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42. In the proof of Shoenfield’s Theorem (cf. the pdf file in the description of the Nineteenth
Lecture website), we used “order preserving codes”. Rewrite the proof to use Kleene-
Brouwer codes instead.

43. Suppose that M ⊆ V is a transitive model such that M contains all elements of ωω.
Show that if V |= ZF + AD, then M |= ZF + AD and ℵM1 = ℵ1.

44. Show in ZF that AD2 is equivalent to ADω.

45. Show in ZF that AD implies that there is no injection from ℵ1 into ωω.

46. Assume ZF+“there is an injection from ℵ1 into ωω”. Show that ωω is a disjoint union
of ℵ1 many Π0

3 sets.

47. Let X be a non-empty set. A set C ⊆ Xω is closed if there is a tree T on X such that
C = [T ]. Show in ZF, that “for every closed C ⊆ Xω, the game G(C) is determined”
is equivalent to ACX(X).

48. Let D be the collection of determined sets. Show in ZF that AD is equivalent to the
statement “D is a σ-algebra”.

49. In the lectures, we introduced the relation ≤D on R = (Vω+1,∈) defined by x ≤D y
if any only if there is a formula ϕ in two free variables such that “R |= ϕ(v, w)” is
absolute for transitive models of set theory and

z ∈ x ⇐⇒ R |= ϕ(z, y).

Show that ≤D is a partial preorder (i.e., reflexive and transitive).



50. Let U be an ℵ1-complete ultrafilter on X and F : X → ωω. Show that F is constant
on a set in U .

51. Consider the set DD := ωω/≡D and show that AD implies that there is no injection
from DD into ωω.

52. In this example, use the mentioned properties of Gödel’s real model family ~L =
{L(x) ; x ∈ ωω}. In general, ℵ1 is a cardinal in each of the L(x), so for each x there

is some αx such that ℵ1 = ℵL(x)
αx . Assume that ℵ1 is inaccessible by reals for ~L and

determine αx.

53. A subset C ⊆ ℵ1 is called closed if for each γ ∈ ℵ1, if C ∩ γ is unbounded in γ, then
γ ∈ C; it is called unbounded if for each α ∈ ℵ1, there is a γ ∈ C such that α < γ; it
is called club if it is closed and unbounded. The set C := {A ⊆ ℵ1 ; there is a club set
C with C ⊆ A} is called the club filter on ℵ1.
Show that it is a non-principal, normal filter on ℵ1.

54. If A ⊆ ℵ1, we define the following Solovay game GS(A): players I and II play in
alternation; player I produces x ∈ ωω and player II produces y ∈ ωω. Consider the
functions {(x)n ; n ∈ ω} ∪ {(y)n ; n ∈ ω} ⊆ ωω. If one of them is not in WO, then
player II loses if the least m such that (y)m /∈ WO is smaller than the least m such
that (x)m /∈WO; otherwise player I loses. If all of them are in WO, define

γ := sup({‖(x)n‖ ; n ∈ ω} ∪ {‖(y)n‖ ; n ∈ ω})

and say that player I wins if γ ∈ A.

Prove: if player I has a winning strategy in GS(A), then A ∈ C; player I has a winning
strategy in GS(A), then ℵ1\A ∈ C.
Deduce that AD implies that ℵ1 is measurable.
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