\[k \rightarrow (k^2)^2 \quad : \quad k \text{ is weakly compact} \]

For all \(c : (k^2)^2 \rightarrow 2 \) there is \(H \) with \(\text{lh}(H) = k \) s.t. \(c^{\text{lh}(H)^2} \) is constant.

FACTS:
1. Every weakly compact cardinal is inaccessible.
2. Every measurable cardinal is weakly compact.

(1) is on Example Sheet #3 (29)

We're going to see a weak version of (1):

Proposition (29): \(\omega_1 \) is not weakly compact.

Proof: By AC, we have s.o.c. \(C \subseteq WF \) with \(|C| = \omega_1 \). Write

\[
C = \prod_{\alpha < \omega_1} \alpha < \omega_3
\]

with \(\|x\alpha\| = \alpha \).

Consider the lexicographic order on \(\omega_1 \):
If \((y_a : a < x)\) is any increasing or decreasing sequence in the order \(\leq\), then I can isolate the elements of the sequence by the basic open sets:

\[
y_a \uparrow u = y_{a+1} \uparrow u \quad y_a(u) < y_{a+1}(u) \quad [\geq]
\]

Take \(s_a := y_a \uparrow u+1\). There \([s_a] \ni y_a\) but for no other element \(y_a\), we have \(y_a \in [s_a]\).

Since there are only countably many \(b.o.s.\), we see that \(y\) must be a club ordinal.

Define \(c : [\alpha, \beta] \rightarrow 2\) by:

\[
c(\alpha, \beta) := \begin{cases} 1 & \text{if } \langle \alpha, \beta \rangle \text{ agree on } \alpha \cap \beta \\ 0 & \text{otherwise} \end{cases}
\]
If \(H \) has cod. \(\Delta_1 \) and is \(c \)-homogeneous for colour 1, then it defines an \(\leq \)-increasing seq. in \(C \); otherwise, if it's \(c \)-homogeneous for colour 0, then it defines a \(\leq \)-decreasing seq. in \(C \). Both are contradictions.

\[\text{q.e.d.} \]

Now (2): Every measurable codedical is \(\nabla \)-weakly compact.

Remark. Example (30) gives a proof of without additional assumptions.

We're going to see a slightly different proof that makes use of another.

Def. If \(X_\alpha \subseteq K \) are subsets of \(K \) for \(\alpha \in \kappa \), we call the set
\[\Delta X_\alpha := \{ \overline{\{ \overline{\{ \overline{x \in X_\alpha} \}} \} : \alpha \in \kappa, x \in \bigcap_{\alpha < \kappa} X_\alpha \} \} \]
the diagonal intersection.
Def: An ultrafilter U is called **normal** if it is closed under diagonal intersections.

Prop: If U is an ultrafilter such that all elements of U have size κ and U is normal, then U is κ-complete.

Proof: Let X_α ($\alpha < \kappa$) be in U. We want to show: $\bigcap_{\alpha < \kappa} X_\alpha \in U$.

Define $Y_\alpha := \left\{ x : x \in X_\alpha \text{ and } \alpha \geq \lambda \right\}$. Every $Y_\alpha \in U$, so $\bigtriangleup Y_\alpha \in U$ by normality.

Since $\lambda < \kappa$, we have $\lambda \notin U$, so $\kappa \leq \lambda$.

Let $Y := \bigcap_{\alpha < \kappa} Y_\alpha$. Then $Y \geq \lambda$.

$Y \subset \bigcap_{\alpha < \kappa} Y_\alpha \subset \bigcap_{\alpha < \kappa} X_\alpha = \bigcup_{\alpha < \kappa} X_\alpha \in U$.
Fact (2FC).
If k is measurable, then there is a normal ultrafilter on k.
[Proof skipped.]

Theorem (2FC). Measurable cardinals are weakly compact, nonprincipal.
Let U be a normal k-complete ultrafilter on k. Let $c : [k]^2 \to 2$
be any 2-colouring.
If $x \in k$, we write
\[
c_x(\beta) := \begin{cases} c(x, \beta) & x \neq \beta \\ 0 & x = \beta \end{cases}
\]

Then $x_0 := \{ \beta : c_x(\beta) = 0 \}$
\[
x_1 := \{ \beta : c_x(\beta) = 1 \}
\]
There is $i_x \in 0, 1, 3$ s.t. $x_{i_x} \in U$.
$I_0 := \{ x \in k : i_x = 0 \}$ either $I_0 \cap U$ or $I_1 \in U$.
$I_1 := \{ x \in k : i_x = 1 \}$ w.l.o.g. $I_0 \cap U$.
Define
\[X_\alpha = \int x^\alpha \quad \text{if } \alpha \in I_0 \]
\[\triangle X_\alpha = 0 \text{ otherwise} \]

By assumption, all \(X_\alpha \in U \).

Thus
\[\Delta X_\alpha \in U \]

And \(H := I_0 \cap \bigcap_{\alpha < k} \Delta X_\alpha \in U \)

If I can show that \(H \) is \(c \)-homogeneous for colour 0, I am done [since \(|H| = k \)].

Let \(\alpha < \beta \), \(\alpha, \beta \in H \).

Then
\[x_\alpha^0 = x_\alpha, \quad x_\beta^0 = x_\beta \]

\[\beta \in \bigcap_{\delta \leq \beta} X_{\delta} \leq X_\alpha \]

\[c_\alpha(\beta) = 0 \]

\[c(\alpha, \beta) = 0 \quad \text{q.e.d.} \]
Tree Representations

we proved C closed \iff \text{there is } T \text{ tree on } \omega \\
\text{s.t. } C = [T]

A analytic \iff \text{there is } T \text{ tree on } \omega \times \omega \\
\text{s.t. } A = p[T]

We also saw that there representation of type I are important for
determinacy proofs:

GALE-STEWART (even w/o AC)

If \(T \) is a tree on a wellordered
set \(X \), where \(A \subseteq X \omega \) with
\(A = [T] \) is determined.

Q. Can we lift a determinacy requirement
for tree repr. of type I to

type II?

Def. Let \(\kappa \) be a cardinal and \(T \)
be a tree on \(\kappa \times \omega \) [note that
\(\kappa \times \omega \) is wellordered]. We define
\(p[T] := p' \times \omega \omega \) \iff \(\exists y \in \kappa \omega \) \((y, x) \in [T] \).
Remark: If $k = \omega_0$, then this is exactly the analytic sets [follows from our tree representation of type II].

Def: If k is a cardinal and $A \subseteq \omega$, we say A is k-Souslin if there is a tree T on $k \times \omega$ s.t. $A = p[T]$.

By Remark, being ω_0-Souslin \iff analytic.

Hope: Prove a Gale-Stewart-like theorem for k-Souslin sets.

Auxiliary Games

If A is k-Souslin, say $A = p[T]$ for some T on $k \times \omega$, we define the auxiliary game $G_{\omega \times (CT)}$ as follows:

I. $s_0, x_0, x_1, x_2, x_3, x_4, \ldots$ \quad I wins if $(y_1, x) \in [T]$

II. $y_0, x_1, x_2, x_3, x_4, \ldots$ \quad II wins if $(y_1, x) \not\in [T]$.
Relationship between $G(A)$ and $G_{aux}(T)$.

Since σ was winning $(y_{1x_0})_e[T]$. Suppose player I wins $G_{aux}(T)$ by σ, then the above diagram constructs a w.s. σ^* that is winning in $G(A)$. What about the other direction? If pl. II wins in $G_{aux}(T)$...?