

Example Sheet #1

Examples Classes.

#1. Monday 3 February 2020, 3:30-5pm, MR14.

#2: Monday 17 February 2020, 3:30-5pm, MR14.

#3: Monday 2 March 2020, 3:30-5pm, MR14.

#4: Monday 16 March 2020, 3:30-5pm, MR14.

You hand in your work at the beginning of the Example Class.

Notation. In the following, M is the set of possible moves, $M^{<\omega}$ the set of positions, and M^{ω} the set of plays. If $s \in M^{<\omega}$ and $x \in M^{\omega}$, we write sx for the concatenation of s and x, i.e., sx(n) := s(n) for n < |s| and sx(n) := x(n - |s|) for $n \ge |s|$. If $m \in M$, we write mx for the concatenation of the length one sequence with element m and the infinite sequence x.

- 1. If $x \in M^{\omega}$, we defined strategies σ_x and τ_x as the strategies for player I or player II, respectively, that play x independently of what the other player is doing. These strategies were called *blindfolded*. Show that a strategy σ is a winning strategy for player I in the game G(A) if and only if it wins against all blindfolded strategies for player II (i.e., $\sigma * \tau_x \in A$ for all $x \in M^{\omega}$).
- 2. If σ is a strategy, we defined the I-strategic tree T_{σ}^{I} and the II-strategic tree T_{σ}^{II} . Show that for all strategies σ and τ , we have that $[T_{\sigma}^{I}] \cap [T_{\tau}^{II}] = \{\sigma * \tau\}$.
- 3. If $A, B \subseteq M^{\omega}$ are disjoint, we define the winning conditions for the game G(A, B) as follows: if the play of the game is $x \in M^{\omega}$, then player I wins if $x \in A$, player II wins if $x \in B$, and otherwise the game is a draw. A strategy σ is winning or drawing in G(A, B) for player I if for all strategies τ , we have that $\sigma * \tau \in A$ or $\sigma * \tau \notin B$, respectively. A strategy τ is winning or drawing in G(A, B) for player I if G(A, B) for player II if for all strategies σ , we have that $\sigma * \tau \in B$ or $\sigma * \tau \notin A$, respectively.

Show that if A and $M^{\omega} \setminus B$ are determined, then at least one of the two players has a drawing strategy in G(A, B) and that both players have a drawing strategy if and only if none of them has a winning strategy.

- 4. If $T \subseteq M^{<\omega}$ is a tree on M and $A \subseteq [T]$ is a payoff set, we define the game G(A; T) as follows: define $A_T := \{x \in M^{\omega} ; x \in A \text{ or } x \notin [T] \text{ and the least } n \text{ such that } x \upharpoonright n \notin T \text{ is odd} \}$ and if the play of the game is $x \in M^{\omega}$, then player I wins if $x \in A_T$. Observe that G(A; T) is a game with rules described by the tree T: if a rule is broken (i.e., a position outside of the tree is played), the first player to do so loses the game. Clearly, G(A; T) and $G(A_T)$ are the same game. Use this idea to describe games in which
 - (a) the two players have different move sets (player I can make moves in $M_{\rm I}$ and player II can make moves in $M_{\rm II}$) or
 - (b) the players do not play alternatingly, but according to a move function $\mu: M^{<\omega} \to \{I, II\}$ that determines who has to move in position $p \in M^{<\omega}$

as games of the form G(A) for some appropriate set A.

- 5. If G and H are graphs, the Ramsey game Ramsey(G, H) is the positional game in which players pick edges of G and the first one whose collected edge set contains a subgraph isomorphic to H wins. As usual, K_n and K_{ω} denote the complete graphs with n and countably many vertices, respectively. Fix $s \in \mathbb{N}$ and show that the following are equivalent:
 - (a) player I has a winning strategy in Ramsey(K_{ω}, K_s) and
 - (b) there is a $T \in \mathbb{N}$ such that for all sufficiently large n, player I has a winning strategy in Ramsey (K_n, K_s) in less than T moves.
- 6. Let X and Y be sets. By $AC_Y(X)$ we denote the axiom of choice for Y-parametrised families of subsets of X, i.e., the statement that for each family $\{A_y ; y \in Y\}$ of non-empty subsets of X there is a choice function $c : Y \to X$ with $c(y) \in A_y$ for all $y \in Y$.

Show (in ZF without the axiom of choice) that $AC_{\omega}(\mathbb{R})$ implies that \aleph_1 is a regular cardinal.

7. Let X be a set and $A \subseteq X \times X$. A partial function $f: X \to X$ is called a *uniformisation of* A if for each $x \in X$, if there is some $y \in X$ such that $(x, y) \in A$, then $x \in \text{dom}(f)$ and for all $x \in \text{dom}(f)$, we have that $(x, f(x)) \in A$. We say that X satisfies the uniformisation principle if each subset $A \subseteq X \times X$ has a uniformisation.

Show (in ZF without the axiom of choice) that $AC_X(X)$ implies that X has the uniformisation principle.

- 8. Show (in ZF without the axiom of choice) that the determinacy of all finite games on a set of moves M implies $AC_M(M)$.
- 9. Let $\kappa := |M|$ and show that $\kappa^+ = \{\alpha; \text{ there is a wellfounded tree } T \text{ on } M \text{ such that } \operatorname{ht}(T) = \alpha\}.$
- 10. Construct a set $A \subseteq M^{\omega}$ such that player I has a winning strategy in both G(A) and $G(M^{\omega} \setminus A)$.
- 11. If $A \subseteq M^{\omega}$ and $m \in M$, let $A_m := \{x \in M^{\omega}; mx \in A\}$. Assume that for every $m \in M$, the set A_m is determined. Prove that $M^{\omega} \setminus A$ is determined.
- 12. Assume AC and show that
 - (a) there is a determined set whose complement is not determined,
 - (b) there are determined sets whose intersection is not determined, and
 - (c) there are determined sets whose union is not determined.
- 13. In the proof of Zermelo's theorem, the winning strategy was "stay on positions with your label"; in the proof of the Gale-Stewart theorem, the winning strategy for player I was "stay on positions with your label and reduce the age of the position". Show that, in general, "stay on positions with your label" is not enough in the Gale-Stewart proof, but that if the payoff set A is clopen (i.e., both A and its complement are open), then it is enough.
- 14. Let $A \subseteq \omega^{\omega}$ be the difference of two open sets (i.e., there are open sets P and Q such that $A = P \setminus Q$). Show that A is determined.