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Let’s play chess...

Ernst Zermelo (1871–1953)

Ernst Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels,

What is a chess configuration?

There are 64 squares on a chess board:

There are 13 possible ways to fill a square.

X

Thus, there are at most 6413 possible configurations of chess. Most of
them are illegal.
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Chess as a mathematical object (1).

We can think about playing chess as playing a sequence of natural
numbers that stand for these at most 6413 configurations:

n0
white−→ n1

black−→ n2
white−→ n3 → ...

where n0 corresponds to

and each of the other numbers represents something like

or .
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Chess as a mathematical object (2).

We can think of the entire game tree to be the infinite
6413-branching tree (i.e., a finitely branching tree). There are a
number of different types of nodes in this tree:

1 Nodes that end in an illegal position,

2 nodes in which white has lost,

3 nodes in which black has lost,

4 nodes that determine that the game is a draw,

5 nodes in which neither of the following cases has occurred.

If the same configuration occurs twice for the same player, then a
game is counted as a draw. So, any sequence of 2 · 6413 + 1 moves
in chess in which neither of 1., 2., or 3. has occurred is a draw.
That means that we can cut off the tree at 2 · 6413 + 1 and obtain
a finite tree.
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Chess as a mathematical object (3).

Let’s prune the tree:

1 Nodes that end in an illegal position,

2 nodes in which white has lost,

3 nodes in which black has lost,

4 nodes that determine that the game is a draw,

5 nodes in which neither of the following cases has occurred.

Step 1. If the last position of a node p is an illegal position,
search backwards to the root and find the first position p∗ in that
sequence that is illegal. Cut off the tree after that node.

Step 2. If p is a node in which white or black has lost or the
game is a draw, cut off the tree after that node.

In the resulting tree T , the terminal nodes are exactly those in
which it is determined whether white won, black won or the
game is a draw.
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Chess as a mathematical object (4).

Define depth(p) to be the length of the longest path from p to a
terminal node. Note that for every p ∈ T , depth(p) ≤ 2 · 6413 + 1.
Note furthermore that a node p is terminal if and only if
depth(p) = 0.

Define a function label by recursion:

If p is terminal, and t is a loss for white, then let label(p) = black.

If p is terminal, and t is a loss for black, then let label(p) = white.

If p is terminal, and t is a draw, then let label(p) = draw.

If p is terminal, and the last position is illegal, then if the last move was
for white, then let label(p) = black; if the last move was for black,
then let label(p) = white.

This defines label on all nodes of depth 0. The label determines
the outcome of the game if the game reaches that node.
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Chess as a mathematical object (5).

Suppose label is define for all nodes of depth i . Let p be a node of
depth i + 1 where white has to move. All successors of p already
have labels.
Case 1. If at least one of them is labelled white, then label p white as well.

Case 2. If none of them is labelled white, but at least one is labelled draw, then
label p draw.

Case 3. If all of them are labelled black, then label p black.

Now let p be a node of depth i + 1 where black has to move.

Case 1. If at least one of them is labelled black, then label p black as well.

Case 2. If none of them is labelled black, but at least one is labelled draw, then
label p draw.

Case 3. If all of them are labelled white, then label p white.

By the recursion principle, label is a total function on T , and thus
the root has a label.
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Chess as a mathematical object (6).

Theorem. If the root has label white, then white has a winning
strategy; if the root has label draw, then both players have a
drawing strategy; if the root has label black, then black has a
winning strategy.

Corollary. One of the following three cases holds:

1 white has a winning strategy in chess,

2 black has a winning strategy in chess,

3 both players have a drawing strategy in chess.

Of course, to this day, it is not known which of the three cases
holds.
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Infinite games.

We fix an arbitrary set X of possible moves. We have two players,
I and II. I plays in the even rounds (0,2,4,...) and II plays in the
odd rounds (1,3,5,7,...).

Together, they produce an infinite sequence

x0, x1, x2, x3, x4, ...

i.e., a function x : N→ X .

We fix a payoff function A : XN → {I, II,draw}.

Combinatorially, think of this as the infinitely long X -branching
tree TX in which the two players move by alternatingly producing
an infinite branch.
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Chess as a special case.

Let X = 6413, and consider the finite pruned tree we constructed
before as TChess ⊆ TX . Suppose that x is an infinite branch
through TX . Then it passes through a unique terminal node of
TChess.

Now define
AChess(x) := label(tx).
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Some simplifying conventions.

From now on, we’ll let X = N, and we’ll ignore the option draw.
That means in our games, exactly one of the players wins.

This means that we do not really need a payoff function anymore,
but can instead use a payoff set A ⊆ NN, interpreting an outcome

x ∈ A

as a win for player I and an outcome

x /∈ A

as a win for player II.
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Strategies.

Let T I be the set of nodes of TX = TN of even length; in other
words, those nodes where player I has to play. Similarly, let T II be
the set of nodes of TX = TN of odd length.

A strategy for player I is a function σ : T I → N, and a strategy for
player II is a function τ : T II → N.

If σ and τ are such strategies, we can let them play against each
other and recursively define σ ∗ τ :

(σ ∗ τ)(2n) := σ((σ ∗ τ)�2n)

(σ ∗ τ)(2n + 1) := τ((σ ∗ τ)�2n + 1)

A strategy σ for player I is winning if for all τ , we have σ ∗ τ ∈ A.

A strategy τ for player II is winning if for all σ, we have σ ∗ τ /∈ A.
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Strategies as trees (1).

A strategy σ defines a tree Tσ ⊆ TN by the following recursive
definition:

if s ∈ T I ∩ Tσ, then sσ(s) ∈ Tσ;

if s ∈ T II ∩ Tσ, then sx ∈ Tσ for any x ∈ N.

If τ is any strategy for player II, then σ ∗ τ is a branch through Tσ.

We can now reformulate: σ is winning for I if every branch through
Tσ is in A.

Let’s investigate Tσ. Let Zσ be its set of branches. We’ll show
that |Zσ| = c.
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Strategies as trees (2).

Proof. It’s easy to see that |NN| = c. Since Zσ ⊆ NN, we get |Zσ| ≤ c.

For the other direction, we only need to produce an injection from the power
set of N to Zσ. As before, we identify the power set of N with {0, 1}N by

M 7→ xM

with

xM(n) =

{
1 if n ∈ M,
0 otherwise.

We define a strategy for player II as follows. If s ∈ T II and the length of s is
2n + 1, we let

τM(s) := xM(n).

Now consider σ ∗ τM . Clearly, if M 6= M ′, then σ ∗ τM 6= σ ∗ τM′ . So,

M 7→ σ ∗ τM

is an injection from the power set of N into Zσ. q.e.d.
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Strategies as trees (3).

Using the same technique, you can show that there are exactly c
many strategies.

Proof. Homework.

Corollary.

1 If A is countable, then I cannot have a winning strategy in the
game with payoff set A.

2 If the complement of A is countable, then II cannot have a
winning strategy in the game with payoff set A.
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An application (?)

Theorem (Morton Davis). For each A ⊆ NN there is a game G∗
A

such that

1 If I has a winning strategy in G∗
A, then |A| = c.

2 If II has a winning strategy in G∗
A, then |A| ≤ ℵ0.

Corollary. If we can show that all games have a winning strategy
for one of the two players, then the Continuum Hypothesis holds.
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Existence of non-determined sets.

Theorem. The Axiom of Choice implies the existence of a set
such that neither of the players has a winning strategy.

Proof. We had seen that there are c many strategies. Use the
Axiom of Choice to list them in a wellordered list {σα ; α < c}.
We also saw that for each of these strategies σα, its set of
branches Zα has c many elements.

Recursively define disjoint sets A and B such that each strategy
contains an element of A and B. Then there can be no winning
strategy for either play in the game with payoff set A. q.e.d.
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Gale-Stewart theorem.

A set A is called finite horizon if there is a set W ∈ TN such that

x ∈ A if and only if ∃p ∈W (x passes through p).

Theorem. For every finite horizon game there is either a winning
strategy for player I or for player II.

Isn’t this just like in the chess example?

You prune the tree after the nodes p ∈W, then these
nodes become terminal nodes, and you label them with I.
Then you run the recursion and if the root gets label I,
then I has a winning strategy; if not then II has a winning
strategy.

Well, it’s not so simple since we now have infinitely branching trees.
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