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Descriptive Set Theory Polish Spaces

Polish Spaces

A Polish space is a separable metrizable space
which has a complete metric.

Polish spaces are widespread in mathematics.
Many mathematical objects can be viewed as elements of some Polish
space.

The following are Polish spaces:
2 = {0, 1}, N, R, Rn, C, I = [0, 1], the circle T = { z ∈ C | |z| = 1 },
any compact metrizable space, any separable Banach space.

A countable product of Polish spaces is a Polish space,
and so RN, CN, IN (the Hilbert cube),
2N (the Cantor space, homeomorphic to the Cantor 1/3-set),
NN (the Baire space, homeomorphic to R \Q) are Polish spaces.
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Descriptive Set Theory Polish Spaces

More Polish spaces

If X is a compact metric space and Y is a Polish space, the space C(X,Y )
of continuous functions from X into Y with the uniform metric is Polish.

If X is Polish and A ⊆ X is Gδ (in particular open or closed),
A is Polish in the induced topology (with a different metric if A is not
closed).

The power set of N<N (finite sequences of natural numbers)
is homeomorphic to 2N.

Tr =
{
T ⊆ N<N | ∀s, t (s ∈ T & t @ s =⇒ t ∈ T )

}
is closed in it,

hence Polish.
This is the set of (descriptive set-theoretic) trees.
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Descriptive Set Theory Borel and Projective Sets

Borel sets

If X is any topological space the Borel subsets of X
are the members of the smallest σ-algebra containing the open sets.

Hence the Borel sets are generated by the open and closed sets
by closing under countable unions and intersections.

G = {open sets} = Σ0
1, F = {closed sets} = Π0

1

Fσ = {countable unions of closed sets} = Σ0
2,

Gδ = {countable intersections of open sets} = Π0
2,

Gδσ = {countable unions of Π0
2 sets} = Σ0

3,

Fσδ = {countable intersections of Σ0
2 sets} = Π0

3,

. . . . . . . . . . . . . . .

Alberto Marcone (Università di Udine) Classification in Descriptive Set Theory ESSLLI 2011 5 / 22



Descriptive Set Theory Borel and Projective Sets

The Borel hierarchy

Σ0
1 = {open sets}, Π0

1 = {closed sets}
Σ0
α = {countable unions of Π0

β sets with β < α},
Π0
α = {countable intersections of Σ0

β sets with β < α},
∆0
α = Σ0

α ∩Π0
α.

Σ0
1 Σ0

2 Σ0
α

∆0
1 ∆0

2 . . . ∆0
α ∆0

α+1 . . .

Π0
1 Π0

2 Π0
α

⋃
1≤α<ℵ1

Σ0
α =

⋃
1≤α<ℵ1

Π0
α =

⋃
1≤α<ℵ1

∆0
α = {Borel sets}.
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Descriptive Set Theory Borel and Projective Sets

The projective hierarchy

The continuous image of a Borel set is not in general Borel.

Σ1
1 = {continuous images of Borel sets} = {analytic sets},

Π1
n = {complements of Σ1

n sets},
Σ1
n+1 = {continuous images of Π1

n sets},
∆1
n = Σ1

n ∩Π1
n.

Σ1
1 = A Σ1

2 = PCA Σ1
n

∆1
1 ∆1

2 . . . ∆1
n ∆1

n+1 . . .

Π1
1 = CA Π1

2 = CPCA Π1
n

Souslin’s Theorem: in Polish spaces ∆1
1 = {Borel sets}.
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Classifying Natural Sets Classification and completeness

Classifying natural sets

• What is a “natural” set?
A set arising in mathematical practice.

• What does it mean to classify a set?
To find the lowest level in these hierarchies where it appears.

Classifying natural sets gives precise mathematical explanations to
empirical phenomena such as:

• checking whether an object belongs to A is “more difficult”
than checking whether it belongs to B;

• we cannot find a “simple” definition of A.

We want to pin down the complexity of a set,
e.g. proving that it is true Π0

3, i.e. Π0
3 but not Σ0

3.
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Classifying Natural Sets Classification and completeness

Wadge reducibility

A ⊆ X, B ⊆ Y (X, Y Polish)

A is Wadge-reducible to B (A ≤W B)
iff ∃f : X → Y continuous, A = f−1(B), i.e.

x ∈ A ⇐⇒ f(x) ∈ B for each x ∈ X.

We continuously reduce membership in A to membership in B.

B is at least as complicated as A.

≤W is reflexive and transitive.
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Classifying Natural Sets Classification and completeness

Completeness

Let Γ be one of the classes of the Borel or the projective hierarchy.
If B ∈ Γ and A ≤W B, then A ∈ Γ.

Let X be a Polish space. B ⊆ X is Γ-hard iff
∀A ⊆ Y , Y (zero-dimensional) Polish space, A ∈ Γ, A ≤W B.

B is Γ-complete if it belongs to Γ and is Γ-hard.

A Γ-complete set is true Γ (for Borel classes the reversal holds).
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Classifying Natural Sets Classification and completeness

Completeness in practice

Suppose we are given A ⊆ X, with X Polish,
and we want to establish that it is Π1

1-complete.
We need to show:

1 A is Π1
1;

2 A is Π1
1-hard.

1. establishes the upper bound.
This is usually (but not always) the easiest step.
Often the standard definition of A shows that it is Π1

1.

2. establishes the lower bound.
The definition of Π1

1-hardness calls for considering all Π1
1 sets.

In practice this is not needed: it suffices to show that P ≤W A
for some set P which is already known to be Π1

1-complete.
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Classifying Natural Sets Classification and completeness

Some basic examples

In practice, a member of a fairly small collection of (mostly combinatorial)
examples is used to prove hardness.

Q2 = {α ∈ 2N | ∀∞n α(n) = 0 } is Σ0
2-complete;

P3 = {α ∈ 2N×N | ∀m ∀∞n α(m,n) = 0 } is Π0
3-complete;

S∗3 = {α ∈ 2N×N | ∀∞m ∃n α(m,n) = 0 } is Σ0
3-complete;

WF = {T ∈ Tr | T has no infinite paths } is Π1
1-complete.

α ∈ Q2 ⇐⇒ ∃M ∈ N ∀n > M α(n) = 0

T /∈WF ⇐⇒ ∃α ∈ NN ∀n ∈ N α � n ∈ T︸ ︷︷ ︸
Π0

1︸ ︷︷ ︸
Σ1

1
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Classifying Natural Sets Examples

Examples I: sequences

• `p =
{

(xk) ∈ IN |
∑∞

k=0 xk
p < +∞

}
is Σ0

2-complete.
• c0 =

{
(xk) ∈ IN | limk→∞ xk = 0

}
is Π0

3-complete.

c0 is Π0
3

c0 =
⋂
ε∈Q+

⋃
N∈N

⋂
k≥N

{
(xk) ∈ IN | xk ≤ ε

}
︸ ︷︷ ︸

Π0
1︸ ︷︷ ︸

Σ0
2︸ ︷︷ ︸

Π0
3

.
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Classifying Natural Sets Examples

c0 is Π0
3-hard

We show P3 ≤W c0 where P3 = {α ∈ 2N×N | ∀m ∀∞n α(m,n) = 0 }.

We need f : 2N×N → IN continuous such that α ∈ P3 ⇐⇒ f(α) ∈ c0.

Let f(α) = (x(m,k)) with x(m,k) = 2k−m
∑

n≥k
α(m,n)
2n+1 ≤ 2−m.

If α ∈ P3 then fix ε ∈ Q+ and M such that 2−M ≤ ε.
Let N be such that ∀m < M ∀n ≥ N α(m,n) = 0.

• if m < M and k ≥ N then x(m,k) = 0 < ε;

• if m ≥M then x(m,k) ≤ 2−m ≤ 2−M ≤ ε for all k.

Thus x(m,k) > ε only for finitely many pairs (m, k) and f(α) ∈ c0.

If α /∈ P3 let m be such that ∃∞n α(m,n) = 1.
For every such n we have x(m,n) ≥ 2n−m 1

2n+1 = 2−m−1.
Thus f(α) /∈ c0.

Alberto Marcone (Università di Udine) Classification in Descriptive Set Theory ESSLLI 2011 14 / 22



Classifying Natural Sets Examples

Examples II: functions

• Cn(I) and C∞(I) are Π0
3-complete in C(I,R).

• { f ∈ C(I,R) | f is analytic } is Σ0
2-complete.

• (Mazurkiewicz 1936) { f ∈ C(I,R) | ∀x ∈ I f ′(x) exists }
is Π1

1-complete.

• (Mauldin 1979) { f ∈ C(I,R) | ∀x ∈ I f ′(x) does not exist }
is Π1

1-complete.

• (Kechris 1984) { f ∈ C(I,R) | ∀y ∈ R ∃x ∈ I f ′(x) = y }
is Π1

2-complete.

• (Woodin 1990) If f ∈ C(I,R) say that f satisfies Rolle’s Theorem if
for all a, b ∈ I with a < b and f(a) = f(b) there exists c ∈ (a, b) such
that f ′(c) = 0. The set of such f ’s is Σ1

1-complete.

• (Woodin 1990) If f ∈ C(I,R) say that f satisfies the Mean Value
Theorem if for all a, b ∈ I with a < b there exists c ∈ (a, b) such that

f ′(c) = f(b)−f(a)
b−a . The set of such f ’s is Π1

2-complete.
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Classifying Equivalence Relations Borel reducibility

Binary relations in Polish spaces

A binary relation on a Polish space X is a subset of X ×X.

We can find its position in the descriptive set theoretic hierarchies.

This approach does not take into account
the particular features of a binary relation.

The next definition has been introduced and studied in depth
in the context of equivalence relations:
it is the starting point of the rich subject of
“Borel reducibility for equivalence relations”
aka “invariant descriptive set theory”.
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Classifying Equivalence Relations Borel reducibility

Borel reducibility

If E and F are binary relations on Polish spaces X and Y ,
a reduction of E to F is a function f : X → Y such that

∀x0, x1 ∈ X(x0E x1 ⇐⇒ f(x0)F f(x1)).

If f is Borel we say that E is Borel reducible to F : E ≤B F

E,F equivalence relations on X,Y . What does it mean that E ≤B F?

• we can assign in a Borel way F -equivalence classes
as complete invariants for the e.r. E;

• E has a simpler classification problem than F :
invariants for F work for E (composing with the reduction);

• ∃Φ : X/E
1−1−−→ Y/F that can be lifted to a Borel map from X to Y :

the effective cardinality of the quotient space X/E is less than
or equal to the effective cardinality of the quotient space Y/F .
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Classifying Equivalence Relations Examples

Smooth equivalence relations

An e.r. on a Polish space is smooth (or concretely classifiable, or tame)
if it is Borel reducible to equality on some Polish space.

A smooth e.r. is considered to be very simple,
since it admits “concrete” objects as complete invariants.

A smooth e.r. is Borel.

An example of a smooth e.r. is similarity between n× n complex matrices:
assign to each matrix its Jordan normal form.
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Classifying Equivalence Relations Examples

S∞-universal equivalence relations

L a countable relational language:
XL the Polish space of (codes for) L-structures with universe N
(it is homeomorphic to 2N).
∼=L isomorphism on XL.

• an e.r. E on a Polish space is classifiable by countable structures if
E ≤B

∼=L for some L;

• E is S∞-universal if moreover ∼=L ≤B E for every L.

An e.r. is S∞-universal iff it is as complicated as any orbit e.r.
of a continuous action of the infinite symmetric group S∞ can be.

A S∞-universal e.r. is Σ1
1 and not Borel,

yet its equivalence classes are Borel.

Isomorphism between trees is S∞-universal (H.Friedman-Stanley 1989).
Homeomorphism between compact subsets of 2N is S∞-universal
(Camerlo-Gao 2001).
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Classifying Equivalence Relations Examples

Σ1
1-complete equivalence relations

An e.r. E on a Polish space is Σ1
1-complete if it is Σ1

1

and F ≤B E for any Σ1
1 e.r. F on a Polish space.

A Σ1
1-complete e.r. is immensely more complicated

than any e.r. induced by any Polish group action
(e.g. uncountably many of its equivalence classes are not Borel).

Biembeddability between countable partial orders is Σ1
1-complete

(Louveau-Rosendal 2005).

For any Σ1
1 e.r. F on a Polish space there is a Borel class B

of countable partial orders invariant under isomorphism
such that F is Borel bireducible with biembeddability restricted to B
(S.Friedman-Motto Ros 2011).
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Classifying Equivalence Relations Examples

Countable linear orders

Isomorphism between countable countable linear orders is S∞-universal
(H.Friedman-Stanley 1989).

Biembeddability between countable linear orders
has ℵ1 equivalence classes and hence is not Σ1

1-complete.

A colored linear order is a linear order (L,≤L) with a coloring c : L→ N.
Embeddings between colored linear orders preserve order and color.

Biembeddability between countable colored linear orders is Σ1
1-complete

(M-Rosendal 2004, Camerlo 2005).

For any Σ1
1 e.r. F on a Polish space there is a Borel class B

of countable colored linear orders invariant under isomorphism
such that F is Borel bireducible with biembeddability restricted to B
(Camerlo-M-Motto Ros, 201?).
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The end

Thank you for your attention!
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