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I. Overview

A graph coloring problem for countable ordinals

An ordinal where every coloring admits either large edgeless set
or a triangle

An ordinal with a coloring where neither exist

Related results and open questions
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II. A graph coloring problem

Definition

The ordinal partition relation α → (β, γ)2 holds if and only if for
every set V order isomorphic to α and every coloring c : [V ]2 → 2,
there is either

a subset X ⊆ V order-isomorphic to β for which c is constantly
0 on [X ]2 (homogenous for color 0) ; or

a subset Y with Y order isomorphic to γ for which c is con-
stantly 1 on [Y ]2 (homogeneous for color 1).

Note (V ,E ) is a graph for E = {{v0, v1} ∈ V | c({v0, v1}) = 1}.
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II. A graph coloring problem

Lemma 1

If α > ω is a countably infinite ordinal, then α 9 (ω + 1, ω)2.

Proof.

Let < be the usual order on α and let <′ be a well-ordering of α in
type ω.
Define c : [V ]→ 2 by c({v0, v1}) = 0 if and only < and <′ agree
on {v0, v1}.
If c is constantly 0 on [X ]2, then X has type at most ω.
If c is constantly 1 on [Y ]2, then Y is finite since the ordinals are
well-founded.
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III. A positive example

On a trip to Israel in 1956, Erdős visited Ernst Specker and talked
about ordinal partition relations. Before Erdős continued on his way
to Israel, Specker had proved a positive partition relation.

Theorem 2 (Specker 1957 [7])

ω2 → (ω2,m)2 for all m < ω.
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IV. Overview of the proof

The modern proof (Galvin, Hajnal, Haddad + Sabbagh: see [8])

represents the order type ω2 by [ω]2<;

identifies unavoidable patterns;

canonizes the “same color” equivalence relations obtained from
the unavoidable patterns

shows there is a collection built from H of order type ω2 using
only unavoidable patterns (gives outcome for the infinite color).

shows for any unavoidable pattern there are arbitarily large finite
sets so each pair has the pattern using elements from H (gives
outcome for the finite color);
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V. Representation, unavoidable patterns

The set [ω]2 regarded as increasing sequences has order type ω2 =
ω · ω under the lexicographic order ≤lex.

Let us draw an arrow,↗, to represent one copy of ω.

Then ω + ω = ω · 2 is↗ ↗.

So ω · 3 is↗ ↗ ↗,

ω · n is↗ ↗ ↗ . . . ↗, and

ω2 = ω · ω is↗ ↗ ↗ ↗↗↗ . . . .
We identify an unordered pair {m, n} with m < n with the increasing
sequence 〈m, n〉. Then we can think of m telling us which copy of ω
we are in and n telling us at which point in the copy we are located.
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V. Representation, unavoidable patterns

Fix a coloring c :
[
[ω]2

]2 → 2. Define auxillary functions:
C0 : [ω]3 → 2 is defined by

C0({i , j , k}<) = c({i , j}, {i , k}). (agree)

C1 : [ω]4 → 2 is defined by

C1({i0, i1, i2, i3}<) = c({i0, i1}, {i2, i3}). (4 4 � � increase)

C2 : [ω]4 → 2 is defined by

C2({i0, i1, i2, i3}<) = c({i0, i2}, {i1, i3}). (4� 4 � alternate)

C3 : [ω]4 → 2 is defined by

C3({i0, i1, i2, i3}<) = c({i0, i3}, {i1, i2}). (4� � 4 enclose)
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VI. Canonization for unavoidable patterns

Apply Ramsey’s Theorem to each of C0,C1,C2,C3 in turn to get an
infinite set H ⊆ ω and δ0, δ1, δ2, δ3 so that Ci is constantly δi on
[H]3 (or [H]4).

Thus if u = {u0, u1} ⊆ H and v = {v0, v1} ⊆ H form an unavoid-
able pair, then

c({u, v}) = δ0 if u0 = v0 (agree);

c({u, v}) = δ1 if the pair in increasing;

c({u, v}) = δ2 if it alternates; and

c({u, v}) = δ3 if one encloses the other.
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VII. A large set from H with unavoidable pairs

Partition H =
⋃

Hj into disjoint infinite pieces.

Let X = {{u0, u1}< ∈ [H]2 | u0 ∈ H0 ∧ u1 ∈ Hu0}.

If {u0, u1} ∈ X and {v0, v1} ∈ X have non-empty intersection,
then u0 = u1 (agree).

If {u0, u1} ∈ X and {v0, v1} ∈ X are disjoint, then either they
increase, alternate or enclose.

Thus all pairs from X are unavoidable, so if δ0 = δ1 = δ2 = δ3 = 0,
then X is a subset of order type ω2 homogeneous in color 0.
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VIII. Trios for the unavoidable patterns

Suppose h0 < x1 < h2 < h3 < h4 < h5 are from H.

(agree) {h0, h1}, {h0, h2}, {h0, h3}

(increase)
{h0, h1}

{h2, h3}
{h4, h5}

(alternate)
{h0, h3}

{h1, h4}
{h2, h5}

(enclose)
{h0, h5}

{h1, h4}
{h2, h3}
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IX. A negative example

On his return from Israel, Erdős thought he had generalized the
proof to the ωm’s for m < ω, only to learn on visiting Specker that
he had shown that was impossible.

Theorem 3 (Specker 1957 [7])

ω3 9 (ω3, 3)2 (hence ωm 9 (ωm, 3)2 for all 3 ≤ m < ω).
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IX. A negative example

There was one unavoidable pattern for [ω]3< that does not admit a
trio, i.e. a pattern for which no triple can be constructed so that
each pair has that pattern:

a a a
b b b

or

A a
b B

if A, B represent sequences of length at least 2.
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X. Another trio

Here is an unavoidable pattern that admits a trio:

A a A a A
B b b B

And here is a sample trio:

A a A a A
B b B b b B

C c c c C

if A, B represent segments of length at least 2.
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XI. A trio question

Question 1

Is there a pattern made up of segments of at most three weights,
say {A, a, α}, {B, b, β} such that

each sequence begins with a segment of largest weight (A, B)

each sequence ends with a segment of largest weight (A, B)

but the pattern does not admit a trio?
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XII. An enduring problem

The question about patterns not admitting a trio relates to a ques-
tion asked Erdős over the years.

Question 2 (Erdős)

For which countable ordinals α, does α → (α, 3)2? ($1,000 1987
[3])
(Schipperus called such ordinals partition ordinals in his 1999 the-
sis.)

Theorem 4 (Galvin 1975 [4])

If α = ωβ and β = β0 + β1 is decomposable, then α 9 (α, 3)2.
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XIII. A look on the positive side

Theorem 5

(Chang 3 1972 [1]; Milner m ≥ 3 unpublished; L. shorter proof
1972)

ωω → (ωω,m)2, for m ≥ 3.

(Schipperus 2010 [6]) If β is indecomposable or β = γ + δ
where γ ≥ δ ≥ 1 are indecomposable, then

ωω
β → (ωω

β
, 3)2.

Darby (unpublished) proved ωω
2 → (ωω

2
, 3)2 about the same time

as Schipperus proved his theorem.
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XIV. More negative partition relations

Theorem 6

(Darby 6 1999 [2]; Schipperus 6 1999, 2010 [6]; Larson 5 2000
[5])
If β ≥ γ ≥ 1, then

ωω
β+γ 6→ (ωω

β+γ
, 5)2.

(Darby (1999); Schipperus (1999, 2010))
If β ≥ γ ≥ δ ≥ 1, then

ωω
β+γ+δ 6→ (ωω

β+γ+δ
, 4)2.

(Schipperus (1999, 2010))
If β ≥ γ ≥ δ ≥ ε ≥ 1, then

ωω
β+γ+δ+ε 6→ (ωω

β+γ+δ+ε
, 3)2.
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A final remark

∞


