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|. Generalizing Ramsey’s Theorem

Our proof of Ramsey’'s Theorem for pairs was modeled on a proof
by Erdés, and its extension to the Infinite Ramsey Theorem on the
Stepping Up Lemma of Erdés and Rado.

For all infinite x, (25)% — (kT)32.

Theorem 2 (The Stepping Up Lemma of Erdés-Rado 1956 [9])

Assume k > w, 1 <r <w, vy <k and Kk — (ag)’. Then

(25%) " — (@ + 1)+




|. Generalizing Ramsey’s Theorem

The cardinal XN, is the least ordinal bigger than X, for all n < w.
Moreover N, = Un<w N,. The cofinality of a cardinal x, denoted
cf(k) is the smallest ordinal A such that x is the union of A many
smaller sets. So cf(X,) = w.

Theorem 3 (Erd6s-Rado 1956 [9])

For all infinite x and all v < cf(k),

exp,_» (2<’“‘)+ —(k+(r— 1));




|. Generalizing Ramsey’s Theorem

Erd0s talked his partition problems at the first post-forcing set theory
meeting (UCLA 1967), and he wrote up problems with Hajnal that
only appeared in 1971 [7].

Question (Erdés-Hajnal 1971: Problem 10)

Assume the GCH. Does
We+1 — (O[,Oé)%

hold for o < wey17?




|. Generalizing Ramsey’s Theorem

Theorem 4 (Baumgartner-Hajnal 1973 [2])

For all « < w1 and m < w,

2

w1 — (@),

Todorcevic [16] generalized the theorem in 1985 to partial orders;
the critical case is the positive result for non-special trees.

Theorem 5 (Baumgartner-Hajnal-Todorcevic 1993 [3])

For all regular uncountable x, m < w and p < w1 with 2lel < K,

(2<)" = (5 + p)m:




|. Generalizing Ramsey’s Theorem

Shelah was able to increase the number of colors in the palette by
looking at larger cardinals.

Theorem 6 (Shelah 2003 [15])

If A is a strongly compact cardinal, {,u < A, and k is a regular
cardinal > ), then

(25)F = (k + 2.




|. Generalizing Ramsey’s Theorem

Question (Foreman-Hajnal 2003: Problem 1)

Is kT — (k - 2)3, consistently true for any 7

Foreman and Hajnal [10] have proved s+ — (p)2, for finite m and
p below a large bound.




lI. Uncountable partition ordinals

Theorem 7 (Hajnal 1960 [11])

If CH holds, then wq? and w; - w are not partition ordinals:

CHF wi? - (c4112,3)2 and w1 - w = (wy - w,3)2.

Theorem 8 (Baumgartner 1989 [1])

If MAy, holds, then wy -w and wy - w

2 are partition ordinals:

MAN1 = w1 W — (wl . w,3)2 and w1 - u}2 — (u}l . w2,3)2

Is it consistent that wi? — (w1?,3)??




lIl. Partitions of triples

Ordinal partition relations have been defined for partitions of r-
uniform hypergraphs, e.g. « — ((3,7)" holds if for every ordered
set V of order type o and every c : [V]? — 2, there is either
a subset X C V order-isomorphic to 3 for which c is constantly
0 on [X]" (homogenous for color 0) ; or
a subset Y with Y order isomorphic to 7 for which ¢ is con-
stantly 1 on [Y]" (homogeneous for color 1).

Theorem 9 (Jones 2007 [12])

For all m,n < w,

wi — (w+ m, n)3.




lIl. Partitions of triples

Does wy — (a, n)3 for all a < wy?

In unpublished work, Jones has shown that w; — (w + w + 1, n)3,
so the simplest open instance of the question is

w1 — (w+w+2,4)>

Jones [13] also has generalizations to partial orders.




Square bracket partition relations were introduced to express strong
negations of ordinary partition relations by providing a way to indi-
cate that there is a coloring so that no suitably large set omits any
color.
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IV. Square bracket partitions

Definition

The square bracket partition x — [a,,]/rL if for every coloring c :
[£]" — w, there is some v < p and a subset X C k of order type a,
so that ¢ omits color on [X]".

v

Theorem 10 (Erdés-Hajnal-Rado 1965 [8])

If 268 = kT, then kT - [T]2..




IV. Square bracket partitions

Question (Todorcevic)

If k is an infinite cardinal, does

KT kT2, 7

| A

Theorem 11 (Todorcevic 1987 [17])

Ny = [Nl]ir

The paper in which Todorcevic proved this theorem introduced his
method of walks on ordinals, and includes his construction of a
Suslin tree from a Cohen real (the existence was first proved by
Shelah).



IV. Square bracket partitions

Theorem 12 (Todorcevic 1987 [17])

For uncountable &, if K has a non-reflecting stationary set, then

kT kT2,

A set A C ) is stationary in ) if it intersects every set which is
unbounded in A and closed under taking limits. For v < X of
uncountable cofinality, A reflects at ~y if its intersection with ~ is
stationary in 7. It is non-reflecting if it fails to reflect for all smaller
~ of uncountable cofinality.




IV. Square bracket partitions

Theorem 13 (Todorcevic 1987 [17], see Burke-Magidor [4])

It follows from a stepping up argument and pcf theory that

N1 = [Nw+1]k%w+1-

Theorem 14 (Eisworth 2010 [5])

If 44 is singular and p™ — [;ﬁ]fﬁ, then there is a regular cardinal
0 < w such that any fewer than cf(ux) many stationary subsets of

>9 = {y < pu* : cf(y) > 0} must reflect simultaneously.




The Halpern-Lauchli Theorem for partitions of level sets of a finite
product of finitely branch trees which was motivated by a problem
on weak forms of the Axiom of Choice.

The original statement of the Halpern-Lauchli Theorem requires
more notation than | want to introduce. | recommend Ramsey
spaces by Todorcevic [18] to learn about it.
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V. Products of trees

Let [T* T be an abbreviation for UneaITics Ti(n).

Theorem 15 (Laver’'s HL,, Theorem 1984 [14])

If 7 = (T; : i <w) is a sequence of rooted finitely branching perfect
trees of height w and J]* T = Go U Gy, then there are § < 2, an
infinite subset A C w, and downwards closed perfect subtrees T,-/ of
T; for i < w with [][* T/ C Gs.




V. Products of trees

Definition

Let d < w be given and fix a sequence T = (T; i < d) of perfect
subtrees of “~2, and when d = w, assume lim;., |stem T;| = w.

For n < w, call X = (Xi € T;:i < d) an n-dense sequence if all
the points in | J X; are on the same level m > n and for all y € T;(n)
there is an x € X; with y < x.

Definition

If t € T, then T is the subtree of nodes comparable with t.




V. Products of trees

Question (Laver's Conjecture)

Does the strong version of the infinite Halpern Lauchli Theorem
hold? Specifically if U, [I{Ti(n) : i <w) = Go U Gy, then is it
necessarily the case that either

(i) there is, for each n, an n-dense D such that [[ D C Gp; or

(ii) thereis a (tj € T;: i < w) such that (i) holds for ((T;)¢ : i <
w) for Gl?
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