
Descriptive Set Theory

Martin Goldstern

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Ljubljana, August 2011

Descriptive Set Theory Institute of Discrete Mathematics and Geometry Vienna University of Technology



Polish spaces

Polish space = complete metric separable.

Examples

I N = ω = {0, 1, 2, . . .}.
I R = real numbers. (E.g., Dedekind cuts)
I 2ω = “Cantor space” = all infinite 01-sequences
I ωω = “Baire space”

= all infinite sequences of natural numbers.
I Rn, Rω, (2ω)ω ' 2ω.
I . . . many others
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Polish spaces: convergence

Polish space X = complete metric separable. To understand
these spaces, we need to understand convergence in these
spaces.

I a1 = (5, 5, 5, 5, 5, 5 . . .)

I a2 = (3, 8, 0, 0, 0, 0, . . .)

I a3 = (3, 6, 0, 5, 0, 0, . . .)

I a3 = (3, 1, 4, 6, 0, 0, . . .)

I a9 = (3, 1, 4, 1, 11, 1, . . .)

I . . .
I aω = (3, 1, 4, 1, 5, 9, 2, 6, . . .).

C ⊆ X is closed, if convergent sequences in C have limit in C.
U ⊆ X is open iff X \ U is closed.
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Continuum Hypothesis

Cantor’s Continuum Hypothesis (CH): Every infinite subset of
the reals is either countable or equinumerous with R (or with
2ω, i.e., contains a 1-1 copy of 2ω).
(Hilbert’s problem list, 1900: first problem.)

The continuum hypothesis is neither provable nor refutable
(from the usual axioms of set theory).
(Cantor thought he had a proof.)
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Perfect sets

X=Polish, e.g. R or 2ω.
A nonempty set P ⊆ X is perfect if

I P is closed
I P has no isolated points. (Every point in P is a limit of a

sequence of distinct points in P.)
Examples:

I [0, 1] ⊆ R
I C ⊆ [0, 1], the Cantor set.
I 2ω ' C.

Fact
S ⊆ X contains a perfect set iff S contains a Cantor set, i.e.,
iff there is a continuous injective map from 2ω into S.
Hence: If X contains a perfect set, then X is uncountable.
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Fact
S ⊆ X contains a perfect set iff S contains a Cantor set, i.e.,
iff there is a continuous injective map from 2ω into S.

Corollary
If X contains a nonempty perfect set, then X is uncountable.

Question
Is the converse true?
Effective continuum hypothesis: Every infinite subset of the
reals is either countable or contains a perfect set, i.e., contains
a 1-1 continuous copy of 2ω.
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Effective Continuum Hypothesis

Effective continuum hypothesis: Every infinite subset of the
reals is either countable or contains a perfect set, i.e., contains
a 1-1 continuous copy of 2ω.
The effective continuum hypothesis is (strictly speaking) false,
but in practice often true.

I Refutable in ZFC. But the counterexample is “complicated”.
I Not refutable in ZF without the axiom of choice.

(disclaimer. . . )
I Provable for many definable sets in ZFC, even in ZF.
I Provable for most definable sets in “ZFC+large cardinals”.

Thesis: Never claim that a set is merely uncountable when you
can in fact show that it contains a perfect set.

Descriptive Set Theory Institute of Discrete Mathematics and Geometry Vienna University of Technology



Perfect set property

A class C of subsets of X has the perfect set property if each
uncountable set in C contains a perfect set. (I.e., if all sets in C
satisfy the effective CH.)
EXAMPLES:

I open sets
I closed sets
I Borel sets
I analytic sets

Note: being countable is a positive property. Being uncountable
is a negative property. But “contains a perfect set” is positive!
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Borel sets
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Borel sets, examples

We consider subsets of 2ω.

I {x ∈ 2ω : x(2) = 0 & x(3) = 1} is clopen, i.e., ∆0
1.

I The set of all “eventually zero” sequences is countable,
hence Fσ, i.e., Σ0

2.
I The set U of all “uniformly distributed sequences” is Π0

3:
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The perfect set property for closed sets

Theorem (Cantor-Bendixson)
Let X be a closed uncountable set. (Subset of Rn, of 2ω, etc.)
Then there is a perfect set P such that C := X \ P is countable.

Proof sketch.
Let C0 be the set of isolated points of X . C0 must be countable,
and X (1) := X \ C0 is still closed uncountable.
Continue for infinitely many steps: X ⊇ X (1) ⊇ X (2) ⊇ · · · . Stop
when Cn = ∅ (then X (n) is perfect).
If you are not done after ω steps, let X (ω) :=

⋂
X (n), and

continue.
This process (of taking “Cantor-Bendixson derivatives”) must
stop at a countable ordinal.
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Analytic sets

An analogy:
I Borel sets have a flavour that is similar to recursive

(=decidable) subsets of the natural numbers. (E.g.: closed
under complements.)

I Analytic sets correspond to r.e. sets (recursively
enumerable, computably enumerable, semi-decidable).
(Not closed under complements.)

Another analogy:
I Borel sets have a flavour that is similar to sets in P =

polynomially decidable sets.
I Analytic sets correspond to sets in NP.
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Analytic sets, several definitions

Let X be a Polish space (Rn, ωω, etc). Let S ⊆ X be nonempty.
Then the following are equivalent:

1. There is a continuous F : ωω → X with F [ωω] = S.
2. There is a continuous F : ωω → X and a closed set C ⊆ ωω

with F [C] = S.
3. As above, but C may be a Borel set.
4. There is a closed (or Borel) subset of ωω × X whose

projection to X is exactly S.
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Analytic sets, THE definition

Let X be a Polish space. S ⊆ X is analytic if S = ∅ or there is a
continuous map F : ωω → X with F [ωω] = S.

(We should check X itself is analytic under this definition.)

Rule of thumb: Anything involving only ∃k ∈ ω, ∀k ∈ ω,
⋂

k∈ω,⋃
k∈ω is a Borel set.

If you have to use ∃y ∈ ωω or ∃r ∈ R, then analytic and usually
not Borel.

Example
{x ∈ ωω | ∃(n1 < n2 < · · · ) : xn1 |xn2 | · · · } is analytic, not Borel.
{x ∈ ωω | ∃(n1 < n2 < · · · ) : xn1 = xn2 = · · · } is Borel.
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Closure properties

The family of analytic sets contains all closed sets and is closed
under

I countable unions (hence contains all closed sets),
I countable intersections (hence contains all Borel sets),
I continuous images (by definition),
I continuous preimages.
I But NOT under complement.

Empirical fact:
(100-ε)% of all sets considered in analysis are Borel sets.
(100-ε)% of the remaining ε% are analytic (or co-analytic).
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The perfect set property for analytic sets

Let F : ωω → X be continuous, and assume that A := F [ωω] is
uncountable. We claim that A contains a perfect set. More
precisely: we will find a copy of 2ω in ωω on which F is 1-1.

For s ∈ ω<ω, we write [s] for the {x : x ∈ ωω, s ⊆ x} (= all
branches extending the node s.)
For s ∈ ω<ω, we write F [s] for the set {f (x) : x ∈ ωω, s ⊆ x}.

We will show our claim under the additional assumption that
F [s] has more than one element, for each s.
(This can easily be arranged: Iteratively remove those s for which this
is not true; with each s we remove from ωω all elements extending s,
but all of them have the same image. Since only countably many s
were removed, only countably many elements from A were removed.)
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The perfect set property for analytic sets, part 2

Assumption: F : ωω → X is continuous, and for each s ∈ ω<ω

the set F [s] := {f (x) : x ∈ ωω, s ⊆ f} has > 1 elements.
(NOTE: for different s, the sets F [s] are not necessarily disjoint.
If they were, everything would be trivial.)

Construction:
1. Let t := 〈〉, the empty sequence.
2. We find two disjoint nonempty open sets U0, U1 in F [t ].
3. We find t0, t1 ∈ ω<ω, extending t , such that F [t`] ⊆ U`. (Use

continuity of F .)
4. Continue by splitting t0 to t00 and t01, and t1 to t10, t11,

using disjoint open sets U00, U01, U10, U11.
5. etc.
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The perfect set property for analytic sets, part 3

What we have: For each finite 0, 1-sequence s we have found
a finite sequence ts ∈ ω<ω such that:

I If s′ extends s, then ts′ extends ts
I If s and s′ are incompatible, then also ts and ts′ are

incompatible, and moreover: F [ts] and F [ts′ are disjoint.

What we want: A continuous 1-1 map from 2ω into F [ωω].

Easy: For each x ∈ 2ω, say x = (a, b, c, . . .), let tx be the limit of
t , ta, tab, tabc .
The map x 7→ F (tx) is 1-1 and continuous.
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Lebesgue measure

Every open subset U of R is a union of (finitely or countably
many) disjoint intervals.
The measure µ(U) of U is the sum of the lengths of these
intervals.
The measure µ is defined on all Borel sets, and it is σ-additive.

A set N ⊆ R has measure zero if for all ε there exists an open
set U of measure < ε with N ⊆ U.

A set S ⊆ R is measurable iff there exists a Borel (or Σ0
2) set B

such that B∆S has measure 0. We set µ(S) := µ(B).

Descriptive Set Theory Institute of Discrete Mathematics and Geometry Vienna University of Technology



Measure, continued

Theorem
All analytic sets are measurable.

Definition
Let X , Y be measure spaces. A function g : X → Y is
measurable if g−1(U) is measurable for all open sets U ⊆ Y .
Measurable functions from some unspecified space X into “our”
space Y are called “random variables” in statistics.

Descriptive Set Theory Institute of Discrete Mathematics and Geometry Vienna University of Technology



Uniformisation

Theorem (AC)
Let S ⊆ X × Y, and assume πS = X, i.e.,

∀x ∈ X : Sx := {y ∈ Y | (x , y) ∈ S} 6= ∅.

Then there is a function g : X → Y whose graph is contained in
S, i.e., g(x) ∈ Sx for all x.
(This theorem is equivalent to the axiom of choice.)

Theorem (“Uniformisation theorem”)
Assume that S from above is nice. Then we can find a nice g.
(Usually without the axiom of choice.)
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Jankov-von Neumann

Theorem
Let S ⊆ X × Y be analytic, πS = X.
Then there is a measurable function g ⊆ S.
For the proof, we may assume that S is closed: Let S = F [ωω],
and

Ŝ := {(x , y , z) ∈ X × Y × ωω | (x , y) = F (z)} ⊆ X × (Y × ωω)

If we can find a function ĝ : X → Y × ωω uniformizing Ŝ, then
we get g uniformizing S by projection.
(Details omitted.)

Descriptive Set Theory Institute of Discrete Mathematics and Geometry Vienna University of Technology



Closed subsets of ωω

Let C ⊆ ωω.
The set TC := {c�n : c ∈ C, n ∈ ω} ⊆ ω<ω is a tree. (Downward
closed set of finite sequences.)
(Moreover, TC has no leaves = nodes without extensions.)
We write [TC ] for the set of its branches:

[TC ] := {x ∈ ωω : ∀n x�n ∈ TC} ⊇ C.

It is easy to check that [TC ] = closure of C.

Hence: Closed sets = trees without leaves.
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Jankov-von Neumann for closed sets

Theorem
Let C ⊆ ωω × ωω be closed, πC = X.
Then there is a nice (in fact: measurable) function g ⊆ C.

Proof sketch.
For each x ∈ ωω, the set Cx := {y : (x , y) ∈ C} is closed, so
Cx = [Tx ] for some tree Tx .
Let g(x) := the leftmost branch of [Tx ].
This is a nicely defined function, hence measurable. (Need to
check details.)
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An application

Fact
Let (Bn : n ∈ ω) be a family of sets of measure zero.
Then

⋃
n Bn has measure zero. (Trivially.)

But: There are families (Bx : x ∈ ωω) of measure zero sets such
that in

⋃
x Bx does not have measure zero. (Easy to find.)

Theorem
Let (Bx : x ∈ ωω) be a nice family of sets ⊆ Y with the following
property: Whenever x1 ≤ x2, then Bx1 ⊆ Bx2 .
Then the set

⋃
x∈ωω Bx still has measure zero.

(“nice” means that the set {(x , y) : y ∈ Bx} is a Borel (or
analytic) set. By x1 ≤ x2 I means that x1(n) ≤ x2(n) for all n.)
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