

Example Sheet #2

Course webpage: https://www.math.uni-hamburg.de/home/loewe/Lent2019/TST_L19.html

Example Classes.

- #1. Monday 4 February, 3:30–5pm, MR5.
- #2. Monday 18 February, 3:30–5pm, MR5.
- #3. Monday 4 March, 3:30–5pm, MR5.
- #4. TBD; probably Thursday 14 March.

You hand in your work at the beginning of the Example Class.

(13) As in the lectures, we let

 $\mathcal{D}(A) := \{ X \subseteq A ; \exists n \exists \vec{s} \in A^n \exists R \in \text{Def}(A, n+1) (\forall x (x \in X \leftrightarrow (x, \vec{s}) \in R)) \}$

and $\mathbf{L}_0 := \emptyset$, $\mathbf{L}_{\alpha+1} := \mathcal{D}(\mathbf{L}_{\alpha})$, and $\mathbf{L}_{\lambda} := \bigcup_{\alpha\lambda} \mathbf{L}_{\alpha}$. We have already seen that \mathbf{L}_{α} is transitive for all ordinals α . Show that

- (a) if $\alpha \leq \beta$, then $\mathbf{L}_{\alpha} \subseteq \mathbf{L}_{\beta}$ and
- (b) for all ordinals α , $\operatorname{Ord} \cap \mathbf{L}_{\alpha} = \alpha$.
- (14) Let κ be an inaccessible cardinal. Show that
 - (a) $(\mathbf{L}_{\kappa}, \in) \models \mathsf{Union};$
 - (b) $(\mathbf{L}_{\kappa}, \in) \models \mathsf{Replacement}.$
- (15) Show the *Lévy Reflection Theorem* in ZF (i.e., without assuming the existence of an inaccessible cardinal): if Φ is a finite set of formulas and α is any ordinal, then there is some $\beta > \alpha$ such that all formulas in Φ are absolute for \mathbf{V}_{β} .

(*Hint.* Assume, without loss of generality that Φ is closed under subformulas and show a Tarski-Vaught style criterion for absoluteness by induction on the formula complexity.)

- (16) What properties of \mathbf{V}_{β} did you use in (15)? Can you generalise the Reflection Theorem to obtain absoluteness for other hierarchies than the von Neumann hierarchy?
- (17) We define by transfinite recursion: $\beth_0 := \aleph_0$, $\beth_{\alpha+1} := 2^{\beth_\alpha}$, and $\beth_{\lambda} := \bigcup_{\alpha < \lambda} \beth_{\alpha}$. A cardinal is called a *beth fixed point* if $\kappa = \beth_{\kappa}$. Show that if κ is regular, then κ is a beth fixed point if and only if κ is inaccessible.
- (18) Show in ZFC that for $\alpha > \omega$, $|\mathbf{V}_{\alpha}| = |\mathbf{L}_{\alpha}|$ if and only if α is a beth fixed point.

- (19) Assume that $\mathsf{ZFC} + \mathsf{IC}$ is consistent and show that the following theory is consistent: $\mathsf{ZFC} +$ "there are ordinals $\alpha < \beta < \aleph_1$ such that $\mathbf{L}_{\alpha} \models \mathsf{ZFC}$, $\mathbf{L}_{\beta} \models \mathsf{ZFC}$ and $\mathbf{L}_{\beta} \models `\alpha$ is countable` ".
- (20) Let x be any transitive set and define by transfinite recursion:

$$\mathbf{L}_{0}(x) := x,$$

$$\mathbf{L}_{\alpha+1}(x) := \mathcal{D}(\mathbf{L}_{\alpha}(x)),$$

$$\mathbf{L}_{\lambda}(x) := \bigcup_{\alpha < \lambda} \mathbf{L}_{\alpha}(x) \text{ (for } \lambda \text{ limit)}.$$

As usual, we define $\mathbf{L}(x) := \bigcup_{\alpha \in \text{Ord}} \mathbf{L}_{\alpha}(x)$ and write $\mathbf{V} = \mathbf{L}(x)$ for the formula $\forall x \exists \alpha (x \in \mathbf{L}_{\alpha}(x))$ (note that this is a formula with the parameter x). Show that

- (a) for each α , $\mathbf{L}_{\alpha}(x)$ is transitive,
- (b) if x is countable and $\alpha \ge \omega$, then $|\mathbf{L}_{\alpha}(x)| = |\alpha|$,
- (21) Assume that κ is an inaccessible cardinal and $x \subseteq \mathbb{N}$; prove the Condensation Lemma for $\mathbf{L}(x)$:

Suppose $\mathbf{V} = \mathbf{L}(x)$ and that $A \subseteq \mathbb{N}$. Then there is $\lambda < \omega_1$ such that $A \in \mathbf{L}_{\lambda}(x)$.

Conclude that $\mathbf{L}(x)$ satisfies CH. If $x \subseteq \kappa$ for some uncountable cardinal κ , what bound does the proof of the condensation lemma give and what can you say about the size of 2^{\aleph_0} in $\mathbf{L}(x)$?

(22) Assume that for all $x \subseteq \mathbb{N}$, we have that $\aleph_1^{\mathbf{L}(x)}$ is countable. Suppose that κ is inaccessible and show that $\mathbf{L}_{\kappa} \models ``\aleph_1^{\mathbf{V}}$ is inaccessible" where $\aleph_1^{\mathbf{V}}$ refers to the first uncountable cardinal in the universe.