

EXAMPLE SHEET #2

Example Classes.

- #1. Thursday 1 February, 3–4pm, MR13.
- #2. Thursday 15 February, 3–4pm, MR13.
- #3. Thursday 1 March, 3–4pm, MR21.
- #4. Wednesday 14 March, 3–4pm, MR21.

You hand in your work at the beginning of the Example Class.

- (12) For a cardinal κ , let $\mathbf{H}_{\kappa} := \{x; |\operatorname{tcl}(x)| < \kappa\}$, the set of sets of hereditary size smaller than κ . Show that
 - (a) $\mathbf{H}_{\aleph_1} \models \neg \mathsf{PowerSet},$
 - (b) $\mathbf{H}_{\aleph_1} \models \mathsf{Replacement}$.
- (13) Suppose $M \subseteq N$ are transitive models of ZFC. Suppose that M and N disagree about the value of \aleph_1 , i.e., there are ordinals $\alpha_M \neq \alpha_N$ such that $M \models ``\alpha_M = \aleph_1$ '' and $N \models ``\alpha_N = \aleph_1$ ''. Show that there is some $x \in N \setminus M$ such that $N \models x \subseteq \mathbb{N}$.
- (14) Suppose that φ is a formula with n free variables and A any set. Show that the set $\{s \in A^n : \varphi^A(s_1, ..., s_n)\}$ is in Def(A, n).
- (15) Show the Lévy Reflection Theorem: if Φ is a finite set of formulas and α is any ordinal, then there is some $\beta > \alpha$ such that all formulas in Φ are absolute for \mathbf{V}_{β} .

(*Hint.* Assume, without loss of generality that Φ is closed under subformulas and show a Tarski-Vaught style criterion for absoluteness by induction on the formula complexity.)

- (16) What properties of \mathbf{V}_{β} did you use in (15)? Can you generalise the Reflection Theorem to obtain absoluteness for other structures than the \mathbf{V}_{α} ?
- (17) Use the Reflection Theorem to show that if φ is any formula, x is any set and $\alpha_1, ..., \alpha_n$ are ordinals such that x is uniquely determined by φ with parameters $\alpha_1, ..., \alpha_n$, i.e.,

$$\forall z(z = x \leftrightarrow \varphi(z, \alpha_1, ..., \alpha_n)),$$

then $x \in \mathbf{OD}$.

(18) Show that for each α , \mathbf{V}_{α} and $\mathbf{V}_{\alpha} \cap \mathbf{OD}$ are in \mathbf{OD} .

(*Remark.* Remember that these were the crucial components of the proof that if $\mathbf{V} \neq \mathbf{OD}$, then \mathbf{OD} is not a model of Extensionality: \mathbf{V}_{α} and $\mathbf{V}_{\alpha} \cap \mathbf{OD}$ are co-extensional in \mathbf{OD} .)

(19) Show that

- (a) $(\mathbf{HOD}, \in) \models \mathsf{Union};$
- (b) $(HOD, \in) \models$ Separation;
- (c) $(HOD, \in) \models PowerSet.$

(20) Show that

- (a) $(\mathbf{L}, \in) \models \mathsf{Union};$
- (b) $(\mathbf{L}, \in) \models \mathsf{PowerSet}.$
- (21) Show in ZFC that for $\alpha > \omega$, $|\mathbf{V}_{\alpha}| = |\mathbf{L}_{\alpha}|$ if and only if α is a beth fixed point.
- (22) Show in $\mathsf{ZFC} + \mathbf{V} = \mathbf{L}$ that for $\alpha > \omega$, $\mathbf{V}_{\alpha} = \mathbf{L}_{\alpha}$ if and only if α is a beth fixed point.