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The material of the twenty-fourth lecture is non-examinable.

In previous lectures, we have proved the following results under AD:

(1) AD implies ACω(R) (Twenty-first Lecture);
(2) ACω(R) implies that ℵ1 is regular (Example # 6 on Example Sheet # 1);
(3) AD implies that every ultrafilter is ℵ1-complete (Twenty-first & Twenty-second Lecture);
(4) AD implies that there is a non-principal, ℵ1-complete ultrafilter on ℵ1 (Twenty-third lecture);
(5) AD implies that there is a normal, non-principal, ℵ1-complete ultrafilter on ℵ1, i.e., ℵ1 is measurable

(Example # 54 on Example Sheet # 4).

Some of our proofs depended on unproved results from the research areas of inner model theory about
the cardinal structure in models of the form L(x). In the following, we shall discuss further structural
consequences for cardinals under the assumption of AD. Many of these results use non-trivial results from
both inner model theory and the theory of forcing, so we can only give proofs for a few results and otherwise
proof sketches, proof ideas, or pointers to the literature.

The Axiom of Dependent Choice DC is the statement: for any set X and any binary relation on X with
the property ∀x∃y(xR y) there is a function f : ω → X such that for all n ∈ ω, we have that f(n)Rf(n+1);
the Axiom of Countable Choice ACω is the statement that for all sets X, ACω(X) holds.

Proposition 1. DC implies ACω.

P r o o f. Let A := {An ; n ∈ ω} be a family of non-empty subsets of X, without loss of generality,
pairwise disjoint. Define R ⊆ X ×X by xR y if and only if there is some n such that x ∈ An and y ∈ An+1.
The sequence given by DC is a choice function for A. q.e.d

Proposition 2. ACω implies that cf(κ+) > ℵ0 for all cardinals κ.

P r o o f. This is just an inspection of the usual regularity proof of κ+ under AC: suppose κ+ =
⋃
n∈ω κn

for some κn < κ+. Then for each n, the set of surjections from κ onto κn is non-empty, so by ACω, we can
pick one, say, πn : κ� κn. Now (α, n) 7→ πn(α) is a surjection from κ× ℵ0 onto κ+. Contradiction! q.e.d

§ 1. What does AD say about ℵ2? In our analysis of ℵ1, we used the fact that there is a close connection
between elements of ℵ1 (i.e., countable ordinals) and elements of Baire space. Elements of ℵ2 are in general
coded by functions from ℵ1 to 2, but these can be captured by elements of Baire space as follows:

Lemma 3 (AD; Solovay). Every function u : ℵ1 → 2 there is an x ∈ ωω such that u ∈ L(x).

[This is an argument combining a Solovay game similar to those from Examples # 33 & # 54 and a forcing
argument; for details, cf. [3, Theorem 28.5]. ]

Note that Lemma 3 is a special case of a more general phenomenon known as the Moschovakis Coding
Lemma: AD implies that if there is a surjection from ωω to some cardinal κ, then there is a surjection from
ωω to the set κκ of functions from κ to κ [3, Theorem 28.15].

We can now use Lemma 3 to lift the proof of (4) to ℵ2:

Theorem 4 (AD; Solovay). The cardinal ℵ2 has an ℵ2-complete non-principal ultrafilter. In particular, ℵ2
is regular.



P r o o f. In the proof of (4), we used the Martin measure MD on DD := ωω/≡D. We used the function

f : DD → ℵ1 : x 7→ ℵL(x)
1 to get a non-principal ultrafilter on ℵ1.

Using the same idea, but the function g : DD → ℵ2 mapping x to the L(x)-cardinal successor of ℵV
1 (of

course, one needs to prove that this is an ordinal < ℵ2), we get an ultrafilter U := {A ⊆ ℵ2 ; g−1[A] ∈ MD}.
The ultrafilter U is non-principal by Lemma 3: suppose that {α} ∈ U , then α < ℵ2, so find a function
u : ℵ1 → 2 encoding α as a subset of ℵ1 and find x ∈ ωω such that u ∈ L(x). But then for each z ≥D x,
g(x) > α, so g−1({α}) cannot contain a cone.

The ℵ1-completeness of U comes for free from (3), but in order to prove that it is ℵ2-complete, we need
to use another combination of a Solovay game and a forcing argument very similar to the proof of Lemma 1
[3, Lemma 28.6]. q.e.d

§ 2. The projective ordinals. Just under the assumption of PD (the determinacy of all projective sets),
a rather extensive structure theory for the projective sets had been developed in the late 1960s and early
1970s by Addison, Martin, Moschovakis, and Kechris. The central concepts here are structural properties
of pointclasses known as the prewellordering property, the scale property, the uniformisation property, the
reduction property, and the separation property. The uniformisation property is a definable version of the
uniformisation principle from Example # 7 on Example Sheet # 1 and the scale property is a definable
version of being Suslin. The main results in this projective structure theory are the so-called Periodicity
Theorems under the assumption of ZFC+PD: the first Periodicity Theorem (Addison-Martin-Moschovakis)
states that the prewellordering property propagates from the pointclass Σ1

n to Π1
n+1 [3, Theorem 29.13] and

the second Periodicity Theorem (Moschovakis) states the same for the scale property [3, Theorem 30.8]. As
a consequence of the second Periodicity Theorem, we get tree representations for all projective sets and can
even say something about the size of the trees representing them:

A relation ≤ ⊆ ωω × ωω is called a prewellorder if it is reflexive, transitive, total, and well-founded. As
usual, if ≤ is a prewellorder, then ≡, defined by x ≡ y : ⇐⇒ x ≤ y and y ≤ x, is an equivalence relation
and ≤ defines a wellorder on ωω/≡. The length of ≤, denoted by ‖≤‖, is the order type of (ωω/≡,≤). We
then define the nth projective ordinal to be

δ1n := sup{α ; there is a ∆1
n prewellorder ≤ with ‖≤‖ = α}.

Proposition 5 (ZF). δ11 = ℵ1.

P r o o f. If ≤ is a ∆1
1 prewellorder, then the set of codes of ≤ is a Σ1

1 subset of WF, thus by the
Boundedness Lemma, bounded by α < ℵ1. But that means that ‖≤‖ ≤ α < ℵ1. q.e.d

The second Periodity Theorem implies that

Corollary 6 (DC + PD; cf., e.g., [3, Exercise 30.12]). Every Π1
n-set is δ1n-Suslin.

Note that in light of Proposition 5, Shoenfield’s Theorem (from the Nineteenth Lecture) is the case n = 1
of this result. We end this section by giving to general results about Suslin sets from descriptive set theory:

Proposition 7 (ZFC; Martin). If A is ℵn-Suslin, then it is the union of ℵn many Borel sets.

P r o o f. We have already proved the case n = 1 as our general analysis of Π1
1 sets. We shall show the

result by induction on n. Suppose A = p[T ] is ℵn-Suslin, i.e., T is a tree on ℵn ×ω. For each γ < ℵn, define

T γ := T ∩ (γ × ω)<ω.

We claim that A =
⋃
γ<ℵn p[T

γ ]. The inclusion from right to left is obvious, so let x ∈ A, i.e., there is some

u : ω → ℵn such that (u, x) ∈ [T ]. But then let γ := sup{u(n) ; n ∈ ω} < ℵn (by regularity of ℵn) and
observe that u : ω → γ, so (u, x) ∈ [T γ ].

Clearly, p[T γ ] is γ-Suslin, but this means that it is ℵn−1-Suslin. We use the induction hypothesis to get
that it is a union of ℵn−1 many Borel sets. But now A is a union of ℵn · ℵn−1 = ℵn many Borel sets. q.e.d

Theorem 8 (Kunen-Martin Theorem; DC; [4, Theorem 3.21]). If ≤ is a prewellorder on ωω that is κ-Suslin,
then ‖≤‖ < κ+.
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Note that the Kunen-Martin Theorem in combination with Shoenfield’s theorem implies that δ12 ≤ ℵ2.

§ 3. The projective ordinals under AD+DC. Since Corollary 6 is proved in the theory ZF+DC+PD, it is
true in models of AD+DC, so it makes sense to ask what we know about the projective ordinals under these
conditions. Using (a more specific statement of) the mentioned Moschovakis Coding Lemma, one obtains [4,
Theorem 2.5 & 4.1]:

Proposition 9 (AD + DC; Moschovakis). All projective ordinals are distinct regular cardinals.

In combination with Theorem 8, this allows us to determine δ12 = ℵ2. The analysis behind Proposition
9 gives us more information about the projective ordinals: the odd projective ordinals δ12n+1 are always
successors of cardinals of cofinality ℵ0 [4, Theorem 3.20] and the even projective ordinals are their successors,
i.e., δ12n+2 = (δ12n+1)+ [4, Theorem 3.22]. In light of Proposition 2, this implies that δ13 ≥ ℵω+1 (since ℵω is
the smallest cardinal of cofinality ℵ0 bigger than ℵ2).

The general analysis of the projective ordinals under AD was a joint effort of many authors that took
several years: Kunen and Martin had shown in the early 1970s that all projective ordinals are measurable
[4, Theorem 5.1] and Martin’s analysis of Σ1

3 sets had shows that the mentioned lower bound for δ13 is sharp:
δ13 = ℵω+1 and δ14 = ℵω+2.

The calculation of the projective ordinals in general was done by Jackson in 1985 and required a much
more careful look at all cardinals: all cardinals between δ11 and δ13, i.e., the ℵn for n ≥ 2 are represented
as iterated ultrapowers of ℵ1 with its normal ultrafilter C (cf. Example # 54 on Example Sheet # 4); this
pattern transfers to arbitrary odd projective ordinals, so every cardinal between δ12n+1 and δ12n+3 can be

described as an iterated ultrapower of δ12n+1 with an ultrafilter derived from the normal measures on it. As

a consequence, the calculation of δ12n+3 can be reduced to the analysis of the normal measures on δ12n+1

which in turn can be reduced to counting the number of regular cardinals below δ12n+1.
Jackson’s results can be summarised in the following theorem:

Theorem 10 (AD+DC; Jackson). Define E(0) := 1 and E(n+ 1) := ωE(n). There are 2n + 1 many regular
cardinals below δ12n+3 and δ12n+3 = ℵE(2n+1)+1.

[ This is a famous theorem that is nowhere published in full. Jackson published a book in which he calculated
δ15 in detail [1]. The general argument is inductive: once δ12n+1 is determined and has 2n−1 regular cardinals
below it, consider the normal measures

Cκδ1
2n+1

:= {A ⊆ δ12n+1 ; there is a club set C such that C ∩ {α ; cf(α) = κ} ⊆ A}

and show that every cardinal between δ12n+1 and δ12n+3 is an ultrapower by an ultrafilter expressible in terms
of these measures and operations ⊕ and ⊗. As a consequence, the order type of the set of cardinals between
δ12n+1 and δ12n+3 is the order type of the corresponding ordinal algebra. For details of the combinatorics of
calculation, cf. [2]. ]

§ 4. Consequences for the ZFC-context. The results of § 3 may come across as rather esoteric: models
of AD are models in which the majority of successor cardinals are singular with some weirdly complicated
pattern of cofinalities. As Kanamori puts it: “It is a brave new world that has these properties! [3, p. 389]”.
However, the fact that large cardinals imply the existence of models of AD allows us to use this even in the
ZFC-context.

In the Twenty-first Lecture, we discussed the Martin-Steel theorem that obtains PD from large cardinals.
The following theorem by Woodin is a strengthening of it. Here L(R) is the smallest transitive model of ZF
that contains the set R of all reals.

Theorem 11 (ZFC; Woodin; [3, Theorem 32.9]). If there are infinitely many Woodin cardinals and a
measurable above them all, then L(R) |= AD + DC.

We use this to get the following theorem about the cardinality of projective sets. Compare this with
Example # 29 from Example Sheet # 3: an uncountable Π1

1 set can have either cardinality ℵ1 or 2ℵ0 .
Observe also that the result does not mention infinite games or determinacy at all, but is a statement about

3



sizes of definable sets under the assumption of the existence of large cardinals: the infinite games are hidden
in the proof.

Theorem 12. If there are infinitely many Woodin cardinals and a measurable cardinal above them all and
if A is a projective set, then the cardinality of A is either 2ℵ0 or < ℵω.

P r o o f. First of all, by the Martin-Steel theorem, the assumption implies PD, so the set A is δ1n-Suslin
for some n by Corollary 6.

By Theorem 11, we know that L(R) |= AD + DC, so the theory of § 3 applies. Thus, we know that in
L(R), δ12n+3 is the (2n + 1)st regular cardinal. Since regularity of cardinals is downwards absolute and in
the ZFC-universe, ℵ2n+1 is the (2n + 1)st regular cardinal, we know that

(*) (δ12n+3)L(R) ≤ ℵ2n+1.

Since L(R) contains all reals, all first-order statements about R are absolute between L(R) and the universe.
In particular, L(R) computes all projective ordinals correctly, so

(†) (δ12n+3)L(R) = δ12n+3.

But (*) and (†) together mean that A is ℵn-Suslin for some n < ω. By Proposition 7, we know that this
means that A is a union of ℵn many Borel sets. But Borel sets have the perfect set property, so if none of
them has cardinality 2ℵ0 , then all of them are countable, but then |A| ≤ ℵn. q.e.d
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