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I. Generalizing Ramsey’s Theorem

Our proof of Ramsey’s Theorem for pairs was modeled on a proof
by Erdős, and its extension to the Infinite Ramsey Theorem on the
Stepping Up Lemma of Erdős and Rado.

Theorem 1

For all infinite κ, (2κ)+ → (κ+)2
κ.

Theorem 2 (The Stepping Up Lemma of Erdős-Rado 1956 [9])

Assume κ ≥ ω, 1 ≤ r < ω, γ < κ and κ→ (αξ)
r
γ . Then(

2<κ
)+ → (αξ + 1)r+1

γ .
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I. Generalizing Ramsey’s Theorem

The cardinal ℵω is the least ordinal bigger than ℵn for all n < ω.
Moreover ℵω =

⋃
n<ω ℵn. The cofinality of a cardinal κ, denoted

cf(κ) is the smallest ordinal λ such that κ is the union of λ many
smaller sets. So cf(ℵω) = ω.

Theorem 3 (Erdős-Rado 1956 [9])

For all infinite κ and all γ < cf(κ),

expr−2

(
2<κ

)+ → (κ+ (r − 1))r
γ .
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I. Generalizing Ramsey’s Theorem

Erdős talked his partition problems at the first post-forcing set theory
meeting (UCLA 1967), and he wrote up problems with Hajnal that
only appeared in 1971 [7].

Question (Erdős-Hajnal 1971: Problem 10)

Assume the GCH. Does

ωξ+1 → (α, α)2
2

hold for α < ωξ+1?
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I. Generalizing Ramsey’s Theorem

Theorem 4 (Baumgartner-Hajnal 1973 [2])

For all α < ω1 and m < ω,

ω1 → (α)2
m.

Todorcevic [16] generalized the theorem in 1985 to partial orders;
the critical case is the positive result for non-special trees.

Theorem 5 (Baumgartner-Hajnal-Todorcevic 1993 [3])

For all regular uncountable κ, m < ω and ρ < ω1 with 2|ρ| < κ,

(2<κ)+ → (κ+ ρ)2
m.
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I. Generalizing Ramsey’s Theorem

Shelah was able to increase the number of colors in the palette by
looking at larger cardinals.

Theorem 6 (Shelah 2003 [15])

If λ is a strongly compact cardinal, ζ, µ < λ, and κ is a regular
cardinal > λ, then

(2<κ)+ → (κ+ ζ)2
µ.
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I. Generalizing Ramsey’s Theorem

Question (Foreman-Hajnal 2003: Problem 1)

Is κ+ → (κ · 2)2
ω consistently true for any κ?

Foreman and Hajnal [10] have proved κ+ → (ρ)2
m for finite m and

ρ below a large bound.
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II. Uncountable partition ordinals

Theorem 7 (Hajnal 1960 [11])

If CH holds, then ω1
2 and ω1 · ω are not partition ordinals:

CH ` ω1
2 9 (ω1

2, 3)2 and ω1 · ω 9 (ω1 · ω, 3)2.

Theorem 8 (Baumgartner 1989 [1])

If MAℵ1 holds, then ω1 · ω and ω1 · ω2 are partition ordinals:

MAℵ1 ` ω1 · ω → (ω1 · ω, 3)2 and ω1 · ω2 → (ω1 · ω2, 3)2

Question

Is it consistent that ω1
2 → (ω1

2, 3)2?
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III. Partitions of triples

Ordinal partition relations have been defined for partitions of r -
uniform hypergraphs, e.g. α → (β, γ)r holds if for every ordered
set V of order type α and every c : [V ]3 → 2, there is either

a subset X ⊆ V order-isomorphic to β for which c is constantly
0 on [X ]r (homogenous for color 0) ; or

a subset Y with Y order isomorphic to γ for which c is con-
stantly 1 on [Y ]r (homogeneous for color 1).

Theorem 9 (Jones 2007 [12])

For all m, n < ω,
ω1 → (ω + m, n)3.
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III. Partitions of triples

Question

Does ω1 → (α, n)3 for all α < ω1?

In unpublished work, Jones has shown that ω1 → (ω + ω + 1, n)3,
so the simplest open instance of the question is

ω1 → (ω + ω + 2, 4)3.

Jones [13] also has generalizations to partial orders.
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IV. Square bracket partitions

Square bracket partition relations were introduced to express strong
negations of ordinary partition relations by providing a way to indi-
cate that there is a coloring so that no suitably large set omits any
color.
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IV. Square bracket partitions

Definition

The square bracket partition κ → [αν ]rµ if for every coloring c :
[κ]r → µ, there is some ν < µ and a subset X ⊆ κ of order type αν
so that c omits color on [X ]r .

Theorem 10 (Erdős-Hajnal-Rado 1965 [8])

If 2κ = κ+, then κ+ 9 [κ+]2κ+ .
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IV. Square bracket partitions

Question (Todorcevic)

If κ is an infinite cardinal, does

κ+ 9 [κ+]2κ+?

Theorem 11 (Todorcevic 1987 [17])

ℵ1 9 [ℵ1]2ℵ1
.

The paper in which Todorcevic proved this theorem introduced his
method of walks on ordinals, and includes his construction of a
Suslin tree from a Cohen real (the existence was first proved by
Shelah).
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IV. Square bracket partitions

Theorem 12 (Todorcevic 1987 [17])

For uncountable κ, if κ+ has a non-reflecting stationary set, then

κ+ 9 [κ+]2κ+.

A set A ⊆ λ is stationary in λ if it intersects every set which is
unbounded in λ and closed under taking limits. For γ < λ of
uncountable cofinality, A reflects at γ if its intersection with γ is
stationary in γ. It is non-reflecting if it fails to reflect for all smaller
γ of uncountable cofinality.
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IV. Square bracket partitions

Theorem 13 (Todorcevic 1987 [17], see Burke-Magidor [4])

It follows from a stepping up argument and pcf theory that

ℵω+1 9 [ℵω+1]2ℵω+1
.

Theorem 14 (Eisworth 2010 [5])

If µ is singular and µ+ → [µ+]2µ+ , then there is a regular cardinal
θ < µ such that any fewer than cf(µ) many stationary subsets of

Sµ
+

≥θ = {γ < µ+ : cf(γ) ≥ θ} must reflect simultaneously.
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V. Products of trees

The Halpern-Läuchli Theorem for partitions of level sets of a finite
product of finitely branch trees which was motivated by a problem
on weak forms of the Axiom of Choice.

The original statement of the Halpern-Läuchli Theorem requires
more notation than I want to introduce. I recommend Ramsey
spaces by Todorcevic [18] to learn about it.
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V. Products of trees

Notation

Let
∏A ~T be an abbreviation for

⋃
n∈A

∏
i<ω Ti (n).

Theorem 15 (Laver’s HLω Theorem 1984 [14])

If ~T = 〈Ti : i < ω〉 is a sequence of rooted finitely branching perfect
trees of height ω and

∏ω ~T = G0 ∪ G1, then there are δ < 2, an
infinite subset A ⊆ ω, and downwards closed perfect subtrees T ′i of

Ti for i < ω with
∏A T ′i ⊆ Gδ.
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V. Products of trees

Definition

Let d ≤ ω be given and fix a sequence ~T = 〈Ti : i < d〉 of perfect
subtrees of ω>2, and when d = ω, assume limi<ω | stem Ti | = ω.

For n < ω, call ~X = 〈Xi ⊆ Ti : i < d〉 an n-dense sequence if all
the points in

⋃
Xi are on the same level m > n and for all y ∈ Ti (n)

there is an x ∈ Xi with y < x .

Definition

If t ∈ T , then Tt is the subtree of nodes comparable with t.
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V. Products of trees

Question (Laver’s Conjecture)

Does the strong version of the infinite Halpern Lauchli Theorem
hold? Specifically if

⋃
n<ω

∏
〈Ti (n) : i < ω〉 = G0 ∪ G1, then is it

necessarily the case that either

(i) there is, for each n, an n-dense D such that
∏

D ⊂ G0; or

(ii) there is a 〈ti ∈ Ti : i < ω〉 such that (i) holds for 〈(Ti )ti : i <
ω〉 for G1?
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