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Examples Classes.
#1. Friday 12 February 2021, 3:30–5pm, Zoom.
#2: Friday 26 February 2021, 3:30–5pm, Zoom.
#3: Friday 12 March 2021, 3:30–5pm, Zoom.
#4: Friday 30 April 2021, 3:30–5pm, Zoom.

Remote student interaction & presentations. In the new world of online university teaching, many
of us miss the informal discussions about mathematics that we used to have at the CMS. Chatting before
or after lectures, listening to someone else speaking at the blackboard, chance conversations during lunch or
dinner are all missing in our current university experience.

In an attempt to encourage the creation of virtual informal discussions, we ask you to arrange mathe-
matical discussions about the material of Infinite Games in pairs: please arrange virtual meetings with one
of the other students taking this course and work on Examples 11 & 12 together, preparing a brief online
presentation of these examples for the first Examples Class. (If you do not know how to find a partner for
these meetings, do not hesitate to contact us by e-mail and we shall arrange some pairs.)

A positive side effect is that these meetings allow you to discuss online presentations of mathematics with
your fellow students. We expect that online presentations will be a crucial skill for many of us in the future
and getting experience with them is very important.

Mathematical online presentations would be done either by sharing the screen (e.g., the Zoom whiteboard
or some other writing software) and writing on it (e.g., with a pen on a tablet) or by writing on a piece of
paper with a camera set up to point to the paper (i.e., a visualiser). Your pair meetings can and should be
about both the mathematical content of the two examples and about the practicalities of the presentation.

The Examples Class will then start with student presentations of Examples 11 & 12. However, active
student presentation of examples is not restricted to these two examples: we greatly encourage if students
present their solutions (or partial solutions, solution ideas, failed attempts of solutions etc.) to all examples
during the Examples Class.

Marking. On the moodle page, there is an Assignment called Example Sheet #1 in the section Example
Sheets & Classes. You can submit your work as a single pdf file there. Feel free to submit all of your work;
examples 6 & 10 will be marked. Please submit your work by Thursday noon (i.e., 11 February 2021,
12pm GMT).

Notation. In the following, M is the set of possible moves, M<ω the set of positions, and Mω the set of
plays. If s ∈M<ω and x ∈Mω, we write sx for the concatenation of s and x, i.e., sx(n) := s(n) for n < |s|
and sx(n) := x(n− |s|) for n ≥ |s|. If m ∈M , we write mx for the concatenation of the length one sequence
with element m and the infinite sequence x.

(1) If x ∈ Mω, we defined strategies σx and τx as the strategies for player I or player II, respectively, that
play x independently of what the other player is doing. These strategies were called blindfolded. Show
that a strategy σ is a winning strategy for player I in the game G(A) if and only if it wins against all
blindfolded strategies for player II (i.e., σ ∗ τx ∈ A for all x ∈Mω).



(2) If A,B ⊆Mω are disjoint, we define the winning conditions for the game Gdraw(A,B) as follows: if the
play of the game is x ∈Mω, then player I wins if x ∈ A, player II wins if x ∈ B, and otherwise the game
is a draw. A strategy σ is winning or (at least) drawing in Gdraw(A,B) for player I if for all strategies
τ , we have that σ ∗ τ ∈ A or σ ∗ τ /∈ B, respectively. A strategy τ is winning or (at least) drawing in
Gdraw(A,B) for player II if for all strategies σ, we have that σ ∗ τ ∈ B or σ ∗ τ /∈ A, respectively.

Show that if A and Mω\B are determined, then at least one of the two players has a drawing strategy
in Gdraw(A,B) and that both players have a drawing strategy if and only if none of them has a winning
strategy.

(3) Let µ : M<ω → {I, II} be a function; we call it a move function. Let A ⊆ Mω and consider the game
Gµ(A) defined as follows: if the game has reached position s ∈ M<ω, then player µ(s) makes the next
move and if x ∈ Mω is the run of the game, then player I wins if and only if x ∈ A. Write Gµ(A) as a
game with rules G(A;T ) as defined in Lecture II (pp. 7 & 8 of the lecture notes).

(4) Let X and Y be sets. By ACY (X) we denote the axiom of choice for Y -parametrised families of subsets
of X, i.e., the statement that for each family {Ay ; y ∈ Y } of non-empty subsets of X there is a choice
function c : Y → X with c(y) ∈ Ay for all y ∈ Y .

Show (in ZF without the axiom of choice) that ACω(R) implies that ℵ1 is a regular cardinal.

(5) Let X be a set and A ⊆ X × X. A partial function f : X → X is called a uniformisation of A if for
each x ∈ X, if there is some y ∈ X such that (x, y) ∈ A, then x ∈ dom(f) and for all x ∈ dom(f), we
have that (x, f(x)) ∈ A. We say that X satisfies the uniformisation principle if each subset A ⊆ X ×X
has a uniformisation.

Show (in ZF without the axiom of choice) that ACX(X) implies that X has the uniformisation principle.

(6) [Marked example] Show (in ZF without the axiom of choice) that the determinacy of all finite games on
a set of moves M implies ACM (M).

(7) Show (in ZF without the axiom of choice) that the statement “every quasi-determined subset of Mω is
determined” is equivalent to ACM<ω (M).

(8) Show that a tree Q is a quasi-strategic tree for player I if and only if it is the union of strategic trees for
player I (and similarly for player II). Discuss how much of the axiom of choice your proof needed. Is it
possible that the proof works in ZF?

(9) Construct a set A ⊆Mω such that player I has a winning strategy in both G(A) and G(Mω\A).

(10) [Marked example] If A ⊆ Mω and m ∈ M , let Am := {x ∈ Mω ; mx ∈ A}. Assume that for every
m ∈M , the set Am is determined. Prove that Mω\A is determined.

(11) [Presentation example] Assume AC and show that

(a) there is a determined set whose complement is not determined,

(b) there are determined sets whose intersection is not determined, and

(c) there are determined sets whose union is not determined.

(12) [Presentation example] In the proof of the Gale-Stewart theorem, the winning strategy for player I was
“stay on positions with your label” and the winning strategy for player II was “stay on positions with
your label and reduce the age of the position”. Show that, in general, “stay on positions with your label”
is not enough for player II in the Gale-Stewart proof, but that if the payoff set A is clopen (i.e., both A
and its complement are open), then it is enough.

(13) Let A ⊆ ωω be the difference of two open sets (i.e., there are open sets P and Q such that A = P\Q).
Show that A is determined.
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