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Notation. In the following, M is the set of possible moves, M<ω the set of positions, and Mω the set of
plays. If s ∈M<ω and x ∈Mω, we write sx for the concatenation of s and x, i.e., sx(n) := s(n) for n < |s|
and sx(n) := x(n− |s|) for n ≥ |s|. If m ∈M , we write mx for the concatenation of the length one sequence
with element m and the infinite sequence x.

1. If x ∈Mω, we defined strategies σx and τx as the strategies for player I or player II, respectively, that
play x independently of what the other player is doing. These strategies were called blindfolded. Show
that a strategy σ is a winning strategy for player I in the game G(A) if and only if it wins against all
blindfolded strategies for player II (i.e., σ ∗ τx ∈ A for all x ∈Mω).

2. If σ is a strategy, we defined the I-strategic tree T I
σ and the II-strategic tree T II

σ . Show that for all
strategies σ and τ , we have that [T I

σ] ∩ [T II
τ ] = {σ ∗ τ}.

3. If A,B ⊆ Mω are disjoint, we define the winning conditions for the game G(A,B) as follows: if the
play of the game is x ∈ Mω, then player I wins if x ∈ A, player II wins if x ∈ B, and otherwise the
game is a draw. A strategy σ is winning or drawing in G(A,B) for player I if for all strategies τ , we
have that σ ∗ τ ∈ A or σ ∗ τ /∈ B, respectively. A strategy τ is winning or drawing in G(A,B) for
player II if for all strategies σ, we have that σ ∗ τ ∈ B or σ ∗ τ /∈ A, respectively.

Show that if A and Mω\B are determined, then at least one of the two players has a drawing strategy
in G(A,B) and that both players have a drawing strategy if and only if none of them has a winning
strategy.

4. If T ⊆M<ω is a tree on M and A ⊆ [T ] is a payoff set, we define the game G(A;T ) as follows: define
AT := {x ∈ Mω ; x ∈ A or x /∈ [T ] and the least n such that x�n /∈ T is odd} and if the play of the
game is x ∈ Mω, then player I wins if x ∈ AT . Observe that G(A;T ) is a game with rules described
by the tree T : if a rule is broken (i.e., a position outside of the tree is played), the first player to do
so loses the game. Clearly, G(A;T ) and G(AT ) are the same game. Use this idea to describe games in
which

(a) the two players have different move sets (player I can make moves in MI and player II can make
moves in MII) or

(b) the players do not play alternatingly, but according to a move function µ : M<ω → {I, II} that
determines who has to move in position p ∈M<ω

as games of the form G(A) for some appropriate set A.



5. If G and H are graphs, the Ramsey game Ramsey(G,H) is the positional game in which players pick
edges of G and the first one whose collected edge set contains a subgraph isomorphic to H wins. As
usual, Kn and Kω denote the complete graphs with n and countably many vertices, respectively. Fix
s ∈ N and show that the following are equivalent:

(a) player I has a winning strategy in Ramsey(Kω,Ks) and

(b) there is a T ∈ N such that for all sufficiently large n, player I has a winning strategy in
Ramsey(Kn,Ks) in less than T moves.

6. Let X and Y be sets. By ACY (X) we denote the axiom of choice for Y -parametrised families of subsets
of X, i.e., the statement that for each family {Ay ; y ∈ Y } of non-empty subsets of X there is a choice
function c : Y → X with c(y) ∈ Ay for all y ∈ Y .

Show (in ZF without the axiom of choice) that ACω(R) implies that ℵ1 is a regular cardinal.

7. Let X be a set and A ⊆ X ×X. A partial function f : X → X is called a uniformisation of A if for
each x ∈ X, if there is some y ∈ X such that (x, y) ∈ A, then x ∈ dom(f) and for all x ∈ dom(f), we
have that (x, f(x)) ∈ A. We say that X satisfies the uniformisation principle if each subset A ⊆ X×X
has a uniformisation.

Show (in ZF without the axiom of choice) that ACX(X) implies that X has the uniformisation principle.

8. Show (in ZF without the axiom of choice) that the determinacy of all finite games on a set of moves
M implies ACM (M).

9. Let κ := |M | and show that κ+ = {α ; there is a wellfounded tree T on M such that ht(T ) = α}.

10. Construct a set A ⊆Mω such that player I has a winning strategy in both G(A) and G(Mω\A).

11. If A ⊆Mω and m ∈M , let Am := {x ∈Mω ; mx ∈ A}. Assume that for every m ∈M , the set Am is
determined. Prove that Mω\A is determined.

12. Assume AC and show that

(a) there is a determined set whose complement is not determined,

(b) there are determined sets whose intersection is not determined, and

(c) there are determined sets whose union is not determined.

13. In the proof of Zermelo’s theorem, the winning strategy was “stay on positions with your label”; in
the proof of the Gale-Stewart theorem, the winning strategy for player I was “stay on positions with
your label and reduce the age of the position”. Show that, in general, “stay on positions with your
label” is not enough in the Gale-Stewart proof, but that if the payoff set A is clopen (i.e., both A and
its complement are open), then it is enough.

14. Let A ⊆ ωω be the difference of two open sets (i.e., there are open sets P and Q such that A = P\Q).
Show that A is determined.
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