Tutorial 1.2: Combinatorial Set Theory

Jean A. Larson (University of Florida) ESSLLI in Ljubljana, Slovenia, August 2, 2011

I. Overview

A graph coloring problem for countable ordinals An ordinal where every coloring admits either large edgeless set or a triangle An ordinal with a coloring where neither exist Related results and open questions

II. A graph coloring problem

Definition

The ordinal partition relation $\alpha \to (\beta, \gamma)^2$ holds if and only if for every set V order isomorphic to α and every coloring $c : [V]^2 \to 2$, there is either

a subset $X \subseteq V$ order-isomorphic to β for which c is constantly 0 on $[X]^2$ (homogenous for color 0); or

a subset Y with Y order isomorphic to γ for which c is constantly 1 on $[Y]^2$ (homogeneous for color 1).

Note (V, E) is a graph for $E = \{\{v_0, v_1\} \in V \mid c(\{v_0, v_1\}) = 1\}.$

II. A graph coloring problem

Lemma 1

If $\alpha > \omega$ is a countably infinite ordinal, then $\alpha \not\rightarrow (\omega + 1, \omega)^2$.

Proof.

Let < be the usual order on α and let <' be a well-ordering of α in type ω . Define $c : [V] \to 2$ by $c(\{v_0, v_1\}) = 0$ if and only < and <' agree on $\{v_0, v_1\}$. If c is constantly 0 on $[X]^2$, then X has type at most ω . If c is constantly 1 on $[Y]^2$, then Y is finite since the ordinals are well-founded. On a trip to Israel in 1956, Erdős visited Ernst Specker and talked about ordinal partition relations. Before Erdős continued on his way to Israel, Specker had proved a positive partition relation.

Theorem 2 (Specker 1957 [7])

$$\omega^2
ightarrow (\omega^2, m)^2$$
 for all $m < \omega$.

The modern proof (Galvin, Hajnal, Haddad + Sabbagh: see [8]) represents the order type ω^2 by $[\omega]^2_{<}$;

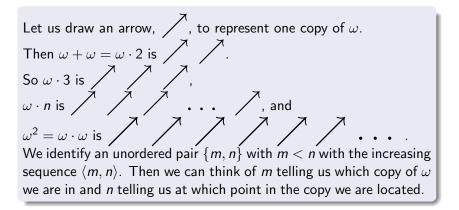
identifies unavoidable patterns;

canonizes the "same color" equivalence relations obtained from the unavoidable patterns

shows there is a collection built from H of order type ω^2 using only unavoidable patterns (gives outcome for the infinite color). shows for any unavoidable pattern there are arbitarily large finite sets so each pair has the pattern using elements from H (gives outcome for the finite color);

V. Representation, unavoidable patterns

The set $[\omega]^2$ regarded as increasing sequences has order type $\omega^2 = \omega \cdot \omega$ under the lexicographic order \leq_{lex} .



V. Representation, unavoidable patterns

Fix a coloring $c : [[\omega]^2]^2 \to 2$. Define auxillary functions: $C_0: [\omega]^3 \to 2$ is defined by $C_0(\{i, j, k\}_{<}) = c(\{i, j\}, \{i, k\}).$ (agree) $C_1: [\omega]^4 \to 2$ is defined by $C_1(\{i_0, i_1, i_2, i_3\}_{<}) = c(\{i_0, i_1\}, \{i_2, i_3\}). \quad (\triangle \triangle \Box \Box \text{ increase})$ $C_2: [\omega]^4 \to 2$ is defined by $C_2(\{i_0, i_1, i_2, i_3\}_{<}) = c(\{i_0, i_2\}, \{i_1, i_3\}). \quad (\triangle \Box \triangle \Box \text{ alternate})$ $C_3: [\omega]^4 \rightarrow 2$ is defined by $C_3(\{i_0, i_1, i_2, i_3\}_{<}) = c(\{i_0, i_3\}, \{i_1, i_2\}). \quad (\triangle \Box \Box \triangle \text{ enclose})$

Apply Ramsey's Theorem to each of C_0 , C_1 , C_2 , C_3 in turn to get an infinite set $H \subseteq \omega$ and δ_0 , δ_1 , δ_2 , δ_3 so that C_i is constantly δ_i on $[H]^3$ (or $[H]^4$).

Thus if $u = \{u_0, u_1\} \subseteq H$ and $v = \{v_0, v_1\} \subseteq H$ form an unavoidable pair, then

 $c(\{u, v\}) = \delta_0 \text{ if } u_0 = v_0 \text{ (agree)};$ $c(\{u, v\}) = \delta_1 \text{ if the pair in increasing};$ $c(\{u, v\}) = \delta_2 \text{ if it alternates}; \text{ and}$ $c(\{u, v\}) = \delta_3 \text{ if one encloses the other}.$ Partition $H = \bigcup H_j$ into disjoint infinite pieces.

Let $X = \{\{u_0, u_1\}_{<} \in [H]^2 \mid u_0 \in H_0 \land u_1 \in H_{u_0}\}.$

If $\{u_0, u_1\} \in X$ and $\{v_0, v_1\} \in X$ have non-empty intersection, then $u_0 = u_1$ (agree). If $\{u_0, u_1\} \in X$ and $\{v_0, v_1\} \in X$ are disjoint, then either they increase, alternate or enclose.

Thus all pairs from X are unavoidable, so if $\delta_0 = \delta_1 = \delta_2 = \delta_3 = 0$, then X is a subset of order type ω^2 homogeneous in color 0.

VIII. Trios for the unavoidable patterns

Suppose $h_0 < x_1 < h_2 < h_3 < h_4 < h_5$ are from <i>H</i> .
(agree) $\{h_0, h_1\}, \{h_0, h_2\}, \{h_0, h_3\}$
$ \begin{array}{ccc} \{h_0, & h_1\} \\ (\text{increase}) & \{h_2, & h_3\} \\ & & \{h_4, & h_5\} \end{array} $
$ \begin{array}{cccc} \{h_0, & & h_3\} \\ (\text{alternate}) & \{h_1, & & h_4\} \\ & & \{h_2, & & h_5\} \end{array} $
(enclose) $\begin{cases} h_0, & h_5 \\ \{h_1, & h_4 \\ \{h_2, h_3 \} \end{cases}$

On his return from Israel, Erdős thought he had generalized the proof to the ω^{m} 's for $m < \omega$, only to learn on visiting Specker that he had shown that was impossible.

Theorem 3 (Specker 1957 [7])

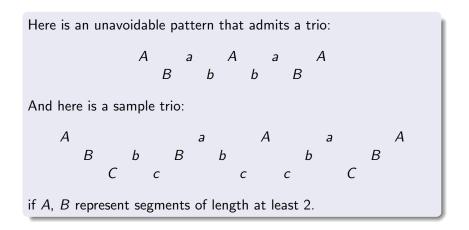
 $\omega^3 \nrightarrow (\omega^3, 3)^2$ (hence $\omega^m \nrightarrow (\omega^m, 3)^2$ for all $3 \le m < \omega$).

There was one unavoidable pattern for $[\omega]^3_{<}$ that does not *admit a trio*, i.e. a pattern for which no triple can be constructed so that each pair has that pattern:



if A, B represent sequences of length at least 2.

X. Another trio



Question 1

Is there a pattern made up of segments of at most three weights, say $\{A,a,\alpha\}$, $\{B,b,\beta\}$ such that

each sequence begins with a segment of largest weight (A, B)each sequence ends with a segment of largest weight (A, B)but the pattern does not admit a trio? The question about patterns not admitting a trio relates to a question asked Erdős over the years.

Question 2 (Erdős)

For which countable ordinals α , does $\alpha \rightarrow (\alpha, 3)^2$? (\$1,000 1987 [3]) (Schipperus called such ordinals *partition ordinals* in his 1999 thesis.)

Theorem 4 (Galvin 1975 [4])

If $\alpha = \omega^{\beta}$ and $\beta = \beta_0 + \beta_1$ is decomposable, then $\alpha \nrightarrow (\alpha, 3)^2$.

XIII. A look on the positive side

Theorem 5

(Chang 3 1972 [1]; Milner $m \ge 3$ unpublished; L. shorter proof 1972)

$$\omega^{\omega}
ightarrow (\omega^{\omega}, m)^2$$
, for $m \ge 3$.

(Schipperus 2010 [6]) If β is indecomposable or $\beta = \gamma + \delta$ where $\gamma \ge \delta \ge 1$ are indecomposable, then

$$\omega^{\omega^{eta}}
ightarrow (\omega^{\omega^{eta}},3)^2.$$

Darby (unpublished) proved $\omega^{\omega^2} \rightarrow (\omega^{\omega^2}, 3)^2$ about the same time as Schipperus proved his theorem.

XIV. More negative partition relations

Theorem 6

(Darby 6 1999 [2]; Schipperus 6 1999, 2010 [6]; Larson 5 2000 [5]) If $\beta \geq \gamma \geq 1$, then

$$\omega^{\omega^{eta+\gamma}}
earrow (\omega^{\omega^{eta+\gamma}},5)^2.$$

(Darby (1999); Schipperus (1999, 2010)) If $\beta \geq \gamma \geq \delta \geq 1$, then

$$\omega^{\omega^{eta+\gamma+\delta}}
eq (\omega^{\omega^{eta+\gamma+\delta}},4)^2.$$

(Schipperus (1999, 2010)) If $\beta \geq \gamma \geq \delta \geq \varepsilon \geq 1$, then

$$\omega^{\omega^{\beta+\gamma+\delta+\varepsilon}}\not\to (\omega^{\omega^{\beta+\gamma+\delta+\varepsilon}},3)^2.$$

XV. References

- [1] C. C. Chang. A partition theorem for the complete graph on ω^{ω} . J. Combinatorial Theory Ser. A, 12(3):396–452, 1972.
- [2] C. Darby. Negative partition relations for ordinals $\omega^{\omega^{\alpha}}$. J. Combin. Theory Ser. B, 76:205–222, 1999. Notes circulated in 1995.
- P. Erdős. Some problems on finite and infinite graphs. In Logic and Combinatorics (Arcata, Calif., 1985), pages 223–228. Amer. Math. Soc., Providence, R.I., 1987.
- [4] F. Galvin and J. Larson. Pinning countable ordinals. Fund. Math., 82:357–361, 1975. Collection of articles dedicated to Andrzej Mostowski on his sixtieth birthday, VIII.

XV. References

- [5] J. Larson. An ordinal partition avoiding pentagrams. J. Symbolic Logic, 65(3):969–978, 2000.
- [6] R. Schipperus. Countable partition ordinals. Ann. Pure Appl. Logic, 161(10):1195–1215, 2010.
- [7] E. Specker. Teilmengen von Mengen mit Relationen. Comment. Math. Helv., 31:302–314, 1957.
- [8] N. Williams. *Combinatorial Set Theory*. North Holland, Amsterdam, 1977.

A final remark

