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If we start playing with sets without any care we are in trouble:

The Russell paradox

Suppose that there is a set X such that
X={a:a¢a}.

Then X € X < X ¢ X, which is a false sentence.

Therefore we start by a list of axioms naming some legitimate
operations.

The Russell paradox show that it is not always possible to form a
set of the form {x : p(x)}.
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Some axioms of Zermelo-Fraenkel (ZF)

@ Union: For any sets X and Y there is a set, denoted X U Y,
containing all elements of X and all elements of Y.

@ Separation: If A is a set and ¢ is some property then there is
aset {x € A: p(x)}.

o Power set: For every set X there is a set {A: A C X}
(denoted P(X)).

@ Infinity: There is an infinite set.

The axiom of choice (AC)

For every family A of nonempty sets there is a choice function f,
such that f(A) € A for every A € A.

ZF+ AC=ZFC.
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Equivalent forms

@ The axiom of choice.

@ Zermelo’s theorem: Every set can be well-ordered.

Proof.

(1)—(2) Take any set X. We shall show that X = {x, : o < v}
for some ordinal number +.

Let f be a choice function for the family of all nonempty subsets of
X. We define

Xa = F(X\ {x5: 8 < a}),

until it is possible. Then take v to be the first ordinal number for
which the set X \ {x, : @ < v} is empty.

(2)— (1) If Ais any family of nonempty sets then we can order
the union X = [J A of all of them and define f(A) to be the first
element of A. Ol
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Zorn's lemma, Tuckey style

Theorem

Let X be a set and A be a family of its subsets. Assume that A
has finite character, i.e. B € A if and only if all finite subsets of B
belong to A.

Then for any A € A there is M € A such that AC M and M is
maximal, i.e. for every M' € A satisfying M C M’ we have

M =M.

Let X = {x, : @« <~v}. Define M by

Xa EM S AU{x3 e M: B <a}U{x.} €A

Then M € A because all the finite subsets of M are in A. ]
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Application: Hamel basis

A set {x1,x2,...,xn} of reals is linearly independent over Q if for
any g; € Q, if g1x1 + goxo + ... + gnxp, = 0 then g; = 0 for all
i <n.

{1,+/2,+/3} is linearly independent over Q.

If {x1,x2,...,xn} is Li. while {x1,x2,...,x,,y} is not then
Y = qiX1 + - - . QnXx, for some g;'s.

V.
Theorem

There is a maximal linearly independent over Q set H C R. Every
x € R has the unique representation x =) .. qih;, where n € N,
qi € Q, hi € H.

<
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Application: Vitali sets

For x,y € R, say that x ~ y if x — y € Q. The relation is
equivalence relation on R, that is x ~ x, x ~ y < y ~ x and
X~ y,y~z=xn~ zforany x,y,z. The relation ~ divides R
into disjoint nonempty sets, where each set is of the form

{y : y ~ x} for some x. Let V be a selector for that partition.
Then

@ (g+ V)NV =0 for every rational g # 0; otherwise, if
x € (g+ V)NV then x =y + g for some x,y € V, which
gives x ~ y, x # y, a contradiction.

° qu(@(q—l— V)=R.
@ We can assume that V C [0,1). Then

[07 1) c U (q+ V) c [_172)'
qeQN[-1,1)
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Is Axiom of Choice controversial?

Banach-Tarski paradox

The ball of radius 1 (in R3) can be, by AC, decomposed into 5
pieces. Using those sets one can, using rotations and translations,
form two balls of radius 1.

It follows that 1=2 so there must be something wrong with AC.
... Or with you intuition concerning the volume. Why do you
assume that you can measure the volume of every set in R3?
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Thank yor for your attention!

David Hilbert:
No one shall expel us from the Paradise that Cantor has
created.

Georg Cantor:

The essence of mathematics lies entirely in its freedom.
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