ZFC, i.e.
ZFC proves that they are equivalent to formulas of the form ∀x̄ϕ(λ, x̄) where all quantifiers in ϕ are
bounded. All such universal properties are ”downwards absolute”, and so if they hold in V they must
also hold in any Vκ that models ZFC. In particular, if λ < κ and they are both inaccessible, then
Vκ |= ”λ is inaccessible”.

Conversely, assume that Vκ |= ”λ is inaccessible” and suppose for a contradiction that λ is not
inaccessible. There are three possibilities with very similar arguments. If λ is not a cardinal, then
there is some α < λ and a bijection f : α→ λ. Since α < λ < κ we have that f ⊆ α× λ ⊆ Vλ+2, and
so f ∈ Vλ+3 ⊆ Vκ witnesses that λ is not a cardinal in Vκ. If λ is not regular, then there is α < λ
and a cofinal map f : α → λ. We argue similarly that f ∈ Vκ and witnesses that λ is not regular
according to Vκ. Finally, if f is not a strong limit, then there is α < λ with 2α ≥ λ. But κ is a strong
limit and 2α < κ, so 2α ∈ Vκ showing that λ cannot be a strong limit in Vκ. ⊣

(10) Show that every worldly cardinal is a limit cardinal.

[Hint. Use the fact that the proof of Hartogs’s Lemma implies that there is a surjection from the power set of κ onto
κ+. If needed, refresh your memory of that proof.]

Solution. We saw in the lectures that κ is a cardinal, so it remains to show that it is a limit. Let α < κ
be a cardinal. Then Vκ |= ”∃ ordinal β > α such that there is no surjection α → β”. Let β ∈ Vκ

witness this. Suppose for a contradiction that f : α → β is a surjection. Then f ⊆ α × β ⊆ Vβ+2, so
f ∈ Vβ+3 ⊆ Vκ as κ is a limit ordinal. Since being a surjection is absolute, this is a contradiction.
Hence there is really no surjection between α and β, and so α+ ≤ β ∈ Vκ. It follows that α

+ < κ. ⊣

(11) Prove the Tarski-Vaught Test for being an elementary substructure as cited in Lecture III.

Solution. We ought to show that for L-structuresM ⊆ N ,M ≼ N if and only if for all formulas ϕ(x, ȳ)
and m̄ ∈M , N |= ∃xϕ(x, m̄) implies that there is a ∈M such that N |= ϕ(a, m̄). Clearly this holds if
the embedding is elementary.
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Conversely, we show by induction on the structure of ϕ that for all formulas ϕ(ȳ) and for all m̄ ∈M ,

M |= ϕ(m̄) ⇐⇒ N |= ϕ(m̄).

We know that atomic formulas are preserved, while it is also easy to check ϕ = ¬ψ and ϕ = ψ ∧ χ.
Suppose that ϕ(ȳ) = ∃xψ(x, ȳ). By induction, we may assume that that ψ(x, ȳ) is preserved. So, if
M |= ϕ(m̄) then there is a ∈ M such that M |= ψ(a, m̄) and so by induction N |= ψ(a, m̄). If on the
other hand N |= ϕ(m̄) then by the assumption there is some a ∈ M such that N |= ψ(a, m̄) and by
induction ψ is preserved, i.e. M |= ψ(a, m̄). Therefore the claim follows, and so M ≼ N . ⊣

(12) Prove Tarski’s Chain Lemma as formulated in Lecture IV.

Solution. Let (Ml)l∈L be an elementary chain indexed by some total order (L,<). Consider M :=⋃
l∈LMl. We shall prove that ∀l ∈ L,Ml ≼ M , i.e. for all l ∈ L and m̄ ∈ Ml,Ml |= ϕ(m̄) ⇐⇒

M |= ϕ(m̄) by induction on the structure of ϕ. The proof is essentially exactly the same as with the
Tarski-Vaught test, only now the induction is for all l ∈ L. What changes is the backwards direction of
the existential case. Indeed, if ϕ(ȳ) = ∃xψ(x, ȳ) and M |= ϕ(m̄) for m̄ ∈ Ml, then there is some some
a ∈ M such that M |= ψ(a, m̄). By definition, we can find some la > l ∈ L such that a ∈ Mla . By
induction Mla |= ψ(a, m̄), so in particular Mla |= ϕ(m̄). But by assumption Ml ≼Mla so Ml |= ϕ(m̄),
which concludes the proof. ⊣

(13) Let β be any ordinal and R ⊆ Vβ . An ordinal α < β is called an R-Lévy ordinal for β if (Vα,∈, R∩Vα)
is an elementary substructure of (Vβ ,∈, R). Show that no α can be an R-Lévy ordinal for all R ⊆ Vβ .

Solution. Take R = Vα, and suppose that (Vα,∈,Vα) ≼ (Vβ ,∈,Vα). Since Vβ |= ∃x(¬R(x)), then
so does Vα. But this is a contradiction. ⊣

(14) Presentation Example. Show the following theorem due to Lévy: an ordinal κ is an inaccessible cardinal
if and only if for each R ⊆ Vκ there is an R-Lévy ordinal for κ.

Solution. Suppose that κ is inaccessible, and let R ⊆ Vκ. Define by recursion on ω: α0 = ∅, αn+1 =
the least β ≥ αn such that whenever y1, . . . , yk ∈ Vαn and (Vκ,∈, R) |= ∃xϕ(x, y1, . . . , yk) for some
formula ϕ, there is an x0 ∈ Vβ such that (Vκ,∈, R) |= ϕ(x0, y1, . . . , yk). Since κ is inaccessible,
|Vαn

| < κ and so αn+1 < κ. Finally take α =
⋃

ω αn. Using Tarski-Vaught, we may easily verify
that (Vα,∈, R ∩Vα) ≼ (Vκ,∈, R). Note that by starting with any arbitrary α0 = λ < κ, the above
argument shows that {α : (Vα,∈, R ∩Vα) ≼ (Vκ,∈, R)} is in fact unbounded in κ.

For the converse, notice first that κ must necessarily be infinite. If κ is not regular, then there is β < κ
and f : β → κ cofinal. Let R = {β} ∪ f and find α < κ such that (Vα,∈, R ∩Vα) ≼ (Vκ,∈, R). Since
β is the only ordinal in R, we see that β ∈ Vα by elementarity. But then there is some γ < β in Vα

with α < f(γ) < κ and f(γ) ∈ Vα, contradiction.

Also, if κ is not a strong limit then we can find β < κ with 2β ≥ κ. Find a surjection g : P(β) → κ
and take R = {β + 1} ∪ g. By assumption, there is α < κ such that (Vα,∈, R ∩ Vα) ≼ (Vκ,∈, R).
Since β + 1 ∈ Vα, it follows that P(β) ∈ Vα and so again we can find some x ∈ P(β) such that
g(x) = α ∈ Vα, contradiction. ⊣
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