

Example Sheet #4

Examples Classes.

#1. Monday 3 February 2020, 3:30-5pm, MR14.

- #2: Monday 17 February 2020, 5-6:30pm, MR14.
- #3: Monday 2 March 2020, 3:30-5pm, MR14.

#4: Friday 1 May 2020, 1:30–3pm, MR4.

Revision: Friday 22 May 2020, 1:30–3pm, MR5.

You hand in your work at the beginning of the Examples Class.

- 42. In the proof of Shoenfield's Theorem (cf. the pdf file in the description of the *Nineteenth Lecture* website), we used "order preserving codes". Rewrite the proof to use Kleene-Brouwer codes instead.
- 43. Suppose that $M \subseteq \mathbf{V}$ is a transitive model such that M contains all elements of ω^{ω} . Show that if $\mathbf{V} \models \mathsf{ZF} + \mathsf{AD}$, then $M \models \mathsf{ZF} + \mathsf{AD}$ and $\aleph_1^M = \aleph_1$.
- 44. Show in ZF that AD_2 is equivalent to AD_{ω} .
- 45. Show in ZF that AD implies that there is no injection from \aleph_1 into ω^{ω} .
- 46. Assume ZF + "there is an injection from \aleph_1 into ω^{ω} ". Show that ω^{ω} is a disjoint union of \aleph_1 many Π_3^0 sets.
- 47. Let X be a non-empty set. A set $C \subseteq X^{\omega}$ is *closed* if there is a tree T on X such that C = [T]. Show in ZF, that "for every closed $C \subseteq X^{\omega}$, the game G(C) is determined" is equivalent to $\mathsf{AC}_X(X)$.
- 48. Let \mathcal{D} be the collection of determined sets. Show in ZF that AD is equivalent to the statement " \mathcal{D} is a σ -algebra".
- 49. In the lectures, we introduced the relation \leq_{D} on $\mathcal{R} = (\mathbf{V}_{\omega+1}, \in)$ defined by $x \leq_{\mathrm{D}} y$ if any only if there is a formula φ in two free variables such that " $\mathcal{R} \models \varphi(v, w)$ " is absolute for transitive models of set theory and

$$z \in x \iff \mathcal{R} \models \varphi(z, y).$$

Show that \leq_{D} is a partial preorder (i.e., reflexive and transitive).

- 50. Let U be an \aleph_1 -complete ultrafilter on X and $F: X \to \omega^{\omega}$. Show that F is constant on a set in U.
- 51. Consider the set $\mathcal{D}_{\rm D} := \omega^{\omega} / \equiv_{\rm D}$ and show that AD implies that there is no injection from $\mathcal{D}_{\rm D}$ into ω^{ω} .
- 52. In this example, use the mentioned properties of Gödel's real model family $\mathbf{L} = \{\mathbf{L}(x); x \in \omega^{\omega}\}$. In general, \aleph_1 is a cardinal in each of the $\mathbf{L}(x)$, so for each x there is some α_x such that $\aleph_1 = \aleph_{\alpha_x}^{\mathbf{L}(x)}$. Assume that \aleph_1 is inaccessible by reals for \mathbf{L} and determine α_x .
- 53. A subset $C \subseteq \aleph_1$ is called *closed* if for each $\gamma \in \aleph_1$, if $C \cap \gamma$ is unbounded in γ , then $\gamma \in C$; it is called *unbounded* if for each $\alpha \in \aleph_1$, there is a $\gamma \in C$ such that $\alpha < \gamma$; it is called *club* if it is closed and unbounded. The set $\mathcal{C} := \{A \subseteq \aleph_1; \text{ there is a club set } C \text{ with } C \subseteq A\}$ is called the *club filter* on \aleph_1 .

Show that it is a non-principal, normal filter on \aleph_1 .

54. If $A \subseteq \aleph_1$, we define the following Solovay game $G_S(A)$: players I and II play in alternation; player I produces $x \in \omega^{\omega}$ and player II produces $y \in \omega^{\omega}$. Consider the functions $\{(x)_n; n \in \omega\} \cup \{(y)_n; n \in \omega\} \subseteq \omega^{\omega}$. If one of them is not in WO, then player II loses if the least m such that $(y)_m \notin WO$ is smaller than the least m such that $(x)_m \notin WO$; otherwise player I loses. If all of them are in WO, define

 $\gamma := \sup(\{ \| (x)_n \| \, ; \, n \in \omega \} \cup \{ \| (y)_n \| \, ; \, n \in \omega \})$

and say that player I wins if $\gamma \in A$.

Prove: if player I has a winning strategy in $G_S(A)$, then $A \in C$; player I has a winning strategy in $G_S(A)$, then $\aleph_1 \setminus A \in C$.

Deduce that AD implies that \aleph_1 is measurable.