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I. Overview

The König Infinity Lemma: an infinite tree with finite levels
has an infinite branch.

Ramsey’s Theorem: if the edges of a complete graph on an
infinite set are colored with finitely many colors, there is an
infinite subset of the vertices all of whose edges are
monochromatic.

There is a graph coloring theorem for finite graphs that
cannot be proved in Peano arithmetic.
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II. Set theoretic trees

Set theoretic trees are partial orders (T , <T ) such that for every
t ∈ T , the set T �t of predecessors of t is well-ordered, where

T �t = {s ∈ T : s <T t}.

Example

Finite sequences of 0’s and 1’s ordered by end-extension is a tree
(the complete binary tree) with finite levels and root the empty
sequence.

Definition

A node t in a tree (T , <T ) is on level i < ω if T �t has order type
i , i.e. is order isomorphic to {0, 1, . . . , i − 1}.
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III. König Infinity Lemma

Theorem 1 Dénes Kőnig 1926 [3]

An infinite tree with finite levels has an infinite branch.

Definition

A branch is a maximal chain (totally ordered subset) of the tree.

Suppose (T , <T ) is an infinite tree with finite levels. Then it must
have nodes on infinitely many different levels.
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III. König Infinity Lemma

There are only finitely many nodes on level 0 and every node is
comparable with one of them. Let t0 be a node on level 0 that is
below nodes from infinitely many different levels.

At stage i + 1, choose a node ti+1 on level i extending ti that is
below nodes from infinitely many levels.

Since this process continues for all i < ω, C = {ti : i < ω} is an
infinite chain (all pairs comparable). Extend C to a maximal chain
B in T to get an infinite branch.
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IV. Ramsey’s Theorem

Definition

A graph is (V , E ) where V is a set of vertices and E ⊆ [V ]2 is a set
of edges (two element subsets of V ). The complete graph on a set
V is the graph for which E = [V ]2.

A coloring of a complete graph (V , [V ]2) with colors {0, 1, . . . , k−1}
is a function c : [V ]2 → {0, 1, . . . , k − 1}.
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IV. Ramsey’s Theorem

Theorem 2 (Ramsey’s Theorem for pairs [5])

For any finite coloring c : [ω]2 → {0, 1, . . . , k − 1}, there is an
infinite subset U ⊆ V such that c is constant on [U]2.
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IV. Ramsey’s Theorem

By recursion build a tree (T ,⊇) of non-empty subsets of ω indexed
by k-ary sequences:

Start with A∅ = ω and let a0 = 0 be the least element of A∅.

If As has been defined and as = min As for some sequence s
whose elements come from the set of colors, then for each
color ` for which there is some m ∈ As different from as with
f (m, as) = `, let

As_〈`〉 = {b ∈ As | b 6= as ∧ f (as , b) = `}.
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IV. Ramsey’s Theorem

Each level of the tree is finite, since the root is the only node
of level 0, and level m + 1 has at most k times as many nodes
as level m.

The tree has infinitely many nodes, since each n < ω is n = as

for some s which has length at most n.
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IV. Ramsey’s Theorem

Apply the König Infinity Lemma to (T ,⊇) to get a branch B.

Let S : ω → {0, 1, . . . , k − 1} be
⋃
{s : As ∈ B}.

Define h : ω → {0, 1, . . . , k − 1} by h(i) = f (aS�i
, aS�i+1

).

By the Pigeonhole Principle there is ` < k and an infinite set
H ⊆ ω such that h(i) = ` for all ` ∈ H.

The set {aS�i
: i ∈ H} is monochromatic of color `. (Based on

the Erdős proof in [2] for uncountable graphs.)
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IV. Ramsey’s Theorem

Theorem 3 (Infinite Ramsey’s Theorem [5])

For any r < ω and finite coloring c : [ω]r → {0, 1, . . . , k − 1} of
the r -tuples of ω, there is an infinite subset U ⊆ V such that c is
constant on [U]r .

For r = 1, this is the Pigeonhole Principle.

For r = 2, this is Ramsey’s Theorem for Pairs sketched above.

If it is true for r = m, one can prove it for r = m + 1 by an
argument similar to the one sketched, where at level
n + 1 ≥ r , we partition As into pieces so that for all x , y in
one piece and all a0, a1, . . . , am−1 minimal elements of
Ati ⊆ As , c(a0, . . . , am−1, x) = c(a0, . . . , am−1, y).

If H = {ai | i < ω} are the nodes along the infinite branch,
then color of an (m + 1)-element subset of H depends only on
it first m elements, so we can apply the induction hypothesis.10



V. Paris-Harrington Principle

Definition

The Paris-Harrington Principle is the statement that for all positive
integers r , s, k , there is some N < ω such that for every color-
ing c : [{0, . . . , N − 1}]r → {0, 1, . . . , k − 1} there is a min-size-
homogeneous set X for c of size at least s.

Identify N with the set {0, 1, . . . , N − 1} and k with {0, . . . , k − 1}.
Call a set X ⊆ N homogeneous for c : [N]r → k
if c is constant on [X ]r .

X is min-size-homogeneous if it is homogeneous and min X < |X |.

A pair (X , [X ]r ) is called a complete r -uniform hypergraph.
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V. Paris-Harrington Principle

Example

If c : [N]2 → 2 is defined by c({x , y}<) = 0 iff y is even, then

the set {1, 4} is min-size-homogeneous (but not of size
≥ s = 3); and

the set {5, 6, 8, 10, 12} is homogeneous and has size
5 ≥ s = 3 but is not min-size-homogeneous.
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V. Paris-Harrington Principle

Theorem 4

Infinite Ramsey’s Theorem implies the Paris-Harrington Principle.

Proof.

Assume to the contrary that r , s, k are finite positive integers for
which the Paris-Harrington Principle fails. Let

T = {c | (∃N < ω)(c : [N]r → k is a counter-example)}.

For c, d in T , write c v d if c = d�dom(c).

Then (T ,v) is an infinite tree with finite levels.
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V. Paris-Harrington Principle

continued.

Use the König Infinity Lemma to get an infinite branch B.

Let C =
⋃

B. Then C : [ω]r → k .

Apply the Infinite Ramsey’s Theorem to C to get an infinite
monochromatic subset H. Let m = min(H), and let X be the set
of the first m + 1 elements of H. Then X is min-size-homogeneous
for C .

Let N > max(X ) be such that C�N ∈ B. Then X is
min-size-homogeneous for C�N . This is a contradiction, so the
theorem follows.
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V. Paris-Harrington Principle

Theorem 5 (Paris, Harrington 1977 [4])

The Paris-Harrington Principle is not provable in Peano Arith-
metic.

Multiple proofs exist. Bovykin [1] has a nice model theoretical proof
that the related principle PH∗ is not provable in Peano Arithmetic:

PH∗: for all positive integers r , s, k, there is some integer
N such that for every coloring

c : [{0, . . . , N − 1}]r → {0, 1, . . . , k − 1}

there is a homogeneous set X for c with |X | > s and
|X | > r(2r min(H) + 1).
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A final remark

∞


